51
|
Glycosaminoglycans in biological samples – Towards identification of novel biomarkers. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
52
|
A strategy to identify mixed polysaccharides through analyzing the monosaccharide composition of disaccharides released by graded acid hydrolysis. Carbohydr Polym 2019; 223:115046. [DOI: 10.1016/j.carbpol.2019.115046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/09/2019] [Accepted: 07/01/2019] [Indexed: 12/15/2022]
|
53
|
Tóth G, Vékey K, Drahos L, Horváth V, Turiák L. Salt and solvent effects in the microscale chromatographic separation of heparan sulfate disaccharides. J Chromatogr A 2019; 1610:460548. [PMID: 31547957 DOI: 10.1016/j.chroma.2019.460548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/28/2019] [Accepted: 09/14/2019] [Indexed: 12/25/2022]
Abstract
The analysis of heparan sulfate disaccharides poses a real challenge both from chromatographic and mass spectrometric point of view. This necessitates the constant improvement of their analytical methodology. In the present study, the chromatographic effects of solvent composition, salt concentration, and salt type were systematically investigated in isocratic HILIC-WAX separations of heparan sulfate disaccharides. The combined use of 75% acetonitrile with ammonium formate had overall benefits regarding intensity, detection limits, and peak shape for all salt concentrations investigated. Results obtained with the isocratic measurements suggested the potential use of a salt gradient method in order to maximize separation efficiency. A 3-step gradient from 14 mM to 65 mM ammonium formate concentration proved to be ideal for separation and quantitation. The LOD of the resulting method was 0.8-1.5 fmol for the individual disaccharides and the LOQ was between 2.5-5 fmol. Outstanding linearity could be observed up to 2 pmol. This novel combination provided sufficient sensitivity for disaccharide analysis, which was demonstrated by the analysis of heparan sulfate samples from porcine and bovine origin.
Collapse
Affiliation(s)
- Gábor Tóth
- MS Proteomics Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4., H-1111 Budapest, Hungary
| | - Károly Vékey
- MS Proteomics Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary
| | - László Drahos
- MS Proteomics Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary
| | - Viola Horváth
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4., H-1111 Budapest, Hungary; MTA-BME Computation Driven Chemistry Research Group, Szent Gellért tér 4., H-1111 Budapest, Hungary
| | - Lilla Turiák
- MS Proteomics Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary.
| |
Collapse
|
54
|
Pan Q, Zhang C, Wu X, Chen Y. Identification of a heparosan heptasaccharide as an effective anti-inflammatory agent by partial desulfation of low molecular weight heparin. Carbohydr Polym 2019; 227:115312. [PMID: 31590876 DOI: 10.1016/j.carbpol.2019.115312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/01/2019] [Accepted: 09/09/2019] [Indexed: 10/26/2022]
Abstract
Low molecular weight heparin (LMWH) possesses a dual function of anticoagulation and anti-inflammation. While the structures and mechanisms on its anticoagulation have been widely studied, the structural features responsible for the anti-inflammatory activity of LMWH remain to be explored. In the present study, guided by an anti-inflammation assay, a non-anticoagulant species was generated from partial desulfation of LMWH to fully retain the anti-inflammatory activity, from which five fractions were further separated and three of them were characterized by enzymatic degradation, hydrophobic labeling, C18-based HPLC and LC-MS/MS analyses. The structure-activity relationship revealed that the sulfate groups in LMWH are critical to distinguish and separate the activities of anticoagulation and anti-inflammation, leading to the identification of a synthetic heparosan-type heptasaccharide as a potent anti-inflammatory agent. The present strategy enables the simplification of complex polysaccharides to bioactive synthetic oligosaccharides for therapeutic utility.
Collapse
Affiliation(s)
- Qi Pan
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Chengchang Zhang
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Xuri Wu
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Yijun Chen
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
55
|
Nijst P, Olinevich M, Hilkens P, Martens P, Dupont M, Tang WHW, Lambrichts I, Noben JP, Mullens W. Dermal Interstitial Alterations in Patients With Heart Failure and Reduced Ejection Fraction: A Potential Contributor to Fluid Accumulation? Circ Heart Fail 2019; 11:e004763. [PMID: 30002114 DOI: 10.1161/circheartfailure.117.004763] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 06/18/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Large networks of interstitial glycosaminoglycans help to regulate water and electrolyte homeostasis. The relation between dermal interstitial alterations and occurrence of edema in heart failure patients with reduced ejection fraction (HFrEF) is unknown. We hypothesize that in HFrEF patients (1) interstitial glycosaminoglycan density is increased, (2) changes in the interstitial glycosaminoglycan network are associated with interstitial fluid accumulation, and (3) there is a link between the interstitial glycosaminoglycan network and the renin-angiotensin-aldosterone system. METHODS AND RESULTS Two punch biopsies of the skin were obtained in healthy subjects (n=18) and HFrEF patients (n=29). Alcian blue staining and immunostaining for the angiotensin II type 1 receptor was performed. After obtaining tissue water content, total interstitial glycosaminoglycan (uronic acid) and sulfated glycosaminoglycan were quantified. A venous blood sample, clinical examination, and echocardiography were obtained. A significantly higher interstitial glycosaminoglycan content was observed in HFrEF patients compared with healthy subjects (uronic acid: 13.0±4.2 versus 9.6±1.6 μg/mg; P=0.002; sulfated glycosaminoglycan: 14.1 [11.7; 18.1] versus 10.0 [9.1; 10.8] μg/mg; P<0.001). Uronic acid and sulfated glycosaminoglycan density were strongly associated with tissue water content and peripheral edema (uronic acid: ρ=0.66; P<0.0001 and sulfated glycosaminoglycan: τ=0.58; P<0.0001). Expression of the angiotensin II type 1 receptor was found on dermal cells, although use of angiotensin-converting enzyme inhibitors/angiotensin receptor blocker was associated with significantly lower levels of interstitial glycosaminoglycans in HFrEF patients. CONCLUSIONS Interstitial glycosaminoglycan concentration is significantly increased in HFrEF patients compared with healthy subjects and correlated with tissue water content and clinical signs of volume overload. A better appreciation of the interstitial compartment might improve management of volume overload in HF.
Collapse
Affiliation(s)
- Petra Nijst
- Department of Cardiology, Ziekenhuis Oost-Limburg, Genk, Belgium (P.N., P.M., M.D., W.M.)
- Doctoral School for Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium (P.N., P.H., P.M.)
| | - Mikhail Olinevich
- Biomedical Research Institute and Transnational University Limburg, School of Life Sciences, Hasselt University, Belgium (P.H., I.L., J.-P.N., W.M., M.O.)
| | - Petra Hilkens
- Doctoral School for Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium (P.N., P.H., P.M.)
- Biomedical Research Institute and Transnational University Limburg, School of Life Sciences, Hasselt University, Belgium (P.H., I.L., J.-P.N., W.M., M.O.)
| | - Pieter Martens
- Department of Cardiology, Ziekenhuis Oost-Limburg, Genk, Belgium (P.N., P.M., M.D., W.M.)
- Doctoral School for Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium (P.N., P.H., P.M.)
| | - Matthias Dupont
- Department of Cardiology, Ziekenhuis Oost-Limburg, Genk, Belgium (P.N., P.M., M.D., W.M.)
| | - W H Wilson Tang
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, OH (W.H.W.T.)
| | - Ivo Lambrichts
- Biomedical Research Institute and Transnational University Limburg, School of Life Sciences, Hasselt University, Belgium (P.H., I.L., J.-P.N., W.M., M.O.)
| | - Jean-Paul Noben
- Biomedical Research Institute and Transnational University Limburg, School of Life Sciences, Hasselt University, Belgium (P.H., I.L., J.-P.N., W.M., M.O.)
| | - Wilfried Mullens
- Department of Cardiology, Ziekenhuis Oost-Limburg, Genk, Belgium (P.N., P.M., M.D., W.M.).
- Biomedical Research Institute and Transnational University Limburg, School of Life Sciences, Hasselt University, Belgium (P.H., I.L., J.-P.N., W.M., M.O.)
| |
Collapse
|
56
|
Iimaa T, Ikegami Y, Bual R, Shirakigawa N, Ijima H. Analysis of Sulfated Glycosaminoglycans in ECM Scaffolds for Tissue Engineering Applications: Modified Alcian Blue Method Development and Validation. J Funct Biomater 2019; 10:jfb10020019. [PMID: 31052349 PMCID: PMC6616524 DOI: 10.3390/jfb10020019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 01/23/2023] Open
Abstract
Accurate determination of the amount of glycosaminoglycans (GAGs) in a complex mixture of extracellular matrix (ECM) is important for tissue morphogenesis and homeostasis. The aim of the present study was to investigate an accurate, simple and sensitive alcian blue (AB) method for quantifying heparin in biological samples. A method for analyzing heparin was developed and parameters such as volume, precipitation time, solvent component, and solubility time were evaluated. The AB dye and heparin samples were allowed to react at 4 ℃ for 24 h. The heparin-AB complex was dissolved in 25 N NaOH and 2-Aminoethanol (1:24 v/v). The optical density of the solution was analyzed by UV-Vis spectrometry at 620 nm. The modified AB method was validated in accordance with U.S. Food and Drug Administration guidelines. The limit of detection was found to be 2.95 µg/mL. Intraday and interday precision ranged between 2.14–4.83% and 3.16–7.02% (n = 9), respectively. Overall recovery for three concentration levels varied between 97 ± 3.5%, confirming good accuracy. In addition, this study has discovered the interdisciplinary nature of protein detection using the AB method. The basis for this investigation was that the fibrous protein inhibits heparin-AB complex whereas globular protein does not. Further, we measured the content of sulfated GAGs (sGAGs; expressed as heparin equivalent) in the ECM of decellularized porcine liver. In conclusion, the AB method may be used for the quantitative analysis of heparin in ECM scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- Tuyajargal Iimaa
- Department of Chemical Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan.
- Department of Biochemistry and Laboratory Medicine, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia.
| | - Yasuhiro Ikegami
- Department of Chemical Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan.
| | - Ronald Bual
- Department of Chemical Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan.
- Department of Chemical Engineering & Technology, College of Engineering, Mindanao State University-Iligan Insititute of Technology, Iligan 9200, Philippines.
| | - Nana Shirakigawa
- Department of Chemical Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan.
| | - Hiroyuki Ijima
- Department of Chemical Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
57
|
Przybylski C, Bonnet V, Vivès RR. A microscale double labelling of GAG oligosaccharides compatible with enzymatic treatment and mass spectrometry. Chem Commun (Camb) 2019; 55:4182-4185. [PMID: 30892311 DOI: 10.1039/c9cc00254e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel double labelling of glycosaminoglycans (GAG) oligosaccharides by thia-Michael addition and deuterium incorporation at the non-reducing and reducing ends, respectively, was introduced. This was demonstrated to be both compatible with the heparin microgram scale and amenable for mass spectrometry analysis, without impairing enzymatic activities such as heparinase I and sulfatase HSulf-2.
Collapse
Affiliation(s)
- Cédric Przybylski
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France.
| | | | | |
Collapse
|
58
|
Corti F, Wang Y, Rhodes JM, Atri D, Archer-Hartmann S, Zhang J, Zhuang ZW, Chen D, Wang T, Wang Z, Azadi P, Simons M. N-terminal syndecan-2 domain selectively enhances 6-O heparan sulfate chains sulfation and promotes VEGFA 165-dependent neovascularization. Nat Commun 2019; 10:1562. [PMID: 30952866 PMCID: PMC6450910 DOI: 10.1038/s41467-019-09605-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 03/19/2019] [Indexed: 01/26/2023] Open
Abstract
The proteoglycan Syndecan-2 (Sdc2) has been implicated in regulation of cytoskeleton organization, integrin signaling and developmental angiogenesis in zebrafish. Here we report that mice with global and inducible endothelial-specific deletion of Sdc2 display marked angiogenic and arteriogenic defects and impaired VEGFA165 signaling. No such abnormalities are observed in mice with deletion of the closely related Syndecan-4 (Sdc4) gene. These differences are due to a significantly higher 6-O sulfation level in Sdc2 versus Sdc4 heparan sulfate (HS) chains, leading to an increase in VEGFA165 binding sites and formation of a ternary Sdc2-VEGFA165-VEGFR2 complex which enhances VEGFR2 activation. The increased Sdc2 HS chains 6-O sulfation is driven by a specific N-terminal domain sequence; the insertion of this sequence in Sdc4 N-terminal domain increases 6-O sulfation of its HS chains and promotes Sdc2-VEGFA165-VEGFR2 complex formation. This demonstrates the existence of core protein-determined HS sulfation patterns that regulate specific biological activities.
Collapse
Affiliation(s)
- Federico Corti
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Yingdi Wang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - John M Rhodes
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Deepak Atri
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Stephanie Archer-Hartmann
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Jiasheng Zhang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Zhen W Zhuang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Dongying Chen
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Tianyun Wang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Zhirui Wang
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Michael Simons
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA.
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
59
|
Šimek M, Hermannová M, Šmejkalová D, Foglová T, Souček K, Binó L, Velebný V. LC–MS/MS study of in vivo fate of hyaluronan polymeric micelles carrying doxorubicin. Carbohydr Polym 2019; 209:181-189. [DOI: 10.1016/j.carbpol.2018.12.104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/13/2018] [Accepted: 12/27/2018] [Indexed: 11/28/2022]
|
60
|
Recent advances in glycosaminoglycan analysis by various mass spectrometry techniques. Anal Bioanal Chem 2019; 411:3731-3741. [DOI: 10.1007/s00216-019-01722-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/14/2019] [Accepted: 02/26/2019] [Indexed: 01/10/2023]
|
61
|
Ouyang Y, Han X, Xia Q, Chen J, Velagapudi S, Xia K, Zhang Z, Linhardt RJ. Negative-Ion Mode Capillary Isoelectric Focusing Mass Spectrometry for Charge-Based Separation of Acidic Oligosaccharides. Anal Chem 2018; 91:846-853. [DOI: 10.1021/acs.analchem.8b03500] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yilan Ouyang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering, and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Xiaorui Han
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering, and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Qiangwei Xia
- CMP Scientific Corporation, 760 Parkside Avenue, STE 211, Brooklyn, New York 11226, United States
| | - Jianle Chen
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering, and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Sheila Velagapudi
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering, and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Ke Xia
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering, and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Zhenqing Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Robert J. Linhardt
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering, and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| |
Collapse
|
62
|
Distribution analysis of polysaccharides comprised of uronic acid-hexose/hexosamine repeating units in various shellfish species. Glycoconj J 2018; 35:537-545. [DOI: 10.1007/s10719-018-9846-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/15/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022]
|
63
|
Badri A, Williams A, Linhardt RJ, Koffas MAG. The road to animal-free glycosaminoglycan production: current efforts and bottlenecks. Curr Opin Biotechnol 2018; 53:85-92. [DOI: 10.1016/j.copbio.2017.12.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/07/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023]
|
64
|
Gatto F, Blum KA, Hosseini SS, Ghanaat M, Kashan M, Maccari F, Galeotti F, Hsieh JJ, Volpi N, Hakimi AA, Nielsen J. Plasma Glycosaminoglycans as Diagnostic and Prognostic Biomarkers in Surgically Treated Renal Cell Carcinoma. Eur Urol Oncol 2018; 1:364-377. [PMID: 31158075 PMCID: PMC8253162 DOI: 10.1016/j.euo.2018.04.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/11/2018] [Accepted: 04/26/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Plasma glycosaminoglycan (GAG) measurements, when aggregated into diagnostic scores, accurately distinguish metastatic clear-cell renal cell carcinoma (RCC) from healthy samples and correlate with prognosis. However, it is unknown if GAG scores can detect RCC in earlier stages or if they correlate with prognosis after surgery. OBJECTIVE To explore the sensitivity and specificity of plasma GAGs for detection of early-stage RCC and prediction of recurrence and death after RCC surgery. DESIGN, SETTING, AND PARTICIPANTS This was a retrospective case-control study consisting of a consecutive series of 175 RCC patients surgically treated between May 2011 and February 2014 and 19 healthy controls. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Plasma GAGs in preoperative and postoperative RCC and healthy samples were measured using capillary electrophoresis with laser-induced fluorescence in a single blinded laboratory. A discovery set was first analyzed to update the historical GAG score. The sensitivity of the new GAG score for RCC detection versus healthy subjects was validated using the remaining samples. The correlation of the new GAG score to histopathologic variables, overall survival, and recurrence-free survival was evaluated using nonparametric and log-rank tests and multivariable Cox regression analyses. RESULTS AND LIMITATIONS The RCC cohort included 94 stage I, 58 stage II-III, and 22 stage IV cases. In the first discovery set (n=67), the new GAG score distinguished RCC from healthy samples with an area under the receiver operating characteristic curve (AUC) of 0.999. In the validation set (n=108), the GAG score achieved an AUC of 0.991, with 93.5% sensitivity. GAG scores were elevated in RCC compared to healthy samples, irrespective of and uncorrelated to stage, grade, histology, age, or gender. The total chondroitin sulfate concentration was an independent prognostic factor for both overall and recurrence-free survival (hazard ratios 1.51 and 1.25) with high concordance when combined with variables available at pathologic diagnosis (C-index 0.926 and 0.849) or preoperatively (C-index 0.846 and 0.736). Limitations of the study include its retrospective nature and moderate variability in GAG laboratory measurements. CONCLUSIONS Plasma GAGs are highly sensitive diagnostic and prognostic biomarkers in surgically treated RCC independent of stage, grade, or histology. Prospective validation studies on GAG scores for early detection, prediction, and surveillance for RCC recurrence are thus warranted. PATIENT SUMMARY In this study, we examined if a new molecular blood test can detect renal cell carcinoma in the early stages and predict if the cancer might relapse after surgery. The trial is registered on ClinicalTrial.gov as NCT03471897.
Collapse
Affiliation(s)
- Francesco Gatto
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Kyle A Blum
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Mazyar Ghanaat
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mahyar Kashan
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Francesca Maccari
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Galeotti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - James J Hsieh
- Department of Medicine, Genitourinary Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicola Volpi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - A Ari Hakimi
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden.
| |
Collapse
|
65
|
Szeremeta A, Jura-Półtorak A, Koźma EM, Głowacki A, Kucharz EJ, Kopeć-Mędrek M, Olczyk K. Effects of a 15-month anti-TNF-α treatment on plasma levels of glycosaminoglycans in women with rheumatoid arthritis. Arthritis Res Ther 2018; 20:211. [PMID: 30227885 PMCID: PMC6145339 DOI: 10.1186/s13075-018-1711-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/03/2018] [Indexed: 01/11/2023] Open
Abstract
Background In this study, the effect of 15-month anti-tumor necrosis factor alpha (TNF-α) treatment on circulating levels of plasma sulfated glycosaminoglycans (GAGs) and the nonsulfated GAG hyaluronic acid (HA) in female rheumatoid arthritis (RA) patients was assessed. Methods Plasma was obtained from healthy subjects and RA women treated with TNF-α antagonists (etanercept or adalimumab or certolizumab pegol) in combination with methotrexate. GAGs were isolated from plasma samples using ion exchange low-pressure liquid chromatography. Total sulfated GAGs were quantified using a hexuronic acid assay. Plasma levels of keratan sulfate (KS) and HA were measured using immunoassay kits. Results Total sulfated GAGs and HA levels were higher in female RA patients before treatment in comparison to healthy subjects. KS levels did not differ between RA women and controls. Anti-TNF-α treatment resulted in normalization of plasma total GAG and HA levels in RA patients, without any effect on KS levels. Conclusions Our results suggest that anti-TNF-α therapy has a beneficial effect on extracellular matrix remodeling in the course of RA.
Collapse
Affiliation(s)
- Anna Szeremeta
- Department of Clinical Chemistry and Laboratory Diagnostics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jedności 8, 41-200, Sosnowiec, Poland.
| | - Agnieszka Jura-Półtorak
- Department of Clinical Chemistry and Laboratory Diagnostics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jedności 8, 41-200, Sosnowiec, Poland
| | - Ewa Maria Koźma
- Department of Clinical Chemistry and Laboratory Diagnostics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jedności 8, 41-200, Sosnowiec, Poland
| | - Andrzej Głowacki
- Department of Clinical Chemistry and Laboratory Diagnostics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jedności 8, 41-200, Sosnowiec, Poland
| | - Eugeniusz Józef Kucharz
- Department of Internal Medicine and Rheumatology, School of Medicine in Katowice, Medical University of Silesia in Katowice, Ziołowa 45/47, 40-635, Katowice, Poland
| | - Magdalena Kopeć-Mędrek
- Department of Internal Medicine and Rheumatology, School of Medicine in Katowice, Medical University of Silesia in Katowice, Ziołowa 45/47, 40-635, Katowice, Poland
| | - Krystyna Olczyk
- Department of Clinical Chemistry and Laboratory Diagnostics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jedności 8, 41-200, Sosnowiec, Poland
| |
Collapse
|
66
|
Composition and structure of glycosaminoglycans in DBS from 2-3-day-old newborns for the diagnosis of mucopolysaccharidosis. Anal Biochem 2018; 557:34-41. [DOI: 10.1016/j.ab.2018.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/04/2018] [Accepted: 07/12/2018] [Indexed: 01/14/2023]
|
67
|
The GAGOme: a cell-based library of displayed glycosaminoglycans. Nat Methods 2018; 15:881-888. [DOI: 10.1038/s41592-018-0086-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/25/2018] [Accepted: 05/25/2018] [Indexed: 12/20/2022]
|
68
|
Persson A, Gomez Toledo A, Vorontsov E, Nasir W, Willén D, Noborn F, Ellervik U, Mani K, Nilsson J, Larson G. LC-MS/MS characterization of xyloside-primed glycosaminoglycans with cytotoxic properties reveals structural diversity and novel glycan modifications. J Biol Chem 2018; 293:10202-10219. [PMID: 29739851 DOI: 10.1074/jbc.ra118.002971] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/03/2018] [Indexed: 12/12/2022] Open
Abstract
Structural characterization of glycosaminoglycans remains a challenge but is essential for determining structure-function relationships between glycosaminoglycans and the biomolecules with which they interact and for gaining insight into the biosynthesis of glycosaminoglycans. We have recently reported that xyloside-primed chondroitin/dermatan sulfate derived from a human breast carcinoma cell line, HCC70, has cytotoxic effects and shown that it differs in disaccharide composition from nontoxic chondroitin/dermatan sulfate derived from a human breast fibroblast cell line, CCD-1095Sk. To further investigate the structural requirements for the cytotoxic effect, we developed a novel LC-MS/MS approach based on reversed-phase dibutylamine ion-pairing chromatography and negative-mode higher-energy collision dissociation and used it in combination with cell growth studies and disaccharide fingerprinting. This strategy enabled detailed structural characterization of linkage regions, internal oligosaccharides, and nonreducing ends, revealing not only differences between xyloside-primed chondroitin/dermatan sulfate from HCC70 cells and CCD-1095Sk cells, but also sialylation of the linkage region and previously undescribed methylation and sulfation of the nonreducing ends. Although the xyloside-primed chondroitin/dermatan sulfate from HCC70 cells was less complex in terms of presence and distribution of iduronic acid than that from CCD-1095Sk cells, both glucuronic acid and iduronic acid appeared to be essential for the cytotoxic effect. Our data have moved us one step closer to understanding the structure of the cytotoxic chondroitin/dermatan sulfate from HCC70 cells primed on xylosides and demonstrate the suitability of the LC-MS/MS approach for structural characterization of glycosaminoglycans.
Collapse
Affiliation(s)
- Andrea Persson
- From the Department of Experimental Medical Science, Lund University, SE-22184 Lund.,the Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, SE-41345 Gothenburg
| | - Alejandro Gomez Toledo
- the Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, SE-41345 Gothenburg
| | - Egor Vorontsov
- the Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Gothenburg, and
| | - Waqas Nasir
- the Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, SE-41345 Gothenburg
| | - Daniel Willén
- the Center for Analysis and Synthesis, Center for Chemistry and Chemical Engineering, Lund University, SE-22100 Lund, Sweden
| | - Fredrik Noborn
- the Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, SE-41345 Gothenburg
| | - Ulf Ellervik
- the Center for Analysis and Synthesis, Center for Chemistry and Chemical Engineering, Lund University, SE-22100 Lund, Sweden
| | - Katrin Mani
- From the Department of Experimental Medical Science, Lund University, SE-22184 Lund
| | - Jonas Nilsson
- the Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, SE-41345 Gothenburg
| | - Göran Larson
- the Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, SE-41345 Gothenburg,
| |
Collapse
|
69
|
Tau Internalization is Regulated by 6-O Sulfation on Heparan Sulfate Proteoglycans (HSPGs). Sci Rep 2018; 8:6382. [PMID: 29686391 PMCID: PMC5913225 DOI: 10.1038/s41598-018-24904-z] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 03/28/2018] [Indexed: 12/12/2022] Open
Abstract
The misfolding and accumulation of tau protein into intracellular aggregates known as neurofibrillary tangles is a pathological hallmark of neurodegenerative diseases such as Alzheimer’s disease. However, while tau propagation is a known marker for disease progression, exactly how tau propagates from one cell to another and what mechanisms govern this spread are still unclear. Here, we report that cellular internalization of tau is regulated by quaternary structure and have developed a cellular assay to screen for genetic modulators of tau uptake. Using CRISPRi technology we have tested 3200 genes for their ability to regulate tau entry and identified enzymes in the heparan sulfate proteoglycan biosynthetic pathway as key regulators. We show that 6-O-sulfation is critical for tau-heparan sulfate interactions and that this modification regulates uptake in human central nervous system cell lines, iPS-derived neurons, and mouse brain slice culture. Together, these results suggest novel strategies to halt tau transmission.
Collapse
|
70
|
Sanderson P, Stickney M, Leach FE, Xia Q, Yu Y, Zhang F, Linhardt RJ, Amster IJ. Heparin/heparan sulfate analysis by covalently modified reverse polarity capillary zone electrophoresis-mass spectrometry. J Chromatogr A 2018; 1545:75-83. [PMID: 29501428 PMCID: PMC5862776 DOI: 10.1016/j.chroma.2018.02.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/17/2018] [Accepted: 02/24/2018] [Indexed: 12/21/2022]
Abstract
Reverse polarity capillary zone electrophoresis coupled to negative ion mode mass spectrometry (CZE-MS) is shown to be an effective and sensitive tool for the analysis of glycosaminoglycan mixtures. Covalent modification of the inner wall of the separation capillary with neutral or cationic reagents produces a stable and durable surface that provides reproducible separations. By combining CZE-MS with a cation-coated capillary and a sheath flow interface, a rapid and reliable method has been developed for the analysis of sulfated oligosaccharides from dp4 to dp12. Several different mixtures have been separated and detected by mass spectrometry. The mixtures were selected to test the capability of this approach to resolve subtle differences in structure, such as sulfation position and epimeric variation of the uronic acid. The system was applied to a complex mixture of heparin/heparan sulfate oligosaccharides varying in chain length from dp3 to dp12 and more than 80 molecular compositions were identified by accurate mass measurement.
Collapse
Affiliation(s)
- Patience Sanderson
- Department of Chemistry, University of Georgia, Athens, GA 30602, United States
| | - Morgan Stickney
- Department of Chemistry, University of Georgia, Athens, GA 30602, United States
| | - Franklin E Leach
- Department of Chemistry, University of Georgia, Athens, GA 30602, United States
| | - Qiangwei Xia
- 760 Parkside Avenue, STE 211, CMP Scientific, Corp., Brooklyn, NY, 11226, United States
| | - Yanlei Yu
- Biotech 4005, 110 8th Street, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States
| | - Fuming Zhang
- Biotech 4005, 110 8th Street, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States
| | - Robert J Linhardt
- Biotech 4005, 110 8th Street, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States
| | - I Jonathan Amster
- Department of Chemistry, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
71
|
Wang C, Lang Y, Li Q, Jin X, Li G, Yu G. Glycosaminoglycanomic profiling of human milk in different stages of lactation by liquid chromatography-tandem mass spectrometry. Food Chem 2018; 258:231-236. [PMID: 29655727 DOI: 10.1016/j.foodchem.2018.03.076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 03/14/2018] [Accepted: 03/18/2018] [Indexed: 11/19/2022]
Abstract
Glycans in human milk serve several important biological functions that promote infant health. As kind of important glycans, glycosaminoglycans (GAGs) are a complex family of polyanionic carbohydrate, participating in a variety of critical physiological and pathological processes. In this study, the content and the detailed composition of human milk GAGs from Chinese mothers in different stages of lactation, based on a liquid chromatography-tandem mass spectrometry approach was investigated. The results showed that the GAG fraction in the human milk samples was very complex as it was composed of heparan sulfate, chondroitin sulfate, and hyaluronic acid. With lactation extending, the total amount of GAGs in human milk decreased. This study provided an important guide for the demands of GAGs during different stages of lactation. The results were also beneficial for studies on the composition and functional properties of infant formula.
Collapse
Affiliation(s)
- Chen Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China
| | - Yinzhi Lang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China
| | - Qinying Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China
| | - Xin Jin
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China
| | - Guoyun Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
| |
Collapse
|
72
|
Sensitive method for glycosaminoglycan analysis of tissue sections. J Chromatogr A 2018; 1544:41-48. [PMID: 29506752 DOI: 10.1016/j.chroma.2018.02.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 12/28/2022]
Abstract
A simple, isocratic HPLC method based on HILIC-WAX separation, has been developed for analyzing sulfated disaccharides of glycosaminoglycans (GAGs). To our best knowledge, this is the first successful attempt using this special phase in nano-HPLC-MS analysis. Mass spectrometry was based on negative ionization, improving both sensitivity and specificity. Detection limit for most sulfated disaccharides were approximately 1 fmol; quantitation limits 10 fmol. The method was applied for glycosaminoglycan profiling of tissue samples, using surface digestion protocols. This novel combination provides sufficient sensitivity for GAG disaccharide analysis, which was first performed using prostate cancer tissue microarrays. Preliminary results show that GAG analysis may be useful for identifying cancer related changes in small amounts of tissue samples (ca. 10 μg).
Collapse
|
73
|
Sungwienwong I, Ferrie JJ, Jun JV, Liu C, Barrett TM, Hostetler ZM, Ieda N, Hendricks A, Muthusamy AK, Kohli RM, Chenoweth DM, Petersson GA, Petersson EJ. Improving the Fluorescent Probe Acridonylalanine Through a Combination of Theory and Experiment. J PHYS ORG CHEM 2018; 31. [PMID: 30983696 DOI: 10.1002/poc.3813] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acridonylalanine (Acd) is a useful fluorophore for studying proteins by fluorescence spectroscopy, but it can potentially be improved by being made longer wavelength or brighter. Here, we report the synthesis of Acd core derivatives and their photophysical characterization. We also performed ab initio calculations of the absorption and emission spectra of Acd derivatives, which agree well with experimental measurements. The amino acid aminoacridonylalanine (Aad) was synthesized in forms appropriate for genetic incorporation and peptide synthesis. We show that Aad is a superior FRET acceptor to Acd in a peptide cleavage assay, and that Aad can be activated by an aminoacyl tRNA synthetase for genetic incorporation. Together, these results show that we can use computation to design enhanced Acd derivatives which can be used in peptides and proteins.
Collapse
Affiliation(s)
- Itthipol Sungwienwong
- Department of Chemistry, University of Pennsylvania, 213 South 34th Street, Philadelphia, PA 19104, USA
| | - John J Ferrie
- Department of Chemistry, University of Pennsylvania, 213 South 34th Street, Philadelphia, PA 19104, USA
| | - Joomyung V Jun
- Department of Chemistry, University of Pennsylvania, 213 South 34th Street, Philadelphia, PA 19104, USA
| | - Chunxiao Liu
- Department of Chemistry, University of Pennsylvania, 213 South 34th Street, Philadelphia, PA 19104, USA.,Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Taylor M Barrett
- Department of Chemistry, University of Pennsylvania, 213 South 34th Street, Philadelphia, PA 19104, USA
| | - Zachary M Hostetler
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Naoya Ieda
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabedori, Mizuho-ku, Nagoya-shi, Aichi 467-8603, Japan
| | - Amara Hendricks
- Department of Chemistry, University of Pennsylvania, 213 South 34th Street, Philadelphia, PA 19104, USA.,Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.,Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabedori, Mizuho-ku, Nagoya-shi, Aichi 467-8603, Japan.,Temple University Institute for Computational Molecular Science, 1925 N. 12th St., Philadelphia, PA 19122, USA
| | - Anand K Muthusamy
- Department of Chemistry, University of Pennsylvania, 213 South 34th Street, Philadelphia, PA 19104, USA.,Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.,Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabedori, Mizuho-ku, Nagoya-shi, Aichi 467-8603, Japan.,Temple University Institute for Computational Molecular Science, 1925 N. 12th St., Philadelphia, PA 19122, USA
| | - Rahul M Kohli
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | - David M Chenoweth
- Department of Chemistry, University of Pennsylvania, 213 South 34th Street, Philadelphia, PA 19104, USA
| | - George A Petersson
- Temple University Institute for Computational Molecular Science, 1925 N. 12th St., Philadelphia, PA 19122, USA
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, 213 South 34th Street, Philadelphia, PA 19104, USA
| |
Collapse
|
74
|
Antia IU, Mathew K, Yagnik DR, Hills FA, Shah AJ. Analysis of procainamide-derivatised heparan sulphate disaccharides in biological samples using hydrophilic interaction liquid chromatography mass spectrometry. Anal Bioanal Chem 2017; 410:131-143. [DOI: 10.1007/s00216-017-0703-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/08/2017] [Accepted: 10/11/2017] [Indexed: 12/31/2022]
|
75
|
Maccarana M, Svensson RB, Knutsson A, Giannopoulos A, Pelkonen M, Weis M, Eyre D, Warman M, Kalamajski S. Asporin-deficient mice have tougher skin and altered skin glycosaminoglycan content and structure. PLoS One 2017; 12:e0184028. [PMID: 28859141 PMCID: PMC5578652 DOI: 10.1371/journal.pone.0184028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 08/16/2017] [Indexed: 11/24/2022] Open
Abstract
The main structural component of connective tissues is fibrillar, cross-linked collagen whose fibrillogenesis can be modulated by Small Leucine-Rich Proteins/Proteoglycans (SLRPs). Not all SLRPs’ effects on collagen and extracellular matrix in vivo have been elucidated; one of the less investigated SLRPs is asporin. Here we describe the successful generation of an Aspn-/- mouse model and the investigation of the Aspn-/- skin phenotype. Functionally, Aspn-/- mice had an increased skin mechanical toughness, although there were no structural changes present on histology or immunohistochemistry. Electron microscopy analyses showed 7% thinner collagen fibrils in Aspn-/- mice (not statistically significant). Several matrix genes were upregulated, including collagens (Col1a1, Col1a2, Col3a1), matrix metalloproteinases (Mmp2, Mmp3) and lysyl oxidases (Lox, Loxl2), while lysyl hydroxylase (Plod2) was downregulated. Intriguingly no differences were observed in collagen protein content or in collagen cross-linking-related lysine oxidation or hydroxylation. The glycosaminoglycan content and structure in Aspn-/- skin was profoundly altered: chondroitin/dermatan sulfate was more than doubled and had an altered composition, while heparan sulfate was halved and had a decreased sulfation. Also, decorin and biglycan were doubled in Aspn-/- skin. Overall, asporin deficiency changes skin glycosaminoglycan composition, and decorin and biglycan content, which may explain the changes in skin mechanical properties.
Collapse
Affiliation(s)
- Marco Maccarana
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - René B. Svensson
- Institute of Sports Medicine, Bispebjerg Hospital, and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Anki Knutsson
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Antonis Giannopoulos
- Institute of Sports Medicine, Bispebjerg Hospital, and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Mea Pelkonen
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - MaryAnn Weis
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, United States of America
| | - David Eyre
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, United States of America
| | - Matthew Warman
- Children’s Hospital Boston, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sebastian Kalamajski
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
76
|
Antia IU, Yagnik DR, Pantoja Munoz L, Shah AJ, Hills FA. Heparan sulfate disaccharide measurement from biological samples using pre-column derivatization, UPLC-MS and single ion monitoring. Anal Biochem 2017; 530:17-30. [DOI: 10.1016/j.ab.2017.04.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/06/2017] [Accepted: 04/27/2017] [Indexed: 12/26/2022]
|
77
|
Lane RS, St. Ange K, Zolghadr B, Liu X, Schäffer C, Linhardt RJ, DeAngelis PL. Expanding glycosaminoglycan chemical space: towards the creation of sulfated analogs, novel polymers and chimeric constructs. Glycobiology 2017; 27:646-656. [PMID: 28334971 PMCID: PMC5458544 DOI: 10.1093/glycob/cwx021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/11/2017] [Accepted: 02/27/2017] [Indexed: 02/01/2023] Open
Abstract
Glycosaminoglycans (GAGs) have therapeutic potential in areas ranging from angiogenesis, inflammation, hemostasis and cancer. GAG bioactivity is conferred by intrinsic structural features, such as disaccharide composition, glycosidic linkages and sulfation pattern. Unfortunately, the in vitro enzymatic synthesis of defined GAGs is quite restricted by a limited understanding of current GAG synthases and modifying enzymes. Our work provides insights into GAG-active enzymes through the creation of sulfated oligosaccharides, a new polysaccharide and chimeric polymers. We show that a C6-sulfonated uridine diphospho (UDP)-glucose (Glc) derivative, sulfoquinovose, can be used as an uronic acid donor, but not as a hexosamine donor, to cap hyaluronan (HA) chains by the HA synthase from the microbe Pasteurella multocida. However, the two heparosan (HEP) synthases from the same species, PmHS1 and PmHS2, could not employ the UDP-sulfoquinovose under similar conditions. Serendipitously, we found that PmHS2 co-polymerized Glc with glucuronic acid (GlcA), creating a novel HEP-like polymer we named hepbiuronic acid [-4-GlcAβ1-4-Glcα1-]n. In addition, we created chimeric block polymers composed of both HA and HEP segments; in these reactions GlcA-, but not N-acetylglucosamine-(GlcNAc), terminated GAG acceptors were recognized by their noncognate synthase for further extension, likely due to the common β-linkage connecting GlcA to GlcNAc in both of these GAGs. Overall, these GAG constructs provide new tools for studying biology and offer potential for future sugar-based therapeutics.
Collapse
Affiliation(s)
- Rachel S Lane
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kalib St. Ange
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Behnam Zolghadr
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria
| | | | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Biology
- Department of Chemical and Biological Engineering
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Paul L DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
78
|
Abstract
Heparin, the widely used anticoagulant drug, is unusual among major pharmaceutical agents being neither single chemical entity nor a defined mixture of compounds. Its composition, while conforming to approximate average disaccharide composition or sulfation levels, exhibits heterogeneity and variability depending on the source, as well as its geographical origin. Furthermore, individual polysaccharide chains, whose physico-chemical properties are extremely similar, cannot be separated with current state-of-the-art techniques, presenting a challenge to those interested in the quality control of heparin, in ensuring its provenance and safety, and those with an interest in investigating the relationships between its structure and biological activity. The review consists of two main sections: The first is the Introduction, comprising (i) The History, Occurrence and Use of Heparin and (ii) Approaches to Structure-Activity Relationships. The second section is Improved Techniques for Structural Analysis, comprising; (i) Separation and Identification, (ii) Spectroscopic Methods, (iii) Enzymatic Approaches and (iv) Other Physico-Chemical Approaches. The ~60 references cover recent technological advances in the study of heparin structural analysis, largely since 2010.
Collapse
Affiliation(s)
- Edwin A Yates
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZBUK.
| | - Timothy R Rudd
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZBUK; National Institute for Biological Standards and Controls (NIBSC), Blanche Lane, South Mimms, Hertfordshire, EN6 3QG, UK
| |
Collapse
|
79
|
Maccari F, Sorrentino NC, Mantovani V, Galeotti F, Fraldi A, Volpi N. Glycosaminoglycan levels and structure in a mucopolysaccharidosis IIIA mice and the effect of a highly secreted sulfamidase engineered to cross the blood-brain barrier. Metab Brain Dis 2017; 32:203-210. [PMID: 27585464 DOI: 10.1007/s11011-016-9895-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 08/08/2016] [Indexed: 11/30/2022]
Abstract
Mucopolysaccharidosis type IIIA (MPS IIIA, Sanfilippo A) is a neurodegenerative lysosomal storage disorder caused by the deficiency of sulphamidase enzyme (SGSH) leading to accumulation of heparan sulfate (HS). We quantitatively and structurally characterize primary stored HS and other glycosaminoglycans (GAGs) possibly accumulated through a secondary storage in brain, liver, kidney and lung of MPS IIIA mouse model. This analysis was also performed in MPS IIIA mice upon the intravenous treatment with an engineered human sulphamidase (chimeric hSGSH) capable to increase its secretion from the liver and to cross the blood-brain barrier. MPS IIIA animals showed a huge accumulation of HS, from ~15 up to ~24-times higher than wild type and also of hyaluronic acid (HA) (from 2.5 up to ~5.0-times more) and chondroitin sulfate (CS)/dermatan sulfate (DS) (from ~2 up to ~5-times more) in all studied organs. We also observed a significant increase in the overall HS charge density and in particular of 2-O-sulfation in MPS IIIA mice organs. 8 months after a systemic treatment with an engineered SGSH, the enzyme was highly efficient in the reduction of all accumulated GAGs in liver, brain and lung up to values of wild type mice. On the contrary, even if reduced, GAGs levels still remained significantly elevated in kidney. Overall data obtained by this detailed analysis of GAGs in the different organs of affected and treated animals with chimeric hSGSH may have implications for the evaluation of an effective therapeutic option of MPS IIIA and for the reduction of related neuropathology.
Collapse
Affiliation(s)
- F Maccari
- Department of Life Sciences|, University of Modena and Reggio Emilia, Via Campi 213/D, 41125, Modena, Italy
| | - N C Sorrentino
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - V Mantovani
- Department of Life Sciences|, University of Modena and Reggio Emilia, Via Campi 213/D, 41125, Modena, Italy
| | - F Galeotti
- Department of Life Sciences|, University of Modena and Reggio Emilia, Via Campi 213/D, 41125, Modena, Italy
| | - A Fraldi
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy.
| | - N Volpi
- Department of Life Sciences|, University of Modena and Reggio Emilia, Via Campi 213/D, 41125, Modena, Italy.
| |
Collapse
|
80
|
Hydrophilic interaction chromatography-multiple reaction monitoring mass spectrometry method for basic building block analysis of low molecular weight heparins prepared through nitrous acid depolymerization. J Chromatogr A 2017; 1479:121-128. [DOI: 10.1016/j.chroma.2016.11.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/26/2016] [Accepted: 11/29/2016] [Indexed: 02/05/2023]
|
81
|
Reversed-phase separation methods for glycan analysis. Anal Bioanal Chem 2016; 409:359-378. [PMID: 27888305 PMCID: PMC5203856 DOI: 10.1007/s00216-016-0073-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/26/2016] [Accepted: 10/31/2016] [Indexed: 12/21/2022]
Abstract
Reversed-phase chromatography is a method that is often used for glycan separation. For this, glycans are often derivatized with a hydrophobic tag to achieve retention on hydrophobic stationary phases. The separation and elution order of glycans in reversed-phase chromatography is highly dependent on the hydrophobicity of the tag and the contribution of the glycan itself to the retention. The contribution of the different monosaccharides to the retention strongly depends on the position and linkage, and isomer separation may be achieved. The influence of sialic acids and fucoses on the retention of glycans is still incompletely understood and deserves further study. Analysis of complex samples may come with incomplete separation of glycan species, thereby complicating reversed-phase chromatography with fluorescence or UV detection, whereas coupling with mass spectrometry detection allows the resolution of complex mixtures. Depending on the column properties, eluents, and run time, separation of isomeric and isobaric structures can be accomplished with reversed-phase chromatography. Alternatively, porous graphitized carbon chromatography and hydrophilic interaction liquid chromatography are also able to separate isomeric and isobaric structures, generally without the necessity of glycan labeling. Hydrophilic interaction liquid chromatography, porous graphitized carbon chromatography, and reversed-phase chromatography all serve different research purposes and thus can be used for different research questions. A great advantage of reversed-phase chromatography is its broad distribution as it is used in virtually every bioanalytical research laboratory, making it an attracting platform for glycan analysis. Glycan isomer separation by reversed phase liquid chromatography ![]()
Collapse
|
82
|
Farrell K, Joshi J, Kothapalli CR. Injectable uncrosslinked biomimetic hydrogels as candidate scaffolds for neural stem cell delivery. J Biomed Mater Res A 2016; 105:790-805. [PMID: 27798959 DOI: 10.1002/jbm.a.35956] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/03/2016] [Accepted: 10/28/2016] [Indexed: 12/27/2022]
Abstract
Mammalian central nervous system has a limited ability for self-repair under diseased or injury conditions. Repair strategies focused on exogenously delivering autologous neural stem cells (NSCs) to replace lost neuronal populations and axonal pathways in situ, and promote endogenous repair mechanisms are gaining traction. Successful outcomes are contingent on selecting an appropriate delivery vehicle for injecting cells that promotes cell retention and survival, elicits differentiation to desired lineages, and enhances axonal outgrowth upon integration into the host tissue. Hydrogels made of varying compositions of collagen, laminin, hyaluronic acid (HA), and chondroitin sulfate proteoglycan (CSPG) were developed, with no external crosslinking agents, to mimic the native extracellular matrix composition. The physical (porosity, pore-size, gel integrity, swelling ratio, and enzymatic degradation), mechanical (viscosity, storage and loss moduli, Young's modulus, creep, and stress-relaxation), and biological (cell survival, differentiation, neurite outgrowth, and integrin expression) characteristics of these hydrogels were assessed. These hydrogels exhibited excellent injectability, retained gel integrity, and matched the mechanical moduli of native brain tissue, possibly due to natural collagen fibril polymerization and physical-crosslinking between HA molecules and collagen fibrils. Depending on the composition, these hydrogels promoted cell survival, neural differentiation, and neurite outgrowth, as evident from immunostaining and western blots. These cellular outcomes were facilitated by cellular binding via α6 , β1 , and CD44 surface integrins to these hydrogels. Results attest to the utility of uncrosslinked, ECM-mimicking hydrogels to deliver NSCs for tissue engineering and regenerative medicine applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 790-805, 2017.
Collapse
Affiliation(s)
- Kurt Farrell
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio, 44115
| | - Jyotsna Joshi
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio, 44115
| | | |
Collapse
|
83
|
Efficient recovery of glycosaminoglycan oligosaccharides from polyacrylamide gel electrophoresis combined with mass spectrometry analysis. Anal Bioanal Chem 2016; 409:1257-1269. [DOI: 10.1007/s00216-016-0052-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/10/2016] [Accepted: 10/21/2016] [Indexed: 02/05/2023]
|
84
|
Liu B, Lu J, Ai C, Zhang B, Guo L, Song S, Zhu B. Quick characterization of uronic acid-containing polysaccharides in 5 shellfishes by oligosaccharide analysis upon acid hydrolysis. Carbohydr Res 2016; 435:149-155. [DOI: 10.1016/j.carres.2016.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 12/28/2022]
|
85
|
Maccari F, Galeotti F, Zampini L, Padella L, Tomanin R, Concolino D, Fiumara A, Galeazzi T, Coppa G, Gabrielli O, Volpi N. Total and single species of uronic acid-bearing glycosaminoglycans in urine of newborns of 2-3days of age for early diagnosis application. Clin Chim Acta 2016; 463:67-72. [PMID: 27737736 DOI: 10.1016/j.cca.2016.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/06/2016] [Accepted: 10/08/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND Urine are easily accessible and relatively simple to process and uronic acid-bearing glycosaminoglycans (UA-GAGs) may serve as biomarkers for several diseases, like for mucopolysaccharidosis. METHODS We report a study from a large cohort of healthy newborns of 2-3days to have a basic profile of total content of urinary UA-GAGs, their composition and structural signatures utilizing a rapid extractive method and sensitive separation of enzymatic released disaccharides by capillary electrophoresis-light induced fluorescence. Results were also compared with those obtained from normal adult subjects. RESULTS A total of UA-GAGs content of ~35μg/mg creatinine was observed in 331 newborns versus 1.5μg/mg creatinine of adult urine composed of ~90% chondroitin sulfate (CS), ~7% heparan sulfate (HS) and ~3% hyaluronic acid (HA). No significant differences were observed with adults. Specific ratios between the main CS disaccharides were informative of a significant greater 4-sulfation and charge density for newborn compared to adults. The HS from newborn urine was mainly composed by the non-sulfated (~64%) and mono-sulfated (~28%) disaccharides. No significant differences were observed versus adult urine. CONCLUSIONS The present method is able to measure changes in UA-GAG composition and their structure independently of the age of subjects and rapidly applicable to the newborn diagnosis without necessity to have creatinine levels. Moreover, modifications in charge density values as well as the presence of sulfate groups in specific positions may be indicative of altered conditions.
Collapse
Affiliation(s)
- Francesca Maccari
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Galeotti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lucia Zampini
- Department of Clinical Sciences, Polytechnic University of the Marche, Ancona, Italy
| | - Lucia Padella
- Department of Clinical Sciences, Polytechnic University of the Marche, Ancona, Italy
| | - Rosella Tomanin
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Daniela Concolino
- Department of Paediatrics, University of Catanzaro, Catanzaro, Italy
| | - Agata Fiumara
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Tiziana Galeazzi
- Department of Clinical Sciences, Polytechnic University of the Marche, Ancona, Italy
| | - Giovanni Coppa
- Department of Clinical Sciences, Polytechnic University of the Marche, Ancona, Italy
| | - Orazio Gabrielli
- Department of Clinical Sciences, Polytechnic University of the Marche, Ancona, Italy
| | - Nicola Volpi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
86
|
Site-specific identification of heparan and chondroitin sulfate glycosaminoglycans in hybrid proteoglycans. Sci Rep 2016; 6:34537. [PMID: 27694851 PMCID: PMC5046109 DOI: 10.1038/srep34537] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/14/2016] [Indexed: 12/12/2022] Open
Abstract
Heparan sulfate (HS) and chondroitin sulfate (CS) are complex polysaccharides that regulate important biological pathways in virtually all metazoan organisms. The polysaccharides often display opposite effects on cell functions with HS and CS structural motifs presenting unique binding sites for specific ligands. Still, the mechanisms by which glycan biosynthesis generates complex HS and CS polysaccharides required for the regulation of mammalian physiology remain elusive. Here we present a glycoproteomic approach that identifies and differentiates between HS and CS attachment sites and provides identity to the core proteins. Glycopeptides were prepared from perlecan, a complex proteoglycan known to be substituted with both HS and CS chains, further digested with heparinase or chondroitinase ABC to reduce the HS and CS chain lengths respectively, and thereafter analyzed by nLC-MS/MS. This protocol enabled the identification of three consensus HS sites and one hybrid site, carrying either a HS or a CS chain. Inspection of the amino acid sequence at the hybrid attachment locus indicates that certain peptide motifs may encode for the chain type selection process. This analytical approach will become useful when addressing fundamental questions in basic biology specifically in elucidating the functional roles of site-specific glycosylations of proteoglycans.
Collapse
|
87
|
Sun X, Sheng A, Liu X, Shi F, Jin L, Xie S, Zhang F, Linhardt RJ, Chi L. Comprehensive Identification and Quantitation of Basic Building Blocks for Low-Molecular Weight Heparin. Anal Chem 2016; 88:7738-44. [DOI: 10.1021/acs.analchem.6b01709] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaojun Sun
- National
Glycoengineering Research Center, Shandong Provincial Key Laboratory
of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory
of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
- Department
of Chemistry and Chemical Biology, Department of Chemical and Biological
Engineering, Department of Biology, and Department of Biomedical Engineering,
Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Anran Sheng
- National
Glycoengineering Research Center, Shandong Provincial Key Laboratory
of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory
of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| | - Xinyue Liu
- National
Glycoengineering Research Center, Shandong Provincial Key Laboratory
of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory
of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
- Department
of Chemistry and Chemical Biology, Department of Chemical and Biological
Engineering, Department of Biology, and Department of Biomedical Engineering,
Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Feng Shi
- Scientific
Research Division, Shandong Institute for Food and Drug Control, Jinan, Shandong 250101, China
| | - Lan Jin
- National
Glycoengineering Research Center, Shandong Provincial Key Laboratory
of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory
of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| | - Shaoshuai Xie
- National
Glycoengineering Research Center, Shandong Provincial Key Laboratory
of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory
of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| | - Fuming Zhang
- Department
of Chemistry and Chemical Biology, Department of Chemical and Biological
Engineering, Department of Biology, and Department of Biomedical Engineering,
Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Robert J. Linhardt
- Department
of Chemistry and Chemical Biology, Department of Chemical and Biological
Engineering, Department of Biology, and Department of Biomedical Engineering,
Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Lianli Chi
- National
Glycoengineering Research Center, Shandong Provincial Key Laboratory
of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory
of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
88
|
Ghiselli G, Maccarana M. Drugs affecting glycosaminoglycan metabolism. Drug Discov Today 2016; 21:1162-9. [PMID: 27217160 DOI: 10.1016/j.drudis.2016.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/07/2016] [Accepted: 05/13/2016] [Indexed: 01/02/2023]
Abstract
Glycosaminoglycans (GAGs) are charged polysaccharides ubiquitously present at the cell surface and in the extracellular matrix. GAGs are crucial for cellular homeostasis, and their metabolism is altered during pathological processes. However, little consideration has been given to the regulation of the GAG milieu through pharmacological interventions. In this review, we provide a classification of small molecules affecting GAG metabolism based on their mechanism of action. Furthermore, we present evidence to show that clinically approved drugs affect GAG metabolism and that this could contribute to their therapeutic benefit.
Collapse
Affiliation(s)
- Giancarlo Ghiselli
- Glyconova Srl, Parco Scientifico Silvano Fumero, Via Ribes 5, 10010 Colleretto Giacosa (TO), Italy.
| | - Marco Maccarana
- Department of Experimental Medical Science, Biomedical Center C12, Lund University, Tornavägen 10, SE-221 84 Lund, Sweden
| |
Collapse
|
89
|
Gatto F, Volpi N, Nilsson H, Nookaew I, Maruzzo M, Roma A, Johansson M, Stierner U, Lundstam S, Basso U, Nielsen J. Glycosaminoglycan Profiling in Patients’ Plasma and Urine Predicts the Occurrence of Metastatic Clear Cell Renal Cell Carcinoma. Cell Rep 2016; 15:1822-36. [DOI: 10.1016/j.celrep.2016.04.056] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/11/2016] [Accepted: 04/14/2016] [Indexed: 02/07/2023] Open
|
90
|
Oligosaccharide mapping of heparinase I-treated heparins by hydrophilic interaction liquid chromatography separation and online fluorescence detection and electrospray ionization-mass spectrometry characterization. J Chromatogr A 2016; 1445:68-79. [DOI: 10.1016/j.chroma.2016.03.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 02/06/2016] [Accepted: 03/25/2016] [Indexed: 12/13/2022]
|
91
|
Maccari F, Mantovani V, Gabrielli O, Carlucci A, Zampini L, Galeazzi T, Galeotti F, Coppa GV, Volpi N. Metabolic fate of milk glycosaminoglycans in breastfed and formula fed newborns. Glycoconj J 2016; 33:181-8. [PMID: 26873820 DOI: 10.1007/s10719-016-9655-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 11/24/2022]
Abstract
In this study, the content, structure and residual percentages of glycosaminoglycans (GAGs) in the feces of seven breastfed newborns after ingesting a known amount of milk were studied. A comparison was made with five newborns fed with formula milk. Characterization of GAGs from milk and feces samples was performed according to previous methodology. Compared to the ingested GAGs present in milk, residual feces GAGs of breastfed newborns were <0.4 %, contrary to formula milk fed children, where the residues were ~4 %. As a consequence, >99 % of human milk GAGs are utilized as opposed to ~96 % of formula milk. Hyaluronic acid utilization was found to be fairly similar contrary to chondroitin sulfate/dermatan sulfate and heparan sulfate, which were found to be ~10-18 times lower in formula milk fed children. Our new results further demonstrate that the elevated content of human milk GAGs passes undigested through the entire digestive system of newborns, possibly protecting the infant from infections. In the distal gastrointestinal tract, these complex macromolecules are catabolized by a cohort of bacterial enzymes and constituent monosaccharides/oligosaccharides utilized for further metabolic purposes potentially useful for bacteria metabolism or internalized by intestinal cells. Thanks to their elevated structural heterogeneity, milk GAGs are used differently depending on their distinct primary structure. Finally, a different utilization and availability was observed for human milk GAGs compared to formula milk due to their various composition and structural heterogeneity.
Collapse
Affiliation(s)
- Francesca Maccari
- Department of Life Sciences, University of Modena & Reggio Emilia, Via Campi 213/D, 41125, Modena, Italy
| | - Veronica Mantovani
- Department of Life Sciences, University of Modena & Reggio Emilia, Via Campi 213/D, 41125, Modena, Italy
| | - Orazio Gabrielli
- Department of Clinical Sciences, Polytechnic University of the Marche, Ospedali Riuniti, Presidio Salesi, Ancona, Italy
| | - Antonio Carlucci
- Department of Pediatrics, Ascoli Piceno Hospital, Ascoli Piceno, Italy
| | - Lucia Zampini
- Department of Clinical Sciences, Polytechnic University of the Marche, Ospedali Riuniti, Presidio Salesi, Ancona, Italy
| | - Tiziana Galeazzi
- Department of Clinical Sciences, Polytechnic University of the Marche, Ospedali Riuniti, Presidio Salesi, Ancona, Italy
| | - Fabio Galeotti
- Department of Life Sciences, University of Modena & Reggio Emilia, Via Campi 213/D, 41125, Modena, Italy
| | - Giovanni V Coppa
- Department of Clinical Sciences, Polytechnic University of the Marche, Ospedali Riuniti, Presidio Salesi, Ancona, Italy
| | - Nicola Volpi
- Department of Life Sciences, University of Modena & Reggio Emilia, Via Campi 213/D, 41125, Modena, Italy.
| |
Collapse
|
92
|
Ma Y, Wei M, Zhang X, Zhao T, Liu X, Zhou G. Spectral study of interaction between chondroitin sulfate and nanoparticles and its application in quantitative analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 153:445-450. [PMID: 26363470 DOI: 10.1016/j.saa.2015.08.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/14/2015] [Accepted: 08/29/2015] [Indexed: 06/05/2023]
Abstract
In this work, the interaction between chondroitin sulfate (CS) and gold nanoparticles (GNPs) and silver nanoparticles (SNPs) was characterized for the first time. Plasma resonance scattering (PRS) and plasma resonance absorption (PRA) were used to investigate the characteristics of their spectrum. The results suggested that the CS with negative charge could interact with metal nanoparticles with negative charge and the adsorption of CS on the surface of SNPs was more regular than that of GNPs. The resonance scattering spectra also further confirmed the interaction between CS and SNPs. A new method for detection of CS based on the interaction was developed. CS concentrations in the range of 0.02-3.5 μg/mL were proportional to the decreases of absorbance of SNPs. Compared with other reported methods, the proposed method is simple and workable without complex process, high consumption and expensive equipments. The developed method was applied to the determination of the CS contents from different biological origins and the results were compared with those obtained by the method of Chinese Pharmacopeia. The effects of matrix in plasma and other glycosaminoglycans on the determination of CS were also investigated. The results showed that a small quantity of blood plasma had no effect on the determination of CS and when the concentration ratio of CS to heparin was more than 10:1, the influence of heparin on the detection of CS could be ignored. This work gave a specific research direction for the detection of CS in the presence of metal nanoparticles.
Collapse
Affiliation(s)
- Yi Ma
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, China
| | - Maojie Wei
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, China
| | - Xiao Zhang
- Quality Assurance Department, Shandong Lukang Pharmaceutical Co., Ltd., Jining 272021, China
| | - Ting Zhao
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xiumei Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| | - Guanglian Zhou
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, China.
| |
Collapse
|
93
|
Zhao T, Song X, Tan X, Xu L, Yu M, Wang S, Liu X, Wang F. Development of a rapid method for simultaneous separation of hyaluronic acid, chondroitin sulfate, dermatan sulfate and heparin by capillary electrophoresis. Carbohydr Polym 2016; 141:197-203. [PMID: 26877013 DOI: 10.1016/j.carbpol.2016.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/05/2016] [Accepted: 01/09/2016] [Indexed: 01/04/2023]
Abstract
This study reports the use of diethylenetriamine as background electrolyte for the simultaneous separation of hyaluronan acid, chondroitin sulfate, dermatan sulfate and heparin. The analytes were baseline separated by using an uncoated fused silica capillary at 37°C with a run time of 23min. The migration order, with hyaluronan acid at first and heparin at last, was related to the sulfation degree. The effect of salt concentration on resolution and migration order was also investigated. The developed method was applied to the simultaneous determination of hyaluronan acid and chondroitin sulfate in mouse plasma. Interferences in plasma were removed by protein precipitation and glycosaminoglycans were further purified by ethanol precipitation. The method was validated over the concentration range from 50 to 600μg/mL for hyaluronan acid and 500 to 6000μg/mL for chondroitin sulfate in mouse plasma. Results from assay validations showed that the method was selective and robust.
Collapse
Affiliation(s)
- Ting Zhao
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xinlei Song
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xiaoqing Tan
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Linghua Xu
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Mingxiu Yu
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Siyi Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xiumei Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| | - Fengshan Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China; Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Jinan 250012, China.
| |
Collapse
|
94
|
Ucakturk E, Akman O, Sun X, Baydar DE, Dolgun A, Zhang F, Linhardt RJ. Changes in composition and sulfation patterns of glycoaminoglycans in renal cell carcinoma. Glycoconj J 2015; 33:103-12. [PMID: 26662466 DOI: 10.1007/s10719-015-9643-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 01/08/2023]
Abstract
Glycosaminoglycans (GAGs) are heterogeneous, linear, highly charged, anionic polysaccharides consisting of repeating disaccharides units. GAGs have some biological significance in cancer progression (invasion and metastasis) and cell signaling. In different cancer types, GAGs undergo specific structural changes. In the present study, in depth investigation of changes in sulfation pattern and composition of GAGs, heparan sulfate (HS)/heparin (HP), chondroitin sulfate (CS)/dermatan sulfate and hyaluronan (HA) in normal renal tissue (NRT) and renal cell carcinoma tissue (RCCT) were evaluated. The statistical evaluation showed that alteration of the HS (HSNRT = 415.1 ± 115.3; HSRCCT = 277.5 ± 134.3), and CS (CSNRT = 35.3 ± 12.3; CSRCCT = 166.7 ± 108.8) amounts (in ng/mg dry tissue) were statistically significant (p < 0.05). Sulfation pattern in NRT and RCCT was evaluated to reveal disaccharide profiles. Statistical analyses showed that RCCT samples contain significantly increased amounts (in units of ng/mg dry tissue) of 4SCS (NRT = 25.7 ± 9.4; RCCT = 117.1 ± 73.9), SECS (NRT = 0.7 ± 0.3; RCCT = 4.7 ± 4.5), 6SCS (NRT = 6.1 ± 2.7; RCCT = 39.4 ± 34.7) and significantly decreased amounts (in units of ng/mg dry tissue) of NS6SHS (RCCT = 28.6 ± 6.5, RCCT = 10.2 ± 8.0), NS2SHS (RCCT = 44.2 ± 13.8; RCCT = 27.2 ± 15.0), NSHS (NRT = 68.4 ± 15.8; RCCT = 50.4 ± 21.2), 2S6SHS (NRT = 1.0 ± 0.4; RCCT = 0.4 ± 0.3), and 6SHS (NRT = 60.6 ± 17.5; RCCT = 24.9 ± 12.3). If these changes in GAGs are proven to be specific and sensitive, they may serve as potential biomarkers in RCC. Our findings are likely to help us to show the direction for further investigations to be able to bring different diagnostic and prognostic approaches in renal tumors.
Collapse
Affiliation(s)
- Ebru Ucakturk
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Sıhhıye, Ankara, Turkey.
| | - Orkun Akman
- Department of Pathology, Hacettepe University School of Medicine, 06100, Sıhhıye, Ankara, Turkey
| | - Xiaojun Sun
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY, 12180, USA
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY, 12180, USA
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY, 12180, USA
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY, 12180, USA
| | - Dilek Ertoy Baydar
- Department of Pathology, Hacettepe University School of Medicine, 06100, Sıhhıye, Ankara, Turkey
| | - Anil Dolgun
- Department of Biostatistics, Faculty of Medicine, Hacettepe University, 06100, Sıhhıye, Ankara, Turkey
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY, 12180, USA
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY, 12180, USA
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY, 12180, USA
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY, 12180, USA.
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY, 12180, USA.
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY, 12180, USA.
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY, 12180, USA.
| |
Collapse
|
95
|
Hu Y, Li S, Li J, Ye X, Ding T, Liu D, Chen J, Ge Z, Chen S. Identification of a highly sulfated fucoidan from sea cucumber Pearsonothuria graeffei with well-repeated tetrasaccharides units. Carbohydr Polym 2015; 134:808-16. [DOI: 10.1016/j.carbpol.2015.06.088] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 06/25/2015] [Accepted: 06/27/2015] [Indexed: 11/25/2022]
|
96
|
Stachtea XN, Tykesson E, van Kuppevelt TH, Feinstein R, Malmström A, Reijmers RM, Maccarana M. Dermatan Sulfate-Free Mice Display Embryological Defects and Are Neonatal Lethal Despite Normal Lymphoid and Non-Lymphoid Organogenesis. PLoS One 2015; 10:e0140279. [PMID: 26488883 PMCID: PMC4619018 DOI: 10.1371/journal.pone.0140279] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 09/23/2015] [Indexed: 01/01/2023] Open
Abstract
The epimerization of glucuronic acid into iduronic acid adds structural variability to chondroitin/dermatan sulfate polysaccharides. Iduronic acid-containing domains play essential roles in processes such as coagulation, chemokine and morphogen modulation, collagen maturation, and neurite sprouting. Therefore, we generated and characterized, for the first time, mice deficient in dermatan sulfate epimerase 1 and 2, two enzymes uniquely involved in dermatan sulfate biosynthesis. The resulting mice, termed DKO mice, were completely devoid of iduronic acid, and the resulting chondroitin sulfate chains were structurally different from the wild type chains, from which a different protein binding specificity can be expected. As a consequence, a vast majority of the DKO mice died perinatally, with greatly variable phenotypes at birth or late embryological stages such as umbilical hernia, exencephaly and a kinked tail. However, a minority of embryos were histologically unaffected, with apparently normal lung and bone/cartilage features. Interestingly, the binding of the chemokine CXCL13, an important modulator of lymphoid organogenesis, to mouse DKO embryonic fibroblasts was impaired. Nevertheless, the development of the secondary lymphoid organs, including the lymph nodes and spleen, was normal. Altogether, our results indicate an important role of dermatan sulfate in embryological development and perinatal survival.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blotting, Western
- Carbohydrate Epimerases/deficiency
- Carbohydrate Epimerases/genetics
- Cells, Cultured
- Chemokine CXCL13/metabolism
- Chondroitin Sulfates/metabolism
- Dermatan Sulfate/metabolism
- Disaccharides/metabolism
- Embryo, Mammalian/cytology
- Embryo, Mammalian/embryology
- Embryo, Mammalian/metabolism
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Lymphoid Tissue/growth & development
- Lymphoid Tissue/metabolism
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Fluorescence
- Organogenesis
- Protein Binding
Collapse
Affiliation(s)
- Xanthi N. Stachtea
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Emil Tykesson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Toin H. van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ricardo Feinstein
- Department of Pathology, The National Veterinary Institute (SVA), SE 75189, Uppsala, Sweden
| | - Anders Malmström
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Rogier M. Reijmers
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, the Netherlands
| | - Marco Maccarana
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
97
|
Cress BF, Toparlak ÖD, Guleria S, Lebovich M, Stieglitz JT, Englaender JA, Jones JA, Linhardt RJ, Koffas MAG. CRISPathBrick: Modular Combinatorial Assembly of Type II-A CRISPR Arrays for dCas9-Mediated Multiplex Transcriptional Repression in E. coli. ACS Synth Biol 2015; 4:987-1000. [PMID: 25822415 DOI: 10.1021/acssynbio.5b00012] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Programmable control over an addressable global regulator would enable simultaneous repression of multiple genes and would have tremendous impact on the field of synthetic biology. It has recently been established that CRISPR/Cas systems can be engineered to repress gene transcription at nearly any desired location in a sequence-specific manner, but there remain only a handful of applications described to date. In this work, we report development of a vector possessing a CRISPathBrick feature, enabling rapid modular assembly of natural type II-A CRISPR arrays capable of simultaneously repressing multiple target genes in Escherichia coli. Iterative incorporation of spacers into this CRISPathBrick feature facilitates the combinatorial construction of arrays, from a small number of DNA parts, which can be utilized to generate a suite of complex phenotypes corresponding to an encoded genetic program. We show that CRISPathBrick can be used to tune expression of plasmid-based genes and repress chromosomal targets in probiotic, virulent, and commonly engineered E. coli strains. Furthermore, we describe development of pCRISPReporter, a fluorescent reporter plasmid utilized to quantify dCas9-mediated repression from endogenous promoters. Finally, we demonstrate that dCas9-mediated repression can be harnessed to assess the effect of downregulating both novel and computationally predicted metabolic engineering targets, improving the yield of a heterologous phytochemical through repression of endogenous genes. These tools provide a platform for rapid evaluation of multiplex metabolic engineering interventions.
Collapse
Affiliation(s)
- Brady F. Cress
- Department of Chemical and Biological Engineering, ‡Department of Biology, §Department of Chemistry and Chemical Biology, ∥Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Ö. Duhan Toparlak
- Department of Chemical and Biological Engineering, ‡Department of Biology, §Department of Chemistry and Chemical Biology, ∥Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | | | - Matthew Lebovich
- Department of Chemical and Biological Engineering, ‡Department of Biology, §Department of Chemistry and Chemical Biology, ∥Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Jessica T. Stieglitz
- Department of Chemical and Biological Engineering, ‡Department of Biology, §Department of Chemistry and Chemical Biology, ∥Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | | | - J. Andrew Jones
- Department of Chemical and Biological Engineering, ‡Department of Biology, §Department of Chemistry and Chemical Biology, ∥Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Robert J. Linhardt
- Department of Chemical and Biological Engineering, ‡Department of Biology, §Department of Chemistry and Chemical Biology, ∥Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Mattheos A. G. Koffas
- Department of Chemical and Biological Engineering, ‡Department of Biology, §Department of Chemistry and Chemical Biology, ∥Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
98
|
Ouyang Y, Zeng Y, Rong Y, Song Y, Shi L, Chen B, Yang X, Xu N, Linhardt RJ, Zhang Z. Profiling Analysis of Low Molecular Weight Heparins by Multiple Heart-Cutting Two Dimensional Chromatography with Quadruple Time-of-Flight Mass Spectrometry. Anal Chem 2015. [DOI: 10.1021/acs.analchem.5b02218] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yilan Ouyang
- Jiangsu
Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases
and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Yangyang Zeng
- Shanghai Green-Valley Pharmaceutical Co. Ltd., Shanghai, 201200, China
| | - Yinxiu Rong
- Jiangsu
Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases
and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Yue Song
- Agilent Technology (China) Co. Ltd., Shanghai, 201008, China
| | - Lv Shi
- Shanghai Green-Valley Pharmaceutical Co. Ltd., Shanghai, 201200, China
| | - Bo Chen
- Agilent Technology (China) Co. Ltd., Shanghai, 201008, China
| | - Xinlei Yang
- Agilent Technology (China) Co. Ltd., Shanghai, 201008, China
| | - Naiyu Xu
- Jiangsu
Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases
and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Robert J. Linhardt
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New
York 12180, United States
| | - Zhenqing Zhang
- Jiangsu
Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases
and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| |
Collapse
|
99
|
Baik JY, Dahodwala H, Oduah E, Talman L, Gemmill TR, Gasimli L, Datta P, Yang B, Li G, Zhang F, Li L, Linhardt RJ, Campbell AM, Gorfien SF, Sharfstein ST. Optimization of bioprocess conditions improves production of a CHO cell-derived, bioengineered heparin. Biotechnol J 2015; 10:1067-81. [PMID: 26037948 DOI: 10.1002/biot.201400665] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 05/06/2015] [Accepted: 06/01/2015] [Indexed: 12/30/2022]
Abstract
Heparin is the most widely used anticoagulant drug in the world today. Heparin is currently produced from animal tissues, primarily porcine intestines. A recent contamination crisis motivated development of a non-animal-derived source of this critical drug. We hypothesized that Chinese hamster ovary (CHO) cells could be metabolically engineered to produce a bioengineered heparin, equivalent to current pharmaceutical heparin. We previously engineered CHO-S cells to overexpress two exogenous enzymes from the heparin/heparan sulfate biosynthetic pathway, increasing the anticoagulant activity ∼100-fold and the heparin/heparan sulfate yield ∼10-fold. Here, we explored the effects of bioprocess parameters on the yield and anticoagulant activity of the bioengineered GAGs. Fed-batch shaker-flask studies using a proprietary, chemically-defined feed, resulted in ∼two-fold increase in integrated viable cell density and a 70% increase in specific productivity, resulting in nearly three-fold increase in product titer. Transferring the process to a stirred-tank bioreactor increased the productivity further, yielding a final product concentration of ∼90 μg/mL. Unfortunately, the product composition still differs from pharmaceutical heparin, suggesting that additional metabolic engineering will be required. However, these studies clearly demonstrate bioprocess optimization, in parallel with metabolic engineering refinements, will play a substantial role in developing a bioengineered heparin to replace the current animal-derived drug.
Collapse
Affiliation(s)
- Jong Youn Baik
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, USA
| | - Hussain Dahodwala
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, USA
| | - Eziafa Oduah
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, USA
| | - Lee Talman
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, USA
| | - Trent R Gemmill
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, USA.,Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - Leyla Gasimli
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Payel Datta
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Bo Yang
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Guoyun Li
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Lingyun Li
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J Linhardt
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | | | | | - Susan T Sharfstein
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, USA.
| |
Collapse
|
100
|
Li G, Li L, Tian F, Zhang L, Xue C, Linhardt RJ. Glycosaminoglycanomics of cultured cells using a rapid and sensitive LC-MS/MS approach. ACS Chem Biol 2015; 10:1303-10. [PMID: 25680304 DOI: 10.1021/acschembio.5b00011] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycosaminoglycans (GAGs), a family of polysaccharides widely distributed in eukaryotic cells, are responsible for a wide array of biological functions. Quantitative disaccharide compositional analysis is one of the primary ways to characterize the GAG structure. This structural analysis is typically time-consuming (1-2 weeks) and labor intensive, requiring GAG recovery and multistep purification, prior to the enzymatic/chemical digestion of GAGs, and finally their analysis. Moreover, 10(5)-10(7) cells are usually required for compositional analysis. We report a sensitive, rapid, and quantitative analysis of GAGs present in a small number of cells. Commonly studied cell lines were selected based on phenotypic properties related to the biological functions of GAGs. These cells were lysed using a commercial surfactant reagent, sonicated, and digested with polysaccharide lyases. The resulting disaccharides were recovered by centrifugal filtration, labeled with 2-aminoacridone, and analyzed by liquid chromatography (LC)-mass spectrometry (MS). Using a highly sensitive MS method, multiple reaction monitoring (MRM), the limit of detection for each disaccharide was reduced to 0.5-1.0 pg, as compared with 1.0-5.0 ng obtained using standard LC-MS analysis. Sample preparation time was reduced to 1-2 days, and the cell number required was reduced to 5000 cells for complete GAG characterization to as few as 500 cells for the characterization of the major GAG disaccharide components. Our survey of the glycosaminoglycanomes of the 20 selected cell lines reveals major differences in their GAG amounts and compositions. Structure-function relationships are explored using these data, suggesting the utility of this method in cellular glycobiology.
Collapse
Affiliation(s)
- Guoyun Li
- College of Food Science and Technology, Ocean University of China, Qingdao, Shandong 266003, China
- Department of Chemistry
and Chemical Biology, Center for Biotechnology and Interdisciplinary
Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Lingyun Li
- Department of Chemistry
and Chemical Biology, Center for Biotechnology and Interdisciplinary
Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Wadsworth Center, New York State, Department of Health, Albany, New York 12201, United States
| | - Fang Tian
- American Type Culture Collection, Manassas, Virginia 20110, United States
| | - Linxia Zhang
- Biomedical
Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Changhu Xue
- College of Food Science and Technology, Ocean University of China, Qingdao, Shandong 266003, China
| | - Robert J. Linhardt
- Biomedical
Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Chemical and Biological
Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Biology,
Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|