51
|
Cobb MS, Tao S, Shortt K, Girgis M, Hauptman J, Schriewer J, Chin Z, Dorfman E, Campbell K, Heruth DP, Shohet RV, Dawn B, Konorev EA. Smad3 promotes adverse cardiovascular remodeling and dysfunction in doxorubicin-treated hearts. Am J Physiol Heart Circ Physiol 2022; 323:H1091-H1107. [PMID: 36269647 PMCID: PMC9678413 DOI: 10.1152/ajpheart.00312.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/26/2022] [Accepted: 10/14/2022] [Indexed: 01/21/2023]
Abstract
Many anticancer therapies cause serious cardiovascular complications that degrade quality of life and cause early mortality in treated patients. Specifically, doxorubicin is known as an effective anticancer agent that causes cardiomyopathy in treated patients. There has been growing interest in defining the role of endothelial cells in cardiac damage by doxorubicin. We have shown in the present study that endothelial nuclei accumulate more intravenously administered doxorubicin than other cardiac cell types. Doxorubicin enhanced cardiac production of the transforming growth factor-β (TGF-β) ligands and nuclear translocation of phospho-Smad3 in both cultured and in vivo cardiac endothelial cells. To examine the role of the TGF-β/mothers against decapentaplegic homolog 3 (Smad3) pathway in cardiac damage by doxorubicin, we used both Smad3 shRNA stable endothelial cell lines and Smad3-knockout mice. We demonstrated using endothelial transcriptome analysis that upregulation of the TGF-β and inflammatory cytokine/cytokine receptor pathways, as well as suppression of cell cycle and angiogenesis by doxorubicin, were alleviated in Smad3-deficient endothelial cells. The results of transcriptomic analysis were validated using qPCR, immunoblotting, and ex vivo aortic ring sprouting assays. Similarly, increased cardiac expression of cytokines and chemokines observed in treated wild-type mice was diminished in treated Smad3-knockout animals. We also detected increased end-diastolic diameter and depressed systolic function in doxorubicin-treated wild-type but not Smad3-knockout mice. This work provides evidence for the critical role of the canonical TGF-β/Smad3 pathway in cardiac damage by doxorubicin.NEW & NOTEWORTHY Microvascular endothelial cells in the heart accumulate more intravenously administered doxorubicin than nonendothelial cardiac cell types. The treatment enhanced the TGF-β/Smad3 pathway and elicited endothelial cell senescence and inflammatory responses followed by adverse cardiac remodeling and dysfunction in wild-type but not Smad3-deficient animals. Our study suggests that the TGF-β/Smad3 pathway contributes to the development of doxorubicin cardiomyopathy and the potential value of novel approaches to ameliorate cardiotoxicity by targeting the Smad3 transcription factor.
Collapse
Affiliation(s)
- Melissa S Cobb
- Department of Basic Sciences, Kansas City University, Kansas City, Missouri
| | - Shixin Tao
- Department of Basic Sciences, Kansas City University, Kansas City, Missouri
| | - Katherine Shortt
- Ambry Genetics, Department of Advanced Analytics, Aliso Viejo, California
| | - Magdy Girgis
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at UNLV, Las Vegas, Nevada
| | - Jeryl Hauptman
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at UNLV, Las Vegas, Nevada
| | - Jill Schriewer
- Department of Basic Sciences, Kansas City University, Kansas City, Missouri
| | - Zaphrirah Chin
- Department of Basic Sciences, Kansas City University, Kansas City, Missouri
| | - Edward Dorfman
- Department of Basic Sciences, Kansas City University, Kansas City, Missouri
| | - Kyle Campbell
- Department of Basic Sciences, Kansas City University, Kansas City, Missouri
| | - Daniel P Heruth
- The Children's Mercy Research Institute, Kansas City, Missouri
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Ralph V Shohet
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Buddhadeb Dawn
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at UNLV, Las Vegas, Nevada
| | - Eugene A Konorev
- Department of Basic Sciences, Kansas City University, Kansas City, Missouri
| |
Collapse
|
52
|
Miller ML, Glandon HL, Tift MS, Pabst DA, Koopman HN. Remarkable consistency of spinal cord microvasculature in highly adapted diving odontocetes. Front Physiol 2022; 13:1011869. [PMID: 36505066 PMCID: PMC9728530 DOI: 10.3389/fphys.2022.1011869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/02/2022] [Indexed: 11/24/2022] Open
Abstract
Odontocetes are breath-hold divers with a suite of physiological, anatomical, and behavioral adaptations that are highly derived and vastly different from those of their terrestrial counterparts. Because of these adaptations for diving, odontocetes were originally thought to be exempt from the harms of nitrogen gas embolism while diving. However, recent studies have shown that these mammals may alter their dive behavior in response to anthropogenic sound, leading to the potential for nitrogen supersaturation and bubble formation which may cause decompression sickness in the central nervous system (CNS). We examined the degree of interface between blood, gases, and neural tissues in the spinal cord by quantifying its microvascular characteristics in five species of odontocetes (Tursiops truncatus, Delphinus delphis, Grampus griseus, Kogia breviceps, and Mesoplodon europaeus) and a model terrestrial species (the pig-Sus scrofa domesticus) for comparison. This approach allowed us to compare microvascular characteristics (microvascular density, branching, and diameter) at several positions (cervical, thoracic, and lumbar) along the spinal cord from odontocetes that are known to be either deep or shallow divers. We found no significant differences (p < 0.05 for all comparisons) in microvessel density (9.30-11.18%), microvessel branching (1.60-2.12 branches/vessel), or microvessel diameter (11.83-16.079 µm) between odontocetes and the pig, or between deep and shallow diving odontocete species. This similarity of spinal cord microvasculature anatomy in several species of odontocetes as compared to the terrestrial mammal is in contrast to the wide array of remarkable physio-anatomical adaptations marine mammals have evolved within their circulatory system to cope with the physiological demands of diving. These results, and other studies on CNS lipids, indicate that the spinal cords of odontocetes do not have specialized features that might serve to protect them from Type II DCS.
Collapse
Affiliation(s)
- Megan L. Miller
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, United States
| | | | | | | | | |
Collapse
|
53
|
Carta-Bergaz A, Ríos-Muñoz GR, Crisóstomo V, Sánchez-Margallo FM, Ledesma-Carbayo MJ, Bermejo-Thomas J, Fernández-Avilés F, Arenal-Maíz Á. Intrapericardial cardiosphere-derived cells hinder epicardial dense scar expansion and promote electrical homogeneity in a porcine post-infarction model. Front Physiol 2022; 13:1041348. [PMID: 36457311 PMCID: PMC9705343 DOI: 10.3389/fphys.2022.1041348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/11/2022] [Indexed: 11/14/2023] Open
Abstract
The arrhythmic substrate of ventricular tachycardias in many structural heart diseases is located in the epicardium, often resulting in poor outcomes with currently available therapies. Cardiosphere-derived cells (CDCs) have been shown to modify myocardial scarring. A total of 19 Large White pigs were infarcted by occlusion of the mid-left anterior descending coronary artery for 150 min. Baseline cardiac magnetic resonance (CMR) imaging with late gadolinium enhancement sequences was obtained 4 weeks post-infarction and pigs were randomized to a treatment group (intrapericardial administration of 300,000 allogeneic CDCs/kg), (n = 10) and to a control group (n = 9). A second CMR and high-density endocardial electroanatomical mapping were performed at 16 weeks post-infarction. After the electrophysiological study, pigs were sacrificed and epicardial optical mapping and histological studies of the heterogeneous tissue of the endocardial and epicardial scars were performed. In comparison with control conditions, intrapericardial CDCs reduced the growth of epicardial dense scar and epicardial electrical heterogeneity. The relative differences in conduction velocity and action potential duration between healthy myocardium and heterogeneous tissue were significantly smaller in the CDC-treated group than in the control group. The lower electrical heterogeneity coincides with heterogeneous tissue with less fibrosis, better cardiomyocyte viability, and a greater quantity and better polarity of connexin 43. At the endocardial level, no differences were detected between groups. Intrapericardial CDCs produce anatomical and functional changes in the epicardial arrhythmic substrate, which could have an anti-arrhythmic effect.
Collapse
Affiliation(s)
- Alejandro Carta-Bergaz
- Gregorio Marañón Health Research Institute (IiSGM), Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Centre for Biomedical Research in Cardiovascular Disease Network (CIBERCV), Madrid, Spain
| | - Gonzalo R. Ríos-Muñoz
- Gregorio Marañón Health Research Institute (IiSGM), Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Centre for Biomedical Research in Cardiovascular Disease Network (CIBERCV), Madrid, Spain
- Department of Bioengineering and Space Engineering, Universidad Carlos III de Madrid, Madrid, Spain
| | - Verónica Crisóstomo
- Centre for Biomedical Research in Cardiovascular Disease Network (CIBERCV), Madrid, Spain
- Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Francisco M. Sánchez-Margallo
- Centre for Biomedical Research in Cardiovascular Disease Network (CIBERCV), Madrid, Spain
- Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - María J. Ledesma-Carbayo
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
- CIBER-BBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Bermejo-Thomas
- Gregorio Marañón Health Research Institute (IiSGM), Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Centre for Biomedical Research in Cardiovascular Disease Network (CIBERCV), Madrid, Spain
- Medical School, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Fernández-Avilés
- Gregorio Marañón Health Research Institute (IiSGM), Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Centre for Biomedical Research in Cardiovascular Disease Network (CIBERCV), Madrid, Spain
- Medical School, Universidad Complutense de Madrid, Madrid, Spain
| | - Ángel Arenal-Maíz
- Gregorio Marañón Health Research Institute (IiSGM), Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Centre for Biomedical Research in Cardiovascular Disease Network (CIBERCV), Madrid, Spain
| |
Collapse
|
54
|
Anti-PTK7 Monoclonal Antibodies Inhibit Angiogenesis by Suppressing PTK7 Function. Cancers (Basel) 2022; 14:cancers14184463. [PMID: 36139622 PMCID: PMC9496920 DOI: 10.3390/cancers14184463] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary PTK7 is a catalytically defective receptor protein tyrosine kinase. We previously demonstrated that PTK7 enhances angiogenesis by interacting with KDR, a vascular endothelial growth factor (VEGF) receptor important for angiogenesis, and activating it through oligomerization. To control angiogenesis by inhibiting PTK7 function, we developed anti-PTK7 monoclonal antibodies (mAbs). The selected PTK7 mAbs reduced VEGF-induced angiogenic phenotypes of endothelial cells and angiogenesis ex vivo and in vivo. The PTK7 mAbs also inhibited VEGF-induced KDR activation in endothelial cells and its downstream signaling and PTK7–KDR interaction. Our results show that the PTK7 mAbs inhibit angiogenesis by blocking PTK7 function. Therefore, PTK7 mAbs could be applied as therapeutics to control angiogenesis-associated diseases such as metastatic cancers. Abstract PTK7, a catalytically defective receptor protein tyrosine kinase, promotes angiogenesis by activating KDR through direct interaction and induction of KDR oligomerization. This study developed anti-PTK7 monoclonal antibodies (mAbs) to regulate angiogenesis by inhibiting PTK7 function. The effect of anti-PTK7 mAbs on vascular endothelial growth factor (VEGF)-induced angiogenic phenotypes in human umbilical vascular endothelial cells (HUVECs) was examined. Analysis of mAb binding with PTK7 deletion mutants revealed that mAb-43 and mAb-52 recognize immunoglobulin (Ig) domain 2 of PTK7, whereas mAb-32 and mAb-50 recognize Ig domains 6–7. Anti-PTK7 mAbs inhibited VEGF-induced adhesion and wound healing in HUVECs. mAb-32, mAb-43, and mAb-52 dose-dependently mitigated VEGF-induced migration and invasion in HUVECs without exerting cytotoxic effects. Additionally, mAb-32, mAb-43, and mAb-52 inhibited capillary-like tube formation in HUVECs, and mAb-32 and mAb-43 suppressed angiogenesis ex vivo (aortic ring assay) and in vivo (Matrigel plug assay). Furthermore, mAb-32 and mAb-43 downregulated VEGF-induced KDR activation and downstream signaling and inhibited PTK7–KDR interaction in PTK7-overexpressing and KDR-overexpressing HEK293 cells. Thus, anti-PTK7 mAbs inhibit angiogenic phenotypes by blocking PTK7–KDR interaction. These findings indicate that anti-PTK7 mAbs that neutralize PTK7 function can alleviate impaired angiogenesis-associated pathological conditions, such as cancer metastasis.
Collapse
|
55
|
Gan AM, Tracz-Gaszewska Z, Ellert-Miklaszewska A, Navrulin VO, Ntambi JM, Dobrzyn P. Stearoyl-CoA Desaturase Regulates Angiogenesis and Energy Metabolism in Ischemic Cardiomyocytes. Int J Mol Sci 2022; 23:ijms231810459. [PMID: 36142371 PMCID: PMC9499489 DOI: 10.3390/ijms231810459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
New blood vessel formation is a key component of the cardiac repair process after myocardial infarction (MI). Hypoxia following MI is a major driver of angiogenesis in the myocardium. Hypoxia-inducible factor 1α (HIF1α) is the key regulator of proangiogenic signaling. The present study found that stearoyl-CoA desaturase (SCD) significantly contributed to the induction of angiogenesis in the hypoxic myocardium independently of HIF1α expression. The pharmacological inhibition of SCD activity in HL-1 cardiomyocytes and SCD knockout in an animal model disturbed the expression and secretion of proangiogenic factors including vascular endothelial growth factor-A, proinflammatory cytokines (interleukin-1β, interleukin-6, tumor necrosis factor α, monocyte chemoattractant protein-1, and Rantes), metalloproteinase-9, and platelet-derived growth factor in ischemic cardiomyocytes. These disturbances affected the proangiogenic potential of ischemic cardiomyocytes after SCD depletion. Together with the most abundant SCD1 isoform, the heart-specific SCD4 isoform emerged as an important regulator of new blood vessel formation in the murine post-MI myocardium. We also provide evidence that SCD shapes energy metabolism of the ischemic heart by maintaining the shift from fatty acids to glucose as the substrate that is used for adenosine triphosphate production. Furthermore, we propose that the regulation of the proangiogenic properties of hypoxic cardiomyocytes by key modulators of metabolic signaling such as adenosine monophosphate kinase, protein kinase B (AKT), and peroxisome-proliferator-activated receptor-γ coactivator 1α/peroxisome proliferator-activated receptor α depends on SCD to some extent. Thus, our results reveal a novel mechanism that links SCD to cardiac repair processes after MI.
Collapse
Affiliation(s)
- Ana-Maria Gan
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Zuzanna Tracz-Gaszewska
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Aleksandra Ellert-Miklaszewska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Viktor O. Navrulin
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - James M. Ntambi
- Departments of Biochemistry and Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland
- Correspondence:
| |
Collapse
|
56
|
Li Z, Zhou KW, Chen F, Shang F, Wu MX. Celastrol inhibits laser-induced choroidal neovascularization by decreasing VEGF induced proliferation and migration. Int J Ophthalmol 2022; 15:1221-1230. [PMID: 36017049 DOI: 10.18240/ijo.2022.08.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022] Open
Abstract
AIM To evaluate celastrol's effect on choroidal neovascularization (CNV). METHODS In this study, neovascular formation in vitro (tube formation and aortic ring culture) and in vivo (laser induced neovascular in mice) was treated with celastrol to evaluate this natural compound's impact on CNV. Western blot was applied to explore the possible mechanism for it. For in vitro assay, triplicate for each group was repeated at least three times. For in vivo assay, each group contains 5 mice. RESULTS Celastrol supressed tube formation and aortic ring sprout neovascularization. In vitro assay exhibited that celastrol inhibiting vascular endothelial growth factor (VEGF)-induced proliferation and migration of human umbilical vein endothelial cells and human choroidal endothelial cells, and by blocking VEGF signaling. Furthermore, intraperitoneal administration of celastrol significantly reduced the area of laser-induced CNV in an in vivo mouse model. By day 14, the area of CNV had decreased by 49.15% and 80.26% in the 0.1 mg/kg celastrol-treated group (n=5) and in the 0.5 mg/kg celastrol treated group (n=5), respectively, compared to the vehicle-treated group (n=5). CONCLUSION Celastrol inhibits CNV by inhibiting VEGF-induced proliferation and migration of vascular endothelial cells, indicating that celastrol is a potent, natural therapeutic compound for the prevention of CNV.
Collapse
Affiliation(s)
- Zhen Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Ke-Wen Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China.,Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Fang Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Fu Shang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Ming-Xing Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| |
Collapse
|
57
|
Effects of lifelong spontaneous exercise on skeletal muscle and angiogenesis in super-aged mice. PLoS One 2022; 17:e0263457. [PMID: 35976884 PMCID: PMC9384990 DOI: 10.1371/journal.pone.0263457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/02/2022] [Indexed: 11/19/2022] Open
Abstract
There has been an increasing awareness of sarcopenia, which is characterized by a concomitant decrease in skeletal muscle mass and quality due to aging. Resistance exercise is considered more effective than aerobic exercise in terms of therapeutic exercise. To confirm the effect of long-term aerobic exercise in preventing sarcopenia, we evaluated the skeletal muscle mass, quality, and angiogenic capacity of super-aged mice that had undergone lifelong spontaneous exercise (LSE) through various experiments. Our findings show that LSE could maintain skeletal muscle mass, quality, and fitness levels in super-aged mice. In addition, ex vivo experiments showed that the angiogenic capacity was maintained at a high level. However, these results were not consistent with the related changes in the expression of genes and/or proteins involved in protein synthesis or angiogenesis. Based on the results of previous studies, it seems certain that the expression at the molecular level does not represent the phenotypes of skeletal muscle and angiogenesis. This is because aging and long-term exercise are variables that can affect both protein synthesis and the expression patterns of angiogenesis-related genes and proteins. Therefore, in aging and exercise-related research, various physical fitness and angiogenesis variables and phenotypes should be analyzed. In conclusion, LSE appears to maintain the potential of angiogenesis and slow the aging process to maintain skeletal muscle mass and quality. Aerobic exercise may thus be effective for the prevention of sarcopenia.
Collapse
|
58
|
Abernethie AJ, Gastaldello A, Maltese G, Morgan RA, McInnes KJ, Small GR, Walker BR, Livingstone DE, Hadoke PW, Andrew R. Comparison of mechanisms of angiostasis caused by the anti-inflammatory steroid 5α-tetrahydrocorticosterone versus conventional glucocorticoids. Eur J Pharmacol 2022; 929:175111. [PMID: 35738450 DOI: 10.1016/j.ejphar.2022.175111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
5α-Tetrahydrocorticosterone (5αTHB) is an effective topical anti-inflammatory agent in mouse, with less propensity to cause skin thinning and impede new blood vessel growth compared with corticosterone. Its anti-inflammatory effects were not prevented by RU38486, a glucocorticoid receptor antagonist, suggesting alternative mechanisms. The hypothesis that 5αTHB directly inhibits angiogenesis to a lesser extent than hydrocortisone was tested, focussing on glucocorticoid receptor mediated actions. New vessel growth from aortae from C57BL/6 male mice was monitored in culture, in the presence of 5αTHB, hydrocortisone (mixed glucocorticoid/mineralocorticoid receptor agonist) or the selective glucocorticoid receptor agonist dexamethasone. Transcript profiles were studied, as was the role of the glucocorticoid receptor, using the antagonist, RU38486. Ex vivo, 5αTHB suppressed vessel growth from aortic rings, but was less potent than hydrocortisone (EC50 2512 nM 5αTHB, versus 762 nM hydrocortisone). In contrast to conventional glucocorticoids, 5αTHB did not alter expression of genes related to extracellular matrix integrity or inflammatory signalling, but caused a small increase in Per1 transcript, and decreased transcript abundance of Pecam1 gene. RU38486 did not antagonise the residual effects of 5αTHB to suppress vessel growth or regulate gene expression, but modified effects of dexamethasone. 5αTHB did not alter expression of glucocorticoid-regulated genes Fkbp51 and Hsd11b1, unlike hydrocortisone and dexamethasone. In conclusion, compared with hydrocortisone, 5αTHB exhibits limited suppression of angiogenesis, at least directly in blood vessels and probably independent of the glucocorticoid receptor. Discriminating the mechanisms employed by 5αTHB may provide the basis for the development of novel safer anti-inflammatory drugs for topical use.
Collapse
Affiliation(s)
- Amber J Abernethie
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK
| | - Annalisa Gastaldello
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK
| | - Giorgia Maltese
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK
| | - Ruth A Morgan
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK
| | - Kerry J McInnes
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK
| | - Gary R Small
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK
| | - Brian R Walker
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK; Translational and Clinical Research Institute, Newcastle University, King's Gate, Newcastle Upon Tyne, NE1 7RU, UK
| | - Dawn Ew Livingstone
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK; Centre for Discovery Brain Science, Hugh Robson Building, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK
| | - Patrick Wf Hadoke
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK
| | - Ruth Andrew
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
59
|
Seo SH, Hwang S, Hwang S, Han S, Park H, Lee Y, Rho SB, Kwon Y. Hypoxia‐induced ELF3 promotes tumor angiogenesis through IGF1/IGF1R. EMBO Rep 2022; 23:e52977. [PMID: 35695065 PMCID: PMC9346469 DOI: 10.15252/embr.202152977] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 11/09/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the most lethal gynecological cancers despite a relatively low incidence. Angiogenesis, one of the hallmarks of cancer, is essential for the pathogenesis of EOC, which is related to the induction of angiogenic factors. We found that ELF3 was highly expressed in EOCs under hypoxia and functioned as a transcription factor for IGF1. The ELF3‐mediated increase in the secretion of IGF1 and VEGF promoted endothelial cell proliferation, migration, and EOC angiogenesis. Although this situation was much exaggerated under hypoxia, ELF3 silencing under hypoxia significantly attenuated angiogenic activity in endothelial cells by reducing the expression and secretion of IGF1 and VEGF. ELF3 silencing attenuated angiogenesis and tumorigenesis in ex vivo and xenograft mouse models. Consequently, ELF3 plays an important role in the induction of angiogenesis and tumorigenesis in EOC as a transcription factor of IGF1. A detailed understanding of the biological mechanism of ELF3 may both improve current antiangiogenic therapies and have anticancer effects for EOC.
Collapse
Affiliation(s)
- Seung Hee Seo
- College of Pharmacy Graduate School of Pharmaceutical Sciences Ewha Womans University Seoul Korea
| | - Soo‐Yeon Hwang
- College of Pharmacy Graduate School of Pharmaceutical Sciences Ewha Womans University Seoul Korea
| | - Seohui Hwang
- College of Pharmacy Graduate School of Pharmaceutical Sciences Ewha Womans University Seoul Korea
| | - Sunjung Han
- College of Pharmacy Graduate School of Pharmaceutical Sciences Ewha Womans University Seoul Korea
| | - Hyojin Park
- College of Pharmacy Graduate School of Pharmaceutical Sciences Ewha Womans University Seoul Korea
| | - Yun‐Sil Lee
- College of Pharmacy Graduate School of Pharmaceutical Sciences Ewha Womans University Seoul Korea
| | - Seung Bae Rho
- Research Institute National Cancer Center Goyang‐si Gyeonggi‐do Korea
| | - Youngjoo Kwon
- College of Pharmacy Graduate School of Pharmaceutical Sciences Ewha Womans University Seoul Korea
| |
Collapse
|
60
|
Roy B, Pan G, Giri S, Thandavarayan RA, Palaniyandi SS. Aldehyde dehydrogenase 2 augments adiponectin signaling in coronary angiogenesis in HFpEF associated with diabetes. FASEB J 2022; 36:e22440. [PMID: 35815932 DOI: 10.1096/fj.202200498r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 11/11/2022]
Abstract
4-hydroxy-2-nonenal (4HNE), an oxidative stress byproduct, is elevated in diabetes which decreases coronary angiogenesis, and this was rescued by the 4HNE detoxifying enzyme, aldehyde dehydrogenase 2 (ALDH2). Adiponectin (APN), an adipocytokine, has pro-angiogenic properties and its loss of function is critical in diabetes and its complications. Coronary endothelial cell (CEC) damage is the initiating step of diabetes-mediated heart failure with preserved ejection fraction (HFpEF) pathogenesis. Thus, we hypothesize that ALDH2 restores 4HNE-induced downregulation of APN signaling in CECs and subsequent coronary angiogenesis in diabetic HFpEF. Treatment with disulfiram, an ALDH2 inhibitor, exacerbated 4HNE-mediated decreases in APN-induced increased coronary angiogenesis and APN-signaling cascades, whereas pretreatment with alda1, an ALDH2 activator, rescued the effect of 4HNE. We employed control mice (db/m), spontaneous type-2 diabetic mice (db/db), ALDH2*2 knock-in mutant mice with intrinsic low ALDH2 activity (AL), and diabetic mice with intrinsic low ALDH2 activity (AF) mice that were created by crossing db/db and AL mice to test our hypothesis in vivo. AF mice exhibited heart failure with preserved ejection fraction (HFpEF)/severe diastolic dysfunction at 6 months with a preserved systolic function compared with db/db mice as well as 3 months of their age. Decreased APN-mediated coronary angiogenesis, along with increased circulatory APN levels and decreased cardiac APN signaling (index of APN resistance) were higher in AF mice relative to db/db mice. Alda1 treatment improved APN-mediated angiogenesis in AF and db/db mice. In summary, 4HNE-induces APN resistance and a subsequent decrease in coronary angiogenesis in diabetic mouse heart which was rescued by ALDH2.
Collapse
Affiliation(s)
- Bipradas Roy
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan, USA.,Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Guodong Pan
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan, USA.,Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
| | | | - Suresh Selvaraj Palaniyandi
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan, USA.,Department of Physiology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
61
|
Lou J, Wu J, Feng M, Dang X, Wu G, Yang H, Wang Y, Li J, Zhao Y, Shi C, Liu J, Zhao L, Zhang X, Gao F. Exercise promotes angiogenesis by enhancing endothelial cell fatty acid utilization via liver-derived extracellular vesicle miR-122-5p. JOURNAL OF SPORT AND HEALTH SCIENCE 2022; 11:495-508. [PMID: 34606978 PMCID: PMC9338338 DOI: 10.1016/j.jshs.2021.09.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/17/2021] [Accepted: 08/03/2021] [Indexed: 05/15/2023]
Abstract
BACKGROUND Angiogenesis constitutes a major mechanism responsible for exercise-induced beneficial effects. Our previous study identified a cluster of differentially expressed extracellular vesicle microRNAs (miRNAs) after exercise and found that some of them act as exerkines. However, whether these extracellular vesicle miRNAs mediate the exercise-induced angiogenesis remains unknown. METHODS A 9-day treadmill training was used as an exercise model in C57BL/6 mice. Liver-specific adeno-associated virus 8 was used to knock down microRNA-122-5p (miR-122-5p). Human umbilical vein endothelial cells were used in vitro. RESULTS Among these differentially expressed extracellular vesicle miRNAs, miR-122-5p was identified as a potent pro-angiogenic factor that activated vascular endothelial growth factor signaling and promoted angiogenesis both in vivo and in vitro. Exercise increased circulating levels of miR-122-5p, which was produced mainly by the liver and shuttled by extracellular vesicles in mice. Inhibition of circulating miR-122-5p or liver-specific knockdown of miR-122-5p significantly abolished the exercise-induced pro-angiogenic effect in skeletal muscles, and exercise-improved muscle performance in mice. Mechanistically, miR-122-5p promoted angiogenesis through shifting substrate preference to fatty acids in endothelial cells, and miR-122-5p upregulated endothelial cell fatty-acid utilization by targeting 1-acyl-sn-glycerol-3-phosphate acyltransferase (AGPAT1). In addition, miR-122-5p increased capillary density in perilesional skin tissues and accelerated wound healing in mice. CONCLUSION These findings demonstrated that exercise promotes angiogenesis through upregulation of liver-derived extracellular vesicle miR-122-5p, which enhances fatty acid utilization by targeting AGPAT1 in endothelial cells, highlighting the therapeutic potential of miR-122-5p in tissue repair.
Collapse
Affiliation(s)
- Jing Lou
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Jie Wu
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Mengya Feng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xue Dang
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Guiling Wu
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Hongyan Yang
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yan Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jia Li
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yong Zhao
- Laboratory Animal Center, Fourth Military Medical University, Xi'an 710032, China
| | - Changhong Shi
- Laboratory Animal Center, Fourth Military Medical University, Xi'an 710032, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lin Zhao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xing Zhang
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Feng Gao
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
62
|
Short WD, Steen E, Kaul A, Wang X, Olutoye OO, Vangapandu HV, Templeman N, Blum AJ, Moles CM, Narmoneva DA, Crombleholme TM, Butte MJ, Bollyky PL, Keswani SG, Balaji S. IL-10 promotes endothelial progenitor cell infiltration and wound healing via STAT3. FASEB J 2022; 36:e22298. [PMID: 35670763 PMCID: PMC9796147 DOI: 10.1096/fj.201901024rr] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 03/08/2022] [Accepted: 03/23/2022] [Indexed: 01/02/2023]
Abstract
Endothelial progenitor cells (EPCs) contribute to de novo angiogenesis, tissue regeneration, and remodeling. Interleukin 10 (IL-10), an anti-inflammatory cytokine that primarily signals via STAT3, has been shown to drive EPC recruitment to injured tissues. Our previous work demonstrated that overexpression of IL-10 in dermal wounds promotes regenerative tissue repair via STAT3-dependent regulation of fibroblast-specific hyaluronan synthesis. However, IL-10's role and specific mode of action on EPC recruitment, particularly in dermal wound healing and neovascularization in both normal and diabetic wounds, remain to be defined. Therefore, inducible skin-specific STAT3 knockdown mice were studied to determine IL-10's impact on EPCs, dermal wound neovascularization and healing, and whether it is STAT3-dependent. We show that IL-10 overexpression significantly elevated EPC counts in the granulating wound bed, which was associated with robust capillary lumen density and enhanced re-epithelialization of both control and diabetic (db/db) wounds at day 7. We noted increased VEGF and high C-X-C motif chemokine 12 (CXCL12) levels in wounds and a favorable CXCL12 gradient at day 3 that may support EPC mobilization and infiltration from bone marrow to wounds, an effect that was abrogated in STAT3 knockdown wounds. These findings were supported in vitro. IL-10 promoted VEGF and CXCL12 synthesis in primary murine dermal fibroblasts, with blunted VEGF expression upon blocking CXCL12 in the media by antibody binding. IL-10-conditioned fibroblast media also significantly promoted endothelial sprouting and network formation. In conclusion, these studies demonstrate that overexpression of IL-10 in dermal wounds recruits EPCs and leads to increased vascular structures and faster re-epithelialization.
Collapse
Affiliation(s)
- Walker D. Short
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Emily Steen
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Aditya Kaul
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Xinyi Wang
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Oluyinka O. Olutoye
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Hima V. Vangapandu
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Natalie Templeman
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Alexander J. Blum
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Chad M. Moles
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Daria A. Narmoneva
- Biomedical EngineeringDepartment of Biomedical, Chemical and Environmental EngineeringCollege of Engineering and Applied SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | - Timothy M. Crombleholme
- Division of Pediatric General Thoracic and Fetal SurgeryConnecticut Children’s HospitalUniversity of Connecticut School of MedicineFarmingtonConnecticutUSA,Fetal Care Center DallasDallasTexasUSA
| | - Manish J. Butte
- Division of ImmunologyAllergy, and RheumatologyDepartments of Pediatrics and Microbiology, Immunology, and Molecular GeneticsUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Paul L. Bollyky
- Division of Infectious DiseasesDepartment of MedicineStanford University School of MedicineStanfordCaliforniaUSA
| | - Sundeep G. Keswani
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Swathi Balaji
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| |
Collapse
|
63
|
Glycation of Tie-2 Inhibits Angiopoietin-1 Signaling Activation and Angiopoietin-1-Induced Angiogenesis. Int J Mol Sci 2022; 23:ijms23137137. [PMID: 35806141 PMCID: PMC9266685 DOI: 10.3390/ijms23137137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023] Open
Abstract
The impairment of the angiopoietin-1 (Ang-1)/Tie-2 signaling pathway has been thought to play a critical role in diabetic complications. However, the underlying mechanisms remain unclear. The present study aims to investigate the effects of Tie-2 glycation on Ang-1 signaling activation and Ang-1-induced angiogenesis. We identified that Tie-2 was modified by advanced glycation end products (AGEs) in aortae derived from high fat diet (HFD)-fed mice and in methylglyoxal (MGO)-treated human umbilical vein endothelial cells (HUVECs). MGO-induced Tie-2 glycation significantly inhibited Ang-1-evoked Tie-2 and Akt phosphorylation and Ang-1-regulated endothelial cell migration and tube formation, whereas the blockade of AGE formation by aminoguanidine remarkably rescued Ang-1 signaling activation and Ang-1-induced angiogenesis in vitro. Furthermore, MGO treatment markedly increased AGE cross-linking of Tie-2 in cultured aortae ex vivo and MGO-induced Tie-2 glycation also significantly decreased Ang-1-induced vessel outgrow from aortic rings. Collectively, these data suggest that Tie-2 may be modified by AGEs in diabetes mellitus and that Tie-2 glycation inhibits Ang-1 signaling activation and Ang-1-induced angiogenesis. This may provide a novel mechanism for Ang-1/Tie-2 signal dysfunction and angiogenesis failure in diabetic ischaemic diseases.
Collapse
|
64
|
Bochenek ML, Gogiraju R, Großmann S, Krug J, Orth J, Reyda S, Georgiadis GS, Spronk H, Konstantinides S, Münzel T, Griffin JH, Wild PS, Espinola-Klein C, Ruf W, Schäfer K. EPCR-PAR1 biased signaling regulates perfusion recovery and neovascularization in peripheral ischemia. JCI Insight 2022; 7:157701. [PMID: 35700057 PMCID: PMC9431695 DOI: 10.1172/jci.insight.157701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Blood clot formation initiates ischemic events, but coagulation roles during postischemic tissue repair are poorly understood. The endothelial protein C receptor (EPCR) regulates coagulation, as well as immune and vascular signaling, by protease activated receptors (PARs). Here, we show that endothelial EPCR-PAR1 signaling supports reperfusion and neovascularization in hindlimb ischemia in mice. Whereas deletion of PAR2 or PAR4 did not impair angiogenesis, EPCR and PAR1 deficiency or PAR1 resistance to cleavage by activated protein C caused markedly reduced postischemic reperfusion in vivo and angiogenesis in vitro. These findings were corroborated by biased PAR1 agonism in isolated primary endothelial cells. Loss of EPCR-PAR1 signaling upregulated hemoglobin expression and reduced endothelial nitric oxide (NO) bioavailability. Defective angiogenic sprouting was rescued by the NO donor DETA-NO, whereas NO scavenging increased hemoglobin and mesenchymal marker expression in human and mouse endothelial cells. Vascular specimens from patients with ischemic peripheral artery disease exhibited increased hemoglobin expression, and soluble EPCR and NO levels were reduced in plasma. Our data implicate endothelial EPCR-PAR1 signaling in the hypoxic response of endothelial cells and identify suppression of hemoglobin expression as an unexpected link between coagulation signaling, preservation of endothelial cell NO bioavailability, support of neovascularization, and prevention of fibrosis.
Collapse
Affiliation(s)
- Magdalena L Bochenek
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | | | - Stefanie Großmann
- Department of Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Janina Krug
- Department of Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Jennifer Orth
- Department of Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Sabine Reyda
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - George S Georgiadis
- Department of Vascular Surgery, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Henri Spronk
- CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, Netherlands
| | | | - Thomas Münzel
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - John H Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States of America
| | - Philipp S Wild
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | | | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Katrin Schäfer
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
65
|
Bae JH, Yang MJ, Jeong SH, Kim J, Hong SP, Kim JW, Kim YH, Koh GY. Gatekeeping role of Nf2/Merlin in vascular tip EC induction through suppression of VEGFR2 internalization. SCIENCE ADVANCES 2022; 8:eabn2611. [PMID: 35687678 PMCID: PMC9187237 DOI: 10.1126/sciadv.abn2611] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
In sprouting angiogenesis, the precise mechanisms underlying how intracellular vascular endothelial growth factor receptor 2 (VEGFR2) signaling is higher in one endothelial cell (EC) compared with its neighbor and acquires the tip EC phenotype under a similar external cue are elusive. Here, we show that Merlin, encoded by the neurofibromatosis type 2 (NF2) gene, suppresses VEGFR2 internalization depending on VE-cadherin density and inhibits tip EC induction. Accordingly, endothelial Nf2 depletion promotes tip EC induction with excessive filopodia by enhancing VEGFR2 internalization in both the growing and matured vessels. Mechanistically, Merlin binds to the VEGFR2-VE-cadherin complex at cell-cell junctions and reduces VEGFR2 internalization-induced downstream signaling during tip EC induction. As a consequence, nonfunctional excessive sprouting occurs during tumor angiogenesis in EC-specific Nf2-deleted mice, leading to delayed tumor growth. Together, Nf2/Merlin is a crucial molecular gatekeeper for tip EC induction, capillary integrity, and proper tumor angiogenesis by suppressing VEGFR2 internalization.
Collapse
Affiliation(s)
- Jung Hyun Bae
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Myung Jin Yang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Seung-hwan Jeong
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - JungMo Kim
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Seon Pyo Hong
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Jin Woo Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Yoo Hyung Kim
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Gou Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| |
Collapse
|
66
|
Ye Q, Zhang J, Zhang C, Yi B, Kazama K, Liu W, Sun X, Liu Y, Sun J. Endothelial PRMT5 plays a crucial role in angiogenesis after acute ischemic injury. JCI Insight 2022; 7:e152481. [PMID: 35531958 PMCID: PMC9090242 DOI: 10.1172/jci.insight.152481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
Arginine methylation mediated by protein arginine methyltransferases (PRMTs) has been shown to be an important posttranslational mechanism involved in various biological processes. Herein, we sought to investigate whether PRMT5, a major type II enzyme, is involved in pathological angiogenesis and, if so, to elucidate the molecular mechanism involved. Our results show that PRMT5 expression is significantly upregulated in ischemic tissues and hypoxic endothelial cells (ECs). Endothelial-specific Prmt5-KO mice were generated to define the role of PRMT5 in hindlimb ischemia-induced angiogenesis. We found that these mice exhibited impaired recovery of blood perfusion and motor function of the lower limbs, an impairment that was accompanied by decreased vascular density and increased necrosis as compared with their WT littermates. Furthermore, both pharmacological and genetic inhibition of PRMT5 significantly attenuated EC proliferation, migration, tube formation, and aortic ring sprouting. Mechanistically, we showed that inhibition of PRMT5 markedly attenuated hypoxia-induced factor 1-α (HIF-1α) protein stability and vascular endothelial growth factor-induced (VEGF-induced) signaling pathways in ECs. Our results provide compelling evidence demonstrating a crucial role of PRMT5 in hypoxia-induced angiogenesis and suggest that inhibition of PRMT5 may provide novel therapeutic strategies for the treatment of abnormal angiogenesis-related diseases, such as cancer and diabetic retinopathy.
Collapse
Affiliation(s)
- Qing Ye
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jian Zhang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Bing Yi
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Kyosuke Kazama
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Wennan Liu
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Xiaobo Sun
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxin Sun
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
67
|
Bone marrow-independent adventitial macrophage progenitor cells contribute to angiogenesis. Cell Death Dis 2022; 13:220. [PMID: 35264563 PMCID: PMC8907187 DOI: 10.1038/s41419-022-04605-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 01/11/2022] [Accepted: 02/01/2022] [Indexed: 12/21/2022]
Abstract
Pathological angiogenesis promotes tumor growth, metastasis, and atherosclerotic plaque rupture. Macrophages are key players in these processes. However, whether these macrophages differentiate from bone marrow-derived monocytes or from local vascular wall-resident stem and progenitor cells (VW-SCs) is an unresolved issue of angiogenesis. To answer this question, we analyzed vascular sprouting and alterations in aortic cell populations in mouse aortic ring assays (ARA). ARA culture leads to the generation of large numbers of macrophages, especially within the aortic adventitia. Using immunohistochemical fate-mapping and genetic in vivo-labeling approaches we show that 60% of these macrophages differentiate from bone marrow-independent Ly6c+/Sca-1+ adventitial progenitor cells. Analysis of the NCX−/− mouse model that genetically lacks embryonic circulation and yolk sac perfusion indicates that at least some of those progenitor cells arise yolk sac-independent. Macrophages represent the main source of VEGF in ARA that vice versa promotes the generation of additional macrophages thereby creating a pro-angiogenetic feedforward loop. Additionally, macrophage-derived VEGF activates CD34+ progenitor cells within the adventitial vasculogenic zone to differentiate into CD31+ endothelial cells. Consequently, depletion of macrophages and VEGFR2 antagonism drastically reduce vascular sprouting activity in ARA. In summary, we show that angiogenic activation induces differentiation of macrophages from bone marrow-derived as well as from bone marrow-independent VW-SCs. The latter ones are at least partially yolk sac-independent, too. Those VW-SC-derived macrophages critically contribute to angiogenesis, making them an attractive target to interfere with pathological angiogenesis in cancer and atherosclerosis as well as with regenerative angiogenesis in ischemic cardiovascular disorders.
Collapse
|
68
|
Pagano E, Elias JE, Schneditz G, Saveljeva S, Holland LM, Borrelli F, Karlsen TH, Kaser A, Kaneider NC. Activation of the GPR35 pathway drives angiogenesis in the tumour microenvironment. Gut 2022; 71:509-520. [PMID: 33758004 PMCID: PMC8862021 DOI: 10.1136/gutjnl-2020-323363] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Primary sclerosing cholangitis (PSC) is in 70% of cases associated with inflammatory bowel disease. The hypermorphic T108M variant of the orphan G protein-coupled receptor GPR35 increases risk for PSC and ulcerative colitis (UC), conditions strongly predisposing for inflammation-associated liver and colon cancer. Lack of GPR35 reduces tumour numbers in mouse models of spontaneous and colitis associated cancer. The tumour microenvironment substantially determines tumour growth, and tumour-associated macrophages are crucial for neovascularisation. We aim to understand the role of the GPR35 pathway in the tumour microenvironment of spontaneous and colitis-associated colon cancers. DESIGN Mice lacking GPR35 on their macrophages underwent models of spontaneous colon cancer or colitis-associated cancer. The role of tumour-associated macrophages was then assessed in biochemical and functional assays. RESULTS Here, we show that GPR35 on macrophages is a potent amplifier of tumour growth by stimulating neoangiogenesis and tumour tissue remodelling. Deletion of Gpr35 in macrophages profoundly reduces tumour growth in inflammation-associated and spontaneous tumour models caused by mutant tumour suppressor adenomatous polyposis coli. Neoangiogenesis and matrix metalloproteinase activity is promoted by GPR35 via Na/K-ATPase-dependent ion pumping and Src activation, and is selectively inhibited by a GPR35-specific pepducin. Supernatants from human inducible-pluripotent-stem-cell derived macrophages carrying the UC and PSC risk variant stimulate tube formation by enhancing the release of angiogenic factors. CONCLUSIONS Activation of the GPR35 pathway promotes tumour growth via two separate routes, by directly augmenting proliferation in epithelial cells that express the receptor, and by coordinating macrophages' ability to create a tumour-permissive environment.
Collapse
Affiliation(s)
- Ester Pagano
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK,Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Joshua E Elias
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK,Division of Gastroenterology and Hepatology, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Georg Schneditz
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK,Norwegian PSC Research Center, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Svetlana Saveljeva
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Lorraine M Holland
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Francesca Borrelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Tom H Karlsen
- Norwegian PSC Research Center, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Arthur Kaser
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK,Division of Gastroenterology and Hepatology, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Nicole C Kaneider
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK .,Division of Gastroenterology and Hepatology, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
69
|
Bischoff-Kont I, Primke T, Niebergall LS, Zech T, Fürst R. Ginger Constituent 6-Shogaol Inhibits Inflammation- and Angiogenesis-Related Cell Functions in Primary Human Endothelial Cells. Front Pharmacol 2022; 13:844767. [PMID: 35281937 PMCID: PMC8914105 DOI: 10.3389/fphar.2022.844767] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
Rhizomes from Zingiber officinale Roscoe are traditionally used for the treatment of a plethora of pathophysiological conditions such as diarrhea, nausea, or rheumatoid arthritis. While 6-gingerol is the pungent principle in fresh ginger, in dried rhizomes, 6-gingerol is dehydrated to 6-shogaol. 6-Shogaol has been demonstrated to exhibit anticancer, antioxidative, and anti-inflammatory actions more effectively than 6-gingerol due to the presence of an electrophilic Michael acceptor moiety. In vitro, 6-shogaol exhibits anti-inflammatory actions in a variety of cell types, including leukocytes. Our study focused on the effects of 6-shogaol on activated endothelial cells. We found that 6-shogaol significantly reduced the adhesion of leukocytes onto lipopolysaccharide (LPS)-activated human umbilical vein endothelial cells (HUVECs), resulting in a significantly reduced transmigration of THP-1 cells through an endothelial cell monolayer. Analyzing the mediators of endothelial cell–leukocyte interactions, we found that 30 µM of 6-shogaol blocked the LPS-triggered mRNA and protein expression of cell adhesion molecules. In concert with this, our study demonstrates that the LPS-induced nuclear factor κB (NFκB) promoter activity was significantly reduced upon treatment with 6-shogaol. Interestingly, the nuclear translocation of p65 was slightly decreased, and protein levels of the LPS receptor Toll-like receptor 4 remained unimpaired. Analyzing the impact of 6-shogaol on angiogenesis-related cell functions in vitro, we found that 6-shogaol attenuated the proliferation as well as the directed and undirected migration of HUVECs. Of note, 6-shogaol also strongly reduced the chemotactic migration of endothelial cells in the direction of a serum gradient. Moreover, 30 µM of 6-shogaol blocked the formation of vascular endothelial growth factor (VEGF)-induced endothelial sprouts from HUVEC spheroids and from murine aortic rings. Importantly, this study shows for the first time that 6-shogaol exhibits a vascular-disruptive impact on angiogenic sprouts from murine aortae. Our study demonstrates that the main bioactive ingredient in dried ginger, 6-shogaol, exhibits beneficial characteristics as an inhibitor of inflammation- and angiogenesis-related processes in vascular endothelial cells.
Collapse
Affiliation(s)
- Iris Bischoff-Kont
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany
| | - Tobias Primke
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany
| | - Lea S. Niebergall
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany
| | - Thomas Zech
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
- *Correspondence: Robert Fürst,
| |
Collapse
|
70
|
Kim Y, Kim DY, Zhang H, Bae CR, Seong D, Kim Y, Song J, Kim YM, Kwon YG. DIX domain containing 1 (DIXDC1) modulates VEGFR2 level in vasculatures to regulate embryonic and postnatal retina angiogenesis. BMC Biol 2022; 20:41. [PMID: 35144597 PMCID: PMC8830128 DOI: 10.1186/s12915-022-01240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 01/27/2022] [Indexed: 11/16/2022] Open
Abstract
Background In sprouting angiogenesis, VEGFR2 level is regulated via a fine-tuned process involving various signaling pathways. Other than VEGF/VEGFR2 signaling pathway, Wnt/ β-catenin signaling is also important in vascular development. However, the crosstalk between these two signaling pathways is still unknown to date. In this study, we aimed to investigate the role of DIX domain containing 1 (DIXDC1) in vasculature, facilitating the crosstalk between VEGF/VEGFR2 and Wnt/ β-catenin signaling pathways. Results In mice, DIXDC1 deficiency delayed angiogenesis at the embryonic stage and suppressed neovascularization at the neonatal stage. DIXDC1 knockdown inhibited VEGF-induced angiogenesis in endothelial cells in vitro by downregulating VEGFR2 expression. DIXDC1 bound Dishevelled Segment Polarity Protein 2 (Dvl2) and polymerized Dvl2 stabilizing VEGFR2 protein via its direct interaction. The complex formation and stability of VEGFR2 was potentiated by Wnt signaling. Moreover, hypoxia elevated DIXDC1 expression and likely modulated both canonical Wnt/β-catenin signaling and VEGFR2 stability in vasculatures. Pathological angiogenesis in DIXDC1 knockout mice was decreased significantly in oxygen-induced retinopathy (OIR) and in wound healing models. These results suggest that DIXDC1 is an important factor in developmental and pathological angiogenesis. Conclusion We have identified DIXDC1 as an important factor in early vascular development. These results suggest that DIXDC1 represents a novel regulator of sprouting angiogenesis that links Wnt signaling and VEGFR2 stability and may have a potential role in pathological neovascularization. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01240-3.
Collapse
Affiliation(s)
- Yeaji Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Dong Young Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.,Present address: Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Haiying Zhang
- R&D Department, Curacle Co. Ltd, Seongnam-si, Republic of Korea
| | - Cho-Rong Bae
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Daehyeon Seong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yeomyung Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Young-Myeong Kim
- Vascular System Research Center, Kangwon National University, Chuncheon, Republic of Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
71
|
Van Petten de Vasconcelos Azevedo F, Lopes DS, Zóia MAP, Correia LIV, Saito N, Fonseca BB, Polloni L, Teixeira SC, Goulart LR, de Melo Rodrigues Ávila V. A New Approach to Inhibiting Triple-Negative Breast Cancer: In Vitro, Ex Vivo and In Vivo Antiangiogenic Effect of BthTx-II, a PLA 2-Asp-49 from Bothrops jararacussu Venom. Biomolecules 2022; 12:258. [PMID: 35204758 PMCID: PMC8961627 DOI: 10.3390/biom12020258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 12/10/2022] Open
Abstract
Phospholipases A2 (PLA2) represent a superfamily of enzymes widely distributed in living organisms, with a broad spectrum of pharmacological activities and therapeutic potential. Anti-angiogenic strategies have become one of the main tools in fighting cancer. In this sense, the present work reports the inhibition of tumor angiogenesis induced by Asp-49 BthTX-II using in vitro, ex vivo and in vivo approaches. We demonstrate that BthTx-II inhibited cell adhesion, proliferation, and migration of human umbilical vein endothelial cells (HUVEC), as well as caused a reduction in the levels of endothelial growth factor (VEGF) during in vitro angiogenesis assays. BthTx-II was also able to inhibit the sprouting angiogenic process, by the ex vivo germination assay of the aortic ring; in addition, this toxin inhibited the migration and proliferation of HUVEC in co-culture with triple-negative breast cancer cells (e.g., MDA-MB-231 cells). Finally, in vivo tumor suppression and anti-angiogenic activities were analyzed using MDA-MB-231 cells with Matrigel injected into the chorioallantoic membrane of chicken embryo (CAM) for 7 days treatment with BthTx-II, showing a considerable reduction in vessel caliber, on the size and weight of tumors. Together, these results suggest an important antiangiogenic and antitumor role for BthTx-II, as a potential prototype for the development of new tools and antitumor drugs in cancer therapy.
Collapse
Affiliation(s)
- Fernanda Van Petten de Vasconcelos Azevedo
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlandia, Uberlândia 38408-100, MG, Brazil; (L.I.V.C.); (L.P.)
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlândia 38408-100, MG, Brazil; (M.A.P.Z.); (N.S.); (L.R.G.)
| | - Daiana Silva Lopes
- Multidisciplinary Institute of Health, Federal University of Bahia, Vitoria da Conquista, Salvador 40170-110, BA, Brazil;
| | - Mariana Alves Pereira Zóia
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlândia 38408-100, MG, Brazil; (M.A.P.Z.); (N.S.); (L.R.G.)
| | - Lucas Ian Veloso Correia
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlandia, Uberlândia 38408-100, MG, Brazil; (L.I.V.C.); (L.P.)
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlândia 38408-100, MG, Brazil; (M.A.P.Z.); (N.S.); (L.R.G.)
| | - Natieli Saito
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlândia 38408-100, MG, Brazil; (M.A.P.Z.); (N.S.); (L.R.G.)
| | | | - Lorena Polloni
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlandia, Uberlândia 38408-100, MG, Brazil; (L.I.V.C.); (L.P.)
| | - Samuel Cota Teixeira
- Department of Immunology, Biomedical Sciences Institute, Federal University of Uberlandia, Uberlândia 38408-100, MG, Brazil;
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlândia 38408-100, MG, Brazil; (M.A.P.Z.); (N.S.); (L.R.G.)
| | - Veridiana de Melo Rodrigues Ávila
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlandia, Uberlândia 38408-100, MG, Brazil; (L.I.V.C.); (L.P.)
| |
Collapse
|
72
|
Notch activation suppresses endothelial cell migration and sprouting via miR-223-3p targeting Fbxw7. In Vitro Cell Dev Biol Anim 2022; 58:124-135. [PMID: 35194762 DOI: 10.1007/s11626-022-00649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023]
Abstract
Angiogenesis involves temporo-spatially coordinated endothelial cell (EC) proliferation, differentiation, migration, and sprouting. Notch signaling is essential in regulating EC behaviors during angiogenesis, but its downstream mechanisms remain incompletely defined. In the current study, we show that miR-223-3p is a downstream molecule of Notch signaling and mediates the role of Notch signaling in regulating EC migration and sprouting. In human umbilical vein endothelial cells (HUVECs), Notch activation by immobilized Dll4, a Notch ligand, upregulated miR-223-3p, and Notch activation-mediated miR-223-3p upregulation could be blocked by a γ-secretase inhibitor (DAPT). miR-223-3p overexpression apparently repressed HUVEC migration, leading to attenuated lumen formation and sprouting capacities. Transcriptome comparison and subsequent qRT-PCR validation further indicated that miR-223-3p downregulated the expression of multiple genes involved in EC migration, axon guidance, extracellular matrix remodeling, and angiogenesis. In addition, miR-223-3p antagonist transfection abolished Notch-mediated repression of EC migration and sprouting. By quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blotting, and reporter assay analysis, we confirmed that miR-223-3p directly targeted F-box and WD repeat domain-containing 7 (Fbxw7). Meanwhile, Fbxw7 overexpression could efficiently rescue the impaired migration capacity of ECs under miR-223-3p overexpression. In summary, these results identify that Notch activation-induced miR-223-3p suppresses EC migration and sprouting via Fbxw7.
Collapse
|
73
|
Wang JH, Tseng CL, Lin FL, Chen J, Hsieh EH, Lama S, Chuang YF, Kumar S, Zhu L, McGuinness MB, Hernandez J, Tu L, Wang PY, Liu GS. Topical application of TAK1 inhibitor encapsulated by gelatin particle alleviates corneal neovascularization. Theranostics 2022; 12:657-674. [PMID: 34976206 PMCID: PMC8692906 DOI: 10.7150/thno.65098] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/07/2021] [Indexed: 11/22/2022] Open
Abstract
Rationale: Corneal neovascularization (CoNV) is a severe complication of various types of corneal diseases, that leads to permanent visual impairment. Current treatments for CoNV, such as steroids or anti-vascular endothelial growth factor agents, are argued over their therapeutic efficacy and adverse effects. Here, we demonstrate that transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) plays an important role in the pathogenesis of CoNV. Methods: Angiogenic activities were assessed in ex vivo and in vitro models subjected to TAK1 inhibition by 5Z-7-oxozeaenol, a selective inhibitor of TAK1. RNA-Seq was used to examine pathways that could be potentially affected by TAK1 inhibition. A gelatin-nanoparticles-encapsulated 5Z-7-oxozeaenol was developed as the eyedrop to treat CoNV in a rodent model. Results: We showed that 5Z-7-oxozeaenol reduced angiogenic processes through impeding cell proliferation. Transcriptome analysis suggested 5Z-7-oxozeaenol principally suppresses cell cycle and DNA replication, thereby restraining cell proliferation. In addition, inhibition of TAK1 by 5Z-7-oxozeaenol blocked TNFα-mediated NFκB signalling, and its downstream genes related to angiogenesis and inflammation. 5Z-7-oxozeaenol also ameliorated pro-angiogenic activity, including endothelial migration and tube formation. Furthermore, topical administration of the gelatin-nanoparticles-encapsulated 5Z-7-oxozeaenol led to significantly greater suppression of CoNV in a mouse model compared to the free form of 5Z-7-oxozeaenol, likely due to extended retention of 5Z-7-oxozeaenol in the cornea. Conclusion: Our study shows the potential of TAK1 as a therapeutic target for pathological angiogenesis, and the gelatin nanoparticle coupled with 5Z-7-oxozeaenol as a promising new eyedrop administration model in treatment of CoNV.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Fan-Li Lin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jinying Chen
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Erh-Hsuan Hsieh
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Suraj Lama
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Yu-Fan Chuang
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Satheesh Kumar
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Linxin Zhu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Myra B. McGuinness
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Jessika Hernandez
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Leilei Tu
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guei-Sheung Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Australia
- Aier Eye Institute, Changsha, Hunan, China
| |
Collapse
|
74
|
Waters SB, Dominguez JR, Cho HD, Sarich NA, Malik AB, Yamada KH. KIF13B-mediated VEGFR2 trafficking is essential for vascular leakage and metastasis in vivo. Life Sci Alliance 2022; 5:e202101170. [PMID: 34670814 PMCID: PMC8548263 DOI: 10.26508/lsa.202101170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
VEGF-A induces vascular leakage and angiogenesis via activating the cell surface localized receptor VEGF receptor 2 (VEGFR2). The amount of available VEGFR2 at the cell surface is however tightly regulated by trafficking of VEGFR2 by kinesin family 13 B (KIF13B), a plus-end kinesin motor, to the plasma membrane of endothelial cells (ECs). Competitive inhibition of interaction between VEGFR2 and KIF13B by a peptide kinesin-derived angiogenesis inhibitor (KAI) prevented pathological angiogenesis in models of cancer and eye disease associated with defective angiogenesis. Here, we show the protective effects of KAI in VEGF-A-induced vascular leakage and cancer metastasis. Using an EC-specific KIF13B knockout (Kif13b iECKO ) mouse model, we demonstrated the function of EC expressed KIF13B in mediating VEGF-A-induced vascular leakage, angiogenesis, tumor growth, and cancer metastasis. Thus, KIF13B-mediated trafficking of VEGFR2 to the endothelial surface has an essential role in pathological angiogenesis induced by VEGF-A, and is therefore a potential therapeutic target.
Collapse
Affiliation(s)
- Stephen B Waters
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Joseph R Dominguez
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Hyun-Dong Cho
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Nicolene A Sarich
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Asrar B Malik
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Kaori H Yamada
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, IL, USA
| |
Collapse
|
75
|
Muntjewerff EM, Parv K, Mahata SK, van Riessen NK, Phillipson M, Christoffersson G, van den Bogaart G. The anti-inflammatory peptide Catestatin blocks chemotaxis. J Leukoc Biol 2021; 112:273-278. [PMID: 34939227 PMCID: PMC9543570 DOI: 10.1002/jlb.3cra1220-790rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Increased levels of the anti‐inflammatory peptide Catestatin (CST), a cleavage product of the pro‐hormone chromogranin A, correlate with less severe outcomes in hypertension, colitis, and diabetes. However, it is unknown how CST reduces the infiltration of monocytes and macrophages (Mϕs) in inflamed tissues. Here, it is reported that CST blocks leukocyte migration toward inflammatory chemokines. By in vitro and in vivo migration assays, it is shown that although CST itself is chemotactic, it blocks migration of monocytes and neutrophils to inflammatory attracting factor CC‐chemokine ligand 2 (CCL2) and C‐X‐C motif chemokine ligand 2 (CXCL2). Moreover, it directs CX3CR1+ Mϕs away from pancreatic islets. These findings suggest that the anti‐inflammatory actions of CST are partly caused by its regulation of chemotaxis.
Collapse
Affiliation(s)
- Elke M Muntjewerff
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Kristel Parv
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Sushil K Mahata
- VA San Diego Healthcare System, University of California San Diego, La Jolla, California, USA.,Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - N Koen van Riessen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mia Phillipson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Gustaf Christoffersson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
76
|
Proangiogenic Effect of Affinin and an Ethanolic Extract from Heliopsis longipes Roots: Ex Vivo and In Vivo Evidence. Molecules 2021; 26:molecules26247670. [PMID: 34946751 PMCID: PMC8706137 DOI: 10.3390/molecules26247670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/21/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels, underlies tissue development and repair. Some medicinal plant-derived compounds can modulate the angiogenic response. Heliopsis longipes, a Mexican medicinal plant, is widely used because of its effects on pain and inflammation. The main bioactive phytochemicals from H. longipes roots are alkamides, where affinin is the most abundant. Scientific studies show various medical effects of organic extracts of H. longipes roots and affinin that share some molecular pathways with the angiogenesis process, with the vasodilation mechanism of action being the most recent. This study investigates whether pure affinin and the ethanolic extract from Heliopsis longipes roots (HLEE) promote angiogenesis. Using the aortic ring rat assay (ex vivo method) and the direct in vivo angiogenesis assay, where angioreactors were implanted in CD1 female mice, showed that affinin and the HLEE increased vascular growth in a dose-dependent manner in both bioassays. This is the first study showing the proangiogenic effect of H. longipes. Further studies should focus on the mechanism of action and its possible therapeutic use in diseases characterized by insufficient angiogenesis.
Collapse
|
77
|
Bordbari S, Mörchen B, Pylaeva E, Siakaeva E, Spyra I, Domnich M, Droege F, Kanaan O, Lang KS, Schadendorf D, Lang S, Helfrich I, Jablonska J. SIRT1-mediated deacetylation of FOXO3a transcription factor supports pro-angiogenic activity of interferon-deficient tumor-associated neutrophils. Int J Cancer 2021; 150:1198-1211. [PMID: 34751438 DOI: 10.1002/ijc.33871] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 11/06/2022]
Abstract
Angiogenesis plays an important role during tumor growth and metastasis. We could previously show that Type I interferon (IFN)-deficient tumor-associated neutrophils (TANs) show strong pro-angiogenic activity, and stimulate tumor angiogenesis and growth. However, the exact mechanism responsible for their pro-angiogenic shift is not clear. Here, we set out to delineate the molecular mechanism and factors regulating pro-angiogenic properties of neutrophils in the context of Type I IFN availability. We demonstrate that neutrophils from IFN-deficient (Ifnar1-/- ) mice efficiently release pro-angiogenic factors, such as VEGF, MMP9 or BV8, and thus significantly support the vascular normalization of tumors by increasing the maturation of perivascular cells. Mechanistically, we could show here that the expression of pro-angiogenic factors in neutrophils is controlled by the transcription factor forkhead box protein O3a (FOXO3a), which activity depends on its post-translational modifications, such as deacetylation or phosphorylation. In TANs isolated from Ifnar1-/- mice, we observe significantly elevated SIRT1, resulting in SIRT1-mediated deacetylation of FOXO3a, its nuclear retention and activation. Activated FOXO3a supports in turn the transcription of pro-angiogenic genes in TANs. In the absence of SIRT1, or after its inhibition in neutrophils, elevated kinase MEK/ERK and PI3K/AKT activity is observed, leading to FOXO3a phosphorylation, cytoplasmic transfer and inactivation. In summary, we have found that FOXO3a is a key transcription factor controlling the angiogenic switch of neutrophils. Post-translational FOXO3a modifications regulate its transcriptional activity and, as a result, the expression of pro-angiogenic factors supporting development of vascular network in growing tumors. Therefore, targeting FOXO3a activity could provide a novel strategy of antiangiogenic targeted therapy for cancer.
Collapse
Affiliation(s)
- Sharareh Bordbari
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Britta Mörchen
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, University Duisburg-Essen, West German Cancer Center, Essen, Germany
| | - Ekaterina Pylaeva
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Elena Siakaeva
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ilona Spyra
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Maksim Domnich
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Freya Droege
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Oliver Kanaan
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Karl Sebastian Lang
- Institute for Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dirk Schadendorf
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, University Duisburg-Essen, West German Cancer Center, Essen, Germany.,German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| | - Stephan Lang
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| | - Iris Helfrich
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, University Duisburg-Essen, West German Cancer Center, Essen, Germany.,German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany.,Department of Dermatology and Allergology, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| |
Collapse
|
78
|
Kajitani GS, Brace L, Trevino-Villarreal JH, Trocha K, MacArthur MR, Vose S, Vargas D, Bronson R, Mitchell SJ, Menck CFM, Mitchell JR. Neurovascular dysfunction and neuroinflammation in a Cockayne syndrome mouse model. Aging (Albany NY) 2021; 13:22710-22731. [PMID: 34628368 PMCID: PMC8544306 DOI: 10.18632/aging.203617] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/20/2021] [Indexed: 11/25/2022]
Abstract
Cockayne syndrome (CS) is a rare, autosomal genetic disorder characterized by premature aging-like features, such as cachectic dwarfism, retinal atrophy, and progressive neurodegeneration. The molecular defect in CS lies in genes associated with the transcription-coupled branch of the nucleotide excision DNA repair (NER) pathway, though it is not yet clear how DNA repair deficiency leads to the multiorgan dysfunction symptoms of CS. In this work, we used a mouse model of severe CS with complete loss of NER (Csa-/-/Xpa-/-), which recapitulates several CS-related phenotypes, resulting in premature death of these mice at approximately 20 weeks of age. Although this CS model exhibits a severe progeroid phenotype, we found no evidence of in vitro endothelial cell dysfunction, as assessed by measuring population doubling time, migration capacity, and ICAM-1 expression. Furthermore, aortas from CX mice did not exhibit early senescence nor reduced angiogenesis capacity. Despite these observations, CX mice presented blood brain barrier disruption and increased senescence of brain endothelial cells. This was accompanied by an upregulation of inflammatory markers in the brains of CX mice, such as ICAM-1, TNFα, p-p65, and glial cell activation. Inhibition of neovascularization did not exacerbate neither astro- nor microgliosis, suggesting that the pro-inflammatory phenotype is independent of the neurovascular dysfunction present in CX mice. These findings have implications for the etiology of this disease and could contribute to the study of novel therapeutic targets for treating Cockayne syndrome patients.
Collapse
Affiliation(s)
- Gustavo Satoru Kajitani
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Lear Brace
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | - Kaspar Trocha
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Michael Robert MacArthur
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Sarah Vose
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Dorathy Vargas
- Rodent Histopathology Core, Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Roderick Bronson
- Rodent Histopathology Core, Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah Jayne Mitchell
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | | | - James Robert Mitchell
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
79
|
Kant RJ, Bare CF, Coulombe KL. Tissues with Patterned Vessels or Protein Release Induce Vascular Chemotaxis in an In Vitro Platform. Tissue Eng Part A 2021; 27:1290-1304. [PMID: 33472529 PMCID: PMC8610033 DOI: 10.1089/ten.tea.2020.0269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Engineered tissues designed for translational applications in regenerative medicine require vascular networks to deliver oxygen and nutrients rapidly to the implanted cells. A limiting factor of in vivo translation is the rapid and successful inosculation, or connection, of host and implanted vascular networks and subsequent perfusion of the implant. An approach gaining favor in vascular tissue engineering is to provide instructive cues from the engineered tissue to enhance host vascular penetration and connection with the implant. Here, we use a novel in vitro platform based on the aortic ring assay to evaluate the impact of patterned, endothelialized vessels or growth factor release from engineered constructs on preinosculative vascular cell outgrowth from surrogate host tissue in a controlled, defined environment, and introduce robust tools for evaluating vascular morphogenesis and chemotaxis. We demonstrate the creation of engineered vessels at the arteriole scale, which develop basement membrane, exhibit tight junctions, and actively sprout into the surrounding bulk hydrogel. Vessel-containing constructs are co-cultured adjacent to rodent aortic rings, and the resulting heterocellular outgrowth is quantified. Cells originating from the aortic ring migrate preferentially toward constructs containing engineered vessels with 1.5-fold faster outgrowth kinetics, 2.5-fold increased cellular density, and 1.6-fold greater network formation versus control (no endothelial cells and growth factor-reduced culture medium). Growth factor release from constructs with nonendothelialized channels and in reduced factor medium equivalently stimulates sustained vascular outgrowth distance, cellular density, and network formation, akin to engineered vessels in endothelial growth medium 2 (EGM-2) medium. In conclusion, we show that three-dimensional endothelialized patterned vessels or growth factor release stimulate a robust, host-derived vascular cell chemotactic response at early time points critical for instructive angiogenic cues. Further, we developed robust, unbiased tools to quantify metrics of vascular morphogenesis and preinosculative heterocellular outgrowth from rat aortic rings and demonstrated the utility of our complex, controlled environment, heterocellular in vitro platform. Impact statement Using a novel in vitro platform, we show that engineered constructs with patterned vessels or angiogenic growth factor release, two methods of instructing host revascularization responses, equivalently improve early host-derived vascular outgrowth. Our platform leverages the aortic ring assay in a tissue engineering context to study preinosculative vascular cell chemotaxis from surrogate host vascular cells in response to paracrine cues from co-cultured engineered tissues using robust, open-source quantification tools. Our accessible and flexible platform enables translationally focused studies in revascularization using implantable therapeutics containing prepatterned vessels with greater environmental control than in vivo studies to advance vascular tissue engineering.
Collapse
Affiliation(s)
- Rajeev J. Kant
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, USA
| | - Colette F. Bare
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, USA
| | - Kareen L.K. Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
80
|
Geng B, Zhu Y, Yuan Y, Bai J, Dou Z, Sui A, Luo W. Artesunate Suppresses Choroidal Melanoma Vasculogenic Mimicry Formation and Angiogenesis via the Wnt/CaMKII Signaling Axis. Front Oncol 2021; 11:714646. [PMID: 34476217 PMCID: PMC8406848 DOI: 10.3389/fonc.2021.714646] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/26/2021] [Indexed: 01/14/2023] Open
Abstract
Angiogenesis and vasculogenic mimicry (VM) are considered to be the main processes to ensure tumor blood supply during the proliferation and metastasis of choroidal melanoma (CM). The traditional antimalarial drug artesunate (ART) has some potential anti-CM effects; however, the underlying mechanisms remain unclarified. Recent studies have shown that the Wnt5a/calmodulin-dependent kinase II (CaMKII) signaling pathway has a close correlation with angiogenesis and VM formation. This study demonstrated that ART eliminated VM formation by inhibiting the aforementioned signaling pathway in CM cells. The microvessel sprouting of the mouse aortic rings and the microvessel density of chicken chorioallantoic membrane (CAM) decreased significantly after ART treatment. VM formation assay and periodic acid schiff (PAS) staining revealed that ART inhibited VM formation in CM. Moreover, ART downregulated the expression levels of the angiogenesis-related proteins vascular endothelial growth factor receptor (VEGFR) 2, platelet-derived growth factor receptor (PDGFR) and vascular endothelial growth factor (VEGF) A, and VM-related proteins ephrin type-A receptor (EphA) 2 and vascular endothelial (VE)-cadherin. The expression of hypoxia-inducible factor (HIF)-1α, Wnt5a, and phosphorylated CaMKII was also downregulated after ART treatment. In addition, we further demonstrated that ART inhibited the proliferation, migration, and invasion of OCM-1 and C918 cells. Collectively, our results suggested that ART inhibited angiogenesis and VM formation of choroidal melanoma likely by regulating the Wnt5a/CaMKII signaling pathway. These findings further supported the feasibility of ART for cancer therapy.
Collapse
Affiliation(s)
- Bochao Geng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuanzhang Zhu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingying Yuan
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jingyi Bai
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhizhi Dou
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Aihua Sui
- Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjuan Luo
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
81
|
Rattila S, Kleefeldt F, Ballesteros A, Beltrame JS, L Ribeiro M, Ergün S, Dveksler G. Pro-angiogenic effects of pregnancy-specific glycoproteins in endothelial and extravillous trophoblast cells. Reproduction 2021; 160:737-750. [PMID: 33065549 DOI: 10.1530/rep-20-0169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/20/2020] [Indexed: 01/23/2023]
Abstract
We previously reported that binding to heparan sulfate (HS) is required for the ability of the placentally secreted pregnancy-specific glycoprotein 1 (PSG1) to induce endothelial tubulogenesis. PSG1 is composed of four immunoglobulin-like domains but which domains of the protein bind to HS remains unknown. To analyze the interaction of PSG1 with HS, we generated several recombinant proteins, including the individual domains, chimeric proteins between two PSG1 domains, and mutants. Using flow cytometric and surface plasmon resonance studies, we determined that the B2 domain of PSG1 binds to HS and that the positively charged amino acids encompassed between amino acids 43-59 are required for this interaction. Furthermore, we showed that the B2 domain of PSG1 is required for the increase in the formation of tubes by endothelial cells (EC) including a human endometrial EC line and two extravillous trophoblast (EVT) cell lines and for the pro-angiogenic activity of PSG1 observed in an aortic ring assay. PSG1 enhanced the migration of ECs while it increased the expression of matrix metalloproteinase-2 in EVTs, indicating that the pro-angiogenic effect of PSG1 on these two cell types may be mediated by different mechanisms. Despite differences in amino acid sequence, we observed that all human PSGs bound to HS proteoglycans and confirmed that at least two other members of the family, PSG6 and PSG9, induce tube formation. These findings contribute to a better understanding of the pro-angiogenic activity of human PSGs and strongly suggest conservation of this function among all PSG family members.
Collapse
Affiliation(s)
- Shemona Rattila
- Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Angela Ballesteros
- Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jimena S Beltrame
- Laboratory of Physiology and Pharmacology of Reproduction, Centre for Pharmacological and Botanical Studies (CONICET - School of Medicine, University of Buenos Aires), Buenos Aires, Argentina
| | - Maria L Ribeiro
- Laboratory of Physiology and Pharmacology of Reproduction, Centre for Pharmacological and Botanical Studies (CONICET - School of Medicine, University of Buenos Aires), Buenos Aires, Argentina
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
82
|
Grunwald H, Hunker KL, Birt I, Aviram R, Zaffryar-Eilot S, Ganesh SK, Hasson P. Lysyl oxidase interactions with transforming growth factor-β during angiogenesis are mediated by endothelin 1. FASEB J 2021; 35:e21824. [PMID: 34370353 DOI: 10.1096/fj.202001860rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 11/11/2022]
Abstract
Crosstalk between multiple components underlies the formation of mature vessels. Although the players involved in angiogenesis have been identified, mechanisms underlying the crosstalk between them are still unclear. Using the ex vivo aortic ring assay, we set out to dissect the interactions between two key angiogenic signaling pathways, vascular endothelial growth factor (VEGF) and transforming growth factor β (TGFβ), with members of the lysyl oxidase (LOX) family of matrix modifying enzymes. We find an interplay between VEGF, TGFβ, and the LOXs is essential for the formation of mature vascular smooth muscle cells (vSMC)-coated vessels. RNA sequencing analysis further identified an interaction with the endothelin-1 pathway. Our work implicates endothelin-1 downstream of TGFβ in vascular maturation and demonstrate the complexity of processes involved in generating vSMC-coated vessels.
Collapse
Affiliation(s)
- Hagar Grunwald
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Kristina L Hunker
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Isabelle Birt
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Rohtem Aviram
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shelly Zaffryar-Eilot
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Santhi K Ganesh
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Peleg Hasson
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
83
|
Walker AMN, Warmke N, Mercer B, Watt NT, Mughal R, Smith J, Galloway S, Haywood NJ, Soomro T, Griffin KJ, Wheatcroft SB, Yuldasheva NY, Beech DJ, Carmeliet P, Kearney MT, Cubbon RM. Endothelial Insulin Receptors Promote VEGF-A Signaling via ERK1/2 and Sprouting Angiogenesis. Endocrinology 2021; 162:bqab104. [PMID: 34037749 PMCID: PMC8223729 DOI: 10.1210/endocr/bqab104] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Indexed: 02/08/2023]
Abstract
Endothelial insulin receptors (Insr) promote sprouting angiogenesis, although the underpinning cellular and molecular mechanisms are unknown. Comparing mice with whole-body insulin receptor haploinsufficiency (Insr+/-) against littermate controls, we found impaired limb perfusion and muscle capillary density after inducing hind-limb ischemia; this was in spite of increased expression of the proangiogenic growth factor Vegfa. Insr+/- neonatal retinas exhibited reduced tip cell number and branching complexity during developmental angiogenesis, which was also found in separate studies of mice with endothelium-restricted Insr haploinsufficiency. Functional responses to vascular endothelial growth factor A (VEGF-A), including in vitro angiogenesis, were also impaired in aortic rings and pulmonary endothelial cells from Insr+/- mice. Human umbilical vein endothelial cells with shRNA-mediated knockdown of Insr also demonstrated impaired functional angiogenic responses to VEGF-A. VEGF-A signaling to Akt and endothelial nitric oxide synthase was intact, but downstream signaling to extracellular signal-reduced kinase 1/2 (ERK1/2) was impaired, as was VEGF receptor-2 (VEGFR-2) internalization, which is required specifically for signaling to ERK1/2. Hence, endothelial insulin receptors facilitate the functional response to VEGF-A during angiogenic sprouting and are required for appropriate signal transduction from VEGFR-2 to ERK1/2.
Collapse
Affiliation(s)
- Andrew M N Walker
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Leeds LS2 9JT, UK
| | - Nele Warmke
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Leeds LS2 9JT, UK
| | - Ben Mercer
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Leeds LS2 9JT, UK
| | - Nicole T Watt
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Leeds LS2 9JT, UK
| | - Romana Mughal
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Leeds LS2 9JT, UK
| | - Jessica Smith
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Leeds LS2 9JT, UK
| | - Stacey Galloway
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Leeds LS2 9JT, UK
| | - Natalie J Haywood
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Leeds LS2 9JT, UK
| | - Taha Soomro
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Leeds LS2 9JT, UK
- Imperial College Ophthalmology Research Group, Western Eye Hospital, London NW1 5QH, UK
| | - Kathryn J Griffin
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Leeds LS2 9JT, UK
| | - Stephen B Wheatcroft
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Leeds LS2 9JT, UK
| | - Nadira Y Yuldasheva
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Leeds LS2 9JT, UK
| | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Leeds LS2 9JT, UK
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie (VIB), Department of Oncology, University of Leuven, Leuven 3000, Belgium
| | - Mark T Kearney
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Leeds LS2 9JT, UK
| | - Richard M Cubbon
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
84
|
Lees DM, Reynolds LE, Pedrosa AR, Roy-Luzarraga M, Hodivala-Dilke KM. Phosphorylation of pericyte FAK-Y861 affects tumour cell apoptosis and tumour blood vessel regression. Angiogenesis 2021; 24:471-482. [PMID: 33730293 PMCID: PMC8292267 DOI: 10.1007/s10456-021-09776-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 02/25/2021] [Indexed: 12/20/2022]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that is overexpressed in many cancer types and in vivo studies have shown that vascular endothelial cell FAK expression and FAK-phosphorylation at tyrosine (Y) 397, and subsequently FAK-Y861, are important in tumour angiogenesis. Pericytes also play a vital role in regulating tumour blood vessel stabilisation, but the specific involvement of pericyte FAK-Y397 and FAK-Y861 phosphorylation in tumour blood vessels is unknown. Using PdgfrβCre + ;FAKWT/WT, PdgfrβCre + ;FAKY397F/Y397F and PdgfrβCre + ;FAKY861F/Y861F mice, our data demonstrate that Lewis lung carcinoma tumour growth, tumour blood vessel density, blood vessel perfusion and pericyte coverage were affected only in late stage tumours in PdgfrβCre + ;FAKY861F/Y861F but not PdgfrβCre + ;FAKY397F/Y397F mice. Further examination indicates a dual role for pericyte FAK-Y861 phosphorylation in the regulation of tumour vessel regression and also in the control of pericyte derived signals that influence apoptosis in cancer cells. Overall this study identifies the role of pericyte FAK-Y861 in the regulation of tumour vessel regression and tumour growth control and that non-phosphorylatable FAK-Y861F in pericytes reduces tumour growth and blood vessel density.
Collapse
Affiliation(s)
- Delphine M Lees
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Microenvironment, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Louise E Reynolds
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Microenvironment, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Ana Rita Pedrosa
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Microenvironment, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Marina Roy-Luzarraga
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Microenvironment, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Kairbaan M Hodivala-Dilke
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Microenvironment, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
85
|
Oudart JB, Villemin M, Brassart B, Sellier C, Terryn C, Dupont-Deshorgue A, Monboisse JC, Maquart FX, Ramont L, Brassart-Pasco S. F4, a collagen XIX-derived peptide, inhibits tumor angiogenesis through αvβ3 and α5β1 integrin interaction. Cell Adh Migr 2021; 15:215-223. [PMID: 34308743 PMCID: PMC8312610 DOI: 10.1080/19336918.2021.1951425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We previously demonstrated that F4 peptide (CNPEDCLYPVSHAHQR) from collagen XIX was able to inhibit melanoma cell migrationin vitro and cancer progression in a mouse melanoma model. The aim of the present work was to study the anti-angiogenic properties of F4 peptide. We demonstrated that F4 peptide inhibited VEGF-induced pseudo-tube formation on Matrigel by endothelial cells and endothelial sprouting in a rat aortic ring assay. By affinity chromatography, we identified αvβ3 and α5β1 integrins as potential receptors for F4 peptide on endothelial cell surface. Using solid phase assays, we proved the direct interaction between F4 and both integrins. Taken together, our results demonstrate that F4 peptide is a potent antitumor agent inhibiting both angiogenesis and tumor cell migration.
Collapse
Affiliation(s)
- Jean-Baptiste Oudart
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France.,CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Matthieu Villemin
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Bertrand Brassart
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Christèle Sellier
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Christine Terryn
- PICT, Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Aurélie Dupont-Deshorgue
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Jean Claude Monboisse
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France.,CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - François-Xavier Maquart
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France.,CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Laurent Ramont
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France.,CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Sylvie Brassart-Pasco
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France
| |
Collapse
|
86
|
Carter EP, Roozitalab R, Gibson SV, Grose RP. Tumour microenvironment 3D-modelling: simplicity to complexity and back again. Trends Cancer 2021; 7:1033-1046. [PMID: 34312120 DOI: 10.1016/j.trecan.2021.06.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/16/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
Tumours are surrounded by a host of noncancerous cells that fulfil both supportive and suppressive roles within the tumour microenvironment (TME). The drive to understand the biology behind each of these components has led to a rapid expansion in the number and use of 3D in vitro models, as researchers find ways to incorporate multiple cell types into physiomimetic configurations. The use and increasing complexity of these models does however demand many considerations. In this review we discuss approaches adopted to recapitulate complex tumour biology in tractable 3D models. We consider how these cell types can be sourced and combined and examine methods for the deconvolution of complex multicellular models into manageable and informative outputs.
Collapse
Affiliation(s)
- Edward P Carter
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Reza Roozitalab
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Shayin V Gibson
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
87
|
Gatsiou A, Sopova K, Tselepis A, Stellos K. Interleukin-17A Triggers the Release of Platelet-Derived Factors Driving Vascular Endothelial Cells toward a Pro-Angiogenic State. Cells 2021; 10:1855. [PMID: 34440624 PMCID: PMC8392697 DOI: 10.3390/cells10081855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 01/26/2023] Open
Abstract
Platelets comprise a highly interactive immune cell subset of the circulatory system traditionally known for their unique haemostatic properties. Although platelets are considered as a vault of growth factors, cytokines and chemokines with pivotal role in vascular regeneration and angiogenesis, the exact mechanisms by which they influence vascular endothelial cells (ECs) function remain underappreciated. In the present study, we examined the role of human IL-17A/IL-17RA axis in platelet-mediated pro-angiogenic responses. We reveal that IL-17A receptor (IL-17RA) mRNA is present in platelets transcriptome and a profound increase is documented on the surface of activated platelets. By quantifying the protein levels of several factors, involved in angiogenesis, we identified that IL-17A/IL17RA axis selectively induces the release of vascular endothelial growth factor, interleukin -2 and -4, as well as monocyte chemoattractant protein -1 from treated platelets. However, IL-17A exerted no effect on the release of IL-10, an anti-inflammatory factor with potentially anti-angiogenic properties, from platelets. Treatment of human endothelial cell two-dimensional tubule networks or three-dimensional spheroid and mouse aortic ring structures with IL-17A-induced platelet releasate evoked pro-angiogenic responses of ECs. Our findings suggest that IL-17A may critically affect platelet release of pro-angiogenic factors driving ECs towards a pro-angiogenic state.
Collapse
Affiliation(s)
- Aikaterini Gatsiou
- RNA Metabolism and Vascular Inflammation Group, Center of Molecular Medicine, Institute of Cardiovascular Regeneration, Johann Wolfgang Goethe University, 60596 Frankfurt am Main, Germany; (A.G.); (K.S.)
- Laboratory of Clinical Biochemistry, Atherothrombosis Research Center, University of Ioannina, 45110 Ioannina, Greece;
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 3BZ, UK
| | - Kateryna Sopova
- RNA Metabolism and Vascular Inflammation Group, Center of Molecular Medicine, Institute of Cardiovascular Regeneration, Johann Wolfgang Goethe University, 60596 Frankfurt am Main, Germany; (A.G.); (K.S.)
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 3BZ, UK
- Department of Cardiology, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| | - Alexandros Tselepis
- Laboratory of Clinical Biochemistry, Atherothrombosis Research Center, University of Ioannina, 45110 Ioannina, Greece;
| | - Konstantinos Stellos
- RNA Metabolism and Vascular Inflammation Group, Center of Molecular Medicine, Institute of Cardiovascular Regeneration, Johann Wolfgang Goethe University, 60596 Frankfurt am Main, Germany; (A.G.); (K.S.)
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 3BZ, UK
- Department of Cardiology, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| |
Collapse
|
88
|
Upcin B, Henke E, Kleefeldt F, Hoffmann H, Rosenwald A, Irmak-Sav S, Aktas HB, Rückschloß U, Ergün S. Contribution of Adventitia-Derived Stem and Progenitor Cells to New Vessel Formation in Tumors. Cells 2021; 10:cells10071719. [PMID: 34359889 PMCID: PMC8304670 DOI: 10.3390/cells10071719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/22/2022] Open
Abstract
Blocking tumor vascularization has not yet come to fruition to the extent it was hoped for, as angiogenesis inhibitors have shown only partial success in the clinic. We hypothesized that under-appreciated vascular wall-resident stem and progenitor cells (VW-SPCs) might be involved in tumor vascularization and influence effectiveness of anti-angiogenic therapy. Indeed, in patient samples, we observed that vascular adventitia-resident CD34+ VW-SPCs are recruited to tumors in situ from co-opted vessels. To elucidate this in detail, we established an ex vivo model using concomitant embedding of multi-cellular tumor spheroids (MCTS) and mouse aortic rings (ARs) into collagen gels, similar to the so-called aortic ring assay (ARA). Moreover, ARA was modified by removing the ARs’ adventitia that harbors VW-SPCs. Thus, this model enabled distinguishing the contribution of VW-SPCs from that of mature endothelial cells (ECs) to new vessel formation. Our results show that the formation of capillary-like sprouts is considerably delayed, and their number and network formation were significantly reduced by removing the adventitia. Substituting iPSC-derived neural spheroids for MCTS resulted in distinct sprouting patterns that were also strongly influenced by the presence or absence of VW-SPCs, also underlying the involvement of these cells in non-pathological vascularization. Our data suggest that more comprehensive approaches are needed in order to block all of the mechanisms contributing to tumor vascularization.
Collapse
Affiliation(s)
- Berin Upcin
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University, 97070 Würzburg, Germany; (B.U.); (E.H.); (F.K.); (H.H.); (U.R.)
| | - Erik Henke
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University, 97070 Würzburg, Germany; (B.U.); (E.H.); (F.K.); (H.H.); (U.R.)
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University, 97070 Würzburg, Germany; (B.U.); (E.H.); (F.K.); (H.H.); (U.R.)
| | - Helene Hoffmann
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University, 97070 Würzburg, Germany; (B.U.); (E.H.); (F.K.); (H.H.); (U.R.)
| | - Andreas Rosenwald
- Institute of Pathology, Julius-Maximilians-University, 97070 Würzburg, Germany;
| | - Ster Irmak-Sav
- Faculty of Health Sciences, İstanbul Bilgi University, 34060 Istanbul, Turkey;
| | - Huseyin Bertal Aktas
- Department of Medicine, Hematology, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - Uwe Rückschloß
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University, 97070 Würzburg, Germany; (B.U.); (E.H.); (F.K.); (H.H.); (U.R.)
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University, 97070 Würzburg, Germany; (B.U.); (E.H.); (F.K.); (H.H.); (U.R.)
- Correspondence: ; Tel.: +49-931-31-82701
| |
Collapse
|
89
|
Expression and characterization of a novel single-chain anti-vascular endothelial growth factor antibody in the goat milk. J Biotechnol 2021; 338:52-62. [PMID: 34224759 DOI: 10.1016/j.jbiotec.2021.06.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/10/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
Vascular endothelial growth factor (VEGF) has essential functions in angiogenesis, endothelial cell proliferation, migration, and tumor invasion. Different approaches have been developed to suppress tumor angiogenesis, which is considered a hallmark of cancer. Anti-VEGF monoclonal antibodies constitute an important strategy for cancer immunotherapy, which has been produced on several platforms. In this study, a novel single-chain anti-VEGF monoclonal antibody (scVEGFmAb) was produced in the goat mammary gland by adenoviral transduction. scVEGFmAb was purified by affinity chromatography. N-glycans were analyzed by exoglycosidase digestion and hydrophilic interaction ultra-performance liquid chromatography coupled to electrospray ionization mass spectrometry. The biological activity of scVEGFmAb was assessed by scratch and mouse aortic ring assays. scVEGFmAb was produced at 0.61 g/L in the goat milk, and its purification rendered 95 % purity. N-glycans attached to scVEGFmAb backbone were mainly neutral biantennary core fucosylated with Galβ1,4GlcNAc motif, and charged structures were capped with Neu5Ac and Neu5Gc. The chimeric molecule significantly prevented cell migration and suppressed microvessel sprouting. These results demonstrated for the first time the feasibility of producing an anti-VEGF therapeutic antibody in the milk of non-transgenic goats with the potential to counteract tumor angiogenesis.
Collapse
|
90
|
Whelan IT, Moeendarbary E, Hoey DA, Kelly DJ. Biofabrication of vasculature in microphysiological models of bone. Biofabrication 2021; 13. [PMID: 34034238 DOI: 10.1088/1758-5090/ac04f7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 05/25/2021] [Indexed: 11/12/2022]
Abstract
Bone contains a dense network of blood vessels that are essential to its homoeostasis, endocrine function, mineral metabolism and regenerative functions. In addition, bone vasculature is implicated in a number of prominent skeletal diseases, and bone has high affinity for metastatic cancers. Despite vasculature being an integral part of bone physiology and pathophysiology, it is often ignored or oversimplified inin vitrobone models. However, 3D physiologically relevant vasculature can now be engineeredin vitro, with microphysiological systems (MPS) increasingly being used as platforms for engineering this physiologically relevant vasculature. In recent years, vascularised models of bone in MPSs systems have been reported in the literature, representing the beginning of a possible technological step change in how bone is modelledin vitro. Vascularised bone MPSs is a subfield of bone research in its nascency, however given the impact of MPSs has had inin vitroorgan modelling, and the crucial role of vasculature to bone physiology, these systems stand to have a substantial impact on bone research. However, engineering vasculature within the specific design restraints of the bone niche is significantly challenging given the different requirements for engineering bone and vasculature. With this in mind, this paper aims to serve as technical guidance for the biofabrication of vascularised bone tissue within MPS devices. We first discuss the key engineering and biological considerations for engineering more physiologically relevant vasculaturein vitrowithin the specific design constraints of the bone niche. We next explore emerging applications of vascularised bone MPSs, and conclude with a discussion on the current status of vascularised bone MPS biofabrication and suggest directions for development of next generation vascularised bone MPSs.
Collapse
|
91
|
Gao L, Wang L, Wei Y, Krishnamurthy P, Walcott GP, Menasché P, Zhang J. Exosomes secreted by hiPSC-derived cardiac cells improve recovery from myocardial infarction in swine. Sci Transl Med 2021; 12:12/561/eaay1318. [PMID: 32938792 DOI: 10.1126/scitranslmed.aay1318] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 04/13/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
Cell therapy treatment of myocardial infarction (MI) is mediated, in part, by exosomes secreted from transplanted cells. Thus, we compared the efficacy of treatment with a mixture of cardiomyocytes (CMs; 10 million), endothelial cells (ECs; 5 million), and smooth muscle cells (SMCs; 5 million) derived from human induced pluripotent stem cells (hiPSCs), or with exosomes extracted from the three cell types, in pigs after MI. Female pigs received sham surgery; infarction without treatment (MI group); or infarction and treatment with hiPSC-CMs, hiPSC-ECs, and hiPSC-SMCs (MI + Cell group); with homogenized fragments from the same dose of cells administered to the MI + Cell group (MI + Fra group); or with exosomes (7.5 mg) extracted from a 2:1:1 mixture of hiPSC-CMs:hiPSC-ECs:hiPSC-SMCs (MI + Exo group). Cells and exosomes were injected into the injured myocardium. In vitro, exosomes promoted EC tube formation and microvessel sprouting from mouse aortic rings and protected hiPSC-CMs by reducing apoptosis, maintaining intracellular calcium homeostasis, and increasing adenosine 5'-triphosphate. In vivo, measurements of left ventricular ejection fraction, wall stress, myocardial bioenergetics, cardiac hypertrophy, scar size, cell apoptosis, and angiogenesis in the infarcted region were better in the MI + Cell, MI + Fra, and MI + Exo groups than in the MI group 4 weeks after infarction. The frequencies of arrhythmic events in animals from the MI, MI + Cell, and MI + Exo groups were similar. Thus, exosomes secreted by hiPSC-derived cardiac cells improved myocardial recovery without increasing the frequency of arrhythmogenic complications and may provide an acellular therapeutic option for myocardial injury.
Collapse
Affiliation(s)
- Ling Gao
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA. .,Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, P.R. China
| | - Lu Wang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Yuhua Wei
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Gregory P Walcott
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Philippe Menasché
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA.,Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Université de Paris, PARCC, INSERM, F-75015 Paris, France
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
92
|
Fernández-Medarde A, Santos E. Ras GEF Mouse Models for the Analysis of Ras Biology and Signaling. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2262:361-395. [PMID: 33977490 DOI: 10.1007/978-1-0716-1190-6_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Animal models have become in recent years a crucial tool to understand the physiological and pathological roles of many cellular proteins. They allow analysis of the functional consequences of [1] complete or partial (time- or organ-limited) removal of specific proteins (knockout animals), [2] the exchange of a wild-type allele for a mutant or truncated version found in human illnesses (knock-in), or [3] the effect of overexpression of a given protein in the whole body or in specific organs (transgenic mice). In this regard, the study of phenotypes in Ras GEF animal models has allowed researchers to find specific functions for otherwise very similar proteins, uncovering their role in physiological contexts such as memory formation, lymphopoiesis, photoreception, or body homeostasis. In addition, mouse models have been used to unveil the functional role of Ras GEFs under pathological conditions, including Noonan syndrome, skin tumorigenesis, inflammatory diseases, diabetes, or ischemia among others. In the following sections, we will describe the methodological approaches employed for Ras GEF animal model analyses, as well as the main discoveries made.
Collapse
Affiliation(s)
- Alberto Fernández-Medarde
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Salamanca, Spain.
| | - Eugenio Santos
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Salamanca, Spain
| |
Collapse
|
93
|
Ouyang C, Li J, Zheng X, Mu J, Torres G, Wang Q, Zou MH, Xie Z. Deletion of Ulk1 inhibits neointima formation by enhancing KAT2A/GCN5-mediated acetylation of TUBA/α-tubulin in vivo. Autophagy 2021; 17:4305-4322. [PMID: 33985412 DOI: 10.1080/15548627.2021.1911018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
ULK1 (unc-51 like autophagy activating kinase) has a central role in initiating macroautophagy/autophagy, a process that contributes to atherosclerosis and neointima hyperplasia, or excessive tissue growth that leads to vessel dysfunction. However, the role of ULK1 in neointima formation remains unclear. We aimed to determine how Ulk1 deletion affected neointima formation and to investigate the underlying mechanisms. We measured autophagy activity, vascular smooth muscle cell (VSMC) migration and neointima hyperplasia in cultured VSMCs and ligation-injured mouse carotid arteries from male wild-type (WT, C57BL/6 J) and VSMC-specific ulk1 knockout (ulk1 KO) mice. Carotid artery ligation in WT mice increased ULK1 protein expression, and concurrently increased autophagic flux and neointima formation. Treating human aortic smooth muscle cells (HASMCs) with PDGF (platelet derived growth factor) increased ULK1 expression, activated autophagy, and promoted cell migration. Further, smooth muscle cell-specific deletion of Ulk1 suppressed autophagy, inhibited VSMC migration, and impeded neointima hyperplasia. Mechanistically, Ulk1 deletion inhibited autophagic degradation of histone acetyltransferase protein KAT2A/GCN5 (K[lysine] acetyltransferase 2A), resulting in accumulation of KAT2A that directly acetylated TUBA/α-tubulin and subsequently increased protein levels of acetylated TUBA. The acetylation of TUBA increased microtubule stability and inhibited VSMC directional migration and neointima formation. Finally, local transfection of Kat2a siRNA decreased TUBA acetylation and prevented the attenuation of vascular injury-induced neointima formation in ulk1 KO mice. These findings suggest that Ulk1 deletion inhibits neointima formation by reducing autophagic degradation of KAT2A and increasing TUBA acetylation in VSMCs.Abbreviations: ACTA2/α-SMA: actin, alpha 2, smooth muscle, aorta; ACTB: actin beta; ATAT1: alpha tubulin acetyltransferase 1; ATG: autophagy related; BECN1: beclin 1; BP: blood pressure; CAL: carotid artery ligation; CQ: chloroquine diphosphate; EC: endothelial cells; EEL: external elastic layer; FBS: fetal bovine serum; GAPDH: glyceraldehyde 3-phosphate dehydrogenase; HASMCs: human aortic smooth muscle cells; HAT1: histone acetyltransferase 1; HDAC: histone deacetylase; IEL: inner elastic layer; IP: immunoprecipitation; KAT2A/GCN5: K(lysine) acetyltransferase 2A; KAT8/hMOF: lysine acetyltransferase 8; MAP1LC3: microtubule associated protein 1 light chain 3; MYH11: myosin heavy chain 11; PBS: phosphate-buffered saline; PDGF: platelet derived growth factor; PECAM1/CD31: platelet and endothelial cell adhesion molecule 1; RAC3: Rac family small GTPase 3; SIRT2: sirtuin 2; SPP1/OPN: secreted phosphoprotein 1; SQSTM1/p62: sequestosome 1; TAGLN/SM22: transgelin; TUBA: tubulin alpha; ULK1: unc-51 like autophagy activating kinase; VSMC: vascular smooth muscle cell; VVG: Verhoeff Van Gieson; WT: wild type.
Collapse
Affiliation(s)
- Changhan Ouyang
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China
| | - Jian Li
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Xiaoxu Zheng
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Jing Mu
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Gloria Torres
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Qilong Wang
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Ming-Hui Zou
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Zhonglin Xie
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| |
Collapse
|
94
|
Jiang X, Hu J, Wu Z, Cafarello ST, Di Matteo M, Shen Y, Dong X, Adler H, Mazzone M, Ruiz de Almodovar C, Wang X. Protein Phosphatase 2A Mediates YAP Activation in Endothelial Cells Upon VEGF Stimulation and Matrix Stiffness. Front Cell Dev Biol 2021; 9:675562. [PMID: 34055807 PMCID: PMC8158299 DOI: 10.3389/fcell.2021.675562] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/08/2021] [Indexed: 01/14/2023] Open
Abstract
Angiogenesis is an essential process during development. Abnormal angiogenesis also contributes to many disease conditions such as tumor and retinal diseases. Previous studies have established the Hippo signaling pathway effector Yes-associated protein (YAP) as a crucial regulator of angiogenesis. In ECs, activated YAP promotes endothelial cell proliferation, migration and sprouting. YAP activity is regulated by vascular endothelial growth factor (VEGF) and mechanical cues such as extracellular matrix (ECM) stiffness. However, it is unclear how VEGF or ECM stiffness signal to YAP, especially how dephosphorylation of YAP occurs in response to VEGF stimulus or ECM stiffening. Here, we show that protein phosphatase 2A (PP2A) is required for this process. Blocking PP2A activity abolishes VEGF or ECM stiffening mediated YAP activation. Systemic administration of a PP2A inhibitor suppresses YAP activity in blood vessels in developmental and pathological angiogenesis mouse models. Consistently, PP2A inhibitor also inhibits sprouting angiogenesis. Mechanistically, PP2A directly interacts with YAP, and this interaction requires proper cytoskeleton dynamics. These findings identify PP2A as a crucial mediator of YAP activation in ECs and hence as an important regulator of angiogenesis.
Collapse
Affiliation(s)
- Xiao Jiang
- Laboratory of Molecular Ophthalmology, Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jiandong Hu
- Laboratory of Molecular Ophthalmology, Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ziru Wu
- Laboratory of Molecular Ophthalmology, Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Sarah Trusso Cafarello
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Mario Di Matteo
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Ying Shen
- European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xue Dong
- Laboratory of Molecular Ophthalmology, Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Heike Adler
- European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Carmen Ruiz de Almodovar
- European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xiaohong Wang
- Laboratory of Molecular Ophthalmology, Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
95
|
Lopes SV, Collins MN, Reis RL, Oliveira JM, Silva-Correia J. Vascularization Approaches in Tissue Engineering: Recent Developments on Evaluation Tests and Modulation. ACS APPLIED BIO MATERIALS 2021; 4:2941-2956. [DOI: 10.1021/acsabm.1c00051] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Soraia V. Lopes
- 3B’s Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães 4805-017, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maurice N. Collins
- Bernal Institute, School of Engineering, University of Limerick, Limerick V94 T9PX, Ireland
| | - Rui L. Reis
- 3B’s Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães 4805-017, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim M. Oliveira
- 3B’s Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães 4805-017, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Silva-Correia
- 3B’s Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães 4805-017, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
96
|
Arif M, Alam P, Ahmed RPH, Pandey R, Faridi HM, Sadayappan S. Upregulated Angiogenesis Is Incompetent to Rescue Dilated Cardiomyopathy Phenotype in Mice. Cells 2021; 10:cells10040771. [PMID: 33807406 PMCID: PMC8066105 DOI: 10.3390/cells10040771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 11/21/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is characterized by pathologic cardiac remodeling resulting in chambers enlargement and impaired heart contractility. Previous reports and our in-silico analysis support the association of DCM phenotype and impaired tissue angiogenesis. Here, we explored whether the modulation in cardiac angiogenesis partly intervenes or rescues the DCM phenotype in mice. Here, a DCM mouse model [α-tropomyosin 54 (α-TM54) mutant] was crossbred with microRNA-210 transgenic mice (210-TG) to develop microRNA-210 (miR-210) overexpressing α-TM54 mutant mice (TMx210). Contrary to wild-type (WT) and 210-TG mice, a significant increase in heart weight to body weight ratio in aged mixed-gender TMx210 and DCM mice was recorded. Histopathological analysis revealed signs of pathological cardiac remodeling such as myocardial disarray, myofibrillar loss, and interstitial fibrosis in DCM and TMx210 mice. Contrary to WT and DCM, a significant increase in angiogenic potential was observed in TMx210 and 210-TG mice hearts which is reflected by higher blood vessel density and upregulated proangiogenic vascular endothelial growth factor-A. The echocardiographic assessment showed comparable cardiac dysfunction in DCM and TMx210 mice as compared to WT and 210-TG. Overall, the present study concludes that miR-210 mediated upregulated angiogenesis is not sufficient to rescue the DCM phenotype in mice.
Collapse
Affiliation(s)
- Mohammed Arif
- Heart, Lung and Vascular Institute, Department of Internal Medicine, Division of Cardiovascular Health and Disease, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA;
- Correspondence: ; Tel.: +1-513-888-2510; Fax: +1-513-558-2884
| | - Perwez Alam
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (P.A.); (R.P.H.A.); (R.P.)
| | - Rafeeq PH Ahmed
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (P.A.); (R.P.H.A.); (R.P.)
| | - Raghav Pandey
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (P.A.); (R.P.H.A.); (R.P.)
| | - Hafeez M Faridi
- Department of Pharmaceutical Sciences, College of Pharmacy, Chicago State University, Chicago, IL 60628, USA;
| | - Sakthivel Sadayappan
- Heart, Lung and Vascular Institute, Department of Internal Medicine, Division of Cardiovascular Health and Disease, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA;
| |
Collapse
|
97
|
Galeano-Otero I, Del Toro R, Khatib AM, Rosado JA, Ordóñez-Fernández A, Smani T. SARAF and Orai1 Contribute to Endothelial Cell Activation and Angiogenesis. Front Cell Dev Biol 2021; 9:639952. [PMID: 33748129 PMCID: PMC7970240 DOI: 10.3389/fcell.2021.639952] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/01/2021] [Indexed: 12/23/2022] Open
Abstract
Angiogenesis is a multistep process that controls endothelial cells (ECs) functioning to form new blood vessels from preexisting vascular beds. This process is tightly regulated by pro-angiogenic factors, such as vascular endothelial growth factor (VEGF), which promote signaling pathways involving the increase in the intracellular Ca2+ concentration ([Ca2+]i). Recent evidence suggests that store-operated calcium entry (SOCE) might play a role in angiogenesis. However, little is known regarding the role of SARAF, SOCE-associated regulatory factor, and Orai1, the pore-forming subunit of the store-operated calcium channel (SOCC), in angiogenesis. Here, we show that SOCE inhibition with GSK-7975A blocks aorta sprouting, as well as human umbilical vein endothelial cell (HUVEC) tube formation and migration. The intraperitoneal injection of GSK-7975A also delays the development of retinal vasculature assessed at postnatal day 6 in mice, since it reduces vessel length and the number of junctions, while it increases lacunarity. Moreover, we find that SARAF and Orai1 are involved in VEGF-mediated [Ca2+]i increase, and their knockdown using siRNA impairs HUVEC tube formation, proliferation, and migration. Finally, immunostaining and in situ proximity ligation assays indicate that SARAF likely interacts with Orai1 in HUVECs. Therefore, these findings show for the first time a functional interaction between SARAF and Orai1 in ECs and highlight their essential role in different steps of the angiogenesis process.
Collapse
Affiliation(s)
- Isabel Galeano-Otero
- Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain.,Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Seville, Spain.,CIBERCV, Madrid, Spain
| | - Raquel Del Toro
- Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain.,Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Seville, Spain.,CIBERCV, Madrid, Spain
| | | | | | - Antonio Ordóñez-Fernández
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Seville, Spain.,CIBERCV, Madrid, Spain.,Department of Surgery, University of Seville, Seville, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain.,Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Seville, Spain.,CIBERCV, Madrid, Spain
| |
Collapse
|
98
|
Chen G, An N, Ye W, Huang S, Chen Y, Hu Z, Shen E, Zhu J, Gong W, Tong G, Zhu Y, Fang L, Cai C, Li X, Kim K, Jin L, Xiao J, Cong W. bFGF alleviates diabetes-associated endothelial impairment by downregulating inflammation via S-nitrosylation pathway. Redox Biol 2021; 41:101904. [PMID: 33706169 PMCID: PMC7972985 DOI: 10.1016/j.redox.2021.101904] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/26/2021] [Accepted: 02/15/2021] [Indexed: 01/02/2023] Open
Abstract
Protein S-nitrosylation is a reversible protein modification implicated in both physiological and pathophysiological regulation of protein function. However, the relationship between dysregulated S-nitrosylation homeostasis and diabetic vascular complications remains incompletely understood. Here, we demonstrate that basic fibroblast growth factor (bFGF) is a key regulatory link between S-nitrosylation homeostasis and inflammation, and alleviated endothelial dysfunction and angiogenic defects in diabetes. Subjecting human umbilical vein endothelial cells (HUVECs) to hyperglycemia and hyperlipidemia significantly decreased endogenous S-nitrosylated proteins, including S-nitrosylation of inhibitor kappa B kinase β (IKKβC179) and transcription factor p65 (p65C38), which was alleviated by bFGF co-treatment. Pretreatment with carboxy-PTIO (c-PTIO), a nitric oxide scavenger, abolished bFGF-mediated S-nitrosylation increase and endothelial protection. Meanwhile, nitrosylation-resistant IKKβC179S and p65C38S mutants exacerbated endothelial dysfunction in db/db mice, and in cultured HUVECs subjected to hyperglycemia and hyperlipidemia. Mechanistically, bFGF-mediated increase of S-nitrosylated IKKβ and p65 was attributed to synergistic effects of increased endothelial nitric oxide synthase (eNOS) and thioredoxin (Trx) activity. Taken together, the endothelial protective effect of bFGF under hyperglycemia and hyperlipidemia can be partially attributed to its role in suppressing inflammation via the S-nitrosylation pathway.
Collapse
Affiliation(s)
- Gen Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, PR China; College of Pharmacy, Chonnam National University, Gwangju, 500-757, South Korea
| | - Ning An
- Department of Pharmacy, Ningbo Medical Center Lihuili Hospital, Ningbo, 315041, PR China
| | - Weijian Ye
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, PR China
| | - Shuai Huang
- Zhejiang Provincial Key Laboratory of Interventional Pulmonology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Yunjie Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Zhicheng Hu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Enzhao Shen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Junjie Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Wenjie Gong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Gaozan Tong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Yu Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Lexuan Fang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Chunyuan Cai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Kwonseop Kim
- College of Pharmacy, Chonnam National University, Gwangju, 500-757, South Korea.
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Jian Xiao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, PR China.
| |
Collapse
|
99
|
Grimsley-Myers CM, Isaacson RH, Cadwell CM, Campos J, Hernandes MS, Myers KR, Seo T, Giang W, Griendling KK, Kowalczyk AP. VE-cadherin endocytosis controls vascular integrity and patterning during development. J Cell Biol 2021; 219:151601. [PMID: 32232465 PMCID: PMC7199849 DOI: 10.1083/jcb.201909081] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/10/2020] [Accepted: 02/28/2020] [Indexed: 12/18/2022] Open
Abstract
Tissue morphogenesis requires dynamic intercellular contacts that are subsequently stabilized as tissues mature. The mechanisms governing these competing adhesive properties are not fully understood. Using gain- and loss-of-function approaches, we tested the role of p120-catenin (p120) and VE-cadherin (VE-cad) endocytosis in vascular development using mouse mutants that exhibit increased (VE-cadGGG/GGG) or decreased (VE-cadDEE/DEE) internalization. VE-cadGGG/GGG mutant mice exhibited reduced VE-cad-p120 binding, reduced VE-cad levels, microvascular hemorrhaging, and decreased survival. By contrast, VE-cadDEE/DEE mutants exhibited normal vascular permeability but displayed microvascular patterning defects. Interestingly, VE-cadDEE/DEE mutant mice did not require endothelial p120, demonstrating that p120 is dispensable in the context of a stabilized cadherin. In vitro, VE-cadDEE mutant cells displayed defects in polarization and cell migration that were rescued by uncoupling VE-cadDEE from actin. These results indicate that cadherin endocytosis coordinates cell polarity and migration cues through actin remodeling. Collectively, our results indicate that regulated cadherin endocytosis is essential for both dynamic cell movements and establishment of stable tissue architecture.
Collapse
Affiliation(s)
| | - Robin H Isaacson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - Chantel M Cadwell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - Jazmin Campos
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - Marina S Hernandes
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Kenneth R Myers
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - Tadahiko Seo
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - William Giang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - Kathy K Griendling
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Andrew P Kowalczyk
- Department of Cell Biology, Department of Dermatology, and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
100
|
Santini MP, Malide D, Hoffman G, Pandey G, D'Escamard V, Nomura-Kitabayashi A, Rovira I, Kataoka H, Ochando J, Harvey RP, Finkel T, Kovacic JC. Tissue-Resident PDGFRα + Progenitor Cells Contribute to Fibrosis versus Healing in a Context- and Spatiotemporally Dependent Manner. Cell Rep 2021; 30:555-570.e7. [PMID: 31940496 DOI: 10.1016/j.celrep.2019.12.045] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 03/11/2019] [Accepted: 12/12/2019] [Indexed: 11/24/2022] Open
Abstract
PDGFRα+ mesenchymal progenitor cells are associated with pathological fibro-adipogenic processes. Conversely, a beneficial role for these cells during homeostasis or in response to revascularization and regeneration stimuli is suggested, but remains to be defined. We studied the molecular profile and function of PDGFRα+ cells in order to understand the mechanisms underlying their role in fibrosis versus regeneration. We show that PDGFRα+ cells are essential for tissue revascularization and restructuring through injury-stimulated remodeling of stromal and vascular components, context-dependent clonal expansion, and ultimate removal of pro-fibrotic PDGFRα+-derived cells. Tissue ischemia modulates the PDGFRα+ phenotype toward cells capable of remodeling the extracellular matrix and inducing cell-cell and cell-matrix adhesion, likely favoring tissue repair. Conversely, pathological healing occurs if PDGFRα+-derived cells persist as terminally differentiated mesenchymal cells. These studies support a context-dependent "yin-yang" biology of tissue-resident mesenchymal progenitor cells, which possess an innate ability to limit injury expansion while also promoting fibrosis in an unfavorable environment.
Collapse
Affiliation(s)
- Maria Paola Santini
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA.
| | - Daniela Malide
- Light Microscopy Core Facility, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Gabriel Hoffman
- Icahn Institute for Data Science and Genomic Technology, ISMMS, New York, NY 10029, USA
| | - Gaurav Pandey
- Icahn Institute for Data Science and Genomic Technology, ISMMS, New York, NY 10029, USA
| | - Valentina D'Escamard
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
| | - Aya Nomura-Kitabayashi
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
| | - Ilsa Rovira
- Center for Molecular Medicine, NHLBI, NIH, Bethesda, MD 20892, USA
| | | | - Jordi Ochando
- Department of Medicine and Oncological Sciences, ISMMS, New York, NY 10029, USA
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, Kensington, NSW 2052, Australia; Stem Cells Australia, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Toren Finkel
- Aging Institute, University of Pittsburgh/UPMC, 100 Technology Drive, Pittsburgh, PA 15219, USA
| | - Jason C Kovacic
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA.
| |
Collapse
|