51
|
Ding Y, Yang Q, Wang B, Ye G, Tong X. The Correlation of MGMT Promoter Methylation and Clinicopathological Features in Gastric Cancer: A Systematic Review and Meta-Analysis. PLoS One 2016; 11:e0165509. [PMID: 27824946 PMCID: PMC5100908 DOI: 10.1371/journal.pone.0165509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/13/2016] [Indexed: 12/13/2022] Open
Abstract
The silencing of the tumor suppressor gene O-6-methylguanine-DNA methyltransferase (MGMT) by promoter methylation commonly occurs in human cancers. The relationship between MGMT promoter methylation and gastric cancer (GC) remains inconsistent. This study aimed to evaluate the potential value of MGMT promoter methylation in GC patients. Electronic databases were searched to identify eligible studies. The pooled odds ratio (OR) and the corresponding 95% confidence interval (95% CI) were used to evaluate the effects of MGMT methylation on GC risk and clinicopathological characteristics. In total, 31 eligible studies including 2988 GC patients and 2189 nonmalignant controls were involved in meta-analysis. In the pooled analysis, MGMT promoter methylation was significantly associated with GC risk (OR = 3.34, P < 0.001) and substantial heterogeneity (P < 0.001). Meta-regression and subgroup analyses based on the testing method, sample material and ethnicity failed to explain the sources of heterogeneity. Interestingly, MGMT methylation showed a trend associated with gender, and methylation is lower in males compared with females (OR = 0.76, 95% CI = 0.56–1.03). We did not find a significant association in relation to tumor types, clinical stage, age status or H. pylori status in cancer (all P > 0.1). MGMT promoter methylation may be correlated with the prognosis of GCs in disease free survival (DFS) or overall survival (OS) for univariate analysis. MGMT promoter methylation may play a crucial role in the carcinogenesis and prognosis of GC. MGMT methylation was not correlated with tumor types, clinical stage, age status, H. pylori status. However, the result of the association of MGMT methylation and gender should be considered with caution.
Collapse
Affiliation(s)
- Yong Ding
- The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, People’s Republic of China
- * E-mail: (YD); (GY)
| | - Qihua Yang
- The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, People’s Republic of China
| | - Bojun Wang
- The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, People’s Republic of China
| | - Guoliang Ye
- The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, People’s Republic of China
- * E-mail: (YD); (GY)
| | - Xiaoqiong Tong
- The College of Foreign Studies, Ningbo University, Ningbo, Zhejiang, 315211, People’s Republic of China
| |
Collapse
|
52
|
Wang X, Li Y, Dai Y, Liu Q, Ning S, Liu J, Shen Z, Zhu D, Jiang F, Zhang J, Li Z. Sulforaphane improves chemotherapy efficacy by targeting cancer stem cell-like properties via the miR-124/IL-6R/STAT3 axis. Sci Rep 2016; 6:36796. [PMID: 27824145 PMCID: PMC5099878 DOI: 10.1038/srep36796] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/19/2016] [Indexed: 02/07/2023] Open
Abstract
Gastric carcinoma (GC) is the second leading cause of cancer-related mortality worldwide. The efficacy of standard chemotherapy for GC, such as cisplatin (CDDP), is dissatisfactory partly due to the toxic/side-effects. Sulforaphane (SFN), which exhibits effective anti-cancer functions, is a phytochemical converted from cruciferous plants. Our present study aimed to identify whether SFN could enhance the anti-cancer effects of low-dose CDDP and to determine the underlying mechanisms. Herein, co-exposure of SFN and CDDP significantly inhibited the viabilities of gastric cancer cells. For the molecular mechanisms, CDDP alone increased the cancer stem cell (CSC)-like properties in gastric cancer cells via activating the interleukin-6 (IL-6)/IL-6 receptor (IL-6R)/signal transducer and activator of transcription 3 (STAT3) signaling. However, SFN could activate the microRNA-124 (miR-124), which directly targets the 3'-untranslated regions (UTR) of the IL-6R and STAT3. Moreover, knockdown of miR-124 eliminated the effects of SFN on CSC-like properties in GC cells, and in turn enhanced the anti-cancer effects of low-dose CDDP. These findings not only suggested a mechanism whereby SFN enhanced the anti-cancer functions of CDDP, but also helped to regard SFN as a potential chemotherapeutic factor in gastric cancer.
Collapse
Affiliation(s)
- Xingxing Wang
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yuan Li
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yi Dai
- Department of surgery, the second affiliated hospital, Nanjing medical university, Nanjing, 211166, China
| | - Qinqiang Liu
- Department of surgery, the second affiliated hospital, Nanjing medical university, Nanjing, 211166, China
| | - Shilong Ning
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jiao Liu
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zhaoxia Shen
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Dongmei Zhu
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Fei Jiang
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jianping Zhang
- Department of surgery, the second affiliated hospital, Nanjing medical university, Nanjing, 211166, China
| | - Zhong Li
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
53
|
Akiyama Y, Koda Y, Byeon SJ, Shimada S, Nishikawaji T, Sakamoto A, Chen Y, Kojima K, Kawano T, Eishi Y, Deng D, Kim WH, Zhu WG, Yuasa Y, Tanaka S. Reduced expression of SET7/9, a histone mono-methyltransferase, is associated with gastric cancer progression. Oncotarget 2016; 7:3966-83. [PMID: 26701885 PMCID: PMC4826183 DOI: 10.18632/oncotarget.6681] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/25/2015] [Indexed: 11/25/2022] Open
Abstract
SET7/9, a histone methyltransferase, has two distinct functions for lysine methylation. SET7/9 methylates non-histone proteins, such as p53, and participates in their posttranslational modifications. Although SET7/9 transcriptionally activate the genes via H3K4 mono-methylation, its target genes are poorly understood. To clarify whether or not SET7/9 is related to carcinogenesis, we studied alterations of SET7/9 in gastric cancers (GCs). Among the 376 primary GCs, 129 cases (34.3%) showed loss or weak expression of SET7/9 protein compared to matched non-cancerous tissues by immunohistochemistry. Reduced SET7/9 expression was significantly correlated with clinical aggressiveness and worse prognosis. Knockdown of SET7/9 in GC cells markedly increased cell proliferation, migration and invasion. Expression of SREK1IP1, PGC and CCDC28B were inhibited in GC cells with SET7/9 knockdown, while matrix metalloproteinase genes (MMP1, MMP7 and MMP9) were activated. SET7/9 bound and mono-methylated H3K4 at the region of the approximately 4-6 kb upstream from the SREK1IP1 transcriptional start site and the promoters of PGC and CDC28B. Cell proliferation, migration and invasion, and expression of three MMPs were increased in GC cells with SREK1IP knockdown, which were similar to those of SET7/9 knockdown. These data suggest that SET7/9 has tumor suppressor functions, and loss of SET7/9 may contribute to gastric cancer progression.
Collapse
Affiliation(s)
- Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yuki Koda
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Sun-Ju Byeon
- Department of Pathology, Seoul National University College of Medicine, Jongno-gu, Seoul 110-799, Korea
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Taketo Nishikawaji
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Ayuna Sakamoto
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yingxuan Chen
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Kazuyuki Kojima
- Department of Surgical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Tatsuyuki Kawano
- Department of Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yoshinobu Eishi
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Dajun Deng
- Division of Cancer Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Jongno-gu, Seoul 110-799, Korea
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Yasuhito Yuasa
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| |
Collapse
|
54
|
Park SY, Kim JY, Lee SM, Chung JO, Lee KH, Jun CH, Park CH, Kim HS, Choi SK, Rew JS, Jung YD, Lee YH. Expression of early growth response gene-1 in precancerous lesions of gastric cancer. Oncol Lett 2016; 12:2710-2715. [PMID: 27698846 DOI: 10.3892/ol.2016.4962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 06/02/2016] [Indexed: 12/12/2022] Open
Abstract
Several studies have demonstrated a correlation between the expression of early growth response gene-1 (EGR-1) and the progression of gastric cancers at advanced stages. However, the effects of EGR-1 expression on human gastric cancer progression, particularly on precancerous lesions, have not been investigated. In this study, we evaluate EGR-1 expression levels in target mucosa from patients with early gastric cancer and precancerous lesions, and assess whether EGR-1 expression affects the oncogenic phenotypes of human gastric cancer cells. EGR-1 protein levels were measured in tissues from subjects with normal mucosa (n=6), low-grade dysplasia (n=6), high-grade dysplasia (n=4) and adenocarcinoma (n=3) using enzyme-linked immunosorbent assay and immunohistochemistry analyses. We also investigated the role of EGR-1 in tumor cell behavior by transiently expressing a dominant active EGR-1 variant in cultured cells. A positive correlation was observed between EGR-1 expression and gastric carcinogenesis (P=0.016). Furthermore, there was an increase in nuclear and cytoplasmic expression of EGR-1 in accordance with the histological grade (P for trends=0.003 and 0.003, respectively), and a positive association between the sum of the nuclear and cytoplasmic EGR-1 expression values and the histological grade (P=0.003). In addition, transient overexpression of EGR-1 enhanced cell proliferation, stimulated cell migration, and promoted the phosphorylation of p38 MAPK and AKT in gastric cancer cells in vitro. Our findings demonstrate that EGR-1 may contribute to the early stages of gastric carcinogenesis via the alteration of tumor cell behaviors.
Collapse
Affiliation(s)
- Seon-Young Park
- Department of Gastroenterology and Hepatology, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Ji-Young Kim
- Department of Gastroenterology and Hepatology, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Su-Mi Lee
- Department of Gastroenterology and Hepatology, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Jin Ook Chung
- Department of Endocrinology, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Kyung-Hwa Lee
- Department of Pathology, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Chung-Hwan Jun
- Department of Gastroenterology and Hepatology, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Chang-Hwan Park
- Department of Gastroenterology and Hepatology, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Hyun-Soo Kim
- Department of Gastroenterology and Hepatology, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Sung-Kyu Choi
- Department of Gastroenterology and Hepatology, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Jong-Sun Rew
- Department of Gastroenterology and Hepatology, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Young-Do Jung
- Department of Biomedical Science and Technology, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Yong Han Lee
- Department of Biological Sciences, College of Biological Science and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| |
Collapse
|
55
|
Yoon JH, Choi WS, Kim O, Choi SS, Lee EK, Nam SW, Lee JY, Park WS. NKX6.3 controls gastric differentiation and tumorigenesis. Oncotarget 2016; 6:28425-39. [PMID: 26314965 PMCID: PMC4695069 DOI: 10.18632/oncotarget.4952] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/28/2015] [Indexed: 02/06/2023] Open
Abstract
NKX6.3 transcription factor is known to be an important regulator in gastric mucosal epithelial differentiation. The present study aimed to investigate whether NKX6.3 acts as an essential tumor suppressor in gastric carcinogenesis. Absent or reduced protein expression and decreased DNA copy number and mRNA transcript of the NKX6.3 gene were frequently observed in gastric cancers. Overexpression of NKX6.3 in AGSNKX6.3 and MKN1NKX6.3 cells markedly arrested cell proliferation by inhibiting cell cycle progression and induced apoptosis through both death receptor- and mitochondrial-pathways. In addition, stable NKX6.3 transfectants increased the expression of gastric differentiation markers, including SOX2 and Muc5ac, and decreased the expression of intestinal differentiation markers, CDX2 and Muc2. In ChIP-cloning and sequencing analyses, NKX6.3 coordinated a repertoire of target genes, some of which are clearly associated with cell cycle, differentiation and death. In particular, NKX6.3 transcriptional factor was found to bind specifically to the upstream sequences of GKN1, a gastric-specific tumor suppressor, and dramatically increase expression of the latter. Furthermore, there was a positive correlation between NKX6.3 and GKN1 expression in non-cancerous gastric mucosae. Thus, these data suggest that NKX6.3 may control the fate of gastric mucosal cells and function as a gastric tumor suppressor.
Collapse
Affiliation(s)
- Jung Hwan Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Korea
| | - Won Suk Choi
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Korea
| | - Olga Kim
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Korea
| | - Sung Sook Choi
- College of Pharmacy, Sahmyook University, Hwarangro, Nowon-gu, Seoul, Korea
| | - Eun Kyung Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Korea
| | - Suk Woo Nam
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Korea.,Department of Functional RNomics Reasearch Center, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Korea
| | - Jung Young Lee
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Korea.,Department of Functional RNomics Reasearch Center, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Korea
| | - Won Sang Park
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Korea.,Department of Functional RNomics Reasearch Center, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Korea
| |
Collapse
|
56
|
Poh AR, O'Donoghue RJJ, Ernst M, Putoczki TL. Mouse models for gastric cancer: Matching models to biological questions. J Gastroenterol Hepatol 2016; 31:1257-72. [PMID: 26809278 PMCID: PMC5324706 DOI: 10.1111/jgh.13297] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 02/06/2023]
Abstract
Gastric cancer is the third leading cause of cancer-related mortality worldwide. This is in part due to the asymptomatic nature of the disease, which often results in late-stage diagnosis, at which point there are limited treatment options. Even when treated successfully, gastric cancer patients have a high risk of tumor recurrence and acquired drug resistance. It is vital to gain a better understanding of the molecular mechanisms underlying gastric cancer pathogenesis to facilitate the design of new-targeted therapies that may improve patient survival. A number of chemically and genetically engineered mouse models of gastric cancer have provided significant insight into the contribution of genetic and environmental factors to disease onset and progression. This review outlines the strengths and limitations of current mouse models of gastric cancer and their relevance to the pre-clinical development of new therapeutics.
Collapse
Affiliation(s)
- Ashleigh R Poh
- Department of Medical BiologyUniversity of MelbourneMelbourneVictoriaAustralia
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
| | - Robert J J O'Donoghue
- School of Cancer MedicineLa Trobe University, Olivia Newton‐John Cancer Research InstituteMelbourneVictoriaAustralia
| | - Matthias Ernst
- School of Cancer MedicineLa Trobe University, Olivia Newton‐John Cancer Research InstituteMelbourneVictoriaAustralia
| | - Tracy L Putoczki
- Department of Medical BiologyUniversity of MelbourneMelbourneVictoriaAustralia
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
| |
Collapse
|
57
|
Guo Y, Huang A, Hu C, Zhou Y, Zhang X, Czajkowsky DM, Li J, Cheng S, Shen R, Gu J, Liu B, Shao Z. Complex clonal mosaicism within microdissected intestinal metaplastic glands without concurrent gastric cancer. J Med Genet 2016; 53:643-6. [DOI: 10.1136/jmedgenet-2016-103872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 05/18/2016] [Indexed: 12/22/2022]
|
58
|
Russo M, Russo GL, Daglia M, Kasi PD, Ravi S, Nabavi SF, Nabavi SM. Understanding genistein in cancer: The "good" and the "bad" effects: A review. Food Chem 2016; 196:589-600. [PMID: 26593532 DOI: 10.1016/j.foodchem.2015.09.085] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/29/2015] [Accepted: 09/23/2015] [Indexed: 02/07/2023]
Abstract
Nowadays, diet and specific dietary supplements are seen as potential adjuvants to prevent different chronic diseases, including cancer, or to ameliorate pharmacological therapies. Soybean is one of the most important food components in Asian diet. A plethora of evidence supports the in vitro and in vivo anticancer effects of genistein, a soybean isoflavone. Major tumors affected by genistein here reviewed are breast, prostate, colon, liver, ovarian, bladder, gastric, brain cancers, neuroblastoma and chronic lymphocytic leukemia. However, it is not always clear if and when genistein is beneficial against tumors (the "good" effects), or the opposite, when the same molecule exerts adverse effects (the "bad" effects), favouring cancer cell proliferation. This review will critically evaluate this concept in the light of the different molecular mechanisms of genistein which occur when the molecule is administered at low doses (chemopreventive effects), or at high doses (pharmacological effects).
Collapse
Affiliation(s)
- Maria Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy.
| | - Gian Luigi Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, 27100 Pavia, Italy
| | - Pandima Devi Kasi
- Department of Biotechnology, Alagappa University, Karaikudi 630 004, Tamil Nadu, India.
| | - Sakthivel Ravi
- Department of Biotechnology, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
59
|
Pak KH, Kim DH, Kim H, Lee DH, Cheong JH. Differences in TGF-β1 signaling and clinicopathologic characteristics of histologic subtypes of gastric cancer. BMC Cancer 2016; 16:60. [PMID: 26846663 PMCID: PMC4743329 DOI: 10.1186/s12885-016-2091-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/28/2016] [Indexed: 12/14/2022] Open
Abstract
Background Aberrant TGF-β1 signaling is suggested to be involved in gastric carcinogenesis. However, the role of TGF-β1 in intestinal-type [i-GC] and diffuse-type [d-GC] gastric cancer remains largely unknown. In this study, we evaluated the expression of TGF-β1 signaling molecules and compared the clinicopathological features of i-GC and d-GC. Methods Patients (n=365, consecutive) who underwent curative gastrectomy for gastric adenocarcinoma in 2005 were enrolled. We performed immunohistochemical staining of TGF-β1, TGF-β1 receptor-2 (TβR2), Smad4, p-ERK1/2, TGF-activated kinase (TAK)1, and p-Akt in 68 paraffin-embedded tumor blocks (33 i-GC and 35 d-GC), scored the expression according to the extent of staining, and evaluated differences between the histologic subtypes. Results Patients with d-GC differed from those with i-GC as follows: younger and more likely to be female; more aggressive stage; higher recurrence rate. The expression of TGF-β1 and TβR2 was higher in i-GC (P = 0.05 and P <0.001, respectively). The expression of Smad4, a representative molecule of the Smad-dependent pathway, was decreased in both subtypes. TAK1 and p-Akt, two major molecules involved in the Smad-independent pathway, were over-expressed (69 ~ 87 % of cases stained), without a statistically significant difference between i-GC and d-GC. Of note, the expression of p-ERK1/2, a Smad-independent pathway, was significantly increased in i-GC (P = 0.008). Conclusions The clinicopathological characteristics vary in different histologic gastric cancer subtypes. Although TGF-β1 signaling in gastric cancer cells appears hyper-activated in i-GC compared to d-GC, the Smad-dependent pathway seems down-regulated while the Smad-independent pathway seems up-regulated in both histologic subtypes. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2091-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyung Ho Pak
- Department of Surgery, Hallym University Medical Center, Hwasung, Korea. .,Department of Medicine, Yonsei University Graduate School, Seoul, Korea.
| | - Dong Hoon Kim
- Department of Pathology, Hallym University Medical Center, Hwasung, Korea.
| | - Hyunki Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea.
| | - Do Hyung Lee
- Depatment of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, Korea.
| | - Jae-Ho Cheong
- Depatment of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 120-752, Seoul, Korea. .,Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seoul, Korea. .,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea. .,Open NBI Convergence Technology Research Laboratory, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
60
|
Lim B, Kim JH, Kim M, Kim SY. Genomic and epigenomic heterogeneity in molecular subtypes of gastric cancer. World J Gastroenterol 2016; 22:1190-1201. [PMID: 26811657 PMCID: PMC4716030 DOI: 10.3748/wjg.v22.i3.1190] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/08/2015] [Accepted: 10/12/2015] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is a complex disease that is affected by multiple genetic and environmental factors. For the precise diagnosis and effective treatment of gastric cancer, the heterogeneity of the disease must be simplified; one way to achieve this is by dividing the disease into subgroups. Toward this effort, recent advances in high-throughput sequencing technology have revealed four molecular subtypes of gastric cancer, which are classified as Epstein-Barr virus-positive, microsatellite instability, genomically stable, and chromosomal instability subtypes. We anticipate that this molecular subtyping will help to extend our knowledge for basic research purposes and will be valuable for clinical use. Here, we review the genomic and epigenomic heterogeneity of the four molecular subtypes of gastric cancer. We also describe a mutational meta-analysis and a reanalysis of DNA methylation that were performed using previously reported gastric cancer datasets.
Collapse
|
61
|
Sakamoto A, Akiyama Y, Shimada S, Zhu WG, Yuasa Y, Tanaka S. DNA Methylation in the Exon 1 Region and Complex Regulation of Twist1 Expression in Gastric Cancer Cells. PLoS One 2015; 10:e0145630. [PMID: 26695186 PMCID: PMC4687923 DOI: 10.1371/journal.pone.0145630] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/06/2015] [Indexed: 02/06/2023] Open
Abstract
Twist1 overexpression is frequently observed in various cancers including gastric cancer (GC). Although DNA methylation of the Twist1 gene has been reported in cancer cells, the mechanisms underlying transcriptional activation remain uncertain. In this study, we first examined epigenetic alterations of the Twist1 using Twist1 transcription-positive and -negative cell lines that are derived from our established diffuse-type GC mouse model. Treatment with a DNA demethylation agent 5-aza-dC re-activated Twist1 expression in Twist1 expression-negative GC cells. According to methylation-specific PCR and bisulfite sequencing analysis, methylation at the CpG-rich region within Twist1 coding exon 1, rather than its promoter region, was tightly linked to transcriptional silencing of the Twist1 expression in mouse GC cells. Chromatin immunoprecipitation assays revealed that active histone mark H3K4me3 was enriched in Twist1 expression-positive cells, and inactive histone mark H3K9me3 was enriched in Twist1 expression-negative cells. The expression levels of Suv39h1 and Suv39h2, histone methyltransferases for H3K9me3, were inversely correlated with Twist1 expression, and knockdown of Suv39h1 or Suv39h2 induced Twist1 expression. Moreover, Sp1 transcription factor bound to the exon 1 CpG-rich region in Twist1 expression-positive cell lines, and Twist1 expression was diminished by mithramycin, which that interferes with Sp1 binding to CpG-rich regulatory sequences. Our studies suggested that the Twist1 transcription in GC cells might be regulated through potential cooperation of DNA methylation, histone modification in complex with Sp1 binding to CpG-rich regions within the exon 1 region.
Collapse
Affiliation(s)
- Ayuna Sakamoto
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail: ;
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, 100191, China
| | - Yasuhito Yuasa
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail: ;
| |
Collapse
|
62
|
Li CMC, Gocheva V, Oudin MJ, Bhutkar A, Wang SY, Date SR, Ng SR, Whittaker CA, Bronson RT, Snyder EL, Gertler FB, Jacks T. Foxa2 and Cdx2 cooperate with Nkx2-1 to inhibit lung adenocarcinoma metastasis. Genes Dev 2015; 29:1850-62. [PMID: 26341558 PMCID: PMC4573857 DOI: 10.1101/gad.267393.115] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Li et al. demonstrate that loss of Foxa2 and Cdx2 synergizes with loss of Nkx2-1 to fully activate the metastatic program in lung cancer. Silencing of these three transcription factors is sufficient to account for a significant fraction of the gene expression differences between the nonmetastatic and metastatic states in lung adenocarcinoma. Despite the fact that the majority of lung cancer deaths are due to metastasis, the molecular mechanisms driving metastatic progression are poorly understood. Here, we present evidence that loss of Foxa2 and Cdx2 synergizes with loss of Nkx2-1 to fully activate the metastatic program. These three lineage-specific transcription factors are consistently down-regulated in metastatic cells compared with nonmetastatic cells. Knockdown of these three factors acts synergistically and is sufficient to promote the metastatic potential of nonmetastatic cells to that of naturally arising metastatic cells in vivo. Furthermore, silencing of these three transcription factors is sufficient to account for a significant fraction of the gene expression differences between the nonmetastatic and metastatic states in lung adenocarcinoma, including up-regulated expression of the invadopodia component Tks5long, the embryonal proto-oncogene Hmga2, and the epithelial-to-mesenchymal mediator Snail. Finally, analyses of tumors from a genetically engineered mouse model and patients show that low expression of Nkx2-1, Foxa2, and Cdx2 strongly correlates with more advanced tumors and worse survival. Our findings reveal that a large part of the complex transcriptional network in metastasis can be controlled by a small number of regulatory nodes that function redundantly, and loss of multiple nodes is required to fully activate the metastatic program.
Collapse
Affiliation(s)
- Carman Man-Chung Li
- David H. Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Vasilena Gocheva
- David H. Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Madeleine J Oudin
- David H. Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Arjun Bhutkar
- David H. Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Shi Yun Wang
- David H. Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Saya R Date
- David H. Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Sheng Rong Ng
- David H. Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Charles A Whittaker
- David H. Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Roderick T Bronson
- Department of Pathology, Tufts University School of Medicine and Veterinary Medicine, North Grafton, Massachusetts 01536, USA
| | - Eric L Snyder
- Department of Pathology, School of Medicine, University of California at San Francisco, San Francisco, California 94143, USA; Department of Anatomy, School of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | - Frank B Gertler
- David H. Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
63
|
Wei W, Li L, Wang X, Yan L, Cao W, Zhan Z, Zhang X, Yu H, Xie Y, Xiao Q. Overexpression of caudal type homeobox transcription factor 2 inhibits the growth of the MGC-803 human gastric cancer cell line in vivo. Mol Med Rep 2015; 12:905-12. [PMID: 25738600 PMCID: PMC4438918 DOI: 10.3892/mmr.2015.3413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 02/11/2015] [Indexed: 12/23/2022] Open
Abstract
Caudal type homeobox transcription factor 2 (CDX2) is important in intestinal cell fate specification and multiple lines of evidence have substantiated that CDX2 is important in carcinogenesis of the digestive tract. The CDX2 regulatory network is intricate and remains to be fully elucidated in gastric cancer. The aim of the present study was to examine the effects of CDX2 on the growth of the MGC-803 human gastric cancer cell line in vivo, and to elucidate the mechanism involved. The effects of the overexpression of CDX2 in xenograft tumors of MGC-803 cells was investigated in nude mice through the injection of CDX2 recombinant lentiviral vectors. The tumor size was measured using vernier callipers. The expression levels of CDX2, survivin, B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), cyclin D1, s-phase kinase-associated protein 2 (Skp2) and c-Myc in the tumor cells were analyzed by western blotting and semi-quantitative reverse transcription polymerase chain reaction. The apoptotic rates were determined using a terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay. The overexpression of CDX2 was observed in the group subjected to the injection of CDX2 recombinant lentiviral vectors. CDX2 had an inhibitory effect on the MGC-803 human gastric cancer cell line and promoted tumor cell apoptosis in vivo. Furthermore, the overexpression of CDX2 upregulated the expression of Bax and downregulated the expression levels of survivin, Bcl-2, cyclin D1, Skp2 and c-Myc in the tumor tissues. These results indicated that CDX2 may serve as a tumor suppressor in gastric cancer, and inhibits gastric cancer cell growth by suppressing the nuclear factor-κB signaling pathway.
Collapse
Affiliation(s)
- Weiyuan Wei
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Lei Li
- Department of Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Xiaotong Wang
- Department of Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Linhai Yan
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wenlong Cao
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zexu Zhan
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaoshi Zhang
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Han Yu
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qiang Xiao
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
64
|
Yang Y, Wu KE, Zhao E, Li W, Shi L, Xie G, Jiang B, Wang Y, Li R, Zhang P, Shuai X, Wang G, Tao K. B7-H1 enhances proliferation ability of gastric cancer stem-like cells as a receptor. Oncol Lett 2015; 9:1833-1838. [PMID: 25789052 PMCID: PMC4356385 DOI: 10.3892/ol.2015.2949] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 10/20/2014] [Indexed: 12/31/2022] Open
Abstract
Cancer stem-like cells (CSCs) are a rare tumorigenic population with the ability to self-renew in numerous cancer types. Their existence is considered a pivotal contributor to tumor recurrence. B7-H1 is a ligand of inhibitory inducible co-stimulator (ICOS) that is broadly expressed on various human cancers. ICOS acts as a ligand of programmed death-1 (PD-1) on T cells, induces the immune escape of cancer cells and also acts as a receptor mediating anti-apoptotic effects on cancer cells. However, the expression and function of B7-H1 on CSCs is not yet clear. In the present study, gastric cancer samples were collected and the B7-H1 expression in gastric cancer CSCs was detected. Ki67, a proliferation marker, was found to be expressed at a higher rate in B7-H1+ CSCs compared with the B7-H1- counterparts. SGC-7901 cells, a gastric cancer cell line, were cultured in serum-free medium to form sphere cells that possessed stem cell characteristics and could express B7-H1 with the stimulation of interferon-γ. The proliferative ability of sphere cells was enhanced following B7-H1 activation with recombinant PD-1 in vivo and in vitro. This effect could be eliminated by neutralizing B7-H1. Overall, B7-H1 can act as a stimulating receptor for CSCs, and induce CSC proliferation. Blocking B7-H1 on CSCs may possess therapeutic potential for treating gastric cancer.
Collapse
Affiliation(s)
- Yupeng Yang
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - K E Wu
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Ende Zhao
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wei Li
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Liang Shi
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Gengchen Xie
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Bin Jiang
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yaxin Wang
- Anesthesiology and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Ruidong Li
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Peng Zhang
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiaoming Shuai
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Guobin Wang
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Kaixiong Tao
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
65
|
Clinical significance of RacGAP1 expression at the invasive front of gastric cancer. Gastric Cancer 2015; 18:84-92. [PMID: 24615626 DOI: 10.1007/s10120-014-0355-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/08/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Rac GTPase activating protein 1 (RacGAP1) plays a regulatory role in cell growth, transformation and metastasis. The aim of this study was to clarify the association between RacGAP1 expression and clinical outcome in patients with gastric cancer. METHODS A total of 232 gastric cancer patients in our institute who underwent surgery without preoperative treatments were enrolled in this study. We investigated RacGAP1 expression using immunohistochemistry (IHC) and evaluated IHC scores calculated by the percentage of positive cells and intensity and its expression at the invasive front. RACGAP1 expression was also assessed. RESULTS RacGAP1 expression was observed in the nuclei of gastric cancer cells. Evaluation by IHC score showed no significant correlations with clinicopathological variables except for histological differentiation. In transcriptional analyses, RACGAP1 expression was elevated in diffuse type gastric cancer than intestinal type without a significant difference. We observed significant correlations of RacGAP1 protein expression at the invasive front with older age, tumor size, lymph node metastasis, lymphatic invasion, vascular invasion and advanced stage. Patients with RacGAP1 protein expression at the invasive front had significantly poorer prognosis than those without it (P < 0.0001). In multivariate analysis, lymph node metastasis, distant metastasis and positive RacGAP1 expression at the invasive front were independent prognostic factors (lymph node metastasis: P = 0.0106; distant metastasis: P = 0.0012; RacGAP1: P = 0.0011). CONCLUSIONS RacGAP1 expression at the invasive front in gastric cancer was significantly correlated with factors reflecting tumor progression and poor prognosis. Our data suggest that RacGAP1 might play important roles in the progression of gastric cancer.
Collapse
|
66
|
Schneider MR, Kolligs FT. E-cadherin's role in development, tissue homeostasis and disease: Insights from mouse models: Tissue-specific inactivation of the adhesion protein E-cadherin in mice reveals its functions in health and disease. Bioessays 2014; 37:294-304. [PMID: 25449798 DOI: 10.1002/bies.201400141] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent studies uncovered critical roles of the adhesion protein E-cadherin in health and disease. Global inactivation of Cdh1, the gene encoding E-cadherin in mice, results in early embryonic lethality due to an inability to form the trophectodermal epithelium. To unravel E-cadherin's functions beyond development, numerous mouse lines with tissue-specific disruption of Cdh1 have been generated. The consequences of E-cadherin loss showed great variability depending on the tissue in question, ranging from nearly undetectable changes to a complete loss of tissue structure and function. This review focuses on these studies and discusses how they provided important insights into E-cadherin's role in cell adhesion, proliferation and differentiation, and its consequences for biological processes as epithelial-to-mesenchymal transition, vascularization, and carcinogenesis. Lastly, we present some perspectives and possible approaches for future research.
Collapse
Affiliation(s)
- Marlon R Schneider
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Germany
| | | |
Collapse
|
67
|
Yoon JH, Choi WS, Kim O, Park WS. The role of gastrokine 1 in gastric cancer. J Gastric Cancer 2014; 14:147-55. [PMID: 25328759 PMCID: PMC4199881 DOI: 10.5230/jgc.2014.14.3.147] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/12/2014] [Accepted: 09/13/2014] [Indexed: 12/18/2022] Open
Abstract
Homeostatic imbalance between cell proliferation and death in gastric mucosal epithelia may lead to gastritis and gastric cancer. Despite abundant gastrokine 1 (GKN1) expression in the normal stomach, the loss of GKN1 expression is frequently detected in gastric mucosa infected with Helicobacter pylori, as well as in intestinal metaplasia and gastric cancer tissues, suggesting that GKN1 plays an important role in gastric mucosal defense, and the gene functions as a gastric tumor suppressor. In the stomach, GKN1 is involved in gastric mucosal inflammation by regulating cytokine production, the nuclear factor-κB signaling pathway, and cyclooxygenase-2 expression. GKN1 also inhibits the carcinogenic potential of H. pylori protein CagA by binding to it, and up-regulates antioxidant enzymes. In addition, GKN1 reduces cell viability, proliferation, and colony formation by inhibiting cell cycle progression and epigenetic modification by down-regulating the expression levels of DNMT1 and EZH2, and DNMT1 activity, and inducing apoptosis through the death receptor-dependent pathway. Furthermore, GKN1 also inhibits gastric cancer cell invasion and metastasis via coordinated regulation of epithelial mesenchymal transition-related protein expression, reactive oxygen species production, and PI3K/Akt signaling pathway activation. Although the modes of action of GKN1 have not been clearly described, recent limited evidence suggests that GKN1 acts as a gastric-specific tumor suppressor. This review aims to discuss, comment, and summarize the recent progress in the understanding of the role of GKN1 in gastric cancer development and progression.
Collapse
Affiliation(s)
- Jung Hwan Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Won Suk Choi
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Olga Kim
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Won Sang Park
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
68
|
Wang X, Zou F, Deng H, Fu Z, Li Y, Wu L, Wang Z, Liu L. Characterization of sphere‑forming cells with stem‑like properties from the gastric cancer cell lines MKN45 and SGC7901. Mol Med Rep 2014; 10:2937-41. [PMID: 25270642 DOI: 10.3892/mmr.2014.2601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 04/28/2014] [Indexed: 11/06/2022] Open
Abstract
Traditionally, it was presumed that gastric cancer was derived from tumor cells with stem‑like properties. In the present study, stem‑like cells from the gastric cancer cell lines MKN45 and SGC7901 were enriched by growing them as spheres in a defined serum‑free medium. Following enrichment for stem‑like cells, cluster of differentiation (CD)24 and CD44 were applied as candidate stem cell markers to examine the expression profile. It was revealed that the sphere‑derived cells contained a higher proportion of cells expressing the stem cell surface markers CD24 and CD44 when compared with the parental cells. It was also identified that the expression of cytokeratin 18 in sphere‑derived cells was decreased and the expression of vimentin and aldehyde dehydrogenase 1 (ALDH1) was increased compared with the parental cells. This finding supports the existence of a population of tumor sphere‑forming cells with stem cell properties in the MKN45 and SGC7901 cell lines. Furthermore, the stem cell population was enriched in cells expressing CD24, CD44, vimentin and ALDH1 cell surface markers. These results support the existence of gastric cancer stem cells and provide an alternative approach to the diagnosis and treatment of gastric cancer.
Collapse
Affiliation(s)
- Xuming Wang
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Feng Zou
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Hao Deng
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Zhengqi Fu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Yan Li
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Lixia Wu
- Department of Pathology and Pathophysiology, School of Basic Medical Science of Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Zhaoyi Wang
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Lijiang Liu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| |
Collapse
|
69
|
Wang X, Huang X, Fu Z, Zou F, Li Y, Wang Z, Liu L. Biphasic ER-α36-mediated estrogen signaling regulates growth of gastric cancer cells. Int J Oncol 2014; 45:2325-30. [PMID: 25231129 DOI: 10.3892/ijo.2014.2660] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/28/2014] [Indexed: 11/06/2022] Open
Abstract
To examine the expression patterns of ER-α36 and Cyclin D1 in human gastric cancer tissues and to investigate the effects of ER-α36-mediated estrogen signaling on the growth of gastric cancer cells, 117 samples of formalin-fixed and paraffin-embedded gastric cancer tumor tissues and 40 fresh gastric cancer tumor tissues were analyzed with immunohistochemistry assay and western blot analysis. ER-α36 expression was well correlated with gender (male:female ratio 2.88:1, P=0.01), invasion to serosa (P=0.01) as well as Cyclin D1 expression (P<0.01). The effects of different concentrations of estrogen on the growth of different gastric cancer cells and normal gastric cells as well as gastric cancer SGC7901 cells with different levels of ER-α36 expression were examined. SGC7901 cells with high levels of ER-α36 expression exhibited estrogen hypersensitivity, high growth rate and high levels of Cyclin D1 expression while SGC7901 cells with knocked-down levels of ER-α36 expression were insensitive to estrogen stimulation, grew slowly and expressed less Cyclin D1. Our results indicate that ER-α36 mediates biphasic estrogen signaling in the growth of gastric cancer cells.
Collapse
Affiliation(s)
- Xuming Wang
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, P.R. China
| | - Xuan Huang
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, P.R. China
| | - Zhengqi Fu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, P.R. China
| | - Feng Zou
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, P.R. China
| | - Yan Li
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, P.R. China
| | - Zhaoyi Wang
- Department of Medical Microbiology and Immunology, Creighton University Medical School, Omaha, NE, USA
| | - Lijiang Liu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, P.R. China
| |
Collapse
|
70
|
Kageyama-Yahara N, Yamamichi N, Takahashi Y, Nakayama C, Shiogama K, Inada KI, Konno-Shimizu M, Kodashima S, Fujishiro M, Tsutsumi Y, Ichinose M, Koike K. Gli regulates MUC5AC transcription in human gastrointestinal cells. PLoS One 2014; 9:e106106. [PMID: 25166306 PMCID: PMC4148389 DOI: 10.1371/journal.pone.0106106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/28/2014] [Indexed: 01/05/2023] Open
Abstract
MUC5AC is a well-known gastric differentiation marker, which has been frequently used for the classification of stomach cancer. Immunohistochemistry revealed that expression of MUC5AC decreases accompanied with increased malignant property of gastric mucosa, which further suggests the importance of MUC5AC gene regulation. Alignment of the 5′-flanking regions of MUC5AC gene of 13 mammal species denoted high homology within 200 bp upstream of the coding region. Luciferase activities of the deletion constructs containing upstream 451 bp or shorter fragments demonstrated that 15 bp region between −111 and −125 bp plays a critical role on MUC5AC promoter activity in gastrointestinal cells. We found a putative Gli-binding site in this 15 bp sequence, and named this region a highly conserved region containing a Gli-binding site (HCR-Gli). Overexpression of Gli homologs (Gli1, Gli2, and Gli3) clearly enhanced MUC5AC promoter activity. Exogenous modulation of Gli1 and Gli2 also affected the endogenous MUC5AC gene expression in gastrointestinal cells. Chromatin immunoprecipitation assays demonstrated that Gli1 directly binds to HCR-Gli: Gli regulates MUC5AC transcription via direct protein-DNA interaction. Conversely, in the 30 human cancer cell lines and various normal tissues, expression patterns of MUC5AC and Gli did not coincide wholly: MUC5AC showed cell line-specific or tissue-specific expression whereas Gli mostly revealed ubiquitous expression. Luciferase promoter assays suggested that the far distal MUC5AC promoter region containing upstream 4010 bp seems to have several enhancer elements for gene transcription. In addition, treatments with DNA demethylation reagent and/or histone deacetylase inhibitor induced MUC5AC expression in several cell lines that were deficient in MUC5AC expression. These results indicated that Gli is necessary but not sufficient for MUC5AC expression: namely, the multiple regulatory mechanisms should work in the distal promoter region of MUC5AC gene.
Collapse
Affiliation(s)
- Natsuko Kageyama-Yahara
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Nobutake Yamamichi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| | - Yu Takahashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Chiemi Nakayama
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazuya Shiogama
- 1st Department of Pathology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Ken-ichi Inada
- 1st Department of Pathology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Maki Konno-Shimizu
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shinya Kodashima
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yutaka Tsutsumi
- 1st Department of Pathology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Masao Ichinose
- Second Department of Internal Medicine, Wakayama Medical College, Kimiidera, Wakayama, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
71
|
Zhao LY, Yao Y, Han J, Yang J, Wang XF, Tong DD, Song TS, Huang C, Shao Y. miR-638 suppresses cell proliferation in gastric cancer by targeting Sp2. Dig Dis Sci 2014; 59:1743-53. [PMID: 24623314 DOI: 10.1007/s10620-014-3087-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/19/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND MicroRNAs play important roles in the development and progression of various cancers. Recent studies have shown that miR-638 was downregulated in several tumors; however, its role in gastric cancer (GC) has not been investigated in detail. AIMS The purpose of this study was to determine the role of miR-638 and to elucidate its regulatory mechanism in GC. METHODS The expression levels of miR-638 and specificity protein 2 (Sp2) were detected by real-time PCR and Western blotting in GC. After pcDNA6.2-GW/EmGFP-miR-638 vector, miR-638 inhibitor and Sp2-siRNA transfection, the AGS cell proliferation was investigated by MTT assay and cell cycle, and apoptosis was detected using the Annexin V/PI. In addition, the regulation of Sp2 by miR-638 was evaluated by real-time RT-PCR, Western blot and luciferase reporter assays; cyclin D1 expression was measured by Western blotting. RESULTS The expression of miR-638 is dramatically down-regulated and Sp2 expression is remarkably up-regulated in GC tissues. Luciferase assays revealed that miR-638 inhibited Sp2 expression by targeting the 3'-UTR of Sp2 mRNA. Overexpression of miR-638 and Sp2-siRNA reduced Sp2 expression at both the mRNA and protein levels in vitro, and inhibition of miR-638 increased Sp2 expression. Moreover, we found that miR-638 overexpression and Sp2-siRNA markedly suppressed cell proliferation with decreasing expression of cyclin D1 and inducing G1-phase cell-cycle arrest in vitro; inhibition of miR-638 significantly promoted cell proliferation by increasing expression of cyclin D1 and leading more cells into the S and G2/M phase. CONCLUSIONS Our results demonstrated that miR-638 suppressed GC cell proliferation by targeting Sp2 with influence on the expression of cyclin D1. We suggest that miR-638 might be a candidate predictor or an anticancer therapeutic target for GC patients.
Collapse
Affiliation(s)
- Ling Yu Zhao
- Department of Genetics and Cell Biology, Environment and Genes Related to Diseases Key Laboratory of Education Ministry, College of Medicine, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China,
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Yu S, Yang M, Nam KT. Mouse models of gastric carcinogenesis. J Gastric Cancer 2014; 14:67-86. [PMID: 25061535 PMCID: PMC4105382 DOI: 10.5230/jgc.2014.14.2.67] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 12/28/2022] Open
Abstract
Gastric cancer is one of the most common cancers in the world. Animal models have been used to elucidate the details of the molecular mechanisms of various cancers. However, most inbred strains of mice have resistance to gastric carcinogenesis. Helicobacter infection and carcinogen treatment have been used to establish mouse models that exhibit phenotypes similar to those of human gastric cancer. A large number of transgenic and knockout mouse models of gastric cancer have been developed using genetic engineering. A combination of carcinogens and gene manipulation has been applied to facilitate development of advanced gastric cancer; however, it is rare for mouse models of gastric cancer to show aggressive, metastatic phenotypes required for preclinical studies. Here, we review current mouse models of gastric carcinogenesis and provide our perspectives on future developments in this field.
Collapse
Affiliation(s)
- Sungsook Yu
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Mijeong Yang
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
73
|
Hur H, Paik MJ, Xuan Y, Nguyen DT, Ham IH, Yun J, Cho YK, Lee G, Han SU. Quantitative measurement of organic acids in tissues from gastric cancer patients indicates increased glucose metabolism in gastric cancer. PLoS One 2014; 9:e98581. [PMID: 24911788 PMCID: PMC4049586 DOI: 10.1371/journal.pone.0098581] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/05/2014] [Indexed: 12/17/2022] Open
Abstract
The levels of organic acids representing metabolic pathway end products are important indicators of physiological status, and may be associated with metabolic changes in cancer. The aim of this study is to investigate the levels of organic acids in cancerous and normal tissues from gastric cancer patients and to confirm the role of metabolic alterations in gastric carcinogenesis. Organic acids in normal and cancerous tissues from forty-five patients with gastric adenocarcinoma were investigated by gas chromatography-mass spectrometry in selected ion monitoring mode as methoxime/tert-butyldimethylsilyl derivatives. We analysed the significant differences in the levels of organic acids in normal and cancer tissues and investigated the correlation of these levels in cancer tissues with clinicopathological features. The levels of Krebs cycle components, including α-ketoglutaric acid, succinic acid, fumaric acid, malic acid and oxaloacetic acid, were significantly increased in cancer tissues compared to normal tissues. In addition, the levels of glycolytic products, including pyruvic acid and lactic acid, as well as the levels of ketone bodies, including 3-hydroxybutyric acid, were also significantly increased in cancer tissues compared to normal tissues. The levels of ketone bodies in cancer tissues with differentiated histology and in intestinal-type cancer tissues were significantly increased. The organic acid profiling analysis described here may be a generally useful clinical tool for understanding the complexity of metabolic events in gastric adenocarcinoma, and organic acids may have potential as metabolic markers for the future discovery of diagnostic and therapeutic modalities.
Collapse
Affiliation(s)
- Hoon Hur
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
- Institute for Gastric Cancer Mechanism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Man Jeong Paik
- College of Pharmacy, Suncheon National University, Suncheon, Republic of Korea
| | - Yi Xuan
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
| | - Duc-Toan Nguyen
- National Institute of Drug Quality Control, Hoan Kiem, Ha Noi, Vietnam
| | - In-Hye Ham
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
- Institute for Gastric Cancer Mechanism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jisoo Yun
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
- Institute for Gastric Cancer Mechanism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yong Kwan Cho
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Gwang Lee
- Institute for Gastric Cancer Mechanism, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
- * E-mail: (GL); (S-UH)
| | - Sang-Uk Han
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
- Institute for Gastric Cancer Mechanism, Ajou University School of Medicine, Suwon, Republic of Korea
- * E-mail: (GL); (S-UH)
| |
Collapse
|
74
|
Lim B, Park JL, Kim HJ, Park YK, Kim JH, Sohn HA, Noh SM, Song KS, Kim WH, Kim YS, Kim SY. Integrative genomics analysis reveals the multilevel dysregulation and oncogenic characteristics of TEAD4 in gastric cancer. Carcinogenesis 2014; 35:1020-1027. [PMID: 24325916 DOI: 10.1093/carcin/bgt409] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tumorigenesis is a consequence of failures of multistep defense mechanisms against deleterious perturbations that occur at the genomic, epigenomic, transcriptomic and proteomic levels. To uncover previously unrecognized genes that undergo multilevel perturbations in gastric cancer (GC), we integrated epigenomic and transcriptomic approaches using two recently developed tools: MENT and GENT. This integrative analysis revealed that nine Hippo pathway-related genes, including components [FAT, JUB, LATS2, TEA domain family member 4 (TEAD4) and Yes-associated protein 1 (YAP1)] and targets (CRIM1, CYR61, CTGF and ITGB2), are concurrently hypomethylated at promoter CpG sites and overexpressed in GC tissues. In particular, TEAD4, a link between Hippo pathway components and targets, was significantly hypomethylated at CpG site cg21637033 (P = 3.8 × 10(-) (20)) and overexpressed (P = 5.2 × 10(-) (10)) in 108 Korean GC tissues compared with the normal counterparts. A reduced level of methylation at the TEAD4 promoter was significantly associated with poor outcomes, including large tumor size, high-grade tumors and low survival rates. Compared with normal tissues, the TEAD4 protein was more frequently found in the nuclei of tumor cells along with YAP1 in 53 GC patients, demonstrating the posttranslational activation of this protein. Moreover, the knockdown of TEAD4 resulted in the reduced growth of GC cells both in vitro and in vivo. Finally, chromatin immunoprecipitation-sequencing and microarray analysis revealed the oncogenic properties of TEAD4 and its novel targets (ADM, ANG, ARID5B, CALD1, EDN2, FSCN1 and OSR2), which are involved in cell proliferation and migration. In conclusion, the multilevel perturbations of TEAD4 at epigenetic, transcriptional and posttranslational levels may contribute to GC development.
Collapse
Affiliation(s)
- Byungho Lim
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Wei X, Zhang E, Wang C, Gu D, Shen L, Wang M, Xu Z, Gong W, Tang C, Gao J, Chen J, Zhang Z. A MAP3k1 SNP predicts survival of gastric cancer in a Chinese population. PLoS One 2014; 9:e96083. [PMID: 24759887 PMCID: PMC3997500 DOI: 10.1371/journal.pone.0096083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 04/03/2014] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Genome-wide association studies (GWAS) have demonstrated that the single nucleotide polymorphism (SNP) MAP3K1 rs889312 is a genetic susceptibility marker significantly associated with a risk of hormone-related tumors such as breast cancer. Considering steroid hormone-mediated signaling pathways have an important role in the progression of gastric cancer, we hypothesized that MAP3K1 rs889312 may be associated with survival outcomes in gastric cancer. The purpose of this study was to test this hypothesis. METHODS We genotyped MAP3K1 rs889312 using TaqMan in 884 gastric cancer patients who received subtotal or total gastrectomy. Kaplan-Meier survival analysis and Cox proportional hazard regression were used to analyze the association between MAP3K1 rs889312 genotypes and survival outcomes of gastric cancer. RESULTS Our findings reveal that the rs889312 heterozygous AC genotype was significantly associated with an increased rate of mortality among patients with diffuse-type gastric cancer (log-rank P = 0.028 for AC versus AA/CC, hazard ratio [HR] = 1.32, 95% confidence interval [CI] = 1.03-1.69), compared to those carrying the homozygous variant genotypes (AA/CC). Additionally, univariate and multivariate Cox regression analysis demonstrate that rs889312 polymorphism was an independent risk factor for poor survival in these patients. CONCLUSIONS In conclusion, we demonstrate that MAP3K1 rs889312 is closely correlated with outcome among diffuse-type gastric cancer. This raises the possibility for rs889312 polymorphisms to be used as an independent indicator for predicting the prognosis of diffuse-type gastric cancer within the Chinese population.
Collapse
Affiliation(s)
- Xiaowei Wei
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Enke Zhang
- Central Laboratory, Shanxi People’s Hospital, Xi’an, Shanxi Province, China
| | - Chun Wang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Dongying Gu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lili Shen
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, Jiangsu Province, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhi Xu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Weida Gong
- Department of General Surgery, Yixing Tumor Hospital, Yixing, Jiangsu Province, China
| | - Cuiju Tang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jinglong Gao
- Central Laboratory, Shanxi People’s Hospital, Xi’an, Shanxi Province, China
| | - Jinfei Chen
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
- * E-mail: (JC); (ZZ)
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, Jiangsu Province, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, China
- * E-mail: (JC); (ZZ)
| |
Collapse
|
76
|
Choi YJ, Song JH, Yoon JH, Choi WS, Nam SW, Lee JY, Park WS. Aberrant expression of SOX9 is associated with gastrokine 1 inactivation in gastric cancers. Gastric Cancer 2014; 17:247-54. [PMID: 23812904 DOI: 10.1007/s10120-013-0277-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 05/31/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND SOX9 belongs to the SOX [sry-related high-mobility group (HMG) box] family and acts as a transcription factor that plays a central role in the development and differentiation of multiple cell lineages. The aim of this study was to determine whether the GKN1 gene is involved in the development of gastric cancer by regulating SOX9. METHODS The effect of GKN1 and β-catenin on SOX9 expression was examined in GKN1 and β-catenin-transfected AGS and MKN-1 gastric cancer cells. SOX9 expression was also determined in gastric cancer tissues and cell lines by Western blot analysis and immunohistochemistry. RESULTS Ectopic expression of β-catenin induced increased expression of SOX9 in AGS cells, whereas GKN1 decreased expression of SOX9 in AGS and MKN-1 cells. In addition, we found an inverse correlation between expression of SOX9 and GKN1 in gastric cancer tissues and cell lines. In immunohistochemistry, nuclear SOX9 expression was detected in 64 (34.6 %) of 185 gastric carcinomas and its expression was closely associated with GKN1 immunonegativity. There was no significant relationship between altered expression of SOX9 protein and clinicopathological parameters including overall survival. CONCLUSION These data suggest that aberrant SOX9 expression by GKN1 inactivation may be involved in the development of sporadic gastric cancers as an early event.
Collapse
Affiliation(s)
- Yoo Jin Choi
- Department of Pathology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-701, Korea
| | | | | | | | | | | | | |
Collapse
|
77
|
Lee K, Hwang H, Nam KT. Immune response and the tumor microenvironment: how they communicate to regulate gastric cancer. Gut Liver 2014; 8:131-9. [PMID: 24672653 PMCID: PMC3964262 DOI: 10.5009/gnl.2014.8.2.131] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 02/14/2014] [Indexed: 12/18/2022] Open
Abstract
Gastric cancer is the second most common cause of cancer-related death in the world. A growing body of evidence indicates that inflammation is closely associated with the initiation, progression, and metastasis of many tumors, including those of gastric cancer. In addition, approximately 60% of the world's population is colonized by Helicobacter pylori, which accounts for more than 50% of gastric cancers. While the role of inflammation in intestinal and colonic cancers is relatively well defined, its role in stomach neoplasia is still unclear because of the limited access of pathogens to the acidic environment and the technical difficulties isolating and characterizing immune cells in the stomach, especially in animal models. In this review, we will provide recent updates addressing how inflammation is involved in gastric malignancies, and what immune characteristics regulate the pathogenesis of stomach cancer. Also, we will discuss potential therapeutics that target the immune system for the efficient treatment of gastric cancer.
Collapse
Affiliation(s)
- Keunwook Lee
- Department of Biomedical Science, Hallym University, Chuncheon, Korea
| | - Hyekyung Hwang
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea. ; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea. ; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
78
|
Huang W, Wan C, Luo Q, Huang Z, Luo Q. Genistein-inhibited cancer stem cell-like properties and reduced chemoresistance of gastric cancer. Int J Mol Sci 2014; 15:3432-43. [PMID: 24573253 PMCID: PMC3975346 DOI: 10.3390/ijms15033432] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/12/2014] [Accepted: 02/13/2014] [Indexed: 02/07/2023] Open
Abstract
Genistein, the predominant isoflavone found in soy products, has exerted its anticarcinogenic effect in many different tumor types in vitro and in vivo. Accumulating evidence in recent years has strongly indicated the existence of cancer stem cells in gastric cancer. Here, we showed that low doses of genistein (15 µM), extracted from Millettia nitida Benth var hirsutissima Z Wei, inhibit tumor cell self-renewal in two types of gastric cancer cells by colony formation assay and tumor sphere formation assay. Treatment of gastric cancer cells with genistein reduced its chemoresistance to 5-Fu (fluorouracil) and ciplatin. Further results indicated that the reduced chemoresistance may be associated with the inhibition of ABCG2 expression and ERK 1/2 activity. Furthermore, genistein reduced tumor mass in the xenograft model. Together, genistein inhibited gastric cancer stem cell-like properties and reduced its chemoresistance. Our results provide a further rationale and experimental basis for using the genistein to improve treatment of patients with gastric cancer.
Collapse
Affiliation(s)
- Weifeng Huang
- Department of Surgical Oncology, First Affiliated Hospital of Xiamen University & Xiamen Cancer Center, Xiamen 361003, Fujian, China.
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China.
| | - Qicong Luo
- Department of Surgical Oncology, First Affiliated Hospital of Xiamen University & Xiamen Cancer Center, Xiamen 361003, Fujian, China.
| | - Zhengjie Huang
- Department of Surgical Oncology, First Affiliated Hospital of Xiamen University & Xiamen Cancer Center, Xiamen 361003, Fujian, China.
| | - Qi Luo
- Department of Surgical Oncology, First Affiliated Hospital of Xiamen University & Xiamen Cancer Center, Xiamen 361003, Fujian, China.
| |
Collapse
|
79
|
Human colonic crypts in culture: segregation of immunochemical markers in normal versus adenoma-derived. J Transl Med 2014; 94:222-34. [PMID: 24365748 PMCID: PMC4108175 DOI: 10.1038/labinvest.2013.145] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/04/2013] [Accepted: 11/11/2013] [Indexed: 01/09/2023] Open
Abstract
In order to advance a culture model of human colonic neoplasia, we developed methods for the isolation and in vitro maintenance of intact colonic crypts from normal human colon tissue and adenomas. Crypts were maintained in three-dimensional Matrigel culture with a simple, serum-free, low Ca(2+) (0.15 mM) medium. Intact colonic crypts from normal human mucosa were viably maintained for 3-5 days with preservation of the in situ crypt-like architecture, presenting a distinct base and apex. Abnormal structures from adenoma tissue could be maintained through multiple passages (up to months), with expanding buds/tubules. Immunohistochemical markers for intestinal stem cells (Lgr5), growth (Ki67), differentiation (E-cadherin, cytokeratin 20 (CK20) and mucin 2 (MUC2)) and epithelial turnover (Bax, cleaved Caspase-3), paralleled the changes in function. The epithelial cells in normal crypts followed the physiological sequence of progression from proliferation to differentiation to dissolution in a spatially and temporally appropriate manner. Lgr5 expression was seen in a few basal cells of freshly isolated crypts, but was not detected after 1-3 days in culture. After 24 h in culture, crypts from normal colonic tissue continued to show strong Ki67 and MUC2 expression at the crypt base, with a gradual decrease over time such that by days 3-4 Ki67 was not expressed. The differentiation marker CK20 increased over the same period, eventually becoming intense throughout the whole crypt. In adenoma-derived structures, expression of markers for all stages of progression persisted for the entire time in culture. Lgr5 showed expression in a few select cells after months in culture. Ki67 and MUC2 were largely associated with the proliferative budding regions while CK20 was localized to the parent structure. This ex vivo culture model of normal and adenomatous crypts provides a readily accessible tool to help understand the growth and differentiation process in human colonic epithelium.
Collapse
|
80
|
Ku HJ, Kim HY, Kim HH, Park HJ, Cheong JH. Bile acid increases expression of the histamine-producing enzyme, histidine decarboxylase, in gastric cells. World J Gastroenterol 2014; 20:175-182. [PMID: 24415870 PMCID: PMC3886006 DOI: 10.3748/wjg.v20.i1.175] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 09/16/2013] [Accepted: 10/18/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of bile acid on the expression of histidine decarboxylase (HDC), which is a major enzyme involved in histamine production, and gene expression of gastric transcription factors upon cooperative activation.
METHODS: HDC expression was examined by immunohistochemistry, reverse transcriptase polymerase chain reaction, and promoter assay in human gastric precancerous tissues, normal stomach tissue, and gastric cancer cell lines. The relationship between gastric precancerous state and HDC expression induced by bile acid was determined. The association between the expression of HDC and various specific transcription factors in gastric cells was also evaluated. MKN45 and AGS human gastric carcinoma cell lines were transfected with farnesoid X receptor (FXR), small heterodimer partner (SHP), and caudal-type homeodomain transcription factor (CDX)1 expression plasmids. The effects of various transcription factors on HDC expression were monitored by luciferase-reporter promoter assay.
RESULTS: Histamine production and secretion in the stomach play critical roles in gastric acid secretion and in the pathogenesis of gastric diseases. Here, we show that bile acid increased the expression of HDC, which is a rate-limiting enzyme of the histamine production pathway. FXR was found to be a primary regulatory transcription factor for bile acid-induced HDC expression. In addition, the transcription factors CDX1 and SHP synergistically enhanced bile acid-induced elevation of HDC gene expression. We confirmed similar expression patterns for HDC, CDX1, and SHP in patient tissues.
CONCLUSION: HDC production in the stomach is associated with bile acid exposure and its related transcriptional regulation network of FXR, SHP, and CDX1.
Collapse
|
81
|
Jun KH, Kim JH, Jung JH, Choi HJ, Chin HM. Expression of claudin-7 and loss of claudin-18 correlate with poor prognosis in gastric cancer. Int J Surg 2013; 12:156-62. [PMID: 24333468 DOI: 10.1016/j.ijsu.2013.11.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND The purpose of this study was to evaluate the expression of claudin-3, claudin-7, and claudin-18 in gastric cancer and to determine the significance of these proteins for patient outcome. MATERIALS AND METHODS A total of 134 samples were obtained from surgically resected specimens from patients who were diagnosed with gastric carcinoma at a single institution. Paraffin tissue sections from tissue microarray blocks were examined with immunohistochemistry for the expression of claudin-3, claudin-7, and claudin-18. RESULTS In normal gastric tissues, positive immunoreactivity was detected for claudin-18 but not for claudin-3 or claudin-7. Claudin-3 and claudin-7 were expressed in 25.4% and 29.9% of the gastric cancer tissues, respectively. However, 51.5% of gastric cancer tissues exhibited reduced expression of claudin-18. Claudin-7 expression was significantly lower in cases with diffuse histologic type and positive lymphatic invasion. There was a significant inverse correlation between claudin-18 expression and perineural invasion. In the survival analysis, the overall survival time was shorter in patients with claudin-7 expression than in those without claudin-7 expression. However, the overall survival was longer in patients with claudin-18 expression than in those without claudin-18 expression. CONCLUSIONS Our data suggest that the up-regulation of claudin-3 and claudin-7 and the down-regulation of claudin-18 may play a role in the carcinogenesis of gastric cancer. Furthermore, the expression of claudin-7 and the loss of claudin-18 may be independent indicators of a poor prognosis in patients with gastric cancer.
Collapse
Affiliation(s)
- Kyong-Hwa Jun
- Department of Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea
| | - Ji-Hyun Kim
- Department of Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea
| | - Ji-Han Jung
- Department of Hospital Pathology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea.
| | - Hyun-Joo Choi
- Department of Hospital Pathology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea
| | - Hyung-Min Chin
- Department of Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea.
| |
Collapse
|
82
|
Jang BG, Lee BL, Kim WH. Distribution of LGR5+ cells and associated implications during the early stage of gastric tumorigenesis. PLoS One 2013; 8:e82390. [PMID: 24340024 PMCID: PMC3858308 DOI: 10.1371/journal.pone.0082390] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 11/01/2013] [Indexed: 12/30/2022] Open
Abstract
Lgr5 was identified as a promising gastrointestinal tract stem cell marker in mice. Lineage tracing indicates that Lgr5+ cells may not only be the cells responsible for the origin of tumors; they may also be the so-called cancer stem cells. In the present study, we investigated the presence of Lgr5+ cells and their biological significance in normal human gastric mucosa and gastric tumors. RNAscope, a newly developed RNA in situ hybridization technique, specifically labeled Lgr5+ cells at the basal glands of the gastric antrum. Notably, the number of Lgr5+ cells was remarkably increased in intestinal metaplasia. In total, 76% of gastric adenomas and 43% of early gastric carcinomas were positive for LGR5. Lgr5+ cells were found more frequently in low-grade tumors with active Wnt signaling and an intestinal gland type, suggesting that LGR5 is likely involved in the very early stages of Wnt-driven tumorigenesis in the stomach. Interestingly, similar to stem cells in normal tissues, Lgr5+ cells were often restricted to the base of the tumor glands, and such Lgr5+ restriction was associated with high levels of intestinal stem cell markers such as EPHB2, OLFM4, and ASCL2. Thus, our findings show that Lgr5+ cells are present at the base of the antral glands in the human stomach and that this cell population significantly expands in intestinal metaplasias. Furthermore, Lgr5+ cells are seen in a large number of gastric tumors ; their frequent basal arrangements and coexpression of ISC markers support the idea that Lgr5+ cells act as stem cells during the early stage of intestinal-type gastric tumorigenesis.
Collapse
Affiliation(s)
- Bo Gun Jang
- Department of Pathology, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea
| | - Byung Lan Lee
- Department of Anatomy, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea
- * E-mail:
| |
Collapse
|
83
|
Yin Y, Zhuo W, Zhao Y, Chen S, Li J, Wang L, Zhou T, Si JM. Converting a microarray signature into a diagnostic test: a trial of custom 74 gene array for clarification and prediction the prognosis of gastric cancer. PLoS One 2013; 8:e81561. [PMID: 24312559 PMCID: PMC3849172 DOI: 10.1371/journal.pone.0081561] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/14/2013] [Indexed: 12/18/2022] Open
Abstract
Background Gastric cancer (GC) is associated with high mortality rates and an unfavorable prognosis at advanced stages. In addition, there are no effective methods for diagnosing gastric cancer at an early stage or for predicting the outcome for the purpose of selecting patient-specific treatment options. Therefore, it is important to investigate new methods for GC diagnosis. Methodology/Principal Findings To facilitate its use in a diagnostic setting, a group of 74 genes with diagnostic and prognostic information was translated into a customized microarray containing a reduced set of 1,042 probes suitable for high throughput processing. In this report, we demonstrate for the first time that the custom mini-array can be used as a reliable diagnostic tool in gastric cancer. With an AUC value of 0.565 (95% CI 0.305-0.825) indicating a perfect test, the sensitivity and specificity of diagnosis from the ROC curve were calculated to be 70% and 80%, respectively. Conclusions/Significance The data clearly demonstrate the reproducibility and robustness of the small custom-made microarray. The array is an excellent tool for classifying and predicting the outcome of disease in gastric cancer patients.
Collapse
Affiliation(s)
- Ying Yin
- Department of Gastroenterology, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Wei Zhuo
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
- Department of Cell Biology and Program in Molecular Cell Biology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuan Zhao
- Department of Gastroenterology, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Shujie Chen
- Department of Gastroenterology, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Jun Li
- Department of Gastroenterology, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Lan Wang
- Department of Gastroenterology, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Tianhua Zhou
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
- Department of Cell Biology and Program in Molecular Cell Biology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian-Min Si
- Department of Gastroenterology, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
84
|
Ito Y, Vela JL, Matsumura F, Hoshino H, Tyznik A, Lee H, Girardi E, Zajonc DM, Liddington R, Kobayashi M, Bao X, Bugaytsova J, Borén T, Jin R, Zong Y, Seeberger PH, Nakayama J, Kronenberg M, Fukuda M. Helicobacter pylori cholesteryl α-glucosides contribute to its pathogenicity and immune response by natural killer T cells. PLoS One 2013; 8:e78191. [PMID: 24312443 PMCID: PMC3846475 DOI: 10.1371/journal.pone.0078191] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/09/2013] [Indexed: 12/31/2022] Open
Abstract
Approximately 10–15% of individuals infected with Helicobacter pylori will develop ulcer disease (gastric or duodenal ulcer), while most people infected with H. pylori will be asymptomatic. The majority of infected individuals remain asymptomatic partly due to the inhibition of synthesis of cholesteryl α-glucosides in H. pylori cell wall by α1,4-GlcNAc-capped mucin O-glycans, which are expressed in the deeper portion of gastric mucosa. However, it has not been determined how cholesteryl α-glucosyltransferase (αCgT), which forms cholesteryl α-glucosides, functions in the pathogenesis of H. pylori infection. Here, we show that the activity of αCgT from H. pylori clinical isolates is highly correlated with the degree of gastric atrophy. We investigated the role of cholesteryl α-glucosides in various aspects of the immune response. Phagocytosis and activation of dendritic cells were observed at similar degrees in the presence of wild-type H. pylori or variants harboring mutant forms of αCgT showing a range of enzymatic activity. However, cholesteryl α-glucosides were recognized by invariant natural killer T (iNKT) cells, eliciting an immune response in vitro and in vivo. Following inoculation of H. pylori harboring highly active αCgT into iNKT cell-deficient (Jα18−/−) or wild-type mice, bacterial recovery significantly increased in Jα18−/− compared to wild-type mice. Moreover, cytokine production characteristic of Th1 and Th2 cells dramatically decreased in Jα18−/− compared to wild-type mice. These findings demonstrate that cholesteryl α-glucosides play critical roles in H. pylori-mediated gastric inflammation and precancerous atrophic gastritis.
Collapse
Affiliation(s)
- Yuki Ito
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Jose Luis Vela
- La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
| | - Fumiko Matsumura
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Hitomi Hoshino
- Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan
| | - Aaron Tyznik
- La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
| | - Heeseob Lee
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Enrico Girardi
- La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
| | - Dirk M. Zajonc
- La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
| | - Robert Liddington
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Motohiro Kobayashi
- Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan
| | - Xingfeng Bao
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Jeanna Bugaytsova
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Thomas Borén
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Rongsheng Jin
- Del E. Webb Neuroscience, Aging and Stem Cell Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Yinong Zong
- Del E. Webb Neuroscience, Aging and Stem Cell Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Peter H. Seeberger
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan
| | - Mitchell Kronenberg
- La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
| | - Minoru Fukuda
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
85
|
Song X, Chen HX, Wang XY, Deng XY, Xi YX, He Q, Peng TL, Chen J, Chen W, Wong BCY, Chen MH. H. pylori-encoded CagA disrupts tight junctions and induces invasiveness of AGS gastric carcinoma cells via Cdx2-dependent targeting of Claudin-2. Cell Immunol 2013; 286:22-30. [PMID: 24287273 DOI: 10.1016/j.cellimm.2013.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 10/02/2013] [Accepted: 10/31/2013] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori encoded CagA is presently the only known virulence factor that is injected into gastric epithelial cells where it destroys apical junctional complexes and induces dedifferentiation of gastric epithelial cells, leading to H. pylori-related gastric carcinogensis. However, little is known about the molecular mechanisms by which CagA mediates these changes. Caudal-related homeobox 2 (Cdx2) is an intestine-specific transcription factor highly expressed in multistage tissues of dysplasia and cancer. One specific target of Cdx2, Claudin-2, is involved in the regulation of tight junction (TJ) permeability. In this study, our findings showed that the activity of Cdx2 binding to Cdx binding sites of CdxA (GTTTATG) and CdxB (TTTTAGG) of probes corresponding to claudin-2 flanking region increased in AGS cells, infected with CagA positive wild-type strain of H. pylori, compared to CagA negative isogenic mutant-type strain. Moreover, Cdx2 upregulated claudin-2 expression at transcriptional level and translational level. In the meantime, we found that TJs of AGS cells, infected with CagA positive wild-type strain of H. pylori, compared to CagA negative isogenic mutant-type strain, were more severely destroyed, leading to wider cell gap, interference of contact, scattering and highly elevated migration of cells. Herein, this study is firstly demonstrated that H. pylori-encoded CagA disrupts TJs and induces invasiveness of AGS gastric carcinoma cells via Cdx2-dependent targeting of Claudin-2. This provides a new mechanism whereby CagA induced dedifferentiation of AGS cells, leading to malignant behavior of biology.
Collapse
Affiliation(s)
- Xin Song
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Hui-Xin Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Xiao-Yan Wang
- Department of Gastroenterology, Third Affiliated Hospital, Xiangya School of Medicine, Central South of University, Changsha, PR China
| | - Xi-Yun Deng
- Department of Surgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yin-Xue Xi
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Qing He
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Tie-Li Peng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Jie Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Wei Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Benjamin Chun-Yu Wong
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, PR China
| | - Min-Hu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
86
|
Zhang J, Kuai X, Song M, Chen X, Yu Z, Zhang H, Mao Z. microRNA-32 inhibits the proliferation and invasion of the SGC-7901 gastric cancer cell line in vitro.. Oncol Lett 2013; 7:270-274. [PMID: 24348862 PMCID: PMC3861597 DOI: 10.3892/ol.2013.1667] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 10/24/2013] [Indexed: 01/07/2023] Open
Abstract
microRNAs (miRNAs) are a class of endogenously expressed, small non-coding RNAs, which suppress their target mRNAs at the post-transcriptional level. miRNAs play key roles in tumor metastasis. The aim of the present study was to investigate the expression of miRNA-32 (miR-32) on the biological behavior of the human gastric cancer cell line, SGC-7901. SGC-7901 cells were transfected with miR-32-mimic, miR-32-inhibitor and empty plasmid vectors using Lipofectamine™ 2000. The expression of GFP was observed by fluorescent microscopy and miR-32 gene expression was detected by quantitative polymerase chain reaction. The cell counting kit-8 assay was performed to evaluate the effect of miR-32 expression on cell proliferation in vitro. Alterations in the migration and metastatic potential of SGC-7901 cells, prior to and following miR-32 gene transfection, were assayed by cell chemotactic migration and invasion tests. The results of the current study showed that the proliferation rate of the transfected SGC-7901 cells overexpressing miR-32 is reduced and cell chemotactic migration and invasion potentials is markedly reduced following miR-32-mimic transfection (P<0.05). In addition, the results demonstrated that overexpression of miR-32 greatly inhibits the proliferation and decreases the migration and invasion capabilities of SGC-7901 cells in vitro.
Collapse
Affiliation(s)
- Jianfeng Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiaoling Kuai
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Mengjiao Song
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiaoqi Chen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhihua Yu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hong Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhenbiao Mao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
87
|
Yoon JH, Cho ML, Choi YJ, Back JY, Park MK, Lee SW, Choi BJ, Ashktorab H, Smoot DT, Nam SW, Lee JY, Park WS. Gastrokine 1 regulates NF-κB signaling pathway and cytokine expression in gastric cancers. J Cell Biochem 2013; 114:1800-9. [PMID: 23444260 DOI: 10.1002/jcb.24524] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/13/2013] [Indexed: 12/16/2022]
Abstract
Gastrokine 1 (GKN1) plays an important role in the gastric mucosal defense mechanism and also acts as a functional gastric tumor suppressor. In this study, we examined the effect of GKN1 on the expression of inflammatory mediators, including NF-κB, COX-2, and cytokines in GKN1-transfected AGS cells and shGKN1-transfected HFE-145 cells. Lymphocyte migration and cell viability were also analyzed after treatment with GKN1 and inflammatory cytokines in AGS cells by transwell chemotaxis and an MTT assay, respectively. In GKN1-transfected AGS cells, we observed inactivation and reduced expression of NF-κB and COX-2, whereas shGKN1-transfected HFE-145 cells showed activation and increased expression of NF-κB and COX-2. GKN1 expression induced production of inflammatory cytokines including IL-8 and -17A, but decreased expression of IL-6 and -10. We also found IL-17A expression in 9 (13.6%) out of 166 gastric cancer tissues and its expression was closely associated with GKN1 expression. GKN1 also acted as a chemoattractant for the migration of Jurkat T cells and peripheral B lymphocytes in the transwell assay. In addition, GKN1 significantly reduced cell viability in both AGS and HFE-145 cells. These data suggest that the GKN1 gene may inhibit progression of gastric epithelial cells to cancer cells by regulating NF-κB signaling pathway and cytokine expression.
Collapse
Affiliation(s)
- Jung Hwan Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
GKN1 and miR-185 are associated with CpG island methylator phenotype in gastric cancers. Mol Cell Toxicol 2013. [DOI: 10.1007/s13273-013-0029-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
89
|
The clinicopathological significance of Lgr5 expression in lung adenocarcinoma. Lung Cancer 2013; 82:143-8. [DOI: 10.1016/j.lungcan.2013.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/28/2013] [Accepted: 06/23/2013] [Indexed: 01/06/2023]
|
90
|
Pohjanen VM, Koivurova OP, Mäkinen JM, Karhukorpi JM, Joensuu T, Koistinen PO, Valtonen JM, Niemelä SE, Karttunen RA, Karttunen TJ. Interleukin 6 gene polymorphism -174 is associated with the diffuse type gastric carcinoma. Genes Chromosomes Cancer 2013; 52:976-82. [PMID: 23893709 DOI: 10.1002/gcc.22093] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/28/2013] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to assess the significance of the interleukin 6 gene polymorphism -174 in gastric cancer risk. The interleukin 6 -174 G/C (rs1800795) gene polymorphisms was analyzed in gastric cancer, peptic ulcer, and nonulcer dyspepsia patients and in healthy control subjects and the data were correlated with the histopathological features of the patients' biopsies. The interleukin 6 -174 GG and GC genotypes have been previously associated with high interleukin 6 serum levels. We discovered that the interleukin 6 -174 GG and GC genotypes are associated with an increased risk of the diffuse histologic subtype of gastric carcinomas (OR: 6.809, P = 0.034), but absent in the intestinal type carcinomas (OR: 1.109, P = 0.908). No significant associations with peptic ulcer, gastric atrophy, or intestinal metaplasia were seen. Our results demonstrate that the interleukin 6 -174 GG and GC genotypes increase the risk of the diffuse type gastric carcinoma, but not the intestinal type gastric carcinoma or its precursor conditions, including atrophy or intestinal metaplasia. Thus, interleukin 6 seems to be an important carcinogenetic factor in the diffuse type gastric adenocarcinoma and its carcinogenetic effect could be noninflammatory.
Collapse
Affiliation(s)
- Vesa-Matti Pohjanen
- Department of Pathology, Institute of Diagnostics, University of Oulu and Oulu University Hospital, Oulu, FI-90014, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Regalo G, Leutz A. Hacking cell differentiation: transcriptional rerouting in reprogramming, lineage infidelity and metaplasia. EMBO Mol Med 2013; 5:1154-64. [PMID: 23828660 PMCID: PMC3944458 DOI: 10.1002/emmm.201302834] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/29/2013] [Accepted: 06/04/2013] [Indexed: 12/20/2022] Open
Abstract
Initiating neoplastic cell transformation events are of paramount importance for the comprehension of regeneration and vanguard oncogenic processes but are difficult to characterize and frequently clinically overlooked. In epithelia, pre-neoplastic transformation stages are often distinguished by the appearance of phenotypic features of another differentiated tissue, termed metaplasia. In haemato/lymphopoietic malignancies, cell lineage ambiguity is increasingly recorded. Both, metaplasia and biphenotypic leukaemia/lymphoma represent examples of dysregulated cell differentiation that reflect a history of trans-differentiation and/or epigenetic reprogramming. Here we compare the similarity between molecular events of experimental cell trans-differentiation as an emerging therapeutic concept, with lineage confusion, as in metaplasia and dysplasia forecasting tumour development.
Collapse
Affiliation(s)
- Gonçalo Regalo
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany.
| | | |
Collapse
|
92
|
Hashimoto Y, Akiyama Y, Yuasa Y. Multiple-to-multiple relationships between microRNAs and target genes in gastric cancer. PLoS One 2013; 8:e62589. [PMID: 23667495 PMCID: PMC3648557 DOI: 10.1371/journal.pone.0062589] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/24/2013] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) act as transcriptional regulators and play pivotal roles in carcinogenesis. According to miRNA target databases, one miRNA may regulate many genes as its targets, while one gene may be targeted by many miRNAs. These findings indicate that relationships between miRNAs and their targets may not be one-to-one. However, many reports have described only a one-to-one, one-to-multiple or multiple-to-one relationship between miRNA and its target gene in human cancers. Thus, it is necessary to determine whether or not a combination of some miRNAs would regulate multiple targets and be involved in carcinogenesis. To find some groups of miRNAs that may synergistically regulate their targets in human gastric cancer (GC), we re-analyzed our previous miRNA expression array data and found that 50 miRNAs were up-regulated on treatment with 5-aza-2'-deoxycytidine in a GC cell line. The “TargetScan” miRNA target database predicted that some of these miRNAs have common target genes. We also referred to the GEO database for expression of these common target genes in human GCs, which might be related to gastric carcinogenesis. In this study, we analyzed two miRNA combinations, miR-224 and -452, and miR-181c and -340. Over-expression of both miRNA combinations dramatically down-regulated their target genes, DPYSL2 and KRAS, and KRAS and MECP2, respectively. These miRNA combinations synergistically decreased cell proliferation upon transfection. Furthermore, we revealed that these miRNAs were down-regulated through promoter hypermethylation in GC cells. Thus, it is likely that the relationships between miRNAs and their targets are not one-to-one but multiple-to-multiple in GCs, and that these complex relationships may be related to gastric carcinogenesis.
Collapse
Affiliation(s)
- Yutaka Hashimoto
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhito Yuasa
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
93
|
Bai ZG, Ye YJ, Shen DH, Lu YY, Zhang ZT, Wang S. PTEN expression and suppression of proliferation are associated with Cdx2 overexpression in gastric cancer cells. Int J Oncol 2013; 42:1682-91. [PMID: 23546539 DOI: 10.3892/ijo.2013.1875] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/06/2013] [Indexed: 11/06/2022] Open
Abstract
The prognosis of gastric cancer (GC) is associated with Cdx2 and nuclear PTEN coexpression. This study aimed to determine the expression patterns of Cdx2 and PTEN in various GC tissues and cell lines to identify their relationship in GC. Immunohistochemistry was undertaken to assess the expression patterns of Cdx2 and PTEN in paraffin-embedded specimens of 228 GC patients who had undergone radical D2 gastrostomy with long-term follow-up. Cell growth and tumorigenicity were analyzed in the BGC823 cells with exogenous Cdx2 and any changes in the associated signaling pathways were interpreted in exogenous cdx2 expression and cdx2 knockdown. Cdx2 was found in the nuclei of GC cells in 43.4% (99/228) of the paraffin-embedded biopsies. A higher expression of nuclear PTEN was observed in 36.4% (83/228). Coexpression of Cdx2 and nuclear PTEN was detected in GC tumors (59/228, 25.9%) which correlated with the prognosis of advanced GC patients (p<0.001). The expression levels of Cdx2 and PTEN were variable in the different GC cell lines. However, the trends were similar between PTEN and Cdx2 in GC tissues and cell lines. High expression of Cdx2 and PTEN significantly reduced tumorigenicity in BGC823 cells compared with the empty vector control. Exogenous expression of Cdx2 triggered the upregulation of PTEN expression and decreased PI3K and pAkt expression and vice versa. The coexpression levels of PTEN and Cdx2 in GC tumors correlated with prognosis in GC patients. Cdx2 may play a role in the upregulation of PTEN by triggering PI3K/Akt inactivation in GC cells.
Collapse
Affiliation(s)
- Zhi-Gang Bai
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | | | | | | | | | | |
Collapse
|
94
|
Han ME, Oh SO. Gastric stem cells and gastric cancer stem cells. Anat Cell Biol 2013; 46:8-18. [PMID: 23560232 PMCID: PMC3615616 DOI: 10.5115/acb.2013.46.1.8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/14/2013] [Accepted: 01/23/2013] [Indexed: 12/16/2022] Open
Abstract
The gastric epithelium is continuously regenerated by gastric stem cells, which give rise to various kinds of daughter cells, including parietal cells, chief cells, surface mucous cells, mucous neck cells, and enteroendocrine cells. The self-renewal and differentiation of gastric stem cells need delicate regulation to maintain the normal physiology of the stomach. Recently, it was hypothesized that cancer stem cells drive the cancer growth and metastasis. In contrast to conventional clonal evolution hypothesis, only cancer stem cells can initiate tumor formation, self-renew, and differentiate into various kinds of daughter cells. Because gastric cancer can originate from gastric stem cells and their self-renewal mechanism can be used by gastric cancer stem cells, we review here how critical signaling pathways, including hedgehog, Wnt, Notch, epidermal growth factor, and bone morphogenetic protein signaling, may regulate the self-renewal and differentiation of gastric stem cells and gastric cancer stem cells. In addition, the precancerous change of the gastric epithelium and the status of isolating gastric cancer stem cells from patients are reviewed.
Collapse
Affiliation(s)
- Myoung-Eun Han
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Korea. ; Medical Research Center for Ischemic Tissue Regeneration, Pusan National University, Yangsan, Korea
| | | |
Collapse
|
95
|
Snyder EL, Watanabe H, Magendantz M, Hoersch S, Chen TA, Wang DG, Crowley D, Whittaker CA, Meyerson M, Kimura S, Jacks T. Nkx2-1 represses a latent gastric differentiation program in lung adenocarcinoma. Mol Cell 2013; 50:185-99. [PMID: 23523371 DOI: 10.1016/j.molcel.2013.02.018] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 11/07/2012] [Accepted: 02/14/2013] [Indexed: 12/23/2022]
Abstract
Tissue-specific differentiation programs become dysregulated during cancer evolution. The transcription factor Nkx2-1 is a master regulator of pulmonary differentiation that is downregulated in poorly differentiated lung adenocarcinoma. Here we use conditional murine genetics to determine how the identity of lung epithelial cells changes upon loss of their master cell-fate regulator. Nkx2-1 deletion in normal and neoplastic lungs causes not only loss of pulmonary identity but also conversion to a gastric lineage. Nkx2-1 is likely to maintain pulmonary identity by recruiting transcription factors Foxa1 and Foxa2 to lung-specific loci, thus preventing them from binding gastrointestinal targets. Nkx2-1-negative murine lung tumors mimic mucinous human lung adenocarcinomas, which express gastric markers. Loss of the gastrointestinal transcription factor Hnf4α leads to derepression of the embryonal proto-oncogene Hmga2 in Nkx2-1-negative tumors. These observations suggest that loss of both active and latent differentiation programs is required for tumors to reach a primitive, poorly differentiated state.
Collapse
Affiliation(s)
- Eric L Snyder
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Kwon OH, Park JL, Baek SJ, Noh SM, Song KS, Kim SY, Kim YS. Aberrant upregulation of ASCL2 by promoter demethylation promotes the growth and resistance to 5-fluorouracil of gastric cancer cells. Cancer Sci 2013; 104:391-397. [PMID: 23181270 PMCID: PMC7657231 DOI: 10.1111/cas.12076] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 11/10/2012] [Accepted: 11/15/2012] [Indexed: 12/23/2022] Open
Abstract
Achaete scute-like 2 (ASCL2), a basic helix-loop-helix transcription factor, plays an essential role in the maintenance of adult intestinal stem cells. However, the function of ASCL2 in gastric cancer (GC) is poorly understood. Therefore, we investigated the roles and regulatory transcription mechanisms of ASCL2 in GC. Gene expression and methylation data analysis showed that ASCL2 was upregulated and hypomethylated in GC tissues. Using real-time RT-PCR and pyrosequencing analysis, we confirmed that ASCL2 was overexpressed and hypomethylated in GC tissues compared to adjacent normal tissues. We then investigated the mechanisms underlying the aberrant expression of ASCL2 in GC and found that treatment with a methylation inhibitor induced ASCL2 expression in GC cell lines. MBD-sequencing assay also revealed hypermethylation of the promoter region of ASCL2 in GC cell lines, which barely expressed the ASCL2 gene. Furthermore, ASCL2 expression levels were inversely correlated with GC patient survival. Ectopic overexpression of ASCL2 showed that ASCL2 increased cell growth and promoted resistance to 5-fluorouracil in GC cells. These results suggest that ASCL2 might play an important role in gastric tumor growth and chemoresistance, and could be a useful prognostic marker for GC patients.
Collapse
Affiliation(s)
- Oh-Hyung Kwon
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | | | | | | | | | | | | |
Collapse
|
97
|
Konno-Shimizu M, Yamamichi N, Inada KI, Kageyama-Yahara N, Shiogama K, Takahashi Y, Asada-Hirayama I, Yamamichi-Nishina M, Nakayama C, Ono S, Kodashima S, Fujishiro M, Tsutsumi Y, Ichinose M, Koike K. Cathepsin E is a marker of gastric differentiation and signet-ring cell carcinoma of stomach: a novel suggestion on gastric tumorigenesis. PLoS One 2013; 8:e56766. [PMID: 23451082 PMCID: PMC3579941 DOI: 10.1371/journal.pone.0056766] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/14/2013] [Indexed: 01/25/2023] Open
Abstract
Gastric cancer (GC) presents various histological features, though the mechanism underlying its diversity is seldom elucidated. It is mainly classified into well differentiated tubular adenocarcinoma (tub1), moderately differentiated tubular adenocarcinoma (tub2), poorly differentiated adenocarcinoma (por), signet-ring cell carcinoma (sig), mucinous adenocarcinoma (muc), and papillary adenocarcinoma (pap). By screening, we found cathepsin E (CTSE) expresses universally in sig-type, occasionally in por-type, and rarely in tub1/tub2-type GC cell lines. In surgically-resected specimens, CTSE was immunostained in 50/51 sig-type (98.0%), 3/10 tub1-type (30.0%), 7/18 tub2-type (38.9%), 15/26 por-type (57.7%), 4/10 pap-type (40.0%), and 0/3 muc-type (0.0%) GC. In endoscopically-resected specimens, 6/7 sig-type (85.7%), 7/52 tub1-type (13.7%), 5/12 tub2-type (41.7%), 2/7 pap-type (28.6%) GC and 0/6 adenoma (0.0%) expressed CTSE. For non-malignant tissues, CTSE is universally expressed in normal fundic, pyloric, and cardiac glands of stomach, but hardly in other digestive organs. In the precancerous intestinal metaplasia of stomach, CTSE is mostly observed in mixed gastric-and-intestinal type and deficient in solely-intestinal type. CTSE expression is positively correlated with gastric marker MUC5AC (p<0.0001) and negatively correlated with intestinal marker MUC2 (p = 0.0019). For sig-type GC, in both tumors and background mucosa, expression of MUC5AC and CTSE is high whereas that of MUC2 is low, indicating that sig-type GC reflects the features of background mucosa. For gastric adenoma and tub1/tub2-type GC, more undifferentiated tumors tend to show higher expression of CTSE with MUC5AC and lower expression of MUC2 in tumors, but they tend to present lower expression of CTSE, MUC5AC and MUC2 in background mucosa. These suggest that more malignant gastric adenocarcinoma with stronger gastric and weaker intestinal properties tend to arise from background mucosa with decreased both gastric and intestinal features. In conclusion, CTSE is a marker of both gastric differentiation and signet-ring cell carcinoma, which should shed light on the mechanism of gastric tumorigenesis.
Collapse
Affiliation(s)
- Maki Konno-Shimizu
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobutake Yamamichi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- * E-mail:
| | - Ken-ichi Inada
- 1st Department of Pathology, Fujita Health University School of Medicine, Aichi, Japan
| | - Natsuko Kageyama-Yahara
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuya Shiogama
- 1st Department of Pathology, Fujita Health University School of Medicine, Aichi, Japan
| | - Yu Takahashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Itsuko Asada-Hirayama
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mitsue Yamamichi-Nishina
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chiemi Nakayama
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Ono
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinya Kodashima
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Tsutsumi
- 1st Department of Pathology, Fujita Health University School of Medicine, Aichi, Japan
| | - Masao Ichinose
- Second Department of Internal Medicine, Wakayama Medical College, Wakayama, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
98
|
Cao W, Tian W, Hong J, Li D, Tavares R, Noble L, Moss SF, Resnick MB. Expression of bile acid receptor TGR5 in gastric adenocarcinoma. Am J Physiol Gastrointest Liver Physiol 2013; 304:G322-7. [PMID: 23238937 PMCID: PMC3566614 DOI: 10.1152/ajpgi.00263.2012] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 12/12/2012] [Indexed: 02/08/2023]
Abstract
Bile reflux is a risk factor in the development of intestinal metaplasia in the stomach and is believed to function as an initiator of gastric carcinogenesis. However, whether the G protein-coupled bile acid receptor TGR5 is expressed in this tumor is not known. In this study, we determined the expression of TGR5 in gastric adenocarcinoma and examined the role of TGR5 in cell proliferation. Strong TGR5 staining was present in 12% of cases of intestinal metaplasia but in no cases of normal gastric epithelium (P < 0.01). Moderate to strong TGR5 membranous and cytoplasmic staining was present in 52% of the intestinal but in only 25% of the diffuse subtype of adenocarcinomas (P < 0.001). Kaplan-Meier univariate survival analysis revealed that moderate to strong TGR5 staining was associated with decreased patient survival (P < 0.05). Treatment with taurodeoxycholic acid (TDCA, a bile acid) significantly increased thymidine incorporation in the AGS gastric adenocarcinoma cell line, suggesting that bile acids may increase cell proliferation. This increase was significantly decreased by knockdown of TGR5 with TGR5 small-interfering RNA (siRNA). In addition, overexpression of TGR5 significantly enhanced TDCA-induced increases in thymidine incorporation. TGR5 is coupled with G(q)α and Gα(i-3) proteins. TDCA-induced increase in thymidine incorporation was significantly decreased by knockdown of G(q)α and Gα(i-3) with their siRNAs. We conclude that TGR5 is overexpressed in most gastric intestinal-type adenocarcinomas, and moderate to strong TGR5 staining is associated with decreased patient survival in all gastric adenocarcinomas. Bile acids increase cell proliferation via activation of TGR5 receptors and G(q)α and Gα(i-3) proteins.
Collapse
Affiliation(s)
- Weibiao Cao
- Department of Pathology, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA.
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Rotkrua P, Shimada S, Mogushi K, Akiyama Y, Tanaka H, Yuasa Y. Circulating microRNAs as biomarkers for early detection of diffuse-type gastric cancer using a mouse model. Br J Cancer 2013; 108:932-40. [PMID: 23385731 PMCID: PMC3590667 DOI: 10.1038/bjc.2013.30] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: Diffuse-type gastric cancer (DGC) exhibits rapid disease progression and a poor prognosis. There are no effective serum biomarkers for early detection of DGC. We have established an E-cadherin/p53 double conditional knockout (DCKO) mouse line that recapitulates human DGC morphologically and molecularly. In this study we tried to identify circulating microRNAs (miRNAs) as non-invasive biomarkers for DGC diagnosis using DCKO mice. Methods: We performed miRNA microarray and quantitative reverse transcription–PCR analyses of tissue and serum samples from DCKO mice with DGC and age-matched littermate controls. Results: Comparative analyses showed that mouse and human primary gastric cancers have similar miRNA expression patterns. Next, we selected some candidate miRNAs highly expressed in sera and cancer tissues of DCKO mice for further evaluation. TaqMan quantitative RT–PCR analyses indicated that four of them, miR-103, miR-107, miR-194 and miR-210, were significantly upregulated in sera of both early and advanced-stage DGC-bearing mice compared with in corresponding controls. Receiver-operating characteristic curve analyses demonstrated that these four miRNAs can discriminate DGC-positive cases from normal ones with high sensitivity and specificity. Conclusion: These observations suggest that this mouse model of DGC is useful for identifying serum biomarkers, and we found circulating miRNAs that can accurately detect DGC at an early stage.
Collapse
Affiliation(s)
- P Rotkrua
- Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | | | |
Collapse
|
100
|
Smad interacting protein 1 (SIP1) is associated with peritoneal carcinomatosis in intestinal type gastric cancer. Clin Exp Metastasis 2012; 30:417-29. [PMID: 23143680 DOI: 10.1007/s10585-012-9547-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 10/26/2012] [Indexed: 12/13/2022]
Abstract
Smad interacting protein 1 (SIP1) is an epithelial-mesenchymal transition (EMT)-inducible gene that plays a key role in tumor progression in various cancers. This study seeks to clarify the clinical and biological significance of SIP1 expression, especially in intestinal type gastric cancer. We analyzed the mRNA levels of SIP1 and other EMT regulators by real-time reverse transcription PCR in gastric tissue samples of 134 gastric cancer patients, and in five gastric cancer cell lines. SIP1 gene knockdown by siRNA transfection was performed to evaluate SIP1 function in gastric cancer cells. Expression of the SIP1 gene was significantly higher in cancerous tissue than in adjacent normal mucosa. Although the mRNA expression of the other EMT regulators tested (Snail, Slug, and Twist) was not correlated with clinicopathological factors, increased SIP1 expression was an independent prognostic factor and an independent risk factor for peritoneal dissemination. In addition, SIP1 expression was significantly positive and correlated with vimentin expression. For intestinal type gastric cancer in particular, elevated SIP1 expression was significantly correlated with peritoneal dissemination and poor prognosis (p < 0.05). In vitro, cell proliferation, migration, invasion, and resistance to anoikis were significantly inhibited in SIP1 siRNA-transfected MKN7 cells compared to control siRNA. SIP1 appears to play an important role in progression to peritoneal carcinomatosis and may be a therapeutic target for patients with intestinal type gastric cancer.
Collapse
|