51
|
Papadogkonaki S, Spyridakos D, Lapokonstantaki E, Chaniotakis N, Makriyannis A, Malamas MS, Thermos K. Investigating the Effects of Exogenous and Endogenous 2-Arachidonoylglycerol on Retinal CB1 Cannabinoid Receptors and Reactive Microglia in Naive and Diseased Retina. Int J Mol Sci 2023; 24:15689. [PMID: 37958673 PMCID: PMC10650178 DOI: 10.3390/ijms242115689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
The endocannabinoid system (ECS) is a new target for the development of retinal disease therapeutics, whose pathophysiology involves neurodegeneration and neuroinflammation. The endocannabinoid 2-arachidonoylglycerol (2-AG) affects neurons and microglia by activating CB1/CB2 cannabinoid receptors (Rs). The aim of this study was to investigate the effects of 2-AG on the CB1R expression/downregulation and retinal neurons/reactive microglia, when administered repeatedly (4 d), in three different paradigms. These involved the 2-AG exogenous administration (a) intraperitoneally (i.p.) and (b) topically and (c) by enhancing the 2-AG endogenous levels via the inhibition (AM11920, i.p.) of its metabolic enzymes (MAGL/ABHD6). Sprague Dawley rats were treated as mentioned above in the presence or absence of CB1/CB2R antagonists and the excitatory amino acid, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Immunohistochemistry, Western blot and a 2-AG level analyses were performed. The 2-AG repeated treatment (i.p.) induced the CB1R downregulation, abolishing its neuroprotective actions. However, 2-AG attenuated the AMPA-induced activation of microglia via the CB2R, as concurred by the AM630 antagonist effect. Topically administered 2-AG was efficacious as a neuroprotectant/antiapoptotic and anti-inflammatory agent. AM11920 increased the 2-AG levels providing neuroprotection against excitotoxicity and reduced microglial activation without affecting the CB1R expression. Our findings show that 2-AG, in the three paradigms studied, displays differential pharmacological profiles in terms of the downregulation of the CB1R and neuroprotection. All treatments, however, attenuated the activation of microglia via the CB2R activation, supporting the anti-inflammatory role of 2-AG in the retina.
Collapse
Affiliation(s)
- Sofia Papadogkonaki
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece; (S.P.); (D.S.)
| | - Dimitris Spyridakos
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece; (S.P.); (D.S.)
| | | | - Nikos Chaniotakis
- Department of Chemistry, University of Crete, Heraklion, 71003 Crete, Greece; (E.L.); (N.C.)
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (A.M.); (M.S.M.)
| | - Michael S. Malamas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (A.M.); (M.S.M.)
| | - Kyriaki Thermos
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece; (S.P.); (D.S.)
| |
Collapse
|
52
|
Gruden E, Kienzl M, Hasenoehrl C, Sarsembayeva A, Ristic D, Schmid ST, Maitz K, Taschler U, Hahnefeld L, Gurke R, Thomas D, Kargl J, Schicho R. Tumor microenvironment-derived monoacylglycerol lipase provokes tumor-specific immune responses and lipid profiles. Prostaglandins Leukot Essent Fatty Acids 2023; 196:102585. [PMID: 37573716 DOI: 10.1016/j.plefa.2023.102585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
We recently described that monoacylglycerol lipase (MGL) is present in the tumor microenvironment (TME), increasing tumor growth. In this study we compare the implications of MGL deficiency in the TME in different tumor types. We show that subcutaneous injection of KP (KrasLSL-G12D/p53fl/fl, mouse lung adenocarcinoma) or B16-F10 cells (mouse melanoma) induced tumor growth in MGL wild type (WT) and knockout (KO) mice. MGL deficiency in the TME attenuated the growth of KP cell tumors whereas tumors from B16-F10 cells increased in size. Opposite immune cell profiles were detected between the two tumor types in MGL KO mice. In line with their anti-tumorigenic function, the number of CD8+ effector T cells and eosinophils increased in KP cell tumors of MGL KO vs. WT mice whereas their presence was reduced in B16-F10 cell tumors of MGL KO mice. Differences were seen in lipid profiles between the investigated tumor types. 2-arachidonoylglycerol (2-AG) content significantly increased in KP, but not B16-F10 cell tumors of MGL KO vs. WT mice while other endocannabinoid-related lipids remained unchanged. However, profiles of phospho- and lysophospholipids, sphingomyelins and fatty acids in KP cell tumors were clearly distinct to those measured in B16-F10 cell tumors. Our data indicate that TME-localized MGL impacts tumor growth, as well as levels of 2-AG and other lipids in a tumor specific manner.
Collapse
Affiliation(s)
- Eva Gruden
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - Melanie Kienzl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria.
| | - Carina Hasenoehrl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - Arailym Sarsembayeva
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - Dusica Ristic
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - Sophie Theresa Schmid
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - Kathrin Maitz
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - Ulrike Taschler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology, Goethe University, 60590 Frankfurt/Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, Goethe University, 60590 Frankfurt/Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Goethe University, 60590 Frankfurt/Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Julia Kargl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - Rudolf Schicho
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| |
Collapse
|
53
|
Maccarrone M, Di Marzo V, Gertsch J, Grether U, Howlett AC, Hua T, Makriyannis A, Piomelli D, Ueda N, van der Stelt M. Goods and Bads of the Endocannabinoid System as a Therapeutic Target: Lessons Learned after 30 Years. Pharmacol Rev 2023; 75:885-958. [PMID: 37164640 PMCID: PMC10441647 DOI: 10.1124/pharmrev.122.000600] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/12/2023] Open
Abstract
The cannabis derivative marijuana is the most widely used recreational drug in the Western world and is consumed by an estimated 83 million individuals (∼3% of the world population). In recent years, there has been a marked transformation in society regarding the risk perception of cannabis, driven by its legalization and medical use in many states in the United States and worldwide. Compelling research evidence and the Food and Drug Administration cannabis-derived cannabidiol approval for severe childhood epilepsy have confirmed the large therapeutic potential of cannabidiol itself, Δ9-tetrahydrocannabinol and other plant-derived cannabinoids (phytocannabinoids). Of note, our body has a complex endocannabinoid system (ECS)-made of receptors, metabolic enzymes, and transporters-that is also regulated by phytocannabinoids. The first endocannabinoid to be discovered 30 years ago was anandamide (N-arachidonoyl-ethanolamine); since then, distinct elements of the ECS have been the target of drug design programs aimed at curing (or at least slowing down) a number of human diseases, both in the central nervous system and at the periphery. Here a critical review of our knowledge of the goods and bads of the ECS as a therapeutic target is presented to define the benefits of ECS-active phytocannabinoids and ECS-oriented synthetic drugs for human health. SIGNIFICANCE STATEMENT: The endocannabinoid system plays important roles virtually everywhere in our body and is either involved in mediating key processes of central and peripheral diseases or represents a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of the components of this complex system, and in particular of key receptors (like cannabinoid receptors 1 and 2) and metabolic enzymes (like fatty acid amide hydrolase and monoacylglycerol lipase), will advance our understanding of endocannabinoid signaling and activity at molecular, cellular, and system levels, providing new opportunities to treat patients.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Vincenzo Di Marzo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Jürg Gertsch
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Uwe Grether
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Allyn C Howlett
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Tian Hua
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Alexandros Makriyannis
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Daniele Piomelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Natsuo Ueda
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Mario van der Stelt
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| |
Collapse
|
54
|
Piscura MK, Henderson-Redmond AN, Barnes RC, Mitra S, Guindon J, Morgan DJ. Mechanisms of cannabinoid tolerance. Biochem Pharmacol 2023; 214:115665. [PMID: 37348821 PMCID: PMC10528043 DOI: 10.1016/j.bcp.2023.115665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Cannabis has been used recreationally and medically for centuries, yet research into understanding the mechanisms of its therapeutic effects has only recently garnered more attention. There is evidence to support the use of cannabinoids for the treatment of chronic pain, muscle spasticity, nausea and vomiting due to chemotherapy, improving weight gain in HIV-related cachexia, emesis, sleep disorders, managing symptoms in Tourette syndrome, and patient-reported muscle spasticity from multiple sclerosis. However, tolerance and the risk for cannabis use disorder are two significant disadvantages for cannabinoid-based therapies in humans. Recent work has revealed prominent sex differences in the acute response and tolerance to cannabinoids in both humans and animal models. This review will discuss evidence demonstrating cannabinoid tolerance in rodents, non-human primates, and humans and our current understanding of the neuroadaptations occurring at the cannabinoid type 1 receptor (CB1R) that are responsible tolerance. CB1R expression is downregulated in tolerant animals and humans while there is strong evidence of CB1R desensitization in cannabinoid tolerant rodent models. Throughout the review, critical knowledge gaps are indicated and discussed, such as the lack of a neuroimaging probe to assess CB1R desensitization in humans. The review discusses the intracellular signaling pathways that are responsible for mediating CB1R desensitization and downregulation including the action of G protein-coupled receptor kinases, β-arrestin2 recruitment, c-Jun N-terminal kinases, protein kinase A, and the intracellular trafficking of CB1R. Finally, the review discusses approaches to reduce cannabinoid tolerance in humans based on our current understanding of the neuroadaptations and mechanisms responsible for this process.
Collapse
Affiliation(s)
- Mary K Piscura
- Department of Biomedical Sciences, Marshall University, Huntington, WV 25755, USA; Department of Biomedical Sciences, Edward Via College of Osteopathic Medicine, Auburn, AL 36832, USA
| | | | - Robert C Barnes
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Swarup Mitra
- Department of Biomedical Sciences, Marshall University, Huntington, WV 25755, USA
| | - Josée Guindon
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Daniel J Morgan
- Department of Biomedical Sciences, Marshall University, Huntington, WV 25755, USA.
| |
Collapse
|
55
|
Bouchet CA, McPherson KB, Coutens B, Janowsky A, Ingram SL. Monoacylglycerol Lipase Protects the Presynaptic Cannabinoid 1 Receptor from Desensitization by Endocannabinoids after Persistent Inflammation. J Neurosci 2023; 43:5458-5467. [PMID: 37414560 PMCID: PMC10376933 DOI: 10.1523/jneurosci.0037-23.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/08/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023] Open
Abstract
Cannabinoid-targeted pain therapies are increasing with the expansion of cannabis legalization, however, their efficacy may be limited by pain-induced adaptations in the cannabinoid system. Cannabinoid receptor subtype 1 (CB1R) inhibition of spontaneous, GABAergic miniature IPSCs (mIPSCs) and evoked IPSCs (eIPSCs) in the ventrolateral periaqueductal gray (vlPAG) were compared in slices from naive and inflamed male and female Sprague Dawley rats. Complete Freund's Adjuvant (CFA) injections into the hindpaw induced persistent inflammation. In naive rats, exogenous cannabinoid agonists robustly reduce both eIPSCs and mIPSCs. After 5-7 d of inflammation, the effects of exogenous cannabinoids are significantly reduced because of CB1R desensitization via GRK2/3, as function is recovered in the presence of the GRK2/3 inhibitor, Compound 101 (Cmp101). Inhibition of GABA release by presynaptic μ-opioid receptors in the vlPAG does not desensitize with persistent inflammation. Unexpectedly, while CB1R desensitization significantly reduces the inhibition produced by exogenous agonists, depolarization-induced suppression of inhibition protocols that promote 2-arachidonoylglycerol (2-AG) synthesis exhibit prolonged CB1R activation after inflammation. 2-AG tone is detected in slices from CFA-treated rats when GRK2/3 is blocked, suggesting an increase in 2-AG synthesis after persistent inflammation. Inhibiting 2-AG degradation with the monoacylglycerol lipase (MAGL) inhibitor JZL184 during inflammation results in the desensitization of CB1Rs by endocannabinoids that is reversed with Cmp101. Collectively, these data indicate that persistent inflammation primes CB1Rs for desensitization, and MAGL degradation of 2-AG protects CB1Rs from desensitization in inflamed rats. These adaptations with inflammation have important implications for the development of cannabinoid-based pain therapeutics targeting MAGL and CB1Rs.SIGNIFICANCE STATEMENT Presynaptic G-protein-coupled receptors are resistant to desensitization. Here we find that persistent inflammation increases endocannabinoid levels, priming presynaptic cannabinoid 1 receptors for desensitization on subsequent addition of exogenous agonists. Despite the reduced efficacy of exogenous agonists, endocannabinoids have prolonged efficacy after persistent inflammation. Endocannabinoids readily induce cannabinoid 1 receptor desensitization if their degradation is blocked, indicating that endocannabinoid concentrations are maintained at subdesensitizing levels and that degradation is critical for maintaining endocannabinoid regulation of presynaptic GABA release in the ventrolateral periaqueductal gray during inflammatory states. These adaptations with inflammation have important implications for the development of cannabinoid-based pain therapies.
Collapse
Affiliation(s)
- Courtney A Bouchet
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon 97239
- Neuroscience Graduate Program, Vollum Institute, Portland, Oregon 97239
| | - Kylie B McPherson
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Basile Coutens
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Aaron Janowsky
- Research Service, VA Portland Health Care System, Portland, Oregon 97239
- Departments of Psychiatry, and Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
| | - Susan L Ingram
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon 97239
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
56
|
Kruk-Slomka M, Adamski B, Slomka T, Biala G. Inhibitors of Endocannabinoids' Enzymatic Degradation as a Potential Target of the Memory Disturbances in an Acute N-Methyl-D-Aspartate (NMDA) Receptor Hypofunction Model of Schizophrenia in Mice. Int J Mol Sci 2023; 24:11400. [PMID: 37511157 PMCID: PMC10380236 DOI: 10.3390/ijms241411400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Treating schizophrenia with the available pharmacotherapy is difficult. One possible strategy is focused on the modulation of the function of the endocannabinoid system (ECS). The ECS is comprised of cannabinoid (CB) receptors, endocannabinoids and enzymes responsible for the metabolism of endocannabinoids (fatty acid hydrolase (FAAH) and monoacylglycerol lipase (MAGL)). Here, the aim of the experiments was to evaluate the impact of inhibitors of endocannabinoids' enzymatic degradation in the brain: KML-29 (MAGL inhibitor), JZL-195 (MAGL/FAAH inhibitor) and PF-3845 (FAAH inhibitor), on the memory disturbances typical for schizophrenia in an acute N-methyl-D-aspartate (NMDA) receptor hypofunction animal model of schizophrenia (i.e., injection of MK-801, an NMDA receptor antagonist). The memory-like responses were assessed in the passive avoidance (PA) test. A single administration of KML-29 or PF-3845 had a positive effect on the memory processes, but an acute administration of JZL-195 impaired cognition in mice in the PA test. Additionally, the combined administration of a PA-ineffective dose of KML-29 (5 mg/kg) or PF-3845 (3 mg/kg) attenuated the MK-801-induced cognitive impairment (0.6 mg/kg). Our results suggest that the indirect regulation of endocannabinoids' concentration in the brain through the use of selected inhibitors may positively affect memory disorders, and thus increase the effectiveness of modern pharmacotherapy of schizophrenia.
Collapse
Affiliation(s)
- Marta Kruk-Slomka
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Bartlomiej Adamski
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Tomasz Slomka
- Department of Medical Informatics and Statistics with E-Health Lab, Medical University of Lublin, Jaczewskiego 4 Street, 20-954 Lublin, Poland
| | - Grazyna Biala
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| |
Collapse
|
57
|
Jacotte-Simancas A, Molina P, Gilpin N. JZL184 increases anxiety-like behavior and does not reduce alcohol consumption in female rats after repeated mild traumatic brain injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542943. [PMID: 37398130 PMCID: PMC10312513 DOI: 10.1101/2023.05.30.542943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Alcohol use disorder (AUD) is highly comorbid with traumatic brain injury (TBI). Previously, using a lateral fluid percussion model (LFP) (an open model of head injury) to generate a single mild to moderate traumatic brain injury (TBI), we showed that TBI produces escalation in alcohol drinking, that alcohol exposure negatively impacts TBI outcomes, and that the endocannabinoid degradation inhibitor (JZL184) confers significant protection from behavioral and neuropathological outcomes in male rodents. In the present study, we used a weight drop model (a closed model of head injury) to produce a repeated mild TBI (rmTBI, 3 TBIs, spaced by 24 hours) to examine the sex-specific effects on alcohol consumption and anxiety-like behavior in rats, and whether systemic treatment with JZL184 would reverse TBI effects on those behaviors in both sexes. In two separate studies, adult male and female Wistar rats were subjected to rmTBI or sham using the weight drop model. Physiological measures of injury severity were collected from all animals. Animals in both studies were allowed to consume alcohol using an intermittent 2-bottle choice procedure (12 pre-TBI sessions and 12 post-TBI sessions). Neurological severity and neurobehavioral scores (NSS and NBS, respectively) were tested 24 hours after the final injury. Anxiety-like behavior was tested at 37-38 days post-injury in Study 1, and 6-8 days post-injury in Study 2. Our results show that females exhibited reduced respiratory rates relative to males with no significant differences between Sham and rmTBI, no effect of rmTBI or sex on righting reflex, and increased neurological deficits in rmTBI groups in both studies. In Study 1, rmTBI increased alcohol consumption in female but not male rats. Male rats consistently exhibited higher levels of anxiety-like behavior than females. rmTBI did not affect anxiety-like behavior 37-38 days post-injury. In Study 2, rmTBI once again increased alcohol consumption in female but not male rats, and repeated systemic treatment with JZL184 did not affect alcohol consumption. Also in Study 2, rmTBI increased anxiety-like behavior in males but not females and repeated systemic treatment with JZL184 produced an unexpected increase in anxiety-like behavior 6-8 days post-injury. In summary, rmTBI increased alcohol consumption in female rats, systemic JZL184 treatment did not alter alcohol consumption, and both rmTBI and sub-chronic systemic JZL184 treatment increased anxiety-like behavior 6-8 days post-injury in males but not females, highlighting robust sex differences in rmTBI effects.
Collapse
Affiliation(s)
- Alejandra Jacotte-Simancas
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA
- Alcohol and Drug of Abuse Center of Excellence, LSUHSC, New Orleans, LA
| | - Patricia Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA
- Alcohol and Drug of Abuse Center of Excellence, LSUHSC, New Orleans, LA
| | - Nicholas Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA
- Alcohol and Drug of Abuse Center of Excellence, LSUHSC, New Orleans, LA
- Southeast Louisiana VA Healthcare System, New Orleans, LA
| |
Collapse
|
58
|
Serra V, Aroni S, Bortolato M, Frau R, Melis M. Endocannabinoid-dependent decrease of GABAergic transmission on dopaminergic neurons is associated with susceptibility to cocaine stimulant effects in pre-adolescent male MAOA hypomorphic mice exposed to early life stress. Neuropharmacology 2023; 233:109548. [PMID: 37080337 DOI: 10.1016/j.neuropharm.2023.109548] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/04/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Vulnerability to cocaine use disorder depends upon a combination of genetic and environmental risk factors. While early life adversity is a critical environmental vulnerability factor for drug misuse, allelic variants of the monoamine oxidase A (MAOA) gene have been shown to moderate its influence on the risk of drug-related problems. However, data on the interactions between MAOA variants and early life stress (ES) with respect to predisposition to cocaine abuse are limited. Here, we show that a mouse model capturing the interaction of genetic (low-activity alleles of the Maoa gene; MAOANeo) and environmental (i.e., ES) vulnerability factors displays an increased sensitivity to repeated in vivo cocaine psychomotor stimulant actions associated with a reduction of GABAA receptor-mediated inhibition of dopamine neurons of the ventral tegmental area (VTA). Depolarization-induced suppression of inhibition (DSI), a 2-arachidonoylglycerol (2AG)-dependent form of short-term plasticity, also becomes readily expressed by dopamine neurons from male MAOANeo ES mice repeatedly treated with cocaine. The activation of either dopamine D2 or CB1 receptors contributes to cocaine-induced DSI expression, decreased GABA synaptic efficacy, and hyperlocomotion. Next, in vivo pharmacological enhancement of 2AG signaling during repeated cocaine exposure occludes its actions both in vivo and ex vivo. This data extends our knowledge of the multifaceted sequelae imposed by this gene-environment interaction in VTA dopamine neurons of male pre-adolescent mice and contributes to our understanding of neural mechanisms of vulnerability for early onset cocaine use.
Collapse
Affiliation(s)
- Valeria Serra
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato, Italy
| | - Sonia Aroni
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato, Italy
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, 84112, USA
| | - Roberto Frau
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato, Italy
| | - Miriam Melis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato, Italy.
| |
Collapse
|
59
|
Chen C. Inhibiting degradation of 2-arachidonoylglycerol as a therapeutic strategy for neurodegenerative diseases. Pharmacol Ther 2023; 244:108394. [PMID: 36966972 PMCID: PMC10123871 DOI: 10.1016/j.pharmthera.2023.108394] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Endocannabinoids are endogenous lipid signaling mediators that participate in a variety of physiological and pathological processes. 2-Arachidonoylglycerol (2-AG) is the most abundant endocannabinoid and is a full agonist of G-protein-coupled cannabinoid receptors (CB1R and CB2R), which are targets of Δ9-tetrahydrocannabinol (Δ9-THC), the main psychoactive ingredient in cannabis. While 2-AG has been well recognized as a retrograde messenger modulating synaptic transmission and plasticity at both inhibitory GABAergic and excitatory glutamatergic synapses in the brain, growing evidence suggests that 2-AG also functions as an endogenous terminator of neuroinflammation in response to harmful insults, thus maintaining brain homeostasis. Monoacylglycerol lipase (MAGL) is the key enzyme that degrades 2-AG in the brain. The immediate metabolite of 2-AG is arachidonic acid (AA), a precursor of prostaglandins (PGs) and leukotrienes. Several lines of evidence indicate that pharmacological or genetic inactivation of MAGL, which boosts 2-AG levels and reduces its hydrolytic metabolites, resolves neuroinflammation, mitigates neuropathology, and improves synaptic and cognitive functions in animal models of neurodegenerative diseases, including Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease (PD), and traumatic brain injury (TBI)-induced neurodegenerative disease. Thus, it has been proposed that MAGL is a potential therapeutic target for treatment of neurodegenerative diseases. As the main enzyme hydrolyzing 2-AG, several MAGL inhibitors have been identified and developed. However, our understanding of the mechanisms by which inactivation of MAGL produces neuroprotective effects in neurodegenerative diseases remains limited. A recent finding that inhibition of 2-AG metabolism in astrocytes, but not in neurons, protects the brain from TBI-induced neuropathology might shed some light on this unsolved issue. This review provides an overview of MAGL as a potential therapeutic target for neurodegenerative diseases and discusses possible mechanisms underlying the neuroprotective effects of restraining degradation of 2-AG in the brain.
Collapse
|
60
|
Lee MT, Mackie K, Chiou LC. Alternative pain management via endocannabinoids in the time of the opioid epidemic: Peripheral neuromodulation and pharmacological interventions. Br J Pharmacol 2023; 180:894-909. [PMID: 34877650 PMCID: PMC9170838 DOI: 10.1111/bph.15771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 01/18/2023] Open
Abstract
The use of opioids in pain management is hampered by the emergence of analgesic tolerance, which leads to increased dosing and side effects, both of which have contributed to the opioid epidemic. One promising potential approach to limit opioid analgesic tolerance is activating the endocannabinoid system in the CNS, via activation of CB1 receptors in the descending pain inhibitory pathway. In this review, we first discuss preclinical and clinical evidence revealing the potential of pharmacological activation of CB1 receptors in modulating opioid tolerance, including activation by phytocannabinoids, synthetic CB1 receptor agonists, endocannabinoid degradation enzyme inhibitors, and recently discovered positive allosteric modulators of CB1 receptors. On the other hand, as non-pharmacological pain relief is advocated by the US-NIH to combat the opioid epidemic, we also discuss contributions of peripheral neuromodulation, involving the electrostimulation of peripheral nerves, in addressing chronic pain and opioid tolerance. The involvement of supraspinal endocannabinoid systems in peripheral neuromodulation-induced analgesia is also discussed. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Grants
- MOST 108-2321-B-002-005 Ministry of Science and Technology, Taiwan
- MOST 107-2811-B-002-008 Ministry of Science and Technology, Taiwan
- R01 DA041229 NIDA NIH HHS
- MOST 107-2321-B-002-010 Ministry of Science and Technology, Taiwan
- R01 DA047858 NIDA NIH HHS
- 107M4022-3 Ministry of Education, Taiwan
- MOST 106-2321-B-002-019 Ministry of Science and Technology, Taiwan
- NHRI-EX111-11114NI National Health Research Institutes, Taiwan
- FRGS/1/2021/WAB13/UCSI/02/1 Ministry of Higher Education, Malaysia
- R21 DA042584 NIDA NIH HHS
- REIG-FPS-2020/065 UCSI University Research Excellence and Innovation Grant, Malaysia
- NHRI-EX109-10733NI National Health Research Institutes, Taiwan
- MOST 104-2745-B-002-004 Ministry of Science and Technology, Taiwan
- MOST 109-2320-B-002-042-MY3 Ministry of Science and Technology, Taiwan
- MOST 107-2811-B-002 -008 Ministry of Science and Technology, Taiwan
- MOST 108-2320-B-002-029-MY3 Ministry of Science and Technology, Taiwan
Collapse
Affiliation(s)
- Ming Tatt Lee
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Ken Mackie
- Gill Center for Biomolecular Research, Indiana University, Bloomington, Indiana 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, USA
| | - Lih-Chu Chiou
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
61
|
Sharma R, Singh S, Whiting ZM, Molitor M, Vernall AJ, Grimsey NL. Novel Cannabinoid Receptor 2 (CB2) Low Lipophilicity Agonists Produce Distinct cAMP and Arrestin Signalling Kinetics without Bias. Int J Mol Sci 2023; 24:ijms24076406. [PMID: 37047385 PMCID: PMC10094510 DOI: 10.3390/ijms24076406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Cannabinoid Receptor 2 (CB2) is a promising target for treating inflammatory diseases. We designed derivatives of 3-carbamoyl-2-pyridone and 1,8-naphthyridin-2(1H)-one-3-carboxamide CB2-selective agonists with reduced lipophilicity. The new compounds were measured for their affinity (radioligand binding) and ability to elicit cyclic adenosine monophosphate (cAMP) signalling and β-arrestin-2 translocation with temporal resolution (BRET-based biosensors). For the 3-carbamoyl-2-pyridone derivatives, we found that modifying the previously reported compound UOSS77 (also known as S-777469) by appending a PEG2-alcohol via a 3-carbomylcyclohexyl carboxamide (UOSS75) lowered lipophilicity, and preserved binding affinity and signalling profile. The 1,8-naphthyridin-2(1H)-one-3-carboxamide UOMM18, containing a cis configuration at the 3-carboxamide cyclohexyl and with an alcohol on the 4-position of the cyclohexyl, had lower lipophilicity but similar CB2 affinity and biological activity to previously reported compounds of this class. Relative to CP55,940, the new compounds acted as partial agonists and did not exhibit signalling bias. Interestingly, while all compounds shared similar temporal trajectories for maximal efficacy, differing temporal trajectories for potency were observed. Consequently, when applied at sub-maximal concentrations, CP55,940 tended to elicit sustained (cAMP) or increasing (arrestin) responses, whereas responses to the new compounds tended to be transient (cAMP) or sustained (arrestin). In future studies, the compounds characterised here may be useful in elucidating the consequences of differential temporal signalling profiles on CB2-mediated physiological responses.
Collapse
Affiliation(s)
- Raahul Sharma
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (R.S.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Sameek Singh
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand (M.M.); (A.J.V.)
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Zak M. Whiting
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (R.S.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Maximilian Molitor
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand (M.M.); (A.J.V.)
- Institute of Pharmaceutical Chemistry, Goethe University, 60438 Frankfurt, Germany
| | - Andrea J. Vernall
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand (M.M.); (A.J.V.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Natasha L. Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (R.S.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
- Correspondence:
| |
Collapse
|
62
|
Battaglia S, Di Fazio C, Vicario CM, Avenanti A. Neuropharmacological Modulation of N-methyl-D-aspartate, Noradrenaline and Endocannabinoid Receptors in Fear Extinction Learning: Synaptic Transmission and Plasticity. Int J Mol Sci 2023; 24:ijms24065926. [PMID: 36983000 PMCID: PMC10053024 DOI: 10.3390/ijms24065926] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Learning to recognize and respond to potential threats is crucial for survival. Pavlovian threat conditioning represents a key paradigm for investigating the neurobiological mechanisms of fear learning. In this review, we address the role of specific neuropharmacological adjuvants that act on neurochemical synaptic transmission, as well as on brain plasticity processes implicated in fear memory. We focus on novel neuropharmacological manipulations targeting glutamatergic, noradrenergic, and endocannabinoid systems, and address how the modulation of these neurobiological systems affects fear extinction learning in humans. We show that the administration of N-methyl-D-aspartate (NMDA) agonists and modulation of the endocannabinoid system by fatty acid amide hydrolase (FAAH) inhibition can boost extinction learning through the stabilization and regulation of the receptor concentration. On the other hand, elevated noradrenaline levels dynamically modulate fear learning, hindering long-term extinction processes. These pharmacological interventions could provide novel targeted treatments and prevention strategies for fear-based and anxiety-related disorders.
Collapse
Affiliation(s)
- Simone Battaglia
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Department of Psychology, University of Turin, 10124 Turin, Italy
| | - Chiara Di Fazio
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
| | - Carmelo M Vicario
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università Degli Studi di Messina, 98122 Messina, Italy
| | - Alessio Avenanti
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Neuropsicology and Cognitive Neuroscience Research Center (CINPSI Neurocog), Universidad Católica del Maule, Talca 3460000, Chile
| |
Collapse
|
63
|
Salinas-Abarca AB, Martínez-Lorenzana G, Condés-Lara M, González-Hernández A. The role of the endocannabinoid 2-arachidonoylglycerol in the in vivo spinal oxytocin-induced antinociception in male rats. Exp Neurol 2023; 363:114383. [PMID: 36921751 DOI: 10.1016/j.expneurol.2023.114383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/17/2023] [Accepted: 03/12/2023] [Indexed: 03/14/2023]
Abstract
Oxytocin receptor (OTR) activation at the spinal level produces antinociception. Some data suggest that central OTR activation enhances social interaction via an increase of endocannabinoids (eCB), but we do not know if this could occur at the spinal level, modulating pain transmission. Considering that oxytocin via OTR stimulates diacylglycerol formation, a key intermediate in synthesizing 2-arachidonylglycerol (2-AG), an eCB molecule, we sought to test the role of the eCB system on the spinal oxytocin-induced antinociception. Behavioral and electrophysiological experiments were conducted in naïve and formalin-treated (to induce long-term mechanical hypersensitivity) male Wistar rats. Intrathecal RHC 80267 injections, an inhibitor of the enzyme diacylglycerol lipase (thus, decreasing 2-AG formation), produces transient mechanical hypersensitivity, an effect unaltered by oxytocin but reversed by gabapentin. Similarly, in in vivo extracellular recordings of naïve spinal wide dynamic range cells, juxtacellular picoinjection of RHC 80267 increases the firing of nociceptive Aδ-, C-fibers, and post-discharge, an effect unaltered by oxytocin. Interestingly, in sensitized rats, oxytocin picoinjection reverses the RHC 80627-induced hyperactivity of Aδ-fibers (but not C- or post-discharge activity). In contrast, a sub-effective dose of JZL184 (a monoacylglycerol lipase inhibitor, thus favoring 2-AG levels), which does not have per se an antinociceptive effect in the formalin-induced hypernociception, the oxytocin-induced antinociception is boosted. Similarly, electrophysiological experiments suggest that juxtacellular JZL184 diminishes the neuronal firing of nociceptive fibers, and co-injection with oxytocin prolongs and enhances the antinociceptive effect. These data may imply that 2-AG formation may play a role in the spinal antinociception induced by oxytocin.
Collapse
Affiliation(s)
- Ana B Salinas-Abarca
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, QRO 76230, Mexico; Department of Neural and Pain Sciences, University of Maryland Baltimore, 650 W. Baltimore Street, Baltimore, MD 21201, USA.
| | - Guadalupe Martínez-Lorenzana
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, QRO 76230, Mexico.
| | - Miguel Condés-Lara
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, QRO 76230, Mexico.
| | - Abimael González-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, QRO 76230, Mexico.
| |
Collapse
|
64
|
Zhu D, Zhang J, Gao F, Hu M, Hashem J, Chen C. Augmentation of 2-arachidonoylglycerol signaling in astrocytes maintains synaptic functionality by regulation of miRNA-30b. Exp Neurol 2023; 361:114292. [PMID: 36481187 PMCID: PMC9892245 DOI: 10.1016/j.expneurol.2022.114292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
2-Arachidonoylglycerol (2-AG), the most abundant endocannabinoid, displays anti-inflammatory and neuroprotective properties. Inhibition of 2-AG degradation by inactivation of monoacylglycerol lipase (MAGL), a key enzyme degrading 2-AG in the brain, alleviates neuropathology and improves synaptic and cognitive functions in animal models of neurodegenerative diseases. In particular, global inactivation of MAGL by genetic deletion of mgll enhances hippocampal long-term potentiation (LTP) and hippocampus-dependent learning and memory. However, our understanding of the molecular mechanisms by which chronic inactivation of MAGL enhances synaptic activity is still limited. Here, we provide evidence that pharmacological inactivation of MAGL suppresses hippocampal expression of miR-30b, a small non-coding microRNA, and upregulates expression of its targets, including ephrin type-B receptor 2 (ephB2), sirtuin1 (sirt1), and glutamate ionotropic receptor AMPA type subunit 2 (GluA2). Importantly, suppression of miR-30b and increase of its targets by inactivation of MAGL result primarily from inhibition of 2-AG metabolism in astrocytes, rather than in neurons. Inactivation of MAGL in astrocytes prevents miR-30b overexpression-induced impairments in synaptic transmission and long-term potentiation (LTP) in the hippocampus. Suppression of miR-30b expression by inactivation of MAGL is apparently associated with augmentation of 2-AG signaling, as 2-AG induces a dose-dependent decrease in expression of miR-30b. 2-AG- or MAGL inactivation-suppressed expression of miR-30b is not mediated via CB1R, but by peroxisome proliferator-activated receptor γ (PPARγ). This is further supported by the results showing that MAGL inactivation-induced downregulation of miR-30b and upregulation of its targets are attenuated by antagonism of PPARγ, but mimicked by PPARγ agonists. In addition, we observed that 2-AG-induced reduction of miR-30b expression is mediated via NF-kB signaling. Our study provides evidence that 2-AG signaling in astrocytes plays an important role in maintaining the functional integrity of synapses in the hippocampus by regulation of miR-30b expression.
Collapse
Affiliation(s)
- Dexiao Zhu
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Jian Zhang
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Fei Gao
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Mei Hu
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Jack Hashem
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Chu Chen
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Biomedical Neuroscience, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
65
|
Understanding and Targeting the Endocannabinoid System with Activity‐Based Protein Profiling. Isr J Chem 2023. [DOI: 10.1002/ijch.202200115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
66
|
Asher MJ, McMullan HM, Dong A, Li Y, Thayer SA. A Complete Endocannabinoid Signaling System Modulates Synaptic Transmission between Human Induced Pluripotent Stem Cell-Derived Neurons. Mol Pharmacol 2023; 103:100-112. [PMID: 36379717 PMCID: PMC9881009 DOI: 10.1124/molpharm.122.000555] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/01/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
The endocannabinoid system (ECS) modulates synaptic function to regulate many aspects of neurophysiology. It adapts to environmental changes and is affected by disease. Thus, the ECS presents an important target for therapeutic development. Despite recent interest in cannabinoid-based treatments, few preclinical studies are conducted in human systems. Human induced pluripotent stem cells (hiPSCs) provide one possible solution to this issue. However, it is not known if these cells have a fully functional ECS. Here, we show that hiPSC-derived neuron/astrocyte cultures exhibit a complete ECS. Using Ca2+ imaging and a genetically encoded endocannabinoid sensor, we demonstrate that they not only respond to exogenously applied cannabinoids but also produce and metabolize endocannabinoids. Synaptically driven [Ca2+]i spiking activity was inhibited (EC50 = 48 ± 13 nM) by the efficacious agonist [R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrolol [1,2,3-de]-1,4-benzoxazin-yl]-(1-naphthalenyl)methanone mesylate] (Win 55,212-2) and by the endogenous ligand 2-arachidonoyl glycerol (2-AG; EC50 = 2.0 ± 0.6 µm). The effects of Win 55212-2 were blocked by a CB1 receptor-selective antagonist. Δ9-Tetrahydrocannabinol acted as a partial agonist, maximally inhibiting synaptic activity by 47 ± 14% (EC50 = 1.4 ± 1.9 µm). Carbachol stimulated 2-AG production in a manner that was independent of Ca2+ and blocked by selective inhibition of diacylglycerol lipase. 2-AG returned to basal levels via a process mediated by monoacylglycerol lipase as indicated by slowed recovery in cultures treated with 4-[Bis(1,3-benzodioxol-5-yl)hydroxymethyl]-1-piperidinecarboxylic acid 4-nitrophenyl ester (JZL 184). Win 55,212-2 markedly desensitized CB1 receptor function following a 1-day exposure, whereas desensitization was incomplete following 7-day treatment with JZL 184. This human cell culture model is well suited for functional analysis of the ECS and as a platform for drug development. SIGNIFICANCE STATEMENT: Despite known differences between the human response to cannabinoids and that of other species, an in vitro human model demonstrating a fully functional endocannabinoid system has not been described. Human induced pluripotent stem cells (hiPSCs) can be obtained from skin samples and then reprogrammed into neurons for use in basic research and drug screening. Here, we show that hiPSC-derived neuronal cultures exhibit a complete endocannabinoid system suitable for mechanistic studies and drug discovery.
Collapse
Affiliation(s)
- Melissa J Asher
- Department of Pharmacology (M.J.A., H.M.M., S.A.T.), Graduate Program in Neuroscience (M.J.A., S.A.T.), and Molecular Pharmacology and Therapeutics Graduate Program (H.M.M., S.A.T.), University of Minnesota Medical School, Minneapolis, Minnesota; State Key Laboratory of Membrane Biology, Peking University School of Life Sciences (A.D., Y.L.), IDG/McGovern Institute for Brain Research (A.D., Y.L.), and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies (A.D., Y.L.), Peking University, Beijing, China; and Chinese Institute for Brain Research, Beijing, China (Y.L.)
| | - Hannah M McMullan
- Department of Pharmacology (M.J.A., H.M.M., S.A.T.), Graduate Program in Neuroscience (M.J.A., S.A.T.), and Molecular Pharmacology and Therapeutics Graduate Program (H.M.M., S.A.T.), University of Minnesota Medical School, Minneapolis, Minnesota; State Key Laboratory of Membrane Biology, Peking University School of Life Sciences (A.D., Y.L.), IDG/McGovern Institute for Brain Research (A.D., Y.L.), and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies (A.D., Y.L.), Peking University, Beijing, China; and Chinese Institute for Brain Research, Beijing, China (Y.L.)
| | - Ao Dong
- Department of Pharmacology (M.J.A., H.M.M., S.A.T.), Graduate Program in Neuroscience (M.J.A., S.A.T.), and Molecular Pharmacology and Therapeutics Graduate Program (H.M.M., S.A.T.), University of Minnesota Medical School, Minneapolis, Minnesota; State Key Laboratory of Membrane Biology, Peking University School of Life Sciences (A.D., Y.L.), IDG/McGovern Institute for Brain Research (A.D., Y.L.), and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies (A.D., Y.L.), Peking University, Beijing, China; and Chinese Institute for Brain Research, Beijing, China (Y.L.)
| | - Yulong Li
- Department of Pharmacology (M.J.A., H.M.M., S.A.T.), Graduate Program in Neuroscience (M.J.A., S.A.T.), and Molecular Pharmacology and Therapeutics Graduate Program (H.M.M., S.A.T.), University of Minnesota Medical School, Minneapolis, Minnesota; State Key Laboratory of Membrane Biology, Peking University School of Life Sciences (A.D., Y.L.), IDG/McGovern Institute for Brain Research (A.D., Y.L.), and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies (A.D., Y.L.), Peking University, Beijing, China; and Chinese Institute for Brain Research, Beijing, China (Y.L.)
| | - Stanley A Thayer
- Department of Pharmacology (M.J.A., H.M.M., S.A.T.), Graduate Program in Neuroscience (M.J.A., S.A.T.), and Molecular Pharmacology and Therapeutics Graduate Program (H.M.M., S.A.T.), University of Minnesota Medical School, Minneapolis, Minnesota; State Key Laboratory of Membrane Biology, Peking University School of Life Sciences (A.D., Y.L.), IDG/McGovern Institute for Brain Research (A.D., Y.L.), and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies (A.D., Y.L.), Peking University, Beijing, China; and Chinese Institute for Brain Research, Beijing, China (Y.L.)
| |
Collapse
|
67
|
Luz-Veiga M, Azevedo-Silva J, Fernandes JC. Beyond Pain Relief: A Review on Cannabidiol Potential in Medical Therapies. Pharmaceuticals (Basel) 2023; 16:155. [PMID: 37259306 PMCID: PMC9958812 DOI: 10.3390/ph16020155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 07/30/2023] Open
Abstract
The phytocannabinoid cannabidiol (CBD) is receiving increasing attention due to its pharmacological properties. Although CBD is extracted from Cannabis sativa, it lacks the psychoactive effects of Δ9-tetrahydrocannabinol (THC) and has become an attractive compound for pharmacological uses due to its anti-inflammatory, antioxidant, anticonvulsant, and anxiolytic potential. The molecular mechanisms involved in CBD's biological effects are not limited to its interaction with classical cannabinoid receptors, exerting anti-inflammatory or pain-relief effects. Several pieces of evidence demonstrate that CBD interacts with other receptors and cellular signaling cascades, which further support CBD's therapeutic potential beyond pain management. In this review, we take a closer look at the molecular mechanisms of CBD and its potential therapeutic application in the context of cancer, neurodegeneration, and autoimmune diseases.
Collapse
Affiliation(s)
- Mariana Luz-Veiga
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal
| | - João Azevedo-Silva
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal
| | - João C. Fernandes
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal
- Amyris Bio Products Portugal, Unipessoal Lda, 4169-005 Porto, Portugal
| |
Collapse
|
68
|
Vilen Z, Reeves AE, Huang ML. (Glycan Binding) Activity‐Based Protein Profiling in Cells Enabled by Mass Spectrometry‐Based Proteomics. Isr J Chem 2023; 63. [PMID: 37131487 PMCID: PMC10150848 DOI: 10.1002/ijch.202200097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The presence of glycan modifications at the cell surface and other locales positions them as key regulators of cell recognition and function. However, due to the complexity of glycosylation, the annotation of which proteins bear glycan modifications, which glycan patterns are present, and which proteins are capable of binding glycans is incomplete. Inspired by activity-based protein profiling to enrich for proteins in cells based on select characteristics, these endeavors have been greatly advanced by the development of appropriate glycan-binding and glycan-based probes. Here, we provide context for these three problems and describe how the capability of molecules to interact with glycans has enabled the assignment of proteins with specific glycan modifications or of proteins that bind glycans. Furthermore, we discuss how the integration of these probes with high resolution mass spectrometry-based technologies has greatly advanced glycoscience.
Collapse
Affiliation(s)
- Zak Vilen
- Skaggs Graduate School of Chemical and Biological Sciences Scripps Research 10550 N. Torrey Pines Rd. La Jolla CA 92037 USA
- Department of Molecular Medicine Scripps Research 10550 N. Torrey Pines Rd. La Jolla CA 92037, USA
| | - Abigail E. Reeves
- Skaggs Graduate School of Chemical and Biological Sciences Scripps Research 10550 N. Torrey Pines Rd. La Jolla CA 92037 USA
- Department of Molecular Medicine Scripps Research 10550 N. Torrey Pines Rd. La Jolla CA 92037, USA
| | - Mia L. Huang
- Skaggs Graduate School of Chemical and Biological Sciences Scripps Research 10550 N. Torrey Pines Rd. La Jolla CA 92037 USA
- Department of Molecular Medicine Scripps Research 10550 N. Torrey Pines Rd. La Jolla CA 92037, USA
| |
Collapse
|
69
|
Mardon K, Patel JZ, Savinainen JR, Stimson DHR, Oyagawa CRM, Grimsey NL, Migotto MA, Njiru GFM, Hamilton BR, Cowin G, Yli-Kauhaluoma J, Vanduffel W, Blakey I, Bhalla R, Cawthorne C, Celen S, Bormans G, Thurecht KJ, Ahamed M. Utilizing PET and MALDI Imaging for Discovery of a Targeted Probe for Brain Endocannabinoid α/ β-Hydrolase Domain 6 (ABHD6). J Med Chem 2023; 66:538-552. [PMID: 36516997 DOI: 10.1021/acs.jmedchem.2c01485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multimodal imaging provides rich biological information, which can be exploited to study drug activity, disease associated phenotypes, and pharmacological responses. Here we show discovery and validation of a new probe targeting the endocannabinoid α/β-hydrolase domain 6 (ABHD6) enzyme by utilizing positron emission tomography (PET) and matrix-assisted laser desorption/ionization (MALDI) imaging. [18F]JZP-MA-11 as the first PET ligand for in vivo imaging of the ABHD6 is reported and specific uptake in ABHD6-rich peripheral tissues and major brain regions was demonstrated using PET. A proof-of-concept study in nonhuman primate confirmed brain uptake. In vivo pharmacological response upon ABHD6 inhibition was observed by MALDI imaging. These synergistic imaging efforts used to identify biological information cannot be obtained by a single imaging modality and hold promise for improving the understanding of ABHD6-mediated endocannabinoid metabolism in peripheral and central nervous system disorders.
Collapse
Affiliation(s)
| | - Jayendra Z Patel
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00014 Helsinki, Finland
| | - Juha R Savinainen
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | | | - Caitlin R M Oyagawa
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, and Maurice Wilkins Centre for Molecular Biodiscovery, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Natasha L Grimsey
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, and Maurice Wilkins Centre for Molecular Biodiscovery, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | | | | | - Brett R Hamilton
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane 4072, Australia
| | | | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00014 Helsinki, Finland
| | - Wim Vanduffel
- Laboratory for Neuro-and Psychophysiology, Department of Neurosciences, & Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Idriss Blakey
- ARC Centre for Innovation in Biomedical Imaging Technology, Centre for Advanced Imaging, The University of Queensland, Brisbane 4072, Australia
| | | | - Christopher Cawthorne
- Nuclear Medicine and Molecular Imaging & MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
| | - Sofie Celen
- Laboratory for Radiopharmaceutical Research, Department of Pharmacy and Pharmacological Sciences, KU Leuven, Leuven 3000, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, Department of Pharmacy and Pharmacological Sciences, KU Leuven, Leuven 3000, Belgium
| | - Kristofer J Thurecht
- ARC Centre for Innovation in Biomedical Imaging Technology, Centre for Advanced Imaging, The University of Queensland, Brisbane 4072, Australia
| | - Muneer Ahamed
- ARC Centre for Innovation in Biomedical Imaging Technology, Centre for Advanced Imaging, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
70
|
Martinez Ramirez CE, Ruiz-Pérez G, Stollenwerk TM, Behlke C, Doherty A, Hillard CJ. Endocannabinoid signaling in the central nervous system. Glia 2023; 71:5-35. [PMID: 36308424 PMCID: PMC10167744 DOI: 10.1002/glia.24280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
It is hard to overestimate the influence of the endocannabinoid signaling (ECS) system on central nervous system (CNS) function. In the 40 years since cannabinoids were found to trigger specific cell signaling cascades, studies of the ECS system continue to cause amazement, surprise, and confusion! CB1 cannabinoid receptors are expressed widely in the CNS and regulate cell-cell communication via effects on the release of both neurotransmitters and gliotransmitters. CB2 cannabinoid receptors are difficult to detect in the CNS but seem to "punch above their weight" as compounds targeting these receptors have significant effects on inflammatory state and behavior. Positive and negative allosteric modulators for both receptors have been identified and examined in preclinical studies. Concentrations of the endocannabinoid ligands, N-arachidonoylethanolamine and 2-arachidonoylglycerol (2-AG), are regulated by a combination of enzymatic synthesis and degradation and inhibitors of these processes are available and making their way into clinical trials. Importantly, ECS regulates many essential brain functions, including regulation of reward, anxiety, inflammation, motor control, and cellular development. While the field is on the cusp of preclinical discoveries providing impactful clinical and therapeutic insights into many CNS disorders, there is still much to be learned about this remarkable and versatile modulatory system.
Collapse
Affiliation(s)
- César E Martinez Ramirez
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Gonzalo Ruiz-Pérez
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Todd M Stollenwerk
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christina Behlke
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ashley Doherty
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Cecilia J Hillard
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
71
|
Bernal‐Chico A, Tepavcevic V, Manterola A, Utrilla C, Matute C, Mato S. Endocannabinoid signaling in brain diseases: Emerging relevance of glial cells. Glia 2023; 71:103-126. [PMID: 35353392 PMCID: PMC9790551 DOI: 10.1002/glia.24172] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023]
Abstract
The discovery of cannabinoid receptors as the primary molecular targets of psychotropic cannabinoid Δ9 -tetrahydrocannabinol (Δ9 -THC) in late 1980s paved the way for investigations on the effects of cannabis-based therapeutics in brain pathology. Ever since, a wealth of results obtained from studies on human tissue samples and animal models have highlighted a promising therapeutic potential of cannabinoids and endocannabinoids in a variety of neurological disorders. However, clinical success has been limited and major questions concerning endocannabinoid signaling need to be satisfactorily addressed, particularly with regard to their role as modulators of glial cells in neurodegenerative diseases. Indeed, recent studies have brought into the limelight diverse, often unexpected functions of astrocytes, oligodendrocytes, and microglia in brain injury and disease, thus providing scientific basis for targeting glial cells to treat brain disorders. This Review summarizes the current knowledge on the molecular and cellular hallmarks of endocannabinoid signaling in glial cells and its clinical relevance in neurodegenerative and chronic inflammatory disorders.
Collapse
Affiliation(s)
- Ana Bernal‐Chico
- Department of NeurosciencesUniversity of the Basque Country UPV/EHULeioaSpain,Achucarro Basque Center for NeuroscienceLeioaSpain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain,Neuroimmunology UnitBiocruces BizkaiaBarakaldoSpain
| | | | - Andrea Manterola
- Department of NeurosciencesUniversity of the Basque Country UPV/EHULeioaSpain,Achucarro Basque Center for NeuroscienceLeioaSpain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain,Present address:
Parque Científico y Tecnológico de GuipuzkoaViralgenSan SebastianSpain
| | | | - Carlos Matute
- Department of NeurosciencesUniversity of the Basque Country UPV/EHULeioaSpain,Achucarro Basque Center for NeuroscienceLeioaSpain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Susana Mato
- Department of NeurosciencesUniversity of the Basque Country UPV/EHULeioaSpain,Achucarro Basque Center for NeuroscienceLeioaSpain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain,Neuroimmunology UnitBiocruces BizkaiaBarakaldoSpain
| |
Collapse
|
72
|
Jung KM, Piomelli D. Assay of Monoacylglycerol Lipase Activity. Methods Mol Biol 2023; 2576:285-297. [PMID: 36152196 DOI: 10.1007/978-1-0716-2728-0_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Monoacylglycerol lipase (MGL/MAGL/MGLL) is a serine hydrolase involved in the biological deactivation of the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG). 2-AG is the most abundant endogenous lipid agonists for cannabinoid receptors in the brain and elsewhere in the body. In the central nervous system (CNS), MGL is localized to presynaptic nerve terminals of both excitatory and inhibitory synapses, where it controls the regulatory actions of 2-AG on synaptic transmission and plasticity. In this chapter, we describe an in vitro method to assess MGL activity by liquid chromatography/mass spectrometry (LC/MS)-based quantitation of its reaction product. The method may be used to determine basal or altered MGL activity in cells or tissues after pharmacological, genetic, or biological interventions. In addition, the assay can be used for MGL inhibitor screening using purified recombinant enzyme or MGL-overexpressing cells.
Collapse
Affiliation(s)
- Kwang-Mook Jung
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA.
- Department of Pharmacology, University of California, Irvine, Irvine, CA, USA.
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
73
|
Ciaramellano F, Fanti F, Scipioni L, Maccarrone M, Oddi S. Endocannabinoid Metabolism and Transport as Drug Targets. Methods Mol Biol 2023; 2576:201-211. [PMID: 36152188 DOI: 10.1007/978-1-0716-2728-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The wide distribution of the endocannabinoid system (ECS) throughout the body and its pivotal pathophysiological role offer promising opportunities for the development of novel therapeutic drugs for treating several diseases. However, the need for strategies to circumvent the unwanted psychotropic and immunosuppressive effects associated with cannabinoid receptor agonism/antagonism has led to considerable research in the field of molecular alternatives, other than type-1 and type-2 (CB1/2) receptors, as therapeutic targets to indirectly manipulate this pro-homeostatic system. In this context, the use of selective inhibitors of proteins involved in endocannabinoid (eCB) transport and metabolism allows for an increase or decrease of the levels of N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) in the sites where these major eCBs are indeed needed. This chapter will briefly review some preclinical and clinical evidence for the therapeutic potential of ECS pharmacological manipulation.
Collapse
Affiliation(s)
- Francesca Ciaramellano
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
| | - Federico Fanti
- Faculty of Bioscience and Technologies for Food, Environmental and Agriculture, University of Teramo, Teramo, Italy
| | - Lucia Scipioni
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Mauro Maccarrone
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Sergio Oddi
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy.
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy.
| |
Collapse
|
74
|
Abstract
Electrophysiological technique is an efficient tool for investigating the synaptic regulatory effects mediated by the endocannabinoid system. Stimulation of presynaptic type 1 cannabinoid receptor (CB1) is the principal mode by which endocannabinoids suppress transmitter release in the central nervous system, but a non-retrograde manner of functioning and other receptors have also been described. Endocannabinoids are key modulators of both short- and long-term plasticity. Here, we discuss ex vivo electrophysiological approaches to examine synaptic signaling induced by cannabinoid and endocannabinoid molecules in the mammalian brain.
Collapse
Affiliation(s)
- Alessandra Musella
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
- Department of Human Sciences and Quality of Life Promotion University of Rome San Raffaele, Rome, Italy
| | - Diego Centonze
- Department of Systems Medicine, Tor Vergata University, Rome, Italy.
- Unit of Neurology, IRCCS Neuromed, Pozzilli, IS, Italy.
| |
Collapse
|
75
|
Pasquaré SJ, Chamorro-Aguirre E, Gaveglio VL. The endocannabinoid system in the visual process. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
76
|
Punt J, van der Vliet D, van der Stelt M. Chemical Probes to Control and Visualize Lipid Metabolism in the Brain. Acc Chem Res 2022; 55:3205-3217. [PMID: 36283077 PMCID: PMC9670861 DOI: 10.1021/acs.accounts.2c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Signaling lipids, such as the endocannabinoids, play an important role in the brain. They regulate synaptic transmission and control various neurophysiological processes, including pain sensation, appetite, memory formation, stress, and anxiety. Unlike classical neurotransmitters, lipid messengers are produced on demand and degraded by metabolic enzymes to control their lifespan and signaling actions. Chemical biology approaches have become one of the main driving forces to study and unravel the physiological role of lipid messengers in the brain. Here, we review how the development and use of chemical probes has allowed one to study endocannabinoid signaling by (i) inhibiting the biosynthetic and metabolic enzymes; (ii) visualizing the activity of these enzymes; and (iii) controlling the release and transport of the endocannabinoids. Activity-based probes were instrumental to guide the discovery of highly selective and in vivo active inhibitors of the biosynthetic (DAGL, NAPE-PLD) and metabolic (MAGL, FAAH) enzymes of endocannabinoids. These inhibitors allowed one to study the role of these enzymes in animal models of disease. For instance, the DAGL-MAGL axis was shown to control neuroinflammation and the NAPE-PLD-FAAH axis to regulate emotional behavior. Activity-based protein profiling and chemical proteomics were essential to guide the drug discovery and development of compounds targeting MAGL and FAAH, such as ABX-1431 (Lu AG06466) and PF-04457845, respectively. These experimental drugs are now in clinical trials for multiple indications, including multiple sclerosis and post-traumatic stress disorders. Activity-based probes have also been used to visualize the activity of these lipid metabolizing enzymes with high spatial resolution in brain slices, thereby showing the cell type-specific activity of these lipid metabolizing enzymes. The transport, release, and uptake of signaling lipids themselves cannot, however, be captured by activity-based probes in a spatiotemporal controlled manner. Therefore, bio-orthogonal lipids equipped with photoreactive, photoswitchable groups or photocages have been developed. These chemical probes were employed to investigate the protein interaction partners of the endocannabinoids, such as putative membrane transporters, as well as to study the functional cellular responses within milliseconds upon irradiation. Finally, genetically encoded sensors have recently been developed to monitor the real-time release of endocannabinoids with high spatiotemporal resolution in cultured neurons, acute brain slices, and in vivo mouse models. It is anticipated that the combination of chemical probes, highly selective inhibitors, and sensors with advanced (super resolution) imaging modalities, such as PharmacoSTORM and correlative light-electron microscopy, will uncover the fundamental basis of lipid signaling at nanoscale resolution in the brain. Furthermore, chemical biology approaches enable the translation of these fundamental discoveries into clinical solutions for brain diseases with aberrant lipid signaling.
Collapse
|
77
|
Coordinated Regulation of CB1 Cannabinoid Receptors and Anandamide Metabolism Stabilizes Network Activity during Homeostatic Downscaling. eNeuro 2022; 9:ENEURO.0276-22.2022. [PMID: 36316118 PMCID: PMC9663203 DOI: 10.1523/eneuro.0276-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
Abstract
Neurons express overlapping homeostatic mechanisms to regulate synaptic function and network properties in response to perturbations of neuronal activity. Endocannabinoids (eCBs) are bioactive lipids synthesized in the postsynaptic compartments to regulate synaptic transmission, plasticity, and neuronal excitability primarily through retrograde activation of presynaptic cannabinoid receptor type 1 (CB1). The eCB system is well situated to regulate neuronal network properties and coordinate presynaptic and postsynaptic activity. However, the role of the eCB system in homeostatic adaptations to neuronal hyperactivity is unknown. To address this issue, we used Western blotting and targeted lipidomics to measure adaptations in eCB system to bicuculline (BCC)-induced chronic hyperexcitation in mature cultured rat cortical neurons, and used multielectrode array (MEA) recording and live-cell imaging of glutamate dynamics to test the effects of pharmacological manipulations of eCB on network activities. We show that BCC-induced chronic hyperexcitation triggers homeostatic downscaling and a coordinated adaptation to enhance tonic eCB signaling. Hyperexcitation triggers first the downregulation of fatty acid amide hydrolase (FAAH), the lipase that degrades the eCB anandamide, then an accumulation of anandamide and related metabolites, and finally a delayed upregulation of surface and total CB1. Additionally, we show that BCC-induced downregulation of surface AMPA-type glutamate receptors (AMPARs) and upregulation of CB1 occur through independent mechanisms. Finally, we show that endocannabinoids support baseline network activities before and after downscaling and is engaged to suppress network activity during adaptation to hyperexcitation. We discuss the implications of our findings in the context of downscaling and homeostatic regulation of in vitro oscillatory network activities.
Collapse
|
78
|
Insight into the Inhibitory Mechanism of Aryl Formyl Piperidine Derivatives on Monoacylglycerol Lipase through Molecular Dynamics Simulations. Molecules 2022; 27:molecules27217512. [DOI: 10.3390/molecules27217512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Monoacylglycerol lipase (MAGL) can regulate the endocannabinoid system and thus becomes a target of antidepressant drugs. In this paper, molecular docking and molecular dynamics simulations, combined with binding free energy calculation, were employed to investigate the inhibitory mechanism and binding modes of four aryl formyl piperidine derivative inhibitors with different 1-substituents to MAGL. The results showed that in the four systems, the main four regions where the enzyme bound to the inhibitor included around the head aromatic ring, the head carbonyl oxygen, the tail amide bond, and the tail benzene ring. The significant conformational changes in the more flexible lid domain of the enzyme were caused by 1-substituted group differences of inhibitors and resulted in different degrees of flipping in the tail of the inhibitor. The flipping led to a different direction of the tail amide bond and made a greater variation in its interaction with some of the charged residues in the enzyme, which further contributed to a different swing of the tail benzene ring. If the swing is large enough, it can weaken the binding strength of the head carbonyl oxygen to its nearby residues, and even the whole inhibitor with the enzyme so that the inhibition decreases.
Collapse
|
79
|
Franzen JM, Vanz F, Werle I, Guimarães FS, Bertoglio LJ. Cannabidiol impairs fear memory reconsolidation in female rats through dorsal hippocampus CB1 but not CB2 receptor interaction. Eur Neuropsychopharmacol 2022; 64:7-18. [PMID: 36049316 DOI: 10.1016/j.euroneuro.2022.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 01/23/2023]
Abstract
Women present increased susceptibility to anxiety- and stress-related disorders compared to men. A potentially promising pharmacological-based strategy to regulate abnormal aversive memories disrupts their reconsolidation stage after reactivation and destabilization. Male rodent findings indicate that cannabidiol (CBD), a relatively safe and effective treatment for several mental health conditions, can impair the reconsolidation of aversive memories. However, whether and how CBD influences it in females is still unknown. The present study addressed this question in contextually fear-conditioned female rats. We report that systemically administered CBD impaired their reconsolidation, reducing freezing expression for over a week. This action was restricted to a time when the reconsolidation presumably lasted (< six hours post-retrieval) and depended on memory reactivation/destabilization. Moreover, the impairing effects of CBD on memory reconsolidation relied on the activation of cannabinoid type-1 but not type-2 receptors located in the CA1 subregion of the dorsal hippocampus. CBD applied directly to this brain area was sufficient to reproduce the effects of systemic CBD treatment. Contextual fear memories attenuated by CBD did not show reinstatement, an extinction-related feature. By demonstrating that destabilized fear memories are sensitive to CBD and how it hinders mechanisms in the DH CA1 that may restabilize them in female rats, the present findings concur that reconsolidation blockers are viable and could be effective in disrupting abnormally persistent and distressing aversive memories such as those related to posttraumatic stress disorder.
Collapse
Affiliation(s)
- Jaqueline M Franzen
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Felipe Vanz
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Isabel Werle
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Leandro J Bertoglio
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
80
|
Vanegas SO, Reck AM, Rodriguez CE, Marusich JA, Yassin O, Sotzing G, Wiley JL, Kinsey SG. Assessment of dependence potential and abuse liability of Δ 8-tetrahydrocannabinol in mice. Drug Alcohol Depend 2022; 240:109640. [PMID: 36179506 PMCID: PMC10288383 DOI: 10.1016/j.drugalcdep.2022.109640] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 01/06/2023]
Abstract
Delta-8-tetrahydrocannabinol (Δ8-THC) is a psychotropic cannabinoid produced in low quantities in the cannabis plant. Refinements in production techniques, paired with the availability of inexpensive cannabidiol substrate, have resulted in Δ8-THC being widely marketed as a quasi-legal, purportedly milder alternative to Δ9-THC. Yet, little research has probed the behavioral and physiological effects of repeated Δ8-THC use. The present study aimed to evaluate the effects of acute and repeated exposure to Δ8-THC. We hypothesized that Δ8-THC produces effects similar to Δ9-THC, including signs of drug tolerance and dependence. Adult male and female C57BL/6J mice were treated acutely with Δ8-THC (6.25-100 mg/kg, i.p.) or vehicle and tested in the tetrad battery to quantify cannabimimetic effects (i.e., catalepsy, antinociception, hypothermia, immobility) as compared with a non-selective synthetic cannabinoid (WIN 55,212-2) and Δ9-THC. As previously reported, Δ8-THC (≥12.5 mg/kg) induced cannabimimetic effects. Pretreatment with the CB1 receptor-selective antagonist rimonabant (3 mg/kg, i.p.) blocked each of these effects. In addition, repeated administration of Δ8-THC (50 mg/kg, s.c.) produced tolerance, as well as cross-tolerance to WIN 55,212-2 (10 mg/kg, s.c.) in tetrad, consistent with downregulated CB1 receptor function. Behavioral signs of physical dependence in the somatic signs, tail suspension, and marble burying assays were also observed following rimonabant-precipitated withdrawal from Δ8-THC (≥10 mg/kg BID for 6 days). Lastly, Δ8-THC produced Δ9-THC-like discriminative stimulus effects in both male and female mice. Together, these findings demonstrate that Δ8-THC produces qualitatively similar effects to Δ9-THC, including risk of drug dependence and abuse liability.
Collapse
Affiliation(s)
- S O Vanegas
- School of Nursing, University of Connecticut, Storrs, CT, USA; Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - A M Reck
- School of Nursing, University of Connecticut, Storrs, CT, USA; Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - C E Rodriguez
- School of Nursing, University of Connecticut, Storrs, CT, USA; Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - J A Marusich
- RTI International, Research Triangle Park, NC, USA
| | | | - G Sotzing
- Department of Chemistry, University of Connecticut, Storrs, CT, USA; 3BC, Inc., Farmington, CT, USA
| | - J L Wiley
- RTI International, Research Triangle Park, NC, USA
| | - S G Kinsey
- School of Nursing, University of Connecticut, Storrs, CT, USA; Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
81
|
Navarro-Romero A, Galera-López L, Ortiz-Romero P, Llorente-Ovejero A, de Los Reyes-Ramírez L, Bengoetxea de Tena I, Garcia-Elias A, Mas-Stachurska A, Reixachs-Solé M, Pastor A, de la Torre R, Maldonado R, Benito B, Eyras E, Rodríguez-Puertas R, Campuzano V, Ozaita A. Cannabinoid signaling modulation through JZL184 restores key phenotypes of a mouse model for Williams-Beuren syndrome. eLife 2022; 11:72560. [PMID: 36217821 PMCID: PMC9553213 DOI: 10.7554/elife.72560] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Williams–Beuren syndrome (WBS) is a rare genetic multisystemic disorder characterized by mild-to-moderate intellectual disability and hypersocial phenotype, while the most life-threatening features are cardiovascular abnormalities. Nowadays, there are no pharmacological treatments to directly ameliorate the main traits of WBS. The endocannabinoid system (ECS), given its relevance for both cognitive and cardiovascular function, could be a potential druggable target in this syndrome. We analyzed the components of the ECS in the complete deletion (CD) mouse model of WBS and assessed the impact of its pharmacological modulation in key phenotypes relevant for WBS. CD mice showed the characteristic hypersociable phenotype with no preference for social novelty and poor short-term object-recognition performance. Brain cannabinoid type-1 receptor (CB1R) in CD male mice showed alterations in density and coupling with no detectable change in main endocannabinoids. Endocannabinoid signaling modulation with subchronic (10 days) JZL184, a selective inhibitor of monoacylglycerol lipase, specifically normalized the social and cognitive phenotype of CD mice. Notably, JZL184 treatment improved cardiovascular function and restored gene expression patterns in cardiac tissue. These results reveal the modulation of the ECS as a promising novel therapeutic approach to improve key phenotypic alterations in WBS. Williams-Beuren syndrome (WBS) is a rare disorder that causes hyper-social behavior, intellectual disability, memory problems, and life-threatening overgrowth of the heart. Behavioral therapies can help improve the cognitive and social aspects of the syndrome and surgery is sometimes used to treat the effects on the heart, although often with limited success. However, there are currently no medications available to treat WBS. The endocannabinoid system – which consists of cannabis-like chemical messengers that bind to specific cannabinoid receptor proteins – has been shown to influence cognitive and social behaviors, as well as certain functions of the heart. This has led scientists to suspect that the endocannabinoid system may play a role in WBS, and drugs modifying this network of chemical messengers could help treat the rare condition. To investigate, Navarro-Romero, Galera-López et al. studied mice which had the same genetic deletion found in patients with WBS. Similar to humans, the male mice displayed hyper-social behaviors, had memory deficits and enlarged hearts. Navarro-Romero, Galera-López et al. found that these mutant mice also had differences in the function of the receptor protein cannabinoid type-1 (CB1). The genetically modified mice were then treated with an experimental drug called JZL184 that blocks the breakdown of endocannabinoids which bind to the CB1 receptor. This normalized the number and function of receptors in the brains of the WBS mice, and reduced their social and memory symptoms. The treatment also restored the animals’ heart cells to a more normal size, improved the function of their heart tissue, and led to lower blood pressure. Further experiments revealed that the drug caused the mutant mice to activate many genes in their heart muscle cells to the same level as normal, healthy mice. These findings suggest that JZL184 or other drugs targeting the endocannabinoid system may help ease the symptoms associated with WBS. More studies are needed to test the drug’s effectiveness in humans with this syndrome. Furthermore, the dramatic effect JZL184 has on the heart suggests that it might also help treat high blood pressure or conditions that cause the overgrowth of heart cells.
Collapse
Affiliation(s)
- Alba Navarro-Romero
- Laboratory of Neuropharmacology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lorena Galera-López
- Laboratory of Neuropharmacology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Paula Ortiz-Romero
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, and centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Alberto Llorente-Ovejero
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
| | - Lucía de Los Reyes-Ramírez
- Laboratory of Neuropharmacology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Iker Bengoetxea de Tena
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
| | - Anna Garcia-Elias
- Laboratory of Neuropharmacology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Aleksandra Mas-Stachurska
- Hospital del Mar Medical Research Institute (IMIM), Autonomous University of Barcelona, Barcelona, Spain
| | - Marina Reixachs-Solé
- EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, Australia.,The John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Antoni Pastor
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | | | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Begoña Benito
- Group of Cardiovascular Experimental and Translational Research (GET-CV), Vascular Biology and Metabolism, Vall d'Hebron Research Institute (VHIR),, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Eduardo Eyras
- EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, Australia.,The John Curtin School of Medical Research, Australian National University, Canberra, Australia.,Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Rafael Rodríguez-Puertas
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain.,Neurodegenerative Diseases, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Victoria Campuzano
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, and centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Andres Ozaita
- Laboratory of Neuropharmacology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
82
|
Simard M, Archambault AS, Lavoie JPC, Dumais É, Di Marzo V, Flamand N. Biosynthesis and metabolism of endocannabinoids and their congeners from the monoacylglycerol andN-acyl-ethanolamine families. Biochem Pharmacol 2022; 205:115261. [PMID: 36152677 DOI: 10.1016/j.bcp.2022.115261] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/02/2022]
Abstract
The endocannabinoids 2-arachidonoyl-glycerol (2-AG) and N-arachidonoyl-ethanolamine (AEA) are eicosanoids implicated in numerous physiological processes like appetite, adipogenesis, inflammatory pain and inflammation. They mediate most of their physiological effect by activating the cannabinoid (CB) receptors 1 and 2. Other than directly binding to the CB receptors, 2-AG and AEA are also metabolized by most eicosanoid biosynthetic enzymes, yielding many metabolites that are part of the oxyendocannabinoidome. Some of these metabolites have been found in vivo, have the ability to modulate specific receptors and thus potentially influence physiological processes. In this review, we discuss the biosynthesis and metabolism of 2-AG and AEA, as well as their congeners from the monoacyl-glycerol and N-acyl-ethanolamine families, with a special focus on the metabolism by oxygenases involved in arachidonic acid metabolism. We highlight the knowledge gaps in our understanding of the regulation and roles the oxyendocannabinoidome mediators.
Collapse
Affiliation(s)
- Mélissa Simard
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Anne-Sophie Archambault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada; Present address: Department of Pathology and Laboratory Medicine, University of British Columbia / BC Children's Hospital Research Institute, Vancouver, British Colombia, Canada
| | - Jean-Philippe C Lavoie
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Élizabeth Dumais
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Vincenzo Di Marzo
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada; Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche (CNR), 80078 Pozzuoli, Italy; Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, École de Nutrition, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, QC G1V 0A6, Canada; Joint International Unit between the Consiglio Nazionale delle Ricerche (Italy) and Université Laval (Canada) on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu)
| | - Nicolas Flamand
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada.
| |
Collapse
|
83
|
Kemble AM, Hornsperger B, Ruf I, Richter H, Benz J, Kuhn B, Heer D, Wittwer M, Engelhardt B, Grether U, Collin L. A potent and selective inhibitor for the modulation of MAGL activity in the neurovasculature. PLoS One 2022; 17:e0268590. [PMID: 36084029 PMCID: PMC9462760 DOI: 10.1371/journal.pone.0268590] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022] Open
Abstract
Chronic inflammation and blood–brain barrier dysfunction are key pathological hallmarks of neurological disorders such as multiple sclerosis, Alzheimer’s disease and Parkinson’s disease. Major drivers of these pathologies include pro-inflammatory stimuli such as prostaglandins, which are produced in the central nervous system by the oxidation of arachidonic acid in a reaction catalyzed by the cyclooxygenases COX1 and COX2. Monoacylglycerol lipase hydrolyzes the endocannabinoid signaling lipid 2-arachidonyl glycerol, enhancing local pools of arachidonic acid in the brain and leading to cyclooxygenase-mediated prostaglandin production and neuroinflammation. Monoacylglycerol lipase inhibitors were recently shown to act as effective anti-inflammatory modulators, increasing 2-arachidonyl glycerol levels while reducing levels of arachidonic acid and prostaglandins, including PGE2 and PGD2. In this study, we characterized a novel, highly selective, potent and reversible monoacylglycerol lipase inhibitor (MAGLi 432) in a mouse model of lipopolysaccharide-induced blood–brain barrier permeability and in both human and mouse cells of the neurovascular unit: brain microvascular endothelial cells, pericytes and astrocytes. We confirmed the expression of monoacylglycerol lipase in specific neurovascular unit cells in vitro, with pericytes showing the highest expression level and activity. However, MAGLi 432 did not ameliorate lipopolysaccharide-induced blood–brain barrier permeability in vivo or reduce the production of pro-inflammatory cytokines in the brain. Our data confirm monoacylglycerol lipase expression in mouse and human cells of the neurovascular unit and provide the basis for further cell-specific analysis of MAGLi 432 in the context of blood–brain barrier dysfunction caused by inflammatory insults.
Collapse
Affiliation(s)
- Alicia M. Kemble
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Benoit Hornsperger
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Iris Ruf
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Hans Richter
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jörg Benz
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Bernd Kuhn
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Dominik Heer
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Matthias Wittwer
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | - Uwe Grether
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Ludovic Collin
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
- * E-mail:
| |
Collapse
|
84
|
Deng H, Zhang Q, Lei Q, Yang N, Yang K, Jiang J, Yu Z. Discovering monoacylglycerol lipase inhibitors by a combination of fluorogenic substrate assay and activity-based protein profiling. Front Pharmacol 2022; 13:941522. [PMID: 36105202 PMCID: PMC9465256 DOI: 10.3389/fphar.2022.941522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
The endocannabinoid 2-arachidonoylglycerol (2-AG) is predominantly metabolized by monoacylglycerol lipase (MAGL) in the brain. Selective inhibitors of MAGL provide valuable insights into the role of 2-AG in a variety of (patho)physiological processes and are potential therapeutics for the treatment of diseases such as neurodegenerative disease and inflammation, pain, as well as cancer. Despite a number of MAGL inhibitors been reported, inhibitors with new chemotypes are still required. Here, we developed a substrate-based fluorescence assay by using a new fluorogenic probe AA-HNA and successfully screened a focused library containing 320 natural organic compounds. Furthermore, we applied activity-based protein profiling (ABPP) as an orthogonal method to confirm the inhibitory activity against MAGL in the primary substrate-based screening. Our investigations culminated in the identification of two major compound classes, including quinoid diterpene (23, cryptotanshinone) and β-carbolines (82 and 93, cis- and trans-isomers), with significant potency towards MAGL and good selectivity over other 2-AG hydrolases (ABHD6 and ABHD12). Moreover, these compounds also showed antiproliferative activities against multiple cancer cells, including A431, H1975, B16-F10, OVCAR-3, and A549. Remarkably, 23 achieved complete inhibition towards endogenous MAGL in most cancer cells determined by ABPP. Our results demonstrate the potential utility of the substrate-based fluorescence assay in combination with ABPP for rapidly discovering MAGL inhibitors, as well as providing an effective approach to identify potential targets for compounds with significant biological activities.
Collapse
Affiliation(s)
- Hui Deng
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qianwen Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qian Lei
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Na Yang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kai Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jianbing Jiang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhiyi Yu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
85
|
Pusch LM, Riegler-Berket L, Oberer M, Zimmermann R, Taschler U. α/β-Hydrolase Domain-Containing 6 (ABHD6)- A Multifunctional Lipid Hydrolase. Metabolites 2022; 12:761. [PMID: 36005632 PMCID: PMC9412472 DOI: 10.3390/metabo12080761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
α/β-hydrolase domain-containing 6 (ABHD6) belongs to the α/β-hydrolase fold superfamily and was originally discovered in a functional proteomic approach designed to discover monoacylglycerol (MAG) hydrolases in the mouse brain degrading the endocannabinoid 2-arachidonoylglycerol. Subsequent studies confirmed that ABHD6 acts as an MAG hydrolase regulating cannabinoid receptor-dependent and -independent signaling processes. The enzyme was identified as a negative modulator of insulin secretion and regulator of energy metabolism affecting the pathogenesis of obesity and metabolic syndrome. It has been implicated in the metabolism of the lysosomal co-factor bis(monoacylglycerol)phosphate and in the surface delivery of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors. Finally, ABHD6 was shown to affect cancer cell lipid metabolism and tumor malignancy. Here, we provide new insights into the experimentally derived crystal structure of ABHD6 and its possible orientation in biological membranes, and discuss ABHD6's functions in health and disease.
Collapse
Affiliation(s)
- Lisa-Maria Pusch
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Lina Riegler-Berket
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Monika Oberer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Ulrike Taschler
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| |
Collapse
|
86
|
Martin SC, Gay SM, Armstrong ML, Pazhayam NM, Reisdorph N, Diering GH. Tonic endocannabinoid signaling supports sleep through development in both sexes. Sleep 2022; 45:6565640. [PMID: 35395682 PMCID: PMC9366650 DOI: 10.1093/sleep/zsac083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 03/07/2022] [Indexed: 12/24/2022] Open
Abstract
Abstract
Sleep is an essential behavior that supports brain function and cognition throughout life, in part by acting on neuronal synapses. The synaptic signaling pathways that mediate the restorative benefits of sleep are not fully understood, particularly in the context of development. Endocannabinoids (eCBs) including 2-arachidonyl glycerol (2-AG) and anandamide (AEA), are bioactive lipids that activate cannabinoid receptor, CB1, to regulate synaptic transmission and mediate cognitive functions and many behaviors, including sleep. We used targeted mass spectrometry to measure changes in forebrain synaptic eCBs during the sleep/wake cycle in juvenile and adolescent mice of both sexes. We find that eCBs lack a daily rhythm in juvenile mice, while in adolescents AEA and related oleoyl ethanolamide are increased during the sleep phase in a circadian manner. Next, we manipulated the eCB system using selective pharmacology and measured the effects on sleep behavior in developing and adult mice of both sexes using a noninvasive piezoelectric home-cage recording apparatus. Enhancement of eCB signaling through inhibition of 2-AG or AEA degradation, increased dark-phase sleep amount and bout length in developing and adult males, but not in females. Inhibition of CB1 by injection of the antagonist AM251 reduced sleep time and caused sleep fragmentation in developing and adult males and females. Our data suggest that males are more sensitive to the sleep-promoting effects of enhanced eCBs but that tonic eCB signaling supports sleep behavior through multiple stages of development in both sexes. This work informs the further development of cannabinoid-based therapeutics for sleep disruption.
Collapse
Affiliation(s)
- Shenée C Martin
- Department of Cell Biology and Physiology and the UNC Neuroscience Center, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA
| | - Sean M Gay
- Department of Cell Biology and Physiology and the UNC Neuroscience Center, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA
| | - Michael L Armstrong
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus , Aurora, CO , USA
| | - Nila M Pazhayam
- Department of Cell Biology and Physiology and the UNC Neuroscience Center, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus , Aurora, CO , USA
| | - Graham H Diering
- Department of Cell Biology and Physiology and the UNC Neuroscience Center, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA
- Carolina Institute for Developmental Disabilities , Carrboro, NC , USA
| |
Collapse
|
87
|
Slivicki RA, Yi J, Brings VE, Huynh PN, Gereau RW. The cannabinoid agonist CB-13 produces peripherally mediated analgesia in mice but elicits tolerance and signs of central nervous system activity with repeated dosing. Pain 2022; 163:1603-1621. [PMID: 34961756 PMCID: PMC9281468 DOI: 10.1097/j.pain.0000000000002550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Activation of cannabinoid receptor type 1 (CB 1 ) produces analgesia in a variety of preclinical models of pain; however, engagement of central CB 1 receptors is accompanied by unwanted side effects, such as psychoactivity, tolerance, and dependence. Therefore, some efforts to develop novel analgesics have focused on targeting peripheral CB 1 receptors to circumvent central CB 1 -related side effects. In the present study, we evaluated the effects of acute and repeated dosing with the peripherally selective CB 1 -preferring agonist CB-13 on nociception and central CB 1 -related phenotypes in a model of inflammatory pain in mice. We also evaluated cellular mechanisms underlying CB-13-induced antinociception in vitro using cultured mouse dorsal root ganglion neurons. CB-13 reduced inflammation-induced mechanical allodynia in male and female mice in a peripheral CB 1 -receptor-dependent manner and relieved inflammatory thermal hyperalgesia. In cultured mouse dorsal root ganglion neurons, CB-13 reduced TRPV1 sensitization and neuronal hyperexcitability induced by the inflammatory mediator prostaglandin E 2 , providing potential mechanistic explanations for the analgesic actions of peripheral CB 1 receptor activation. With acute dosing, phenotypes associated with central CB 1 receptor activation occurred only at a dose of CB-13 approximately 10-fold the ED 50 for reducing allodynia. Strikingly, repeated dosing resulted in both analgesic tolerance and CB 1 receptor dependence, even at a dose that did not produce central CB 1 -receptor-mediated phenotypes on acute dosing. This suggests that repeated CB-13 dosing leads to increased CNS exposure and unwanted engagement of central CB 1 receptors. Thus, caution is warranted regarding therapeutic use of CB-13 with the goal of avoiding CNS side effects. Nonetheless, the clear analgesic effect of acute peripheral CB 1 receptor activation suggests that peripherally restricted cannabinoids are a viable target for novel analgesic development.
Collapse
Affiliation(s)
- Richard A. Slivicki
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
| | - Jiwon Yi
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
- Neuroscience Graduate Program, Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis, MO
| | - Victoria E. Brings
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
| | - Phuong Nhu Huynh
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
| | - Robert W. Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
- Department of Neuroscience, Washington University, St. Louis, MO
- Department of Biomedical Engineering, Washington University, St. Louis, MO
| |
Collapse
|
88
|
Serum Concentrations of the Endocannabinoid, 2-Arachidonoylglycerol, in the Peri-Trauma Period Are Positively Associated with Chronic Pain Months Later. Biomedicines 2022; 10:biomedicines10071599. [PMID: 35884902 PMCID: PMC9313032 DOI: 10.3390/biomedicines10071599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Endocannabinoid signaling and the hypothalamic-pituitary-adrenal axis are activated by trauma and both stress systems regulate the transition from acute to chronic pain. This study aimed to develop a model of relationships among circulating concentrations of cortisol and endocannabinoids (eCBs) immediately after traumatic injury and the presence of chronic pain months later. Pain scores and serum concentrations of eCBs and cortisol were measured during hospitalization and 5–10 months later in 147 traumatically injured individuals. Exploratory correlational analyses and path analysis were completed. The study sample was 50% Black and Latino and primarily male (69%); 34% percent endorsed a pain score of 4 or greater at follow-up and were considered to have chronic pain. Path analysis was used to model relationships among eCB, 2-arachidonolyglycerol (2-AG), cortisol, and pain, adjusting for sex and injury severity (ISS). Serum 2-AG concentrations at the time of injury were associated with chronic pain in 3 ways: a highly significant, independent positive predictor; a mediator of the effect of ISS, and through a positive relationship with cortisol concentrations. These data indicate that 2-AG concentrations at the time of an injury are positively associated with chronic pain and suggest excessive activation of endocannabinoid signaling contributes to risk for chronic pain.
Collapse
|
89
|
Attenuation of allodynia and microglial reactivity by inhibiting the degradation of 2-arachidonoylglycerol following injury to the trigeminal nerve in mice. Heliyon 2022; 8:e10034. [PMID: 35991988 PMCID: PMC9385535 DOI: 10.1016/j.heliyon.2022.e10034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/21/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022] Open
Abstract
Endocannabinoids have an important role for the regulation of neuropathic pain. In our previous study, we observed that preventing the degradation of a endocannabinoid, 2-arachidonoylglycerol (2-AG), using an inhibitor of monoacylglycerol lipase (JZL184), attenuated neuropathic orofacial pain (NOP). The present study aimed to investigate mechanisms underlying JZL184-induced attenuation of NOP. We hypothesized that JZL184 may suppress microglial reactivity in the trigeminal spinal subnucleus caudalis (Vc) under NOP. The infraorbital nerve (ION) was hemisected to model NOP in mice, resulting in a significant reduction of mechanical head-withdrawal threshold (MHWT) on day 4 following the ION hemisection. Chronic systemic application of JZL184 at a concentration of 8 or 16 mg/kg/day for 4 days significantly attenuated the reduction of MHWT in mice exposed to NOP. Administering JZL184 at 4 mg/kg/day or its vehicle, however, did not attenuate the MHWT of mice with NOP. The reactivity of microglial cells in the Vc increased in mice with NOP compared to sham-operated controls. The application of JZL184 at 8 or 16 mg/kg/day for 4 days significantly reduced the increased microglial reactivity in the Vc. The changes of microglia under NOP were, by contrast, not reduced by application of the drug at 4 mg/kg/day or its vehicle. The results indicate that preventing 2-AG degradation may increase its accumulation in the Vc and normalize microglial reactivity under NOP, which may contribute to suppressing NOP. Microglia became reactive under neuropathic orofacial pain condition. An endocannabinoid degradation enzyme inhibitor, JZL184, effectively attenuated neuropathic pain. JZL184 attenuated microglial reactivity under neuropathic orofacial pain condition.
Collapse
|
90
|
Cuddihey H, MacNaughton WK, Sharkey KA. Role of the Endocannabinoid System in the Regulation of Intestinal Homeostasis. Cell Mol Gastroenterol Hepatol 2022; 14:947-963. [PMID: 35750314 PMCID: PMC9500439 DOI: 10.1016/j.jcmgh.2022.05.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/09/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
The maintenance of intestinal homeostasis is fundamentally important to health. Intestinal barrier function and immune regulation are key determinants of intestinal homeostasis and are therefore tightly regulated by a variety of signaling mechanisms. The endocannabinoid system is a lipid mediator signaling system widely expressed in the gastrointestinal tract. Accumulating evidence suggests the endocannabinoid system is a critical nexus involved in the physiological processes that underlie the control of intestinal homeostasis. In this review we will illustrate how the endocannabinoid system is involved in regulation of intestinal permeability, fluid secretion, and immune regulation. We will also demonstrate a reciprocal regulation between the endocannabinoid system and the gut microbiome. The role of the endocannabinoid system is complex and multifaceted, responding to both internal and external factors while also serving as an effector system for the maintenance of intestinal homeostasis.
Collapse
Affiliation(s)
- Hailey Cuddihey
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wallace K. MacNaughton
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith A. Sharkey
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Correspondence Address correspondence to: Keith Sharkey, PhD, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
91
|
Augustin SM, Lovinger DM. Synaptic changes induced by cannabinoid drugs and cannabis use disorder. Neurobiol Dis 2022; 167:105670. [DOI: 10.1016/j.nbd.2022.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 10/19/2022] Open
|
92
|
Bononi G, Di Stefano M, Poli G, Ortore G, Meier P, Masetto F, Caligiuri I, Rizzolio F, Macchia M, Chicca A, Avan A, Giovannetti E, Vagaggini C, Brai A, Dreassi E, Valoti M, Minutolo F, Granchi C, Gertsch J, Tuccinardi T. Reversible Monoacylglycerol Lipase Inhibitors: Discovery of a New Class of Benzylpiperidine Derivatives. J Med Chem 2022; 65:7118-7140. [PMID: 35522977 PMCID: PMC9150076 DOI: 10.1021/acs.jmedchem.1c01806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Indexed: 11/29/2022]
Abstract
Monoacylglycerol lipase (MAGL) is the enzyme responsible for the metabolism of 2-arachidonoylglycerol in the brain and the hydrolysis of peripheral monoacylglycerols. Many studies demonstrated beneficial effects deriving from MAGL inhibition for neurodegenerative diseases, inflammatory pathologies, and cancer. MAGL expression is increased in invasive tumors, furnishing free fatty acids as pro-tumorigenic signals and for tumor cell growth. Here, a new class of benzylpiperidine-based MAGL inhibitors was synthesized, leading to the identification of 13, which showed potent reversible and selective MAGL inhibition. Associated with MAGL overexpression and the prognostic role in pancreatic cancer, derivative 13 showed antiproliferative activity and apoptosis induction, as well as the ability to reduce cell migration in primary pancreatic cancer cultures, and displayed a synergistic interaction with the chemotherapeutic drug gemcitabine. These results suggest that the class of benzylpiperidine-based MAGL inhibitors have potential as a new class of therapeutic agents and MAGL could play a role in pancreatic cancer.
Collapse
Affiliation(s)
- Giulia Bononi
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Miriana Di Stefano
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Department
of Life Sciences, University of Siena, Via Aldo Moro, 2, 53100 Siena, Italy
| | - Giulio Poli
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Gabriella Ortore
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Philip Meier
- Institute
of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, CH-3012 Bern, Switzerland
| | - Francesca Masetto
- Department
of Medical Oncology, VU University Medical
Center, Cancer Center Amsterdam, DeBoelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Isabella Caligiuri
- Pathology
Unit, Centro di Riferimento Oncologico di
Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Flavio Rizzolio
- Pathology
Unit, Centro di Riferimento Oncologico di
Aviano (CRO) IRCCS, 33081 Aviano, Italy
- Department
of Molecular Sciences and Nanosystems, Ca’
Foscari University, 30123 Venezia, Italy
| | - Marco Macchia
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Andrea Chicca
- Institute
of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, CH-3012 Bern, Switzerland
| | - Amir Avan
- Metabolic
Syndrome Research Center, Mashhad University
of Medical Science, Mashhad 91886-17871, Iran
| | - Elisa Giovannetti
- Department
of Medical Oncology, VU University Medical
Center, Cancer Center Amsterdam, DeBoelelaan 1117, 1081HV Amsterdam, The Netherlands
- Cancer
Pharmacology Lab, Fondazione Pisana per
la Scienza, via Giovannini
13, 56017 San Giuliano
Terme, Pisa, Italy
| | - Chiara Vagaggini
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 2, 53100 Siena, Italy
| | - Annalaura Brai
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 2, 53100 Siena, Italy
| | - Elena Dreassi
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 2, 53100 Siena, Italy
| | - Massimo Valoti
- Department
of Life Sciences, University of Siena, Via Aldo Moro, 2, 53100 Siena, Italy
| | - Filippo Minutolo
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Center
for Instrument Sharing of the University of Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Carlotta Granchi
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Center
for Instrument Sharing of the University of Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Jürg Gertsch
- Institute
of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, CH-3012 Bern, Switzerland
| | - Tiziano Tuccinardi
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Center
for Instrument Sharing of the University of Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy
| |
Collapse
|
93
|
In situ identification of cellular drug targets in mammalian tissue. Cell 2022; 185:1793-1805.e17. [PMID: 35483372 PMCID: PMC9106931 DOI: 10.1016/j.cell.2022.03.040] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 02/01/2022] [Accepted: 03/28/2022] [Indexed: 12/24/2022]
Abstract
The lack of tools to observe drug-target interactions at cellular resolution in intact tissue has been a major barrier to understanding in vivo drug actions. Here, we develop clearing-assisted tissue click chemistry (CATCH) to optically image covalent drug targets in intact mammalian tissues. CATCH permits specific and robust in situ fluorescence imaging of target-bound drug molecules at subcellular resolution and enables the identification of target cell types. Using well-established inhibitors of endocannabinoid hydrolases and monoamine oxidases, direct or competitive CATCH not only reveals distinct anatomical distributions and predominant cell targets of different drug compounds in the mouse brain but also uncovers unexpected differences in drug engagement across and within brain regions, reflecting rare cell types, as well as dose-dependent target shifts across tissue, cellular, and subcellular compartments that are not accessible by conventional methods. CATCH represents a valuable platform for visualizing in vivo interactions of small molecules in tissue.
Collapse
|
94
|
Inhibiting Endocannabinoid Hydrolysis as Emerging Analgesic Strategy Targeting a Spectrum of Ion Channels Implicated in Migraine Pain. Int J Mol Sci 2022; 23:ijms23084407. [PMID: 35457225 PMCID: PMC9027089 DOI: 10.3390/ijms23084407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 12/23/2022] Open
Abstract
Migraine is a disabling neurovascular disorder characterized by severe pain with still limited efficient treatments. Endocannabinoids, the endogenous painkillers, emerged, alternative to plant cannabis, as promising analgesics against migraine pain. In this thematic review, we discuss how inhibition of the main endocannabinoid-degrading enzymes, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), could raise the level of endocannabinoids (endoCBs) such as 2-AG and anandamide in order to alleviate migraine pain. We describe here: (i) migraine pain signaling pathways, which could serve as specific targets for antinociception; (ii) a divergent distribution of MAGL and FAAH activities in the key regions of the PNS and CNS implicated in migraine pain signaling; (iii) a complexity of anti-nociceptive effects of endoCBs mediated by cannabinoid receptors and through a direct modulation of ion channels in nociceptive neurons; and (iv) the spectrum of emerging potent MAGL and FAAH inhibitors which efficiently increase endoCBs levels. The specific distribution and homeostasis of endoCBs in the main regions of the nociceptive system and their generation ‘on demand’, along with recent availability of MAGL and FAAH inhibitors suggest new perspectives for endoCBs-mediated analgesia in migraine pain.
Collapse
|
95
|
Mizuno I, Matsuda S, Tohyama S, Mizutani A. The role of the cannabinoid system in fear memory and extinction in male and female mice. Psychoneuroendocrinology 2022; 138:105688. [PMID: 35176534 DOI: 10.1016/j.psyneuen.2022.105688] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/17/2022]
Abstract
The prevalence of post-traumatic stress disorder (PTSD) is higher in women than in men. Among both humans and mice, females exhibit higher resistance to fear extinction than males, suggesting that differences between sexes in fear-extinction processes are involved in the pathophysiology of such fear-related diseases. Sex differences in molecular mechanisms underlying fear memory and extinction are unclear. The cannabinoid (CB) system is well known to be involved in fear memory and extinction, but this involvement is based mainly on experiments using male rodents. It is not known whether there are sex differences in the role of the CB system in fear memory and extinction. To explore this possibility, we investigated the effects of pharmacological manipulations of the CB system on the retrieval and extinction of contextual fear memory in male and female mice. WIN55,212-2, a CB receptor (CBR) agonist, augmented the retrieval of fear memory in both sexes, but SR141716 (a CB1R antagonist) did not affect it in either sex. An enhancement of 2-arachidonylglycerol (2-AG, one of the two major endocannabinoids) via JZL184 (an inhibitor of the 2-AG hydrolase monoacylglycerol lipase [MAGL]), augmented the retrieval of fear memory through the activation of CB1R but not CB2R in female mice. In contrast, the enhancement of N-arachidonylethanolamine (AEA, the other major endocannabinoid) via URB597, an inhibitor of an AEA hydrolase (fatty acid amide hydrolase-1) did not show any effects on the retrieval of fear memory in either sex. WIN55,212-2, SR141716, and JZL184 inhibited fear extinction irrespective of sex. URB enhanced fear extinction in females that were in diestrus phase at the first extinction session, but not in males. These results suggest that although the role of CB1R in the retrieval and extinction of contextual fear memory is common among males and females, the effects of an increase in endocannabinoid levels on the retrieval or extinction of contextual fear memory differ between the sexes.
Collapse
Affiliation(s)
- Ikumi Mizuno
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, 3-3165, Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Shingo Matsuda
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, 3-3165, Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan; Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670, Japan; Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan.
| | - Suguru Tohyama
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, 163-1 Kashiwa-shita, Kashiwa City, Chiba 277-8567, Japan
| | - Akihiro Mizutani
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, 3-3165, Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
96
|
Inflammation and Nitro-oxidative Stress as Drivers of Endocannabinoid System Aberrations in Mood Disorders and Schizophrenia. Mol Neurobiol 2022; 59:3485-3503. [PMID: 35347586 DOI: 10.1007/s12035-022-02800-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/13/2022] [Indexed: 01/02/2023]
Abstract
The endocannabinoid system (ECS) is composed of the endocannabinoid ligands anandamide (AEA) and 2-arachidonoylgycerol (2-AG), their target cannabinoid receptors (CB1 and CB2) and the enzymes involved in their synthesis and metabolism (N-acyltransferase and fatty acid amide hydrolase (FAAH) in the case of AEA and diacylglycerol lipase (DAGL) and monoacylglycerol lipase (MAGL) in the case of 2-AG). The origins of ECS dysfunction in major neuropsychiatric disorders remain to be determined, and this paper explores the possibility that they may be associated with chronically increased nitro-oxidative stress and activated immune-inflammatory pathways, and it examines the mechanisms which might be involved. Inflammation and nitro-oxidative stress are associated with both increased CB1 expression, via increased activity of the NADPH oxidases NOX4 and NOX1, and increased CNR1 expression and DNA methylation; and CB2 upregulation via increased pro-inflammatory cytokine levels, binding of the transcription factor Nrf2 to an antioxidant response element in the CNR2 promoter region and the action of miR-139. CB1 and CB2 have antagonistic effects on redox signalling, which may result from a miRNA-enabled negative feedback loop. The effects of inflammation and oxidative stress are detailed in respect of AEA and 2-AG levels, via effects on calcium homeostasis and phospholipase A2 activity; on FAAH activity, via nitrosylation/nitration of functional cysteine and/or tyrosine residues; and on 2-AG activity via effects on MGLL expression and MAGL. Finally, based on these detailed molecular neurobiological mechanisms, it is suggested that cannabidiol and dimethyl fumarate may have therapeutic potential for major depressive disorder, bipolar disorder and schizophrenia.
Collapse
|
97
|
Anderson LL, Doohan PT, Hawkins NA, Bahceci D, Thakur GA, Kearney JA, Arnold JC, Arnold JC. The endocannabinoid system impacts seizures in a mouse model of Dravet syndrome. Neuropharmacology 2022; 205:108897. [PMID: 34822817 PMCID: PMC9514665 DOI: 10.1016/j.neuropharm.2021.108897] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/07/2021] [Accepted: 11/20/2021] [Indexed: 10/19/2022]
Abstract
Dravet syndrome is a catastrophic childhood epilepsy with multiple seizure types that are refractory to treatment. The endocannabinoid system regulates neuronal excitability so a deficit in endocannabinoid signaling could lead to hyperexcitability and seizures. Thus, we sought to determine whether a deficiency in the endocannabinoid system might contribute to seizure phenotypes in a mouse model of Dravet syndrome and whether enhancing endocannabinoid tone is anticonvulsant. Scn1a+/- mice model the clinical features of Dravet syndrome: hyperthermia-induced seizures, spontaneous seizures and reduced survival. We examined whether Scn1a+/- mice exhibit deficits in the endocannabinoid system by measuring brain cannabinoid receptor expression and endocannabinoid concentrations. Next, we determined whether pharmacologically enhanced endocannabinoid tone was anticonvulsant in Scn1a+/- mice. We used GAT229, a positive allosteric modulator of the cannabinoid (CB1) receptor, and ABX-1431, a compound that inhibits the degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG). The Scn1a+/- phenotype is strain-dependent with mice on a 129S6/SvEvTac (129) genetic background having no overt phenotype and those on an F1 (129S6/SvEvTac x C57BL/6J) background exhibiting a severe epilepsy phenotype. We observed lower brain cannabinoid CB1 receptor expression in the seizure-susceptible F1 compared to seizure-resistant 129 strain, suggesting an endocannabinoid deficiency might contribute to seizure susceptibility. GAT229 and ABX-1431 were anticonvulsant against hyperthermia-induced seizures. However, subchronic ABX1431 treatment increased spontaneous seizure frequency despite reducing seizure severity. Cnr1 is a putative genetic modifier of epilepsy in the Scn1a+/- mouse model of Dravet syndrome. Compounds that increase endocannabinoid tone could be developed as novel treatments for Dravet syndrome.
Collapse
Affiliation(s)
- Lyndsey L. Anderson
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, NSW 2050, Australia,Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia,Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
| | - Peter T. Doohan
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, NSW 2050, Australia,Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia,Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
| | - Nicole A. Hawkins
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, IL 60611, USA
| | - Dilara Bahceci
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, NSW 2050, Australia,Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia,Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
| | - Ganesh A. Thakur
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, MA 02115, USA
| | - Jennifer A. Kearney
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, IL 60611, USA
| | - Jonathon C. Arnold
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, NSW 2050, Australia,Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia,Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
| | - Jonathon C Arnold
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, NSW 2050, Australia; Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia; Brain and Mind Centre, The University of Sydney, NSW 2050, Australia.
| |
Collapse
|
98
|
Davies AK, Alecu JE, Ziegler M, Vasilopoulou CG, Merciai F, Jumo H, Afshar-Saber W, Sahin M, Ebrahimi-Fakhari D, Borner GHH. AP-4-mediated axonal transport controls endocannabinoid production in neurons. Nat Commun 2022; 13:1058. [PMID: 35217685 PMCID: PMC8881493 DOI: 10.1038/s41467-022-28609-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 01/08/2022] [Indexed: 01/20/2023] Open
Abstract
The adaptor protein complex AP-4 mediates anterograde axonal transport and is essential for axon health. AP-4-deficient patients suffer from a severe neurodevelopmental and neurodegenerative disorder. Here we identify DAGLB (diacylglycerol lipase-beta), a key enzyme for generation of the endocannabinoid 2-AG (2-arachidonoylglycerol), as a cargo of AP-4 vesicles. During normal development, DAGLB is targeted to the axon, where 2-AG signalling drives axonal growth. We show that DAGLB accumulates at the trans-Golgi network of AP-4-deficient cells, that axonal DAGLB levels are reduced in neurons from a patient with AP-4 deficiency, and that 2-AG levels are reduced in the brains of AP-4 knockout mice. Importantly, we demonstrate that neurite growth defects of AP-4-deficient neurons are rescued by inhibition of MGLL (monoacylglycerol lipase), the enzyme responsible for 2-AG hydrolysis. Our study supports a new model for AP-4 deficiency syndrome in which axon growth defects arise through spatial dysregulation of endocannabinoid signalling. Davies et al. identify a putative mechanism underlying the childhood neurological disorder AP-4 deficiency syndrome. In the absence of AP-4, an enzyme that makes 2-AG is not transported to the axon, leading to axonal growth defects, which can be rescued by inhibition of 2-AG breakdown.
Collapse
Affiliation(s)
- Alexandra K Davies
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany.
| | - Julian E Alecu
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Marvin Ziegler
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Functional Neuroanatomy, Institute of Anatomy and Cell Biology, Heidelberg University, INF 307, Heidelberg, 69120, Germany
| | - Catherine G Vasilopoulou
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Fabrizio Merciai
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany.,Department of Pharmacy and PhD Program in Drug Discovery and Development, University of Salerno, 84084, Fisciano, SA, Italy
| | - Hellen Jumo
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wardiya Afshar-Saber
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mustafa Sahin
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Georg H H Borner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany.
| |
Collapse
|
99
|
Papa A, Pasquini S, Contri C, Gemma S, Campiani G, Butini S, Varani K, Vincenzi F. Polypharmacological Approaches for CNS Diseases: Focus on Endocannabinoid Degradation Inhibition. Cells 2022; 11:cells11030471. [PMID: 35159280 PMCID: PMC8834510 DOI: 10.3390/cells11030471] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 01/27/2023] Open
Abstract
Polypharmacology breaks up the classical paradigm of “one-drug, one target, one disease” electing multitarget compounds as potential therapeutic tools suitable for the treatment of complex diseases, such as metabolic syndrome, psychiatric or degenerative central nervous system (CNS) disorders, and cancer. These diseases often require a combination therapy which may result in positive but also negative synergistic effects. The endocannabinoid system (ECS) is emerging as a particularly attractive therapeutic target in CNS disorders and neurodegenerative diseases including Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), stroke, traumatic brain injury (TBI), pain, and epilepsy. ECS is an organized neuromodulatory network, composed by endogenous cannabinoids, cannabinoid receptors type 1 and type 2 (CB1 and CB2), and the main catabolic enzymes involved in the endocannabinoid inactivation such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). The multiple connections of the ECS with other signaling pathways in the CNS allows the consideration of the ECS as an optimal source of inspiration in the development of innovative polypharmacological compounds. In this review, we focused our attention on the reported polypharmacological examples in which FAAH and MAGL inhibitors are involved.
Collapse
Affiliation(s)
- Alessandro Papa
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
| | - Silvia Pasquini
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| | - Chiara Contri
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
- Correspondence: ; Tel.: +39-0577-234161
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| |
Collapse
|
100
|
He Y, Schild M, Grether U, Benz J, Leibrock L, Heer D, Topp A, Collin L, Kuhn B, Wittwer M, Keller C, Gobbi LC, Schibli R, Mu L. Development of High Brain-Penetrant and Reversible Monoacylglycerol Lipase PET Tracers for Neuroimaging. J Med Chem 2022; 65:2191-2207. [PMID: 35089028 DOI: 10.1021/acs.jmedchem.1c01706] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monoacylglycerol lipase (MAGL) is one of the key enzymes in the endocannabinoid system. Inhibition of MAGL has been proposed as an attractive approach for the treatment of various diseases. In this study, we designed and successfully synthesized two series of piperazinyl pyrrolidin-2-one derivatives as novel reversible MAGL inhibitors. (R)-[18F]13 was identified through the preliminary evaluation of two carbon-11-labeled racemic structures [11C]11 and [11C]16. In dynamic positron-emission tomography (PET) scans, (R)-[18F]13 showed a heterogeneous distribution and matched the MAGL expression pattern in the mouse brain. High brain uptake and brain-to-blood ratio were achieved by (R)-[18F]13 in comparison with previously reported reversible MAGL PET radiotracers. Target occupancy studies with a therapeutic MAGL inhibitor revealed a dose-dependent reduction of (R)-[18F]13 accumulation in the mouse brain. These findings indicate that (R)-[18F]13 ([18F]YH149) is a highly promising PET probe for visualizing MAGL non-invasively in vivo and holds great potential to support drug development.
Collapse
Affiliation(s)
- Yingfang He
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Matthias Schild
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Uwe Grether
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Jörg Benz
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Lea Leibrock
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Dominik Heer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Andreas Topp
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Ludovic Collin
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Bernd Kuhn
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Matthias Wittwer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Claudia Keller
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Luca C Gobbi
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Linjing Mu
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.,Department of Nuclear Medicine, University Hospital Zurich, CH-8091 Zurich, Switzerland
| |
Collapse
|