51
|
The Ribosomal Gene Loci-The Power behind the Throne. Genes (Basel) 2021; 12:genes12050763. [PMID: 34069807 PMCID: PMC8157237 DOI: 10.3390/genes12050763] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/20/2022] Open
Abstract
Nucleoli form around actively transcribed ribosomal RNA (rRNA) genes (rDNA), and the morphology and location of nucleolus-associated genomic domains (NADs) are linked to the RNA Polymerase I (Pol I) transcription status. The number of rDNA repeats (and the proportion of actively transcribed rRNA genes) is variable between cell types, individuals and disease state. Substantial changes in nucleolar morphology and size accompanied by concomitant changes in the Pol I transcription rate have long been documented during normal cell cycle progression, development and malignant transformation. This demonstrates how dynamic the nucleolar structure can be. Here, we will discuss how the structure of the rDNA loci, the nucleolus and the rate of Pol I transcription are important for dynamic regulation of global gene expression and genome stability, e.g., through the modulation of long-range genomic interactions with the suppressive NAD environment. These observations support an emerging paradigm whereby the rDNA repeats and the nucleolus play a key regulatory role in cellular homeostasis during normal development as well as disease, independent of their role in determining ribosome capacity and cellular growth rates.
Collapse
|
52
|
Ferrara B, Belbekhouche S, Habert D, Houppe C, Vallée B, Bourgoin-Voillard S, Cohen JL, Cascone I, Courty J. Cell surface nucleolin as active bait for nanomedicine in cancer therapy: a promising option. NANOTECHNOLOGY 2021; 32:322001. [PMID: 33892482 DOI: 10.1088/1361-6528/abfb30] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Conventional chemotherapy used against cancer is mostly limited due to their non-targeted nature, affecting normal tissue and causing undesirable toxic effects to the affected tissue. With the aim of improving these treatments both therapeutically and in terms of their safety, numerous studies are currently being carried out using nanoparticles (NPs) as a vector combining tumor targeting and carrying therapeutic tools. In this context, it appears that nucleolin, a molecule over-expressed on the surface of tumor cells, is an interesting therapeutic target. Several ligands, antagonists of nucleolin of various origins, such as AS1411, the F3 peptide and the multivalent pseudopeptide N6L have been developed and studied as therapeutic tools against cancer. Over the last ten years or so, numerous studies have been published demonstrating that these antagonists can be used as tumor targeting agents with NPs from various origins. Focusing on nucleolin ligands, the aim of this article is to review the literature recently published or under experimentation in our research team to evaluate the efficacy and future development of these tools as anti-tumor agents.
Collapse
Affiliation(s)
- Benedetta Ferrara
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Sabrina Belbekhouche
- Université Paris-Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, F-94320 Thiais, France
| | - Damien Habert
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Claire Houppe
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Benoit Vallée
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Sandrine Bourgoin-Voillard
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
- Université Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics/Prométhée Proteomic Platform, UGA-INSERM U1055-CHUGA, Grenoble, France
- Université Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC, PROMETHEE Proteomic Platform, Grenoble, France
| | - José L Cohen
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Ilaria Cascone
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - José Courty
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| |
Collapse
|
53
|
Ullah R, Yin Q, Snell AH, Wan L. RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer Biol 2021; 85:123-154. [PMID: 33992782 DOI: 10.1016/j.semcancer.2021.05.010] [Citation(s) in RCA: 235] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
The RAF-MEK-ERK signaling cascade is a well-characterized MAPK pathway involved in cell proliferation and survival. The three-layered MAPK signaling cascade is initiated upon RTK and RAS activation. Three RAF isoforms ARAF, BRAF and CRAF, and their downstream MEK1/2 and ERK1/2 kinases constitute a coherently orchestrated signaling module that directs a range of physiological functions. Genetic alterations in this pathway are among the most prevalent in human cancers, which consist of numerous hot-spot mutations such as BRAFV600E. Oncogenic mutations in this pathway often override otherwise tightly regulated checkpoints to open the door for uncontrolled cell growth and neoplasia. The crosstalk between the RAF-MEK-ERK axis and other signaling pathways further extends the proliferative potential of this pathway in human cancers. In this review, we summarize the molecular architecture and physiological functions of the RAF-MEK-ERK pathway with emphasis on its dysregulations in human cancers, as well as the efforts made to target the RAF-MEK-ERK module using small molecule inhibitors.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Qing Yin
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Aidan H Snell
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Lixin Wan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA; Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
54
|
Lee JEA, Parsons LM, Quinn LM. MYC function and regulation in flies: how Drosophila has enlightened MYC cancer biology. AIMS GENETICS 2021. [DOI: 10.3934/genet.2014.1.81] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractProgress in our understanding of the complex signaling events driving human cancer would have been unimaginably slow without discoveries from Drosophila genetic studies. Significantly, many of the signaling pathways now synonymous with cancer biology were first identified as a result of elegant screens for genes fundamental to metazoan development. Indeed the name given to many core cancer-signaling cascades tells of their history as developmental patterning regulators in flies—e.g. Wingless (Wnt), Notch and Hippo. Moreover, astonishing insight has been gained into these complex signaling networks, and many other classic oncogenic signaling networks (e.g. EGFR/RAS/RAF/ERK, InR/PI3K/AKT/TOR), using sophisticated fly genetics. Of course if we are to understand how these signaling pathways drive cancer, we must determine the downstream program(s) of gene expression activated to promote the cell and tissue over growth fundamental to cancer. Here we discuss one commonality between each of these pathways: they are all implicated as upstream activators of the highly conserved MYC oncogene and transcription factor. MYC can drive all aspects of cell growth and cell cycle progression during animal development. MYC is estimated to be dysregulated in over 50% of all cancers, underscoring the importance of elucidating the signals activating MYC. We also discuss the FUBP1/FIR/FUSE system, which acts as a ‘cruise control’ on the MYC promoter to control RNA Polymerase II pausing and, therefore, MYC transcription in response to the developmental signaling environment. Importantly, the striking conservation between humans and flies within these major axes of MYC regulation has made Drosophila an extremely valuable model organism for cancer research. We therefore discuss how Drosophila studies have helped determine the validity of signaling pathways regulating MYC in vivo using sophisticated genetics, and continue to provide novel insight into cancer biology.
Collapse
Affiliation(s)
- Jue Er Amanda Lee
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville 3010, Melbourne, Australia
| | - Linda May Parsons
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville 3010, Melbourne, Australia
| | - Leonie M. Quinn
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville 3010, Melbourne, Australia
| |
Collapse
|
55
|
Xu S, Ma Y, Tong Q, Yang J, Liu J, Wang Y, Li G, Zeng J, Fang S, Li F, Xie X, Zhang J. Cullin-5 neddylation-mediated NOXA degradation is enhanced by PRDX1 oligomers in colorectal cancer. Cell Death Dis 2021; 12:265. [PMID: 33712558 PMCID: PMC7954848 DOI: 10.1038/s41419-021-03557-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 01/03/2023]
Abstract
NOXA, a BH3-only proapoptotic protein involved in regulating cell death decisions, is highly expressed but short-lived in colorectal cancer (CRC). Neddylated cullin-5 (CUL5)-mediated ubiquitination and degradation of NOXA is crucial to prevent its overaccumulation and maintain an appropriate action time. However, how this process is manipulated by CRC cells commonly exposed to oxidative stress remain unknown. The peroxiredoxin PRDX1, a conceivable antioxidant overexpressed in CRC tissues, has been shown to inhibit apoptosis and TRAF6 ubiquitin-ligase activity. In this study, we found that PRDX1 inhibits CRC cell apoptosis by downregulating NOXA. Mechanistically, PRDX1 promotes NOXA ubiquitination and degradation, which completely depend on CUL5 neddylation. Further studies have demonstrated that PRDX1 oligomers bind with both the Nedd8-conjugating enzyme UBE2F and CUL5 and that this tricomplex is critical for CUL5 neddylation, since silencing PRDX1 or inhibiting PRDX1 oligomerization greatly dampens CUL5 neddylation and NOXA degradation. An increase in reactive oxygen species (ROS) is not only a hallmark of cancer cells but also the leading driving force for PRDX1 oligomerization. As shown in our study, although ROS play a role in upregulating NOXA mRNA transcription, ROS scavenging in CRC cells by N-acetyl-L-cysteine (NAC) can significantly reduce CUL5 neddylation and extend the NOXA protein half-life. Therefore, in CRC, PRDX1 plays a key role in maintaining intracellular homeostasis under conditions of high metabolic activity by reinforcing UBE2F-CUL5-mediated degradation of NOXA, which is also evidenced in the resistance of CRC cells to etoposide treatment. Based on these findings, targeting PRDX1 could be an effective strategy to overcome the resistance of CRC to DNA damage-inducing chemotherapeutics.
Collapse
Affiliation(s)
- Shoufang Xu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Yilei Ma
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Qingchao Tong
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Jun Yang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Department of Cytopathology, Ningbo Diagnostic Pathology Center, Ningbo, Zhejiang, P.R. China
- Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, P. R. China
| | - Jia Liu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Yanzhong Wang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Guoli Li
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Jin Zeng
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Sining Fang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Fengying Li
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Xinyou Xie
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China.
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China.
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China.
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China.
| |
Collapse
|
56
|
Xu X, Feng H, Dai C, Lu W, Zhang J, Guo X, Yin Q, Wang J, Cui X, Jiang F. Therapeutic efficacy of the novel selective RNA polymerase I inhibitor CX-5461 on pulmonary arterial hypertension and associated vascular remodelling. Br J Pharmacol 2021; 178:1605-1619. [PMID: 33486761 PMCID: PMC9328314 DOI: 10.1111/bph.15385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/15/2022] Open
Abstract
Background and Purpose CX‐5461 is a novel selective RNA polymerase I (Pol I) inhibitor. Previously, we found that CX‐5461 could inhibit pathological arterial remodelling caused by angioplasty and transplantation. In the present study, we explored the pharmacological effects of CX‐5461 on experimental pulmonary arterial hypertension (PAH) and PAH‐associated vascular remodelling. Experimental Approach PAH was induced in Sprague–Dawley rats by monocrotaline or Sugen/hypoxia. Key Results We demonstrated that CX‐5461 was well tolerated for in vivo treatments. CX‐5461 prevented the development of pulmonary arterial remodelling, perivascular inflammation, pulmonary hypertension, and improved survival. More importantly, CX‐5461 partly reversed established pulmonary hypertension. In vitro, CX‐5461 induced cell cycle arrest in human pulmonary arterial smooth muscle cells. The beneficial effects of CX‐5461 in vivo and in vitro were associated with increased activation (phosphorylation) of p53. Conclusion and Implications Our results suggest that pharmacological inhibition of Pol I may be a novel therapeutic strategy to treat otherwise drug‐resistant PAH.
Collapse
Affiliation(s)
- Xia Xu
- Department of Geriatrics & Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hua Feng
- Department of gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Chaochao Dai
- Department of Geriatrics & Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Weida Lu
- Department of Geriatrics & Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jun Zhang
- Department of Cardiovascular Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xiaosun Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong, China
| | - Qihui Yin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong, China
| | - Jianli Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaopei Cui
- Department of Geriatrics & Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fan Jiang
- Department of Geriatrics & Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
57
|
Liang H, Du J, Elhassan RM, Hou X, Fang H. Recent progress in development of cyclin-dependent kinase 7 inhibitors for cancer therapy. Expert Opin Investig Drugs 2021; 30:61-76. [PMID: 33183110 DOI: 10.1080/13543784.2021.1850693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Cyclin-dependent kinase 7 (CDK7) is a part of the CDK-activating kinase family (CAK) which has a key role in the cell cycle and transcriptional regulation. Several lines of evidence suggest that CDK7 is a promising therapeutic target for cancer. CDK7 selective inhibitors such as SY-5609 and CT7001 are in clinical development. Areas covered: We explore the biology of CDK7 and its role in cancer and follow this with an evaluation of the preclinical and clinical progress of CDK7 inhibitors, and their potential in the clinic. We searched PubMed and ClinicalTrials to identify relevant data from the database inception to 14 October 2020. Expert opinion: CDK7 inhibitors are next generation therapeutics for cancer. However, there are still challenges which include selectively, side effects, and drug resistance. Nevertheless, with ongoing clinical development of these inhibitors and greater analysis of their target, CDK7 inhibitors will become a promising approach for treatment of cancer in the near future.
Collapse
Affiliation(s)
- Hanzhi Liang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, Shandong, China
| | - Jintong Du
- Shandong Cancer Hospital and Institute, Shandong First Medical University , Jinan, Shandong, China
| | - Reham M Elhassan
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, Shandong, China
| | - Xuben Hou
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, Shandong, China
| | - Hao Fang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, Shandong, China
| |
Collapse
|
58
|
Marcel V, Kielbassa J, Marchand V, Natchiar KS, Paraqindes H, Nguyen Van Long F, Ayadi L, Bourguignon-Igel V, Lo Monaco P, Monchiet D, Scott V, Tonon L, Bray SE, Diot A, Jordan LB, Thompson AM, Bourdon JC, Dubois T, André F, Catez F, Puisieux A, Motorin Y, Klaholz BP, Viari A, Diaz JJ. Ribosomal RNA 2'O-methylation as a novel layer of inter-tumour heterogeneity in breast cancer. NAR Cancer 2020; 2:zcaa036. [PMID: 34316693 PMCID: PMC8210124 DOI: 10.1093/narcan/zcaa036] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Recent epitranscriptomics studies unravelled that ribosomal RNA (rRNA) 2′O-methylation is an additional layer of gene expression regulation highlighting the ribosome as a novel actor of translation control. However, this major finding lies on evidences coming mainly, if not exclusively, from cellular models. Using the innovative next-generation RiboMeth-seq technology, we established the first rRNA 2′O-methylation landscape in 195 primary human breast tumours. We uncovered the existence of compulsory/stable sites, which show limited inter-patient variability in their 2′O-methylation level, which map on functionally important sites of the human ribosome structure and which are surrounded by variable sites found from the second nucleotide layers. Our data demonstrate that some positions within the rRNA molecules can tolerate absence of 2′O-methylation in tumoral and healthy tissues. We also reveal that rRNA 2′O-methylation exhibits intra- and inter-patient variability in breast tumours. Its level is indeed differentially associated with breast cancer subtype and tumour grade. Altogether, our rRNA 2′O-methylation profiling of a large-scale human sample collection provides the first compelling evidence that ribosome variability occurs in humans and suggests that rRNA 2′O-methylation might represent a relevant element of tumour biology useful in clinic. This novel variability at molecular level offers an additional layer to capture the cancer heterogeneity and associates with specific features of tumour biology thus offering a novel targetable molecular signature in cancer.
Collapse
Affiliation(s)
- Virginie Marcel
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France
| | - Janice Kielbassa
- Synergie Lyon Cancer, Gilles Thomas Bioinformatics Platform, Centre Léon Bérard, 69008 Lyon, France
| | - Virginie Marchand
- UMS2008 IBSLor CNRS-INSERM-Lorraine University, Biopôle, 9 avenue de la forêt de haye, 54505 Vandoeuvre-les-Nancy, France
| | - Kundhavai S Natchiar
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC, CNRS, Inserm, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Hermes Paraqindes
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France
| | - Flora Nguyen Van Long
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France
| | - Lilia Ayadi
- UMS2008 IBSLor CNRS-INSERM-Lorraine University, Biopôle, 9 avenue de la forêt de haye, 54505 Vandoeuvre-les-Nancy, France
| | - Valérie Bourguignon-Igel
- UMS2008 IBSLor CNRS-INSERM-Lorraine University, Biopôle, 9 avenue de la forêt de haye, 54505 Vandoeuvre-les-Nancy, France
| | - Piero Lo Monaco
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France
| | - Déborah Monchiet
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France
| | - Véronique Scott
- Predictive biomarkers and novel therapeutic strategies Group, Institut Gustave Roussy, University of Paris Sud, INSERM 981, Université Paris Saclay, 114 rue Edouard Vaillant, 94800 Villejuif, France
| | - Laurie Tonon
- Synergie Lyon Cancer, Gilles Thomas Bioinformatics Platform, Centre Léon Bérard, 69008 Lyon, France
| | - Susan E Bray
- Tayside Tissue Bank, Ninewells Hospital and Medical School, NHS Tayside, Dundee DD1 9SY, Scotland, UK
| | - Alexandra Diot
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, Scotland, UK
| | - Lee B Jordan
- Department of Pathology, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Alastair M Thompson
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, Scotland, UK
| | - Jean-Christophe Bourdon
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, Scotland, UK
| | - Thierry Dubois
- Breast Cancer Biology Group, Translational Research Department, Institut Curie-PSL Research University, 26 rue d'Ulm, 75005 Paris, France
| | - Fabrice André
- Predictive biomarkers and novel therapeutic strategies Group, Institut Gustave Roussy, University of Paris Sud, INSERM 981, Université Paris Saclay, 114 rue Edouard Vaillant, 94800 Villejuif, France
| | - Frédéric Catez
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France
| | - Alain Puisieux
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France
| | - Yuri Motorin
- UMS2008 IBSLor CNRS-INSERM-Lorraine University, Biopôle, 9 avenue de la forêt de haye, 54505 Vandoeuvre-les-Nancy, France
| | - Bruno P Klaholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC, CNRS, Inserm, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Alain Viari
- Synergie Lyon Cancer, Gilles Thomas Bioinformatics Platform, Centre Léon Bérard, 69008 Lyon, France
| | - Jean-Jacques Diaz
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France
| |
Collapse
|
59
|
Barlaam B, Casella R, Cidado J, Cook C, De Savi C, Dishington A, Donald CS, Drew L, Ferguson AD, Ferguson D, Glossop S, Grebe T, Gu C, Hande S, Hawkins J, Hird AW, Holmes J, Horstick J, Jiang Y, Lamb ML, McGuire TM, Moore JE, O'Connell N, Pike A, Pike KG, Proia T, Roberts B, San Martin M, Sarkar U, Shao W, Stead D, Sumner N, Thakur K, Vasbinder MM, Varnes JG, Wang J, Wang L, Wu D, Wu L, Yang B, Yao T. Discovery of AZD4573, a Potent and Selective Inhibitor of CDK9 That Enables Short Duration of Target Engagement for the Treatment of Hematological Malignancies. J Med Chem 2020; 63:15564-15590. [PMID: 33306391 DOI: 10.1021/acs.jmedchem.0c01754] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A CDK9 inhibitor having short target engagement would enable a reduction of Mcl-1 activity, resulting in apoptosis in cancer cells dependent on Mcl-1 for survival. We report the optimization of a series of amidopyridines (from compound 2), focusing on properties suitable for achieving short target engagement after intravenous administration. By increasing potency and human metabolic clearance, we identified compound 24, a potent and selective CDK9 inhibitor with suitable predicted human pharmacokinetic properties to deliver transient inhibition of CDK9. Furthermore, the solubility of 24 was considered adequate to allow i.v. formulation at the anticipated effective dose. Short-term treatment with compound 24 led to a rapid dose- and time-dependent decrease of pSer2-RNAP2 and Mcl-1, resulting in cell apoptosis in multiple hematological cancer cell lines. Intermittent dosing of compound 24 demonstrated efficacy in xenograft models derived from multiple hematological tumors. Compound 24 is currently in clinical trials for the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Bernard Barlaam
- Oncology R&D, AstraZeneca, Cambridge, CB4 0WG, United Kingdom
| | - Robert Casella
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Justin Cidado
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Calum Cook
- Oncology R&D, AstraZeneca, Macclesfield, SK10 2NA, United Kingdom
| | - Chris De Savi
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | | | - Craig S Donald
- Oncology R&D, AstraZeneca, Cambridge, CB4 0WG, United Kingdom
| | - Lisa Drew
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Andrew D Ferguson
- Discovery Sciences, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Douglas Ferguson
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Steve Glossop
- Oncology R&D, AstraZeneca, Cambridge, CB4 0WG, United Kingdom
| | - Tyler Grebe
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Chungang Gu
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Sudhir Hande
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Janet Hawkins
- Oncology R&D, AstraZeneca, Cambridge, CB4 0WG, United Kingdom
| | - Alexander W Hird
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Jane Holmes
- Oncology R&D, AstraZeneca, Cambridge, CB4 0WG, United Kingdom
| | - James Horstick
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Yun Jiang
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing, 100176, P. R. China
| | - Michelle L Lamb
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | | | - Jane E Moore
- Oncology R&D, AstraZeneca, Cambridge, CB4 0WG, United Kingdom
| | - Nichole O'Connell
- Discovery Sciences, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Andy Pike
- Oncology R&D, AstraZeneca, Cambridge, CB4 0WG, United Kingdom
| | - Kurt G Pike
- Oncology R&D, AstraZeneca, Cambridge, CB4 0WG, United Kingdom
| | - Theresa Proia
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Bryan Roberts
- Oncology R&D, AstraZeneca, Cambridge, CB4 0WG, United Kingdom
| | | | - Ujjal Sarkar
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Wenlin Shao
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Darren Stead
- Oncology R&D, AstraZeneca, Cambridge, CB4 0WG, United Kingdom
| | - Neil Sumner
- Oncology R&D, AstraZeneca, Cambridge, CB4 0WG, United Kingdom
| | - Kumar Thakur
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | | | - Jeffrey G Varnes
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Jianyan Wang
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Lei Wang
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing, 100176, P. R. China
| | - Dedong Wu
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Liangwei Wu
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing, 100176, P. R. China
| | - Bin Yang
- Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Tieguang Yao
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing, 100176, P. R. China
| |
Collapse
|
60
|
Kour A, Sambyal V, Guleria K, Singh NR, Uppal MS, Manjari M, Sudan M. In silico pathway analysis based on chromosomal instability in breast cancer patients. BMC Med Genomics 2020; 13:168. [PMID: 33167967 PMCID: PMC7653868 DOI: 10.1186/s12920-020-00811-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/11/2020] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Complex genomic changes that arise in tumors are a consequence of chromosomal instability. In tumor cells genomic aberrations disrupt core signaling pathways involving various genes, thus delineating of signaling pathways can help understand the pathogenesis of cancer. The bioinformatics tools can further help in identifying networks of interactions between the genes to get a greater biological context of all genes affected by chromosomal instability. METHODS Karyotypic analyses was done in 150 clinically confirmed breast cancer patients and 150 age and gender matched healthy controls after 72 h Peripheral lymphocyte culturing and GTG-banding. Reactome database from Cytoscape software version 3.7.1 was used to perform in-silico analysis (functional interaction and gene enrichment). RESULTS Frequency of chromosomal aberrations (structural and numerical) was found to be significantly higher in patients as compared to controls. The genes harbored by chromosomal regions showing increased aberration frequency in patients were further analyzed in-silico. Pathway analysis on a set of genes that were not linked together revealed that genes HDAC3, NCOA1, NLRC4, COL1A1, RARA, WWTR1, and BRCA1 were enriched in the RNA Polymerase II Transcription pathway which is involved in recruitment, initiation, elongation and dissociation during transcription. CONCLUSION The current study employs the information inferred from chromosomal instability analysis in a non-target tissue for determining the genes and the pathways associated with breast cancer. These results can be further extrapolated by performing either mutation analysis in the genes/pathways deduced or expression analysis which can pinpoint the relevant functional impact of chromosomal instability.
Collapse
Affiliation(s)
- Akeen Kour
- Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Vasudha Sambyal
- Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India.
| | - Kamlesh Guleria
- Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Neeti Rajan Singh
- Department of Surgery, Sri Guru Ram Das Institute of Medical Sciences and Research, Vallah, Amritsar, Punjab, India
| | - Manjit Singh Uppal
- Department of Surgery, Sri Guru Ram Das Institute of Medical Sciences and Research, Vallah, Amritsar, Punjab, India
| | - Mridu Manjari
- Department of Pathology, Sri Guru Ram Das Institute of Medical Sciences and Research, Vallah, Amritsar, Punjab, India
| | - Meena Sudan
- Department of Radiotherapy, Sri Guru Ram Das Institute of Medical Sciences and Research, Vallah, Amritsar, Punjab, India
| |
Collapse
|
61
|
Zhang W, Cheng W, Parlato R, Guo X, Cui X, Dai C, Xu L, Zhu J, Zhu M, Luo K, Zhang W, Dong B, Wang J, Jiang F. Nucleolar stress induces a senescence-like phenotype in smooth muscle cells and promotes development of vascular degeneration. Aging (Albany NY) 2020; 12:22174-22198. [PMID: 33146634 PMCID: PMC7695416 DOI: 10.18632/aging.104094] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/31/2020] [Indexed: 12/24/2022]
Abstract
Senescence of smooth muscle cells (SMCs) has a crucial role in the pathogenesis of abdominal aortic aneurysm (AAA), a disease of vascular degeneration. Perturbation of cellular ribosomal DNA (rDNA) transcription triggers nucleolar stress response. Previously we demonstrated that induction of nucleolar stress in SMCs elicited cell cycle arrest via the ataxia-telangiectasia mutated (ATM)/ATM- and Rad3-related (ATR)-p53 axis. However, the specific roles of nucleolar stress in vascular degeneration remain unexplored. In the present study, we demonstrated for the first time that in both human and animal AAA tissues, there were non-coordinated changes in the expression of RNA polymerase I machinery components, including a downregulation of transcription initiation factor-IA (TIF-IA). Genetic deletion of TIF-IA in SMCs in mice (smTIF-IA-/-) caused spontaneous aneurysm-like lesions in the aorta. In vitro, induction of nucleolar stress triggered a non-canonical DNA damage response, leading to p53 phosphorylation and a senescence-like phenotype in SMCs. In human AAA tissues, there was increased nucleolar stress in medial cells, accompanied by localized DNA damage response within the nucleolar compartment. Our data suggest that perturbed rDNA transcription and induction of nucleolar stress contribute to the pathogenesis of AAA. Moreover, smTIF-IA-/- mice may be a novel animal model for studying spontaneous AAA-like vascular degenerations.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Wen Cheng
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Rosanna Parlato
- Institute of Applied Physiology, University of Ulm, Ulm, Germany.,Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Xiaosun Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xiaopei Cui
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Chaochao Dai
- Department of Physiology and Pathophysiology, School of Basic Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Lei Xu
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiankang Zhu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Min Zhu
- Department of Transplant Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Kun Luo
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Wencheng Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Jianli Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.,Current address: Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Fan Jiang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
62
|
Wang W, Chen Y, Xu A, Cai M, Cao J, Zhu H, Yang B, Shao X, Ying M, He Q. Protein phase separation: A novel therapy for cancer? Br J Pharmacol 2020; 177:5008-5030. [PMID: 32851637 DOI: 10.1111/bph.15242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/18/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
In recent years, phase separation has been increasingly reported to play a pivotal role in a wide range of biological processes. Due to the close relationships between cancer and disorders in intracellular physiological function, the identification of new mechanisms involved in intracellular regulation has been regarded as a new direction for cancer therapy. Introducing the concept of phase separation into complex descriptions of disease mechanisms may provide many different insights. Here, we review the recent findings on the phase separation of cancer-related proteins, describing the possible relationships between phase separation and key proteins associated with cancer and indicate possible regulatory modalities, especially drug candidates for phase separation, which may provide more effective strategies for cancer therapy.
Collapse
Affiliation(s)
- Wei Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yingqian Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Aixiao Xu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Minyi Cai
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xuejing Shao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
63
|
A tRNA-Derived Small RNA Regulates Ribosomal Protein S28 Protein Levels after Translation Initiation in Humans and Mice. Cell Rep 2020; 29:3816-3824.e4. [PMID: 31851915 DOI: 10.1016/j.celrep.2019.11.062] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/03/2019] [Accepted: 11/14/2019] [Indexed: 12/21/2022] Open
Abstract
tRNA-derived small RNAs (tsRNAs) have been implicated in many cellular processes, yet the detailed mechanisms are not well defined. We previously found that the 3' end of Leu-CAG tRNA-derived small RNA (LeuCAG3'tsRNA) regulates ribosome biogenesis in humans by maintaining ribosomal protein S28 (RPS28) levels. The tsRNA binds to coding (CDS) and non-coding 3' UTR sequence in the RPS28 mRNA, altering its secondary structure and enhancing its translation. Here we report that the functional 3' UTR target site is present in primates while the CDS target site is present in many vertebrates. We establish that this tsRNA also regulates mouse Rps28 translation by interacting with the CDS target site. We further establish that the change in mRNA translation occurred at a post-initiation step in both species. Overall, our results suggest that LeuCAG3'tsRNA might maintain ribosome biogenesis through a conserved gene regulatory mechanism in vertebrates.
Collapse
|
64
|
Sorino C, Catena V, Bruno T, De Nicola F, Scalera S, Bossi G, Fabretti F, Mano M, De Smaele E, Fanciulli M, Iezzi S. Che-1/AATF binds to RNA polymerase I machinery and sustains ribosomal RNA gene transcription. Nucleic Acids Res 2020; 48:5891-5906. [PMID: 32421830 PMCID: PMC7293028 DOI: 10.1093/nar/gkaa344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Originally identified as an RNA polymerase II interactor, Che-1/AATF (Che-1) has now been recognized as a multifunctional protein involved in cell-cycle regulation and cancer progression, as well as apoptosis inhibition and response to stress. This protein displays a peculiar nucleolar localization and it has recently been implicated in pre-rRNA processing and ribosome biogenesis. Here, we report the identification of a novel function of Che-1 in the regulation of ribosomal RNA (rRNA) synthesis, in both cancer and normal cells. We demonstrate that Che-1 interacts with RNA polymerase I and nucleolar upstream binding factor (UBF) and promotes RNA polymerase I-dependent transcription. Furthermore, this protein binds to the rRNA gene (rDNA) promoter and modulates its epigenetic state by contrasting the recruitment of HDAC1. Che-1 downregulation affects RNA polymerase I and UBF recruitment on rDNA and leads to reducing rDNA promoter activity and 47S pre-rRNA production. Interestingly, Che-1 depletion induces abnormal nucleolar morphology associated with re-distribution of nucleolar proteins. Finally, we show that upon DNA damage Che-1 re-localizes from rDNA to TP53 gene promoter to induce cell-cycle arrest. This previously uncharacterized function of Che-1 confirms the important role of this protein in the regulation of ribosome biogenesis, cellular proliferation and response to stress.
Collapse
Affiliation(s)
- Cristina Sorino
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy.,Department of Experimental Medicine, Sapienza-University of Rome, 00161 Rome, Italy
| | - Valeria Catena
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Tiziana Bruno
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Francesca De Nicola
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Stefano Scalera
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Gianluca Bossi
- Oncogenomic and Epigenetic Unit, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Francesca Fabretti
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50937 Cologne, Germany.,CECAD, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50931 Cologne, Germany
| | - Miguel Mano
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra 3060 197, Portugal
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza-University of Rome, 00161 Rome, Italy
| | - Maurizio Fanciulli
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Simona Iezzi
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| |
Collapse
|
65
|
Shu WJ, Chen R, Yin ZH, Li F, Zhang H, Du HN. Rph1 coordinates transcription of ribosomal protein genes and ribosomal RNAs to control cell growth under nutrient stress conditions. Nucleic Acids Res 2020; 48:8360-8373. [PMID: 32619236 PMCID: PMC7470948 DOI: 10.1093/nar/gkaa558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 12/24/2022] Open
Abstract
Coordinated regulation of ribosomal RNA (rRNA) synthesis and ribosomal protein gene (RPG) transcription by eukaryotic RNA polymerases (RNAP) is a key requirement for growth control. Although evidence for balance between RNPI-dependent 35S rRNA production and RNAPII-mediated RPG transcription have been described, the molecular basis is still obscure. Here, we found that Rph1 modulates the transcription status of both rRNAs and RPGs in yeast. We show that Rph1 widely associates with RNAPI and RNAPII-transcribed genes. Deletion of RPH1 remarkably alleviates cell slow growth caused by TORC1 inhibition via derepression of rRNA and RPG transcription under nutrient stress conditions. Mechanistically, Rim15 kinase phosphorylates Rph1 upon rapamycin treatment. Phosphorylation-mimetic mutant of Rph1 exhibited more resistance to rapamycin treatment, decreased association with ribosome-related genes, and faster cell growth compared to the wild-type, indicating that Rph1 dissociation from chromatin ensures cell survival upon nutrient stress. Our results uncover the role of Rph1 in coordination of RNA polymerases-mediated transcription to control cell growth under nutrient stress conditions.
Collapse
Affiliation(s)
- Wen-Jie Shu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 China
| | - Runfa Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 China
| | - Zhao-Hong Yin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 China
| | - Feng Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 China
| | - Heng Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, 3888 Chenhua Road, Shanghai, 201062, China
| | - Hai-Ning Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 China
| |
Collapse
|
66
|
Lam FC, Kong YW, Huang Q, Vu Han TL, Maffa AD, Kasper EM, Yaffe MB. BRD4 prevents the accumulation of R-loops and protects against transcription-replication collision events and DNA damage. Nat Commun 2020; 11:4083. [PMID: 32796829 PMCID: PMC7428008 DOI: 10.1038/s41467-020-17503-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/17/2020] [Indexed: 12/20/2022] Open
Abstract
Proper chromatin function and maintenance of genomic stability depends on spatiotemporal coordination between the transcription and replication machinery. Loss of this coordination can lead to DNA damage from increased transcription-replication collision events. We report that deregulated transcription following BRD4 loss in cancer cells leads to the accumulation of RNA:DNA hybrids (R-loops) and collisions with the replication machinery causing replication stress and DNA damage. Whole genome BRD4 and γH2AX ChIP-Seq with R-loop IP qPCR reveals that BRD4 inhibition leads to accumulation of R-loops and DNA damage at a subset of known BDR4, JMJD6, and CHD4 co-regulated genes. Interference with BRD4 function causes transcriptional downregulation of the DNA damage response protein TopBP1, resulting in failure to activate the ATR-Chk1 pathway despite increased replication stress, leading to apoptotic cell death in S-phase and mitotic catastrophe. These findings demonstrate that inhibition of BRD4 induces transcription-replication conflicts, DNA damage, and cell death in oncogenic cells.
Collapse
Affiliation(s)
- Fred C Lam
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA.
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA.
- Faculty of Health Sciences, Division of Neurosurgery, Hamilton General Hospital, McMaster University, 237 Barton St E, Hamilton, ON, L8L 2X2, Canada.
| | - Yi Wen Kong
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
| | - Qiuying Huang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
| | - Tu-Lan Vu Han
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
| | - Amanda D Maffa
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
| | - Ekkehard M Kasper
- Faculty of Health Sciences, Division of Neurosurgery, Hamilton General Hospital, McMaster University, 237 Barton St E, Hamilton, ON, L8L 2X2, Canada
| | - Michael B Yaffe
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA.
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA.
- Departments of Biology and Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Beth Israel Deaconess Medical Center, Department of Surgery, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
67
|
Network of clinically-relevant lncRNAs-mRNAs associated with prognosis of hepatocellular carcinoma patients. Sci Rep 2020; 10:11124. [PMID: 32636408 PMCID: PMC7341759 DOI: 10.1038/s41598-020-67742-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/12/2020] [Indexed: 12/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are often aberrantly expressed in Hepatocellular Carcinoma (HCC). We hypothesize that lncRNAs modulate HCC prognoses through differential deregulation of key lncRNAs affecting important gene network in key cancer pathways associated with pertinent clinical phenotype. Here, we present a novel approach integrating lncRNA-mRNA expression profiles with clinical characteristics to identify lncRNA signatures in clinically-relevant co-expression lncRNA-mRNA networks residing in pertinent cancer pathways. Notably one network, associated with poorer prognosis, comprises five up-regulated lncRNAs significantly correlated (|Pearson Correlation Coefficient|≥ 0.9) with 91 up-regulated genes in the cell-cycle and Rho-GTPase pathways. All 5 lncRNAs and 85/91 (93.4%) of the correlated genes were significantly associated with higher tumor-grade while 3/5 lncRNAs were also associated with no tumor capsule. Interestingly, 2/5 lncRNAs that are correlated with numerous genes in this oncogenic network were experimentally shown to up-regulate genes involved in cell-cycle and transcriptional regulation. Another network comprising 4 down-regulated lncRNAs and 8 down-regulated metallothionein-family genes are significantly associated with tumor invasion. The identification of these key lncRNAs signatures that deregulate important network of genes in key cancer pathways associated with pertinent clinical phenotype may facilitate the design of novel therapeutic strategies targeting these 'master' regulators for better patient outcome.
Collapse
|
68
|
He L, Guo S, Zhu T, Chen C, Xu K. Down-Regulation of the Mammalian Target of Rapamycin (mTOR) Pathway Mediates the Effects of the Paeonol-Platinum(II) Complex in Human Thyroid Carcinoma Cells and Mouse SW1736 Tumor Xenografts. Med Sci Monit 2020; 26:e922561. [PMID: 32594094 PMCID: PMC7341900 DOI: 10.12659/msm.922561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background This study aimed to investigate the effects of the paeonol-platinum(II) (PL-Pt[II]) complex on SW1736 human anaplastic thyroid carcinoma cell line and the BHP7-13 human thyroid papillary carcinoma cell line in vitro and on mouse SW1736 tumor xenografts in vivo. Material/Methods The cytotoxic effects of the PL-Pt(II) complex on SW1736 cells and BHP7-13 cells was measured using the MTT assay. Western blot measured the expression levels of cyclins, cell apoptotic proteins, and signaling proteins. DNA content and apoptosis were detected by flow cytometry. SW1736 cell thyroid tumor xenografts were established in mice followed by treatment with the PL-Pt(II) complex. Results Treatment of the SW1736 and BHP7-13 cells with the PL-Pt(II) complex reduced cell proliferation in a dose-dependent manner, with an IC50 of 1.25 μM and 1.0 μM, respectively, and increased the cell fraction in G0/G1phase, inhibited p53, cyclin D1, promoted p27 and p21 expression, and significantly increased the sub-G1 fraction. Treatment with the PL-Pt(II) complex increased caspase-3 degradation, reduced the expression of p-4EBP1, p-4E-BP1 and p-S6, and reduced the expression of p-ERK1/2 and p-AKT. Treatment with the PL-Pt(II) complex reduced the volume of the SW1736 mouse tumor xenografts on day 14 and day 21, and reduced AKT phosphorylation and S6 protein expression and increased degradation of caspase-3. Conclusions The cytotoxic effects of the PL-Pt(II) complex in human thyroid carcinoma cells, including activation of apoptosis and an increased sub-G1 cell fraction of the cell cycle, were mediated by down-regulation of the mTOR pathway.
Collapse
Affiliation(s)
- Ling He
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Song Guo
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Taiyang Zhu
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Chen Chen
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Kun Xu
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
69
|
ERK signalling: a master regulator of cell behaviour, life and fate. Nat Rev Mol Cell Biol 2020; 21:607-632. [PMID: 32576977 DOI: 10.1038/s41580-020-0255-7] [Citation(s) in RCA: 629] [Impact Index Per Article: 125.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2020] [Indexed: 12/13/2022]
Abstract
The proteins extracellular signal-regulated kinase 1 (ERK1) and ERK2 are the downstream components of a phosphorelay pathway that conveys growth and mitogenic signals largely channelled by the small RAS GTPases. By phosphorylating widely diverse substrates, ERK proteins govern a variety of evolutionarily conserved cellular processes in metazoans, the dysregulation of which contributes to the cause of distinct human diseases. The mechanisms underlying the regulation of ERK1 and ERK2, their mode of action and their impact on the development and homeostasis of various organisms have been the focus of much attention for nearly three decades. In this Review, we discuss the current understanding of this important class of kinases. We begin with a brief overview of the structure, regulation, substrate recognition and subcellular localization of ERK1 and ERK2. We then systematically discuss how ERK signalling regulates six fundamental cellular processes in response to extracellular cues. These processes are cell proliferation, cell survival, cell growth, cell metabolism, cell migration and cell differentiation.
Collapse
|
70
|
Portugal J. Insights into DNA-drug interactions in the era of omics. Biopolymers 2020; 112:e23385. [PMID: 32542701 DOI: 10.1002/bip.23385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 01/07/2023]
Abstract
Despite the rise of sophisticated new targeting strategies in cancer chemotherapy, many classic DNA-binding drugs remain on the front line of the therapy against cancer. Based on examples primarily from the author's laboratory, this article reviews the capabilities of several DNA-binding drugs to alter gene expression. Research is ongoing about the molecular bases of the inhibition of gene expression and how alteration of the cellular transcriptome can commit cancer cells to die. The development of a variety of omic techniques allows us to gain insights into the effect of antitumor drugs. Genome-wide approaches provide unbiased genomic data that can facilitate a deeper understanding of the cellular response to DNA-binding drugs. Moreover, the results of large-scale genomic studies are gathered in publicly available databases that can be used in developing precision medicine in cancer treatment.
Collapse
Affiliation(s)
- José Portugal
- Instituto de Diagnóstico Ambiental y Estudios del Agua, CSIC, Barcelona, Spain
| |
Collapse
|
71
|
Chu W, Zhang X, Qi L, Fu Y, Wang P, Zhao W, Du J, Zhang J, Zhan J, Wang Y, Zhu WG, Yu Y, Zhang H. The EZH2-PHACTR2-AS1-Ribosome Axis induces Genomic Instability and Promotes Growth and Metastasis in Breast Cancer. Cancer Res 2020; 80:2737-2750. [PMID: 32312833 DOI: 10.1158/0008-5472.can-19-3326] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/21/2020] [Accepted: 04/15/2020] [Indexed: 11/16/2022]
Abstract
Aberrant activation of histone methyltransferase EZH2 and ribosome synthesis strongly associate with cancer development and progression. We previously found that EZH2 regulates RNA polymerase III-transcribed 5S ribosomal RNA gene transcription. However, whether EZH2 regulates ribosome synthesis is still unknown. Here, we report that EZH2 promotes ribosome synthesis by targeting and silencing a long noncoding RNA PHACTR2-AS1. PHACTR2-AS1 directly bound ribosome DNA genes and recruited histone methyltransferase SUV39H1, which in turn triggered H3K9 methylation of these genes. Depletion of PHACTR2-AS1 resulted in hyperactivation of ribosome synthesis and instability of ribosomal DNA, which promoted cancer cell proliferation and metastasis. Administration of PHACTR2-AS1-30nt-RNA, which binds to SUV39H1, effectively inhibited breast cancer growth and lung metastasis in mice. PHACTR2-AS1 was downregulated in breast cancer patients, where lower PHACTR2-AS1 expression promoted breast cancer development and correlated with poor patient outcome. Taken together, we demonstrate that PHACTR2-AS1 maintains a H3K9 methylation-marked silent state of ribosomal DNA genes, comprising a regulatory axis that controls breast cancer growth and metastasis. SIGNIFICANCE: These findings reveal that EZH2 mediates ribosomal DNA stability via silencing of PHACTR2-AS1, representing a potential therapeutic target to control breast cancer growth and metastasis.
Collapse
Affiliation(s)
- Wenhui Chu
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Xi Zhang
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Lihua Qi
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Yenan Fu
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Peng Wang
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Wei Zhao
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Juan Du
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Jing Zhang
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Jun Zhan
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Yunling Wang
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Instability and Human Disease, Shenzhen University Carson Cancer Center, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Yu Yu
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China.
| | - Hongquan Zhang
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
72
|
Beato M, Sharma P. Peptidyl Arginine Deiminase 2 (PADI2)-Mediated Arginine Citrullination Modulates Transcription in Cancer. Int J Mol Sci 2020; 21:ijms21041351. [PMID: 32079300 PMCID: PMC7072959 DOI: 10.3390/ijms21041351] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
Protein arginine deimination leading to the non-coded amino acid citrulline remains a key question in the field of post-translational modifications ever since its discovery by Rogers and Simmonds in 1958. Citrullination is catalyzed by a family of enzymes called peptidyl arginine deiminases (PADIs). Initially, increased citrullination was associated with autoimmune diseases, including rheumatoid arthritis and multiple sclerosis, as well as other neurological disorders and multiple types of cancer. During the last decade, research efforts have focused on how citrullination contributes to disease pathogenesis by modulating epigenetic events, pluripotency, immunity and transcriptional regulation. However, our knowledge regarding the functional implications of citrullination remains quite limited, so we still do not completely understand its role in physiological and pathological conditions. Here, we review the recently discovered functions of PADI2-mediated citrullination of the C-terminal domain of RNA polymerase II in transcriptional regulation in breast cancer cells and the proposed mechanisms to reshape the transcription regulatory network that promotes cancer progression.
Collapse
Affiliation(s)
- Miguel Beato
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Correspondence: (M.B.); (P.S.)
| | - Priyanka Sharma
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain
- Correspondence: (M.B.); (P.S.)
| |
Collapse
|
73
|
Ferreira R, Schneekloth JS, Panov KI, Hannan KM, Hannan RD. Targeting the RNA Polymerase I Transcription for Cancer Therapy Comes of Age. Cells 2020; 9:cells9020266. [PMID: 31973211 PMCID: PMC7072222 DOI: 10.3390/cells9020266] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/24/2022] Open
Abstract
Transcription of the ribosomal RNA genes (rDNA) that encode the three largest ribosomal RNAs (rRNA), is mediated by RNA Polymerase I (Pol I) and is a key regulatory step for ribosomal biogenesis. Although it has been reported over a century ago that the number and size of nucleoli, the site of ribosome biogenesis, are increased in cancer cells, the significance of this observation for cancer etiology was not understood. The realization that the increase in rRNA expression has an active role in cancer progression, not only through increased protein synthesis and thus proliferative capacity but also through control of cellular check points and chromatin structure, has opened up new therapeutic avenues for the treatment of cancer through direct targeting of Pol I transcription. In this review, we discuss the rational of targeting Pol I transcription for the treatment of cancer; review the current cancer therapeutics that target Pol I transcription and discuss the development of novel Pol I-specific inhibitors, their therapeutic potential, challenges and future prospects.
Collapse
Affiliation(s)
- Rita Ferreira
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Acton 2601, NSW, Australia; (K.I.P.); (K.M.H.); (R.D.H.)
- Correspondence:
| | - John S. Schneekloth
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Konstantin I. Panov
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Acton 2601, NSW, Australia; (K.I.P.); (K.M.H.); (R.D.H.)
- CCRCB and School of Biological Sciences, Queen’s University Belfast Medical Biology Centre, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Katherine M. Hannan
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Acton 2601, NSW, Australia; (K.I.P.); (K.M.H.); (R.D.H.)
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ross D. Hannan
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Acton 2601, NSW, Australia; (K.I.P.); (K.M.H.); (R.D.H.)
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
74
|
Boubaker NS, Spagnuolo M, Trabelsi N, Said R, Gurtner A, Regazzo G, Ayed H, Blel A, Karray O, Saadi A, Rammeh S, Chebil M, Rizzo MG, Piaggio G, Ouerhani S. miR-143 expression profiles in urinary bladder cancer: correlation with clinical and epidemiological parameters. Mol Biol Rep 2019; 47:1283-1292. [PMID: 31863330 DOI: 10.1007/s11033-019-05228-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/07/2019] [Indexed: 02/07/2023]
Abstract
Hsa-mir-143 and hsa-let-7c have been reported to be deregulated in multiple neoplasms. The main purpose of this study was to investigate the expression of these miRNAs in bladder cancer (BCa) and to analyze the association between their expression profiles and clinical and epidemiological parameters. Ninety BCa specimens were included. Expression patterns of miR-143 and let-7c were assessed by qRT-PCR using Taqman specific probes. Validated and predicted targets of these miRNA's were identified using CSmiRTar and DAVID tools, respectively. miR-143 was downregulated in tumors compared to controls (mean fold-change (FC) = 0.076). Its expression was significantly higher in MIBC compared to NMIBC (p = 0,001). Its value as a potential biomarker discriminating non invasive tumors from the invasive ones was confirmed by ROC curve (AUC = 0.768; p = 0.0001). Also, this down-regulation positively correlates with frequency of tobacco use (p = 0,04) and chronic alcohol consumption (p = 0,04). Let-7c was overexpressed in BCa samples (mean (FC = 9.92) compared to non tumoral ones but was not associated to clinical and epidemiological parameters. A comprehensive overview of miR-143 targets and pathways implicated in BCa initiation, diagnosis or prognosis using bioinformatical analysis, was conducted. While both deregulated miRNAs may contribute to urothelial tumorigenesis, the deregulation of miR-143 was significantly correlated to epidemiological and clinical parameters.
Collapse
Affiliation(s)
- Nouha Setti Boubaker
- Laboratory of Proteins Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology of Tunis (INSAT), The University of Tunis Carthage, Via Elio Chianesi 53, 00144, Tunis, Tunisia.,Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, UOSD SAFU, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Manuela Spagnuolo
- Oncogenomic and Epigenetic Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Nesrine Trabelsi
- Laboratory of Proteins Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology of Tunis (INSAT), The University of Tunis Carthage, Via Elio Chianesi 53, 00144, Tunis, Tunisia
| | - Rahma Said
- Laboratory of Proteins Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology of Tunis (INSAT), The University of Tunis Carthage, Via Elio Chianesi 53, 00144, Tunis, Tunisia
| | - Aymone Gurtner
- Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, UOSD SAFU, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Giulia Regazzo
- Oncogenomic and Epigenetic Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Haroun Ayed
- Laboratory of Proteins Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology of Tunis (INSAT), The University of Tunis Carthage, Via Elio Chianesi 53, 00144, Tunis, Tunisia.,Urology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Ahlem Blel
- Pathology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Omar Karray
- Urology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Ahmed Saadi
- Laboratory of Proteins Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology of Tunis (INSAT), The University of Tunis Carthage, Via Elio Chianesi 53, 00144, Tunis, Tunisia.,Urology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Soumaya Rammeh
- Pathology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Mohamed Chebil
- Urology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Maria Giulia Rizzo
- Oncogenomic and Epigenetic Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Piaggio
- Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, UOSD SAFU, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Slah Ouerhani
- Laboratory of Proteins Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology of Tunis (INSAT), The University of Tunis Carthage, Via Elio Chianesi 53, 00144, Tunis, Tunisia.
| |
Collapse
|
75
|
Khosraviani N, Ostrowski LA, Mekhail K. Roles for Non-coding RNAs in Spatial Genome Organization. Front Cell Dev Biol 2019; 7:336. [PMID: 31921848 PMCID: PMC6930868 DOI: 10.3389/fcell.2019.00336] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/29/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic loci are non-randomly arranged in the nucleus of the cell. This order, which is important to overall genome expression and stability, is maintained by a growing number of factors including the nuclear envelope, various genetic elements and dedicated protein complexes. Here, we review evidence supporting roles for non-coding RNAs (ncRNAs) in the regulation of spatial genome organization and its impact on gene expression and cell survival. Specifically, we discuss how ncRNAs from single-copy and repetitive DNA loci contribute to spatial genome organization by impacting perinuclear chromosome tethering, major nuclear compartments, chromatin looping, and various chromosomal structures. Overall, our analysis of the literature highlights central functions for ncRNAs and their transcription in the modulation of spatial genome organization with connections to human health and disease.
Collapse
Affiliation(s)
- Negin Khosraviani
- Department of Laboratory Medicine and Pathobiology, MaRS Centre, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Lauren A. Ostrowski
- Department of Laboratory Medicine and Pathobiology, MaRS Centre, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, MaRS Centre, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Canada Research Chairs Program, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
76
|
Low JY, Sirajuddin P, Moubarek M, Agarwal S, Rege A, Guner G, Liu H, Yang Z, De Marzo AM, Bieberich C, Laiho M. Effective targeting of RNA polymerase I in treatment-resistant prostate cancer. Prostate 2019; 79:1837-1851. [PMID: 31524299 PMCID: PMC7025478 DOI: 10.1002/pros.23909] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/30/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Advanced prostate cancers depend on protein synthesis for continued survival and accelerated rates of metabolism for growth. RNA polymerase I (Pol I) is the enzyme responsible for ribosomal RNA (rRNA) transcription and a rate-limiting step for ribosome biogenesis. We have shown using a specific and sensitive RNA probe for the 45S rRNA precursor that rRNA synthesis is increased in prostate adenocarcinoma compared to nonmalignant epithelium. We have introduced a first-in-class Pol I inhibitor, BMH-21, that targets cancer cells of multiple origins, and holds potential for clinical translation. METHODS The effect of BMH-21 was tested in prostate cancer cell lines and in prostate cancer xenograft and mouse genetic models. RESULTS We show that BMH-21 inhibits Pol I transcription in metastatic, castration-resistant, and enzalutamide treatment-resistant prostate cancer cell lines. The genetic abrogation of Pol I effectively blocks the growth of prostate cancer cells. Silencing of p53, a pathway activated downstream of Pol I, does not diminish this effect. We find that BMH-21 significantly inhibited tumor growth and reduced the Ki67 proliferation index in an enzalutamide-resistant xenograft tumor model. A decrease in 45S rRNA synthesis demonstrated on-target activity. Furthermore, the Pol I inhibitor significantly inhibited tumor growth and pathology in an aggressive genetically modified Hoxb13-MYC|Hoxb13-Cre|Ptenfl/fl (BMPC) mouse prostate cancer model. CONCLUSION Taken together, BMH-21 is a novel promising molecule for the treatment of castration-resistant prostate cancer.
Collapse
MESH Headings
- Animals
- Benzamides
- Cell Growth Processes/drug effects
- Cell Line, Tumor
- Drug Resistance, Neoplasm
- Enzyme Inhibitors/pharmacology
- Heterocyclic Compounds, 4 or More Rings/pharmacology
- Humans
- Male
- Mice
- Mice, Nude
- Molecular Targeted Therapy
- Nitriles
- PC-3 Cells
- Phenylthiohydantoin/analogs & derivatives
- Phenylthiohydantoin/pharmacology
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/enzymology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/enzymology
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/pathology
- RNA Polymerase I/antagonists & inhibitors
- RNA Polymerase I/genetics
- RNA Polymerase I/metabolism
- RNA, Ribosomal/genetics
- Random Allocation
- Transcription, Genetic/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Jin-Yih Low
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Paul Sirajuddin
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael Moubarek
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland
| | - Shreya Agarwal
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland
| | - Apurv Rege
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland
| | - Gunes Guner
- Department of Pathology, Urology and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hester Liu
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zhiming Yang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Angelo M. De Marzo
- Department of Pathology, Urology and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Charles Bieberich
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland
| | - Marikki Laiho
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
77
|
Suppression of Angiogenesis by Targeting Cyclin-Dependent Kinase 7 in Human Umbilical Vein Endothelial Cells and Renal Cell Carcinoma: An In Vitro and In Vivo Study. Cells 2019; 8:cells8111469. [PMID: 31752390 PMCID: PMC6912535 DOI: 10.3390/cells8111469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/28/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer cells rely on aberrant transcription for growth and survival. Cyclin-dependent kinases (CDKs) play critical roles in regulating gene transcription by modulating the activity of RNA polymerase II (RNAPII). THZ1, a selective covalent inhibitor of CDK7, has antitumor effects in several human cancers. In this study, we investigated the role and therapeutic potential of CDK7 in regulating the angiogenic activity of endothelial cells and human renal cell carcinoma (RCC). Our results revealed that vascular endothelial growth factor (VEGF), a critical activator of angiogenesis, upregulated the expression of CDK7 and RNAPII, and the phosphorylation of RNAPII at serine 5 and 7 in human umbilical vein endothelial cells (HUVECs), indicating the transcriptional activity of CDK7 may be involved in VEGF-activated angiogenic activity of endothelium. Furthermore, through suppressing CDK7 activity, THZ1 suppressed VEGF-activated proliferation and migration, as well as enhanced apoptosis of HUVECs. Moreover, THZ1 inhibited VEGF-activated capillary tube formation and CDK7 knockdown consistently diminished tube formation in HUVECs. Additionally, THZ1 reduced VEGF expression in human RCC cells (786-O and Caki-2), and THZ1 treatment inhibited tumor growth, vascularity, and angiogenic marker (CD31) expression in RCC xenografts. Our results demonstrated that CDK7-mediated transcription was involved in the angiogenic activity of endothelium and human RCC. THZ1 suppressed VEGF-mediated VEGFR2 downstream activation of angiogenesis, providing a new perspective for antitumor therapy in RCC patients.
Collapse
|
78
|
Aberrant activation of RPB1 is critical for cell overgrowth in acute myeloid leukemia. Exp Cell Res 2019; 384:111653. [DOI: 10.1016/j.yexcr.2019.111653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022]
|
79
|
Gaviraghi M, Vivori C, Tonon G. How Cancer Exploits Ribosomal RNA Biogenesis: A Journey beyond the Boundaries of rRNA Transcription. Cells 2019; 8:cells8091098. [PMID: 31533350 PMCID: PMC6769540 DOI: 10.3390/cells8091098] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 02/06/2023] Open
Abstract
The generation of new ribosomes is a coordinated process essential to sustain cell growth. As such, it is tightly regulated according to cell needs. As cancer cells require intense protein translation to ensure their enhanced growth rate, they exploit various mechanisms to boost ribosome biogenesis. In this review, we will summarize how oncogenes and tumor suppressors modulate the biosynthesis of the RNA component of ribosomes, starting from the description of well-characterized pathways that converge on ribosomal RNA transcription while including novel insights that reveal unexpected regulatory networks hacked by cancer cells to unleash ribosome production.
Collapse
Affiliation(s)
- Marco Gaviraghi
- Experimental Imaging Center; Ospedale San Raffaele, 20132 Milan, Italy.
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Claudia Vivori
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy.
- Center for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy.
| |
Collapse
|
80
|
Carotenuto P, Pecoraro A, Palma G, Russo G, Russo A. Therapeutic Approaches Targeting Nucleolus in Cancer. Cells 2019; 8:E1090. [PMID: 31527430 PMCID: PMC6770360 DOI: 10.3390/cells8091090] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/08/2019] [Accepted: 09/13/2019] [Indexed: 01/08/2023] Open
Abstract
The nucleolus is a distinct sub-cellular compartment structure in the nucleus. First observed more than 200 years ago, the nucleolus is detectable by microscopy in eukaryotic cells and visible during the interphase as a sub-nuclear structure immersed in the nucleoplasm, from which it is not separated from any membrane. A huge number of studies, spanning over a century, have identified ribosome biogenesis as the main function of the nucleolus. Recently, novel functions, independent from ribosome biogenesis, have been proposed by several proteomic, genomic, and functional studies. Several works have confirmed the non-canonical role for nucleoli in regulating important cellular processes including genome stability, cell-cycle control, the cellular senescence, stress responses, and biogenesis of ribonucleoprotein particles (RNPs). Many authors have shown that both canonical and non-canonical functions of the nucleolus are associated with several cancer-related processes. The association between the nucleolus and cancer, first proposed by cytological and histopathological studies showing that the number and shape of nucleoli are commonly altered in almost any type of cancer, has been confirmed at the molecular level by several authors who demonstrated that numerous mechanisms occurring in the nucleolus are altered in tumors. Recently, therapeutic approaches targeting the nucleolus in cancer have started to be considered as an emerging "hallmark" of cancer and several therapeutic interventions have been developed. This review proposes an up-to-date overview of available strategies targeting the nucleolus, focusing on novel targeted therapeutic approaches. Finally, a target-based classification of currently available treatment will be proposed.
Collapse
Affiliation(s)
- Pietro Carotenuto
- The Institute of Cancer Research, Cancer Therapeutic Unit, London SM2 5NG, UK.
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy.
| | - Annalisa Pecoraro
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Gaetano Palma
- Department of Advanced Biomedical Science, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
| | - Giulia Russo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Annapina Russo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
81
|
Donnio LM, Miquel C, Vermeulen W, Giglia-Mari G, Mari PO. Cell-type specific concentration regulation of the basal transcription factor TFIIH in XPB y/y mice model. Cancer Cell Int 2019; 19:237. [PMID: 31516394 PMCID: PMC6734240 DOI: 10.1186/s12935-019-0945-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/18/2019] [Indexed: 11/15/2022] Open
Abstract
Background The basal transcription/repair factor TFIIH is a ten sub-unit complex essential for RNA polymerase II (RNAP2) transcription initiation and DNA repair. In both these processes TFIIH acts as a DNA helix opener, required for promoter escape of RNAP2 in transcription initiation, and to set the stage for strand incision within the nucleotide excision repair (NER) pathway. Methods We used a knock-in mouse model that we generated and that endogenously expresses a fluorescent version of XPB (XPB-YFP). Using different microscopy, cellular biology and biochemistry approaches we quantified the steady state levels of this protein in different cells, and cells imbedded in tissues. Results Here we demonstrate, via confocal imaging of ex vivo tissues and cells derived from this mouse model, that TFIIH steady state levels are tightly regulated at the single cell level, thus keeping nuclear TFIIH concentrations remarkably constant in a cell type dependent manner. Moreover, we show that individual cellular TFIIH levels are proportional to the speed of mRNA production, hence to a cell’s transcriptional activity, which we can correlate to proliferation status. Importantly, cancer tissue presents a higher TFIIH than normal healthy tissues. Conclusion This study shows that TFIIH cellular concentration can be used as a bona-fide quantitative marker of transcriptional activity and cellular proliferation.
Collapse
Affiliation(s)
- Lise-Marie Donnio
- 1Institut NeuroMyoGène (INMG), CNRS, UMR 5310, INSERM U1217, Faculté de Médecine, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, 69008 LYON, France
| | - Catherine Miquel
- 2Pathology Department, Saint-Louis Hospital, Université de Paris, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Wim Vermeulen
- 3Department of Genetics, Erasmus MC, Dr Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Giuseppina Giglia-Mari
- 1Institut NeuroMyoGène (INMG), CNRS, UMR 5310, INSERM U1217, Faculté de Médecine, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, 69008 LYON, France
| | - Pierre-Olivier Mari
- 1Institut NeuroMyoGène (INMG), CNRS, UMR 5310, INSERM U1217, Faculté de Médecine, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, 69008 LYON, France
| |
Collapse
|
82
|
Jackobel AJ, Zeberl BJ, Glover DM, Fakhouri AM, Knutson BA. DNA binding preferences of S. cerevisiae RNA polymerase I Core Factor reveal a preference for the GC-minor groove and a conserved binding mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194408. [PMID: 31382053 DOI: 10.1016/j.bbagrm.2019.194408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/03/2019] [Accepted: 07/23/2019] [Indexed: 01/24/2023]
Abstract
In Saccharomyces cerevisiae, Core Factor (CF) is a key evolutionarily conserved transcription initiation factor that helps recruit RNA polymerase I (Pol I) to the ribosomal DNA (rDNA) promoter. Upregulated Pol I transcription has been linked to many cancers, and targeting Pol I is an attractive and emerging anti-cancer strategy. Using yeast as a model system, we characterized how CF binds to the Pol I promoter by electrophoretic mobility shift assays (EMSA). Synthetic DNA competitors along with anti-tumor drugs and nucleic acid stains that act as DNA groove blockers were used to discover the binding preference of yeast CF. Our results show that CF employs a unique binding mechanism where it prefers the GC-rich minor groove within the rDNA promoter. In addition, we show that yeast CF is able to bind to the human rDNA promoter sequence that is divergent in DNA sequence and demonstrate CF sensitivity to the human specific Pol I inhibitor, CX-5461. Finally, we show that the human Core Promoter Element (CPE) can functionally replace the yeast Core Element (CE) in vivo when aligned by conserved DNA structural features rather than DNA sequence. Together, these findings suggest that the yeast CF and the human ortholog Selectivity Factor 1 (SL1) use an evolutionarily conserved, structure-based mechanism to target DNA. Their shared mechanism may offer a new avenue in using yeast to explore current and future Pol I anti-cancer compounds.
Collapse
Affiliation(s)
- Ashleigh J Jackobel
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Brian J Zeberl
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Danea M Glover
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; School of Graduate Studies, Rutgers Biomedical and Health Sciences, Rutgers University, Piscataway, NJ 08854, USA
| | - Aula M Fakhouri
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Bruce A Knutson
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
83
|
MODULATION OF RNA POLYMERASE I TRANSCRIPTION IN NORMAL AND MALIGNANT HAEMATOPOIESIS. Exp Hematol 2019. [DOI: 10.1016/j.exphem.2019.06.355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
84
|
Okamoto K, Tanaka Y, Ogasawara S, Obuse C, Nakayama JI, Yano H, Tsuneoka M. KDM2A-dependent reduction of rRNA transcription on glucose starvation requires HP1 in cells, including triple-negative breast cancer cells. Oncotarget 2019; 10:4743-4760. [PMID: 31413816 PMCID: PMC6677663 DOI: 10.18632/oncotarget.27092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/29/2019] [Indexed: 12/24/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is very aggressive and lacks specific therapeutic targets. Ribosome RNAs (rRNAs) are central components of ribosomes and transcribed in nucleoli, and the level of rRNA transcription greatly affects ribosome production and cell proliferation. We have reported that an epigenetic protein, KDM2A, exists in nucleoli and reduces rRNA transcription on glucose starvation. However, the molecular mechanism is still unclear. The purpose of this study is to examine the KDM2A-dependent regulation mechanism of rRNA transcription. In this study, we turned our attention to the nucleolar accumulation of KDM2A. We found that KDM2A had multiple regions for its nucleolar localization, and one of the regions was directly bound by heterochromatin protein 1γ (HP1γ) using valine 801 in the LxVxL motif of KDM2A. A knockdown of HP1γ or a point mutation of valine 801 in KDM2A decreased the nucleolar accumulation of KDM2A, and suppressed the reduction of rRNA transcription on glucose starvation. These results uncovered a novel function of HP1γ: the regulation of rRNA transcription, and suggested that HP1γ stimulates the nucleolar accumulation of KDM2A to support the KDM2A-dependent regulation of rRNA transcription. HP1γ was expressed in cancer cells in all breast carcinoma tissues examined, including TNBC tissues. A knockdown of HP1γ in a TNBC cell line, MDA-MB-231 cells, reduced the nucleolar accumulation of KDM2A, and suppressed the reductions of rRNA transcription and cell proliferation on glucose starvation. These results suggest that the KDM2A-dependent regulation of rRNA transcription requires HP1γ, and thus may be applicable to the treatment of TNBC.
Collapse
Affiliation(s)
- Kengo Okamoto
- Laboratory of Molecular and Cellular Biology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Yuji Tanaka
- Laboratory of Molecular and Cellular Biology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Sachiko Ogasawara
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Chikashi Obuse
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka Japan
| | - Jun-Ichi Nakayama
- Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki, Japan
| | - Hirohisa Yano
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Makoto Tsuneoka
- Laboratory of Molecular and Cellular Biology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| |
Collapse
|
85
|
Yehia L, Jindal S, Komar AA, Eng C. Non-canonical role of cancer-associated mutant SEC23B in the ribosome biogenesis pathway. Hum Mol Genet 2019; 27:3154-3164. [PMID: 29893852 PMCID: PMC6121187 DOI: 10.1093/hmg/ddy226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023] Open
Abstract
SEC23B is a component of coat protein complex II (COPII) vesicles that transport secretory proteins from the endoplasmic reticulum (ER) to the Golgi apparatus. Loss-of-function SEC23B mutations cause a rare form of anemia, resulting from decreased SEC23B levels. We recently identified germline heterozygous SEC23B variants as potentially cancer-predisposing. Mutant SEC23B associated with ER stress-mediated tumorigenesis, without decreased SEC23B expression. However, our understanding of the processes behind these observations remain limited. Here, we show mutant SEC23B exists within nucleoli, in addition to classical distribution at the ER/Golgi. This occurs independent of other COPII proteins and does not compromise secretory function. Mutant cells have increased ribosomal protein and translation-related gene expression, and enhanced translational capacity, in the presence of ER stress. We show that mutant SEC23B binds to UBF transcription factor, with increased UBF transcription factor binding at the ribosomal DNA promoter. Our data indicate SEC23B has potential non-canonical COPII-independent function, particularly within the ribosome biogenesis pathway, and that may contribute to the pathogenesis of cancer-predisposition.
Collapse
Affiliation(s)
- Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Supriya Jindal
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
| | - Anton A Komar
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA.,Germline High Risk Cancer Focus Group, CASE Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Germline High Risk Cancer Focus Group, CASE Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.,Taussig Cancer Institute, Cleveland Clinic, OH, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
86
|
Singh HR, Ostwal YB. Post-Translational Modification, Phase Separation, and Robust Gene Transcription. Trends Genet 2019; 35:89-92. [DOI: 10.1016/j.tig.2018.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/08/2018] [Indexed: 11/25/2022]
|
87
|
Diesch J, Bywater MJ, Sanij E, Cameron DP, Schierding W, Brajanovski N, Son J, Sornkom J, Hein N, Evers M, Pearson RB, McArthur GA, Ganley ARD, O’Sullivan JM, Hannan RD, Poortinga G. Changes in long-range rDNA-genomic interactions associate with altered RNA polymerase II gene programs during malignant transformation. Commun Biol 2019; 2:39. [PMID: 30701204 PMCID: PMC6349880 DOI: 10.1038/s42003-019-0284-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 12/28/2018] [Indexed: 12/15/2022] Open
Abstract
The three-dimensional organization of the genome contributes to its maintenance and regulation. While chromosomal regions associate with nucleolar ribosomal RNA genes (rDNA), the biological significance of rDNA-genome interactions and whether they are dynamically regulated during disease remain unclear. rDNA chromatin exists in multiple inactive and active states and their transition is regulated by the RNA polymerase I transcription factor UBTF. Here, using a MYC-driven lymphoma model, we demonstrate that during malignant progression the rDNA chromatin converts to the open state, which is required for tumor cell survival. Moreover, this rDNA transition co-occurs with a reorganization of rDNA-genome contacts which correlate with gene expression changes at associated loci, impacting gene ontologies including B-cell differentiation, cell growth and metabolism. We propose that UBTF-mediated conversion to open rDNA chromatin during malignant transformation contributes to the regulation of specific gene pathways that regulate growth and differentiation through reformed long-range physical interactions with the rDNA.
Collapse
Affiliation(s)
- Jeannine Diesch
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000 Australia
- Present Address: Josep Carreras Leukaemia Research Institute, Barcelona, 08021 Spain
| | - Megan J. Bywater
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000 Australia
- Present Address: QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029 Australia
| | - Elaine Sanij
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000 Australia
- Department of Pathology, University of Melbourne, Parkville, VIC 3010 Australia
| | - Donald P. Cameron
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000 Australia
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601 Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010 Australia
| | - William Schierding
- Liggins Institute, The University of Auckland, Auckland, 1023 New Zealand
| | - Natalie Brajanovski
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000 Australia
| | - Jinbae Son
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000 Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010 Australia
| | - Jirawas Sornkom
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000 Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010 Australia
| | - Nadine Hein
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601 Australia
| | - Maurits Evers
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601 Australia
| | - Richard B. Pearson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000 Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010 Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800 VIC Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010 Australia
| | - Grant A. McArthur
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000 Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010 Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC 3065 Australia
| | - Austen R. D. Ganley
- School of Biological Sciences, The University of Auckland, Auckland, 1010 New Zealand
| | | | - Ross D. Hannan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000 Australia
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601 Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010 Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800 VIC Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010 Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072 Australia
| | - Gretchen Poortinga
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000 Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010 Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC 3065 Australia
| |
Collapse
|
88
|
Muntel J, Gandhi T, Verbeke L, Bernhardt OM, Treiber T, Bruderer R, Reiter L. Surpassing 10 000 identified and quantified proteins in a single run by optimizing current LC-MS instrumentation and data analysis strategy. Mol Omics 2019; 15:348-360. [DOI: 10.1039/c9mo00082h] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Optimization of chromatography and data analysis resulted in more than 10 000 proteins in a single shot at a validated FDR of 1% (two-species test) and revealed deep insights into the testis cancer physiology.
Collapse
|
89
|
Agrawal S, Ganley ARD. The conservation landscape of the human ribosomal RNA gene repeats. PLoS One 2018; 13:e0207531. [PMID: 30517151 PMCID: PMC6281188 DOI: 10.1371/journal.pone.0207531] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 11/01/2018] [Indexed: 01/27/2023] Open
Abstract
Ribosomal RNA gene repeats (rDNA) encode ribosomal RNA, a major component of ribosomes. Ribosome biogenesis is central to cellular metabolic regulation, and several diseases are associated with rDNA dysfunction, notably cancer, However, its highly repetitive nature has severely limited characterization of the elements responsible for rDNA function. Here we make use of phylogenetic footprinting to provide a comprehensive list of novel, potentially functional elements in the human rDNA. Complete rDNA sequences for six non-human primate species were constructed using de novo whole genome assemblies. These new sequences were used to determine the conservation profile of the human rDNA, revealing 49 conserved regions in the rDNA intergenic spacer (IGS). To provide insights into the potential roles of these conserved regions, the conservation profile was integrated with functional genomics datasets. We find two major zones that contain conserved elements characterised by enrichment of transcription-associated chromatin factors, and transcription. Conservation of some IGS transcripts in the apes underpins the potential functional significance of these transcripts and the elements controlling their expression. Our results characterize the conservation landscape of the human IGS and suggest that noncoding transcription and chromatin elements are conserved and important features of this unique genomic region.
Collapse
Affiliation(s)
- Saumya Agrawal
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Austen R. D. Ganley
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
90
|
Bian J, Ren J, Li Y, Wang J, Xu X, Feng Y, Tang H, Wang Y, Li Z. Discovery of Wogonin-based PROTACs against CDK9 and capable of achieving antitumor activity. Bioorg Chem 2018; 81:373-381. [DOI: 10.1016/j.bioorg.2018.08.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 10/28/2022]
|
91
|
Sharma P, Lioutas A, Fernandez-Fuentes N, Quilez J, Carbonell-Caballero J, Wright RHG, Di Vona C, Le Dily F, Schüller R, Eick D, Oliva B, Beato M. Arginine Citrullination at the C-Terminal Domain Controls RNA Polymerase II Transcription. Mol Cell 2018; 73:84-96.e7. [PMID: 30472187 DOI: 10.1016/j.molcel.2018.10.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/31/2018] [Accepted: 10/09/2018] [Indexed: 12/21/2022]
Abstract
The post-translational modification of key residues at the C-terminal domain of RNA polymerase II (RNAP2-CTD) coordinates transcription, splicing, and RNA processing by modulating its capacity to act as a landing platform for a variety of protein complexes. Here, we identify a new modification at the CTD, the deimination of arginine and its conversion to citrulline by peptidyl arginine deiminase 2 (PADI2), an enzyme that has been associated with several diseases, including cancer. We show that, among PADI family members, only PADI2 citrullinates R1810 (Cit1810) at repeat 31 of the CTD. Depletion of PADI2 or loss of R1810 results in accumulation of RNAP2 at transcription start sites, reduced gene expression, and inhibition of cell proliferation. Cit1810 is needed for interaction with the P-TEFb (positive transcription elongation factor b) kinase complex and for its recruitment to chromatin. In this way, CTD-Cit1810 favors RNAP2 pause release and efficient transcription in breast cancer cells.
Collapse
Affiliation(s)
- Priyanka Sharma
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - Antonios Lioutas
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - Narcis Fernandez-Fuentes
- IBERS, Institute of Biological, Environmental and Rural Science, Aberystwyth University, Aberystwyth SY23 3EB, UK
| | - Javier Quilez
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - José Carbonell-Caballero
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - Roni H G Wright
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - Chiara Di Vona
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - François Le Dily
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - Roland Schüller
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center of Integrated Protein Science, Munich, Germany
| | - Dirk Eick
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center of Integrated Protein Science, Munich, Germany
| | - Baldomero Oliva
- Universitat Pompeu Fabra (UPF), Barcelona, Spain; Structural Bioinformatics Laboratory (GRIB-IMIM), Department of Experimental and Health Sciences, Barcelona 08003, Spain
| | - Miguel Beato
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
92
|
Wang F, Zhao K, Yu S, Xu A, Han W, Mei Y. RNF12 catalyzes BRF1 ubiquitination and regulates RNA polymerase III-dependent transcription. J Biol Chem 2018; 294:130-141. [PMID: 30413534 DOI: 10.1074/jbc.ra118.004524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/24/2018] [Indexed: 01/07/2023] Open
Abstract
RNA polymerase III (Pol III) is responsible for the production of small noncoding RNA species, including tRNAs and 5S rRNA. Pol III-dependent transcription is generally enhanced in transformed cells and tumors, but the underlying mechanisms remain not well-understood. It has been demonstrated that the BRF1 subunit of TFIIIB is essential for the accurate initiation of Pol III-dependent transcription. However, it is not known whether BRF1 undergoes ubiquitin modification and whether BRF1 ubiquitination regulates Pol III-dependent transcription. Here, we show that RNF12, a RING domain-containing ubiquitin E3 ligase, physically interacts with BRF1. Via direct interaction, RNF12 catalyzes Lys27- and Lys33-linked polyubiquitination of BRF1. Furthermore, RNF12 is able to negatively regulate Pol III-dependent transcription and cell proliferation via BRF1. These findings uncover a novel mechanism for the regulation of BRF1 and reveal RNF12 as an important regulator of Pol III-dependent transcription.
Collapse
Affiliation(s)
- Fang Wang
- Anhui Province Key Laboratory of Medical Physics and Technology/Center of Medical Physics and Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, Anhui, China; Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Kailiang Zhao
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Sixiang Yu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - An Xu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Wei Han
- Anhui Province Key Laboratory of Medical Physics and Technology/Center of Medical Physics and Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, Anhui, China.
| | - Yide Mei
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China.
| |
Collapse
|
93
|
Laribee RN. Transcriptional and Epigenetic Regulation by the Mechanistic Target of Rapamycin Complex 1 Pathway. J Mol Biol 2018; 430:4874-4890. [PMID: 30359581 DOI: 10.1016/j.jmb.2018.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 11/28/2022]
Abstract
Nutrient availability impacts health such that nutrient excess states can dysregulate epigenetic and transcriptional pathways to cause many diseases. Increasing evidence implicates aberrant regulation of nutrient signaling cascades as one means of communicating nutrient information to the epigenetic and transcriptional regulatory machinery. One such signaling cascade, the mechanistic target of rapamycin complex 1 (mTORC1), is conserved from yeast to man, and it is deregulated in diverse disease states. The catalytic subunit of the mTORC1 kinase complex (Tor1 or Tor2 in budding yeast and mTor in mammals) phosphorylates several downstream effectors regulating transcriptional and translational responses controlling growth and proliferation. Delineating mechanisms of cytoplasmic nutrient mTORC1 activation continues to be a major research focus. However, Tor kinases not only localize to the cytoplasm but also are found in the nucleus where they selectively bind and regulate genes controlling cellular metabolism and anabolism. The nuclear mTORC1 functions are now beginning to be defined, and they suggest that mTORC1 has a critical role in regulating the complex transcriptional activities required for ribosomal biogenesis. The mTORC1 pathway also interacts with epigenetic regulators required for modifying chromatin structure and function to control gene expression. Because altered nutrient states exert both individual and transgenerational phenotypic changes, mTORC1 signaling to chromatin effectors may have a significant role in mediating the effects of diet and nutrients on the epigenome. This article will discuss the recent inroads into the function of nuclear mTORC1 and its role in epigenetic and transcriptional regulation.
Collapse
Affiliation(s)
- R Nicholas Laribee
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, University of Tennessee Health Science Center, 19 South Manassas, Cancer Research Building Rm 318, Memphis, TN 38163, USA.
| |
Collapse
|
94
|
The Selective RNA Polymerase I Inhibitor CX-5461 Mitigates Neointimal Remodeling in a Modified Model of Rat Aortic Transplantation. Transplantation 2018; 102:1674-1683. [DOI: 10.1097/tp.0000000000002372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
95
|
Kinoshita S, Ishida T, Ito A, Narita T, Masaki A, Suzuki S, Yoshida T, Ri M, Kusumoto S, Komatsu H, Shimizu N, Inagaki H, Kuroda T, Scholz A, Ueda R, Sanda T, Iida S. Cyclin-dependent kinase 9 as a potential specific molecular target in NK-cell leukemia/lymphoma. Haematologica 2018; 103:2059-2068. [PMID: 30076184 PMCID: PMC6269314 DOI: 10.3324/haematol.2018.191395] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
BAY 1143572 is a highly selective inhibitor of cyclin-dependent kinase 9/positive transcription elongation factor b. It has entered phase I clinical studies. Here, we have assessed the utility of BAY 1143572 for treating natural killer (NK) cell leukemias/lymphomas that have a poor prognosis, namely extranodal NK/T-cell lymphoma, nasal type and aggressive NK-cell leukemia, in a preclinical mouse model in vivo as well as in tissue culture models in vitro Seven NK-cell leukemia/lymphoma lines and primary aggressive NK-cell leukemia cells from two individual patients were treated with BAY 1143572 in vitro Primary tumor cells from an aggressive NK-cell leukemia patient were used to establish a xenogeneic murine model for testing BAY 1143572 therapy. Cyclin-dependent kinase 9 inhibition by BAY 1143572 resulted in prevention of phosphorylation at the serine 2 site of the C-terminal domain of RNA polymerase II. This resulted in lower c-Myc and Mcl-1 levels in the cell lines, causing growth inhibition and apoptosis. In aggressive NK-cell leukemia primary tumor cells, exposure to BAY 1143572 in vitro resulted in decreased Mcl-1 protein levels resulting from inhibition of RNA polymerase II C-terminal domain phosphorylation at the serine 2 site. Orally administering BAY 1143572 once per day to aggressive NK-cell leukemia-bearing mice resulted in lower tumor cell infiltration into the bone marrow, liver, and spleen, with less export to the periphery relative to control mice. The treated mice also had a survival advantage over the untreated controls. The specific small molecule targeting agent BAY1143572 has potential for treating NK-cell leukemia/lymphoma.
Collapse
Affiliation(s)
- Shiori Kinoshita
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Takashi Ishida
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Japan .,Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Japan
| | - Asahi Ito
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Tomoko Narita
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Ayako Masaki
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Japan.,Department of Pathology and Molecular Diagnostics, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Susumu Suzuki
- Department of Tumor Immunology, Aichi Medical University School of Medicine, Japan
| | - Takashi Yoshida
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Masaki Ri
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Shigeru Kusumoto
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Hirokazu Komatsu
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Norio Shimizu
- Department of Virology, Division of Medical Science, Medical Research Institute, Tokyo Medical and Dental University, Japan
| | - Hiroshi Inagaki
- Department of Pathology and Molecular Diagnostics, Nagoya City University Graduate School of Medical Sciences, Japan
| | | | - Arne Scholz
- Bayer AG Pharmaceuticals Division, Berlin, Germany
| | - Ryuzo Ueda
- Department of Tumor Immunology, Aichi Medical University School of Medicine, Japan
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore
| | - Shinsuke Iida
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Japan
| |
Collapse
|
96
|
Portugal J. Challenging transcription by DNA-binding antitumor drugs. Biochem Pharmacol 2018; 155:336-345. [PMID: 30040927 DOI: 10.1016/j.bcp.2018.07.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/20/2018] [Indexed: 12/15/2022]
Abstract
Cancer has been associated with altered gene expression. Therefore, transcription and its regulation by transcription factors are considered key points to be explored in the pursuit of more efficient antitumor agents. This paper reviews the effects of DNA-binding drugs on the interaction between transcription factors and DNA, and it discusses recent advances in the understanding of the mechanisms by which small compounds interfere with the activity of transcription factors and gene expression. Many DNA-binding drugs, some of them in clinical use, can compete with a variety of transcription factors for their preferred binding sites in gene promoters, or they can covalently modify DNA, thus preventing transcription factors from recognizing their binding sites. On the other hand, transcription factor activity can be impaired through modification of the protein factors or their complexes. Several "omic" tools have been developed to explore the genome-wide changes in gene expression induced by DNA-binding drugs, which reveal details of the mechanisms of action. Transcriptomic profiles obtained from drug-treated cells and of samples collected from patients upon treatment provide insights into the in vivo mechanisms of drug action related to the inhibition of gene transcription. The information available about the molecular structure and mechanisms of action of both transcription factors and DNA-binding drugs, together with the new opportunities provided by functional genomics, should encourage the development of new more-selective DNA-binding antitumor drugs to target a single gene with little effect on others.
Collapse
Affiliation(s)
- José Portugal
- Instituto de Diagnóstico Ambiental y Estudios del Agua, CSIC, E-08034 Barcelona, Spain.
| |
Collapse
|
97
|
Lv W, Zhang M, Zhu J, Zhang M, Ci C, Shang S, Wei Y, Liu H, Li X, Zhang Y. Exploration of drug-response mechanism by integrating genetics and epigenetics across cancers. Epigenomics 2018; 10:993-1010. [DOI: 10.2217/epi-2017-0162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aim: To discover CpG island methylator phenotype (CIMP) as a predictor for cancer drug-response mechanism. Materials & methods: CIMP classification of 966 cancer cell lines was determined according to identified copy number alteration and differential methylation by DNA methylation profiles. CIMP-related drugs were analyzed by analysis of variance. Tissue–cell–drug networks were developed to predict drug response of individual samples. Results & conclusion: One hundred and thirty-six copy number gain and 142 copy number loss cell lines were classified into CIMP-high and CIMP-low groups, meanwhile 9 and 24 CIMP-associated drugs were identified, respectively. Specially, breast invasive carcinoma samples primarily composed by HCC1419 were predicted to be sensitive to GSK690693. The study provides guidance for drug response in cancer therapy through genome-wide DNA methylation.
Collapse
Affiliation(s)
- Wenhua Lv
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin, 150086, PR China
| | - Mengying Zhang
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin, 150086, PR China
| | - Jiang Zhu
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin, 150086, PR China
| | - Min Zhang
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin, 150086, PR China
| | - Ce Ci
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin, 150086, PR China
| | - Shipeng Shang
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin, 150086, PR China
| | - Yanjun Wei
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin, 150086, PR China
| | - Hui Liu
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin, 150086, PR China
| | - Xin Li
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, PR China
| | - Yan Zhang
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin, 150086, PR China
| |
Collapse
|
98
|
Wei T, Najmi SM, Liu H, Peltonen K, Kucerova A, Schneider DA, Laiho M. Small-Molecule Targeting of RNA Polymerase I Activates a Conserved Transcription Elongation Checkpoint. Cell Rep 2018; 23:404-414. [PMID: 29642000 PMCID: PMC6016085 DOI: 10.1016/j.celrep.2018.03.066] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/16/2018] [Accepted: 03/15/2018] [Indexed: 12/02/2022] Open
Abstract
Inhibition of RNA polymerase I (Pol I) is a promising strategy for modern cancer therapy. BMH-21 is a first-in-class small molecule that inhibits Pol I transcription and induces degradation of the enzyme, but how this exceptional response is enforced is not known. Here, we define key elements requisite for the response. We show that Pol I preinitiation factors and polymerase subunits (e.g., RPA135) are required for BMH-21-mediated degradation of RPA194. We further find that Pol I inhibition and induced degradation by BMH-21 are conserved in yeast. Genetic analyses demonstrate that mutations that induce transcription elongation defects in Pol I result in hypersensitivity to BMH-21. Using a fully reconstituted Pol I transcription assay, we show that BMH-21 directly impairs transcription elongation by Pol I, resulting in long-lived polymerase pausing. These studies define a conserved regulatory checkpoint that monitors Pol I transcription and is activated by therapeutic intervention.
Collapse
Affiliation(s)
- Ting Wei
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy and Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Saman M Najmi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hester Liu
- Department of Radiation Oncology and Molecular Radiation Sciences and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Karita Peltonen
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy and Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Alena Kucerova
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy and Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Marikki Laiho
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy and Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland; Department of Radiation Oncology and Molecular Radiation Sciences and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
99
|
Núñez Villacís L, Wong MS, Ferguson LL, Hein N, George AJ, Hannan KM. New Roles for the Nucleolus in Health and Disease. Bioessays 2018; 40:e1700233. [PMID: 29603296 DOI: 10.1002/bies.201700233] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/02/2018] [Indexed: 12/31/2022]
Abstract
Over the last decade, our appreciation of the importance of the nucleolus for cellular function has progressed from the ordinary to the extraordinary. We no longer think of the nucleolus as simply the site of ribosome production, or a dynamic subnuclear body noted by pathologists for its changes in size and shape with malignancy. Instead, the nucleolus has emerged as a key controller of many cellular processes that are fundamental to normal cell homeostasis and the target for dysregulation in many human diseases; in some cases, independent of its functions in ribosome biogenesis. These extra-nucleolar or new functions, which we term "non-canonical" to distinguish them from the more traditional role of the nucleolus in ribosome synthesis, are the focus of this review. In particular, we explore how these non-canonical functions may provide novel insights into human disease and in some cases new targets for therapeutic development.
Collapse
Affiliation(s)
- Lorena Núñez Villacís
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Acton, 2601, Australia
| | - Mei S Wong
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Acton, 2601, Australia.,Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Center, Melbourne, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Laura L Ferguson
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Acton, 2601, Australia
| | - Nadine Hein
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Acton, 2601, Australia
| | - Amee J George
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Acton, 2601, Australia.,School of Biomedical Sciences, University of Queensland, St Lucia, 4067, Australia.,Department of Clinical Pathology, The University of Melbourne, Parkville, 3010, Australia
| | - Katherine M Hannan
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Acton, 2601, Australia.,Department of Biochemistry, The University of Melbourne, Parkville, 3010, Australia
| |
Collapse
|
100
|
Abstract
Ribosome biogenesis is a complex and highly energy-demanding process that requires the concerted action of all three nuclear RNA polymerases (Pol I-III) in eukaryotes. The three largest ribosomal RNAs (rRNAs) originate from a precursor transcript (pre-rRNA) that is encoded by multicopy genes located in the nucleolus. Transcription of these rRNA genes (rDNA) by Pol I is the key regulation step in ribosome production and is tightly controlled by an intricate network of signaling pathways and epigenetic mechanisms. In this article, we give an overview of the composition of the basal Pol I machinery and rDNA chromatin. We discuss rRNA gene regulation in response to environmental signals and developmental cues and focus on perturbations occurring in diseases linked to either excessive or limited rRNA levels. Finally, we discuss the emerging view that rDNA integrity and activity may be involved in the aging process.
Collapse
Affiliation(s)
- Samim Sharifi
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University, 07745 Jena, Germany; , .,Leibniz-Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
| | - Holger Bierhoff
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University, 07745 Jena, Germany; , .,Leibniz-Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
| |
Collapse
|