51
|
Thosar SS, Butler MP, Shea SA. Role of the circadian system in cardiovascular disease. J Clin Invest 2018; 128:2157-2167. [PMID: 29856365 DOI: 10.1172/jci80590] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
All species organize behaviors to optimally match daily changes in the environment, leading to pronounced activity/rest cycles that track the light/dark cycle. Endogenous, approximately 24-hour circadian rhythms in the brain, autonomic nervous system, heart, and vasculature prepare the cardiovascular system for optimal function during these anticipated behavioral cycles. Cardiovascular circadian rhythms, however, may be a double-edged sword. The normal amplified responses in the morning may aid the transition from sleep to activity, but such exaggerated responses are potentially perilous in individuals susceptible to adverse cardiovascular events. Indeed, the occurrence of stroke, myocardial infarction, and sudden cardiac death all have daily patterns, striking most frequently in the morning. Furthermore, chronic disruptions of the circadian clock, as with night-shift work, contribute to increased cardiovascular risk. Here we highlight the importance of the circadian system to normal cardiovascular function and to cardiovascular disease, and identify opportunities for optimizing timing of medications in cardiovascular disease.
Collapse
|
52
|
Clocking In Time to Gate Memory Processes: The Circadian Clock Is Part of the Ins and Outs of Memory. Neural Plast 2018; 2018:6238989. [PMID: 29849561 PMCID: PMC5925033 DOI: 10.1155/2018/6238989] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/22/2018] [Accepted: 02/05/2018] [Indexed: 01/11/2023] Open
Abstract
Learning, memory consolidation, and retrieval are processes known to be modulated by the circadian (circa: about; dies: day) system. The circadian regulation of memory performance is evolutionarily conserved, independent of the type and complexity of the learning paradigm tested, and not specific to crepuscular, nocturnal, or diurnal organisms. In mammals, long-term memory (LTM) formation is tightly coupled to de novo gene expression of plasticity-related proteins and posttranslational modifications and relies on intact cAMP/protein kinase A (PKA)/protein kinase C (PKC)/mitogen-activated protein kinase (MAPK)/cyclic adenosine monophosphate response element-binding protein (CREB) signaling. These memory-essential signaling components cycle rhythmically in the hippocampus across the day and night and are clearly molded by an intricate interplay between the circadian system and memory. Important components of the circadian timing mechanism and its plasticity are members of the Period clock gene family (Per1, Per2). Interestingly, Per1 is rhythmically expressed in mouse hippocampus. Observations suggest important and largely unexplored roles of the clock gene protein PER1 in synaptic plasticity and in the daytime-dependent modulation of learning and memory. Here, we review the latest findings on the role of the clock gene Period 1 (Per1) as a candidate molecular and mechanistic blueprint for gating the daytime dependency of memory processing.
Collapse
|
53
|
Trott AJ, Menet JS. Regulation of circadian clock transcriptional output by CLOCK:BMAL1. PLoS Genet 2018; 14:e1007156. [PMID: 29300726 PMCID: PMC5771620 DOI: 10.1371/journal.pgen.1007156] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 01/17/2018] [Accepted: 12/14/2017] [Indexed: 01/20/2023] Open
Abstract
The mammalian circadian clock relies on the transcription factor CLOCK:BMAL1 to coordinate the rhythmic expression of 15% of the transcriptome and control the daily regulation of biological functions. The recent characterization of CLOCK:BMAL1 cistrome revealed that although CLOCK:BMAL1 binds synchronously to all of its target genes, its transcriptional output is highly heterogeneous. By performing a meta-analysis of several independent genome-wide datasets, we found that the binding of other transcription factors at CLOCK:BMAL1 enhancers likely contribute to the heterogeneity of CLOCK:BMAL1 transcriptional output. While CLOCK:BMAL1 rhythmic DNA binding promotes rhythmic nucleosome removal, it is not sufficient to generate transcriptionally active enhancers as assessed by H3K27ac signal, RNA Polymerase II recruitment, and eRNA expression. Instead, the transcriptional activity of CLOCK:BMAL1 enhancers appears to rely on the activity of ubiquitously expressed transcription factors, and not tissue-specific transcription factors, recruited at nearby binding sites. The contribution of other transcription factors is exemplified by how fasting, which effects several transcription factors but not CLOCK:BMAL1, either decreases or increases the amplitude of many rhythmically expressed CLOCK:BMAL1 target genes. Together, our analysis suggests that CLOCK:BMAL1 promotes a transcriptionally permissive chromatin landscape that primes its target genes for transcription activation rather than directly activating transcription, and provides a new framework to explain how environmental or pathological conditions can reprogram the rhythmic expression of clock-controlled genes.
Collapse
Affiliation(s)
- Alexandra J. Trott
- Department of Biology, Program of Genetics and Center for Biological Clocks Research, Texas A&M University, College Station, TX, United States of America
| | - Jerome S. Menet
- Department of Biology, Program of Genetics and Center for Biological Clocks Research, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
54
|
Central Circadian Clock Regulates Energy Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1090:79-103. [PMID: 30390286 DOI: 10.1007/978-981-13-1286-1_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Our body not only responds to environmental changes but also anticipates them. The light and dark cycle with the period of about 24 h is a recurring environmental change that determines the diurnal variation in food availability and safety from predators in nature. As a result, the circadian clock is evolved in most animals to align locomotor behaviors and energy metabolism with the light cue. The central circadian clock in mammals is located at the suprachiasmatic nucleus (SCN) of the hypothalamus in the brain. We here review the molecular and anatomic architecture of the central circadian clock in mammals, describe the experimental and observational evidence that suggests a critical role of the central circadian clock in shaping systemic energy metabolism, and discuss the involvement of endocrine factors, neuropeptides, and the autonomic nervous system in the metabolic functions of the central circadian clock.
Collapse
|
55
|
Griggs CA, Malm SW, Jaime-Frias R, Smith CL. Valproic acid disrupts the oscillatory expression of core circadian rhythm transcription factors. Toxicol Appl Pharmacol 2017; 339:110-120. [PMID: 29229235 DOI: 10.1016/j.taap.2017.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 12/30/2022]
Abstract
Valproic acid (VPA) is a well-established therapeutic used in treatment of seizure and mood disorders as well as migraines and a known hepatotoxicant. About 50% of VPA users experience metabolic disruptions, including weight gain, hyperlipidemia, and hyperinsulinemia, among others. Several of these metabolic abnormalities are similar to the effects of circadian rhythm disruption. In the current study, we examine the effect of VPA exposure on the expression of core circadian transcription factors that drive the circadian clock via a transcription-translation feedback loop. In cells with an unsynchronized clock, VPA simultaneously upregulated the expression of genes encoding core circadian transcription factors that regulate the positive and negative limbs of the feedback loop. Using low dose glucocorticoid, we synchronized cultured fibroblast cells to a circadian oscillatory pattern. Whether VPA was added at the time of synchronization or 12h later at CT12, we found that VPA disrupted the oscillatory expression of multiple genes encoding essential transcription factors that regulate circadian rhythm. Therefore, we conclude that VPA has a potent effect on the circadian rhythm transcription-translation feedback loop that may be linked to negative VPA side effects in humans. Furthermore, our study suggests potential chronopharmacology implications of VPA usage.
Collapse
Affiliation(s)
- Chanel A Griggs
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, United States
| | - Scott W Malm
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, United States
| | - Rosa Jaime-Frias
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, United States
| | - Catharine L Smith
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
56
|
Jakubowski JL, Labrie V. Epigenetic Biomarkers for Parkinson's Disease: From Diagnostics to Therapeutics. JOURNAL OF PARKINSONS DISEASE 2017; 7:1-12. [PMID: 27792016 PMCID: PMC5302044 DOI: 10.3233/jpd-160914] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Parkinson’s disease (PD) is a prevalent neurodegenerative illness that is often diagnosed after significant pathology and neuronal cell loss has occurred. Biomarkers of PD are greatly needed for early diagnosis, as well as for the prediction of disease progression and treatment outcome. In this regard, the epigenome, which is partially dynamic, holds considerable promise for the development of molecular biomarkers for PD. Epigenetic marks are modified by both DNA sequence and environmental factors associated with PD, and such marks could serve as a unifying predictor of at-risk individuals. Epigenetic abnormalities have been detected in PD and other age-dependent neurodegenerative diseases, some of which were reported to occur early on and were reversible by PD medications. Emerging reports indicate that certain epigenetic differences observed in the PD brain are detectable in more easily accessible tissues. In this review, we examine epigenetic-based strategies for the development of PD biomarkers. Despite the complexities and challenges faced, the epigenome offers a new source of biomarkers with potential etiological relevance to PD, and may expand opportunities for personalized therapies.
Collapse
Affiliation(s)
- Jennifer L Jakubowski
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Viviane Labrie
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA.,Center for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
57
|
Aryal RP, Kwak PB, Tamayo AG, Gebert M, Chiu PL, Walz T, Weitz CJ. Macromolecular Assemblies of the Mammalian Circadian Clock. Mol Cell 2017; 67:770-782.e6. [PMID: 28886335 PMCID: PMC5679067 DOI: 10.1016/j.molcel.2017.07.017] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/14/2017] [Accepted: 07/13/2017] [Indexed: 10/18/2022]
Abstract
The mammalian circadian clock is built on a feedback loop in which PER and CRY proteins repress their own transcription. We found that in mouse liver nuclei all three PERs, both CRYs, and Casein Kinase-1δ (CK1δ) are present together in an ∼1.9-MDa repressor assembly that quantitatively incorporates its CLOCK-BMAL1 transcription factor target. Prior to incorporation, CLOCK-BMAL1 exists in an ∼750-kDa complex. Single-particle electron microscopy (EM) revealed nuclear PER complexes purified from mouse liver to be quasi-spherical ∼40-nm structures. In the cytoplasm, PERs, CRYs, and CK1δ were distributed into several complexes of ∼0.9-1.1 MDa that appear to constitute an assembly pathway regulated by GAPVD1, a cytoplasmic trafficking factor. Single-particle EM of two purified cytoplasmic PER complexes revealed ∼20-nm and ∼25-nm structures, respectively, characterized by flexibly tethered globular domains. Our results define the macromolecular assemblies comprising the circadian feedback loop and provide an initial structural view of endogenous eukaryotic clock machinery.
Collapse
Affiliation(s)
- Rajindra P Aryal
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Pieter Bas Kwak
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alfred G Tamayo
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Gebert
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Po-Lin Chiu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, Rockefeller University, New York, NY 10065, USA
| | - Charles J Weitz
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
58
|
Gillessen M, Kwak PB, Tamayo A. A simple method to measure CLOCK-BMAL1 DNA binding activity in tissue and cell extracts. F1000Res 2017; 6:1316. [DOI: 10.12688/f1000research.11685.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2017] [Indexed: 01/05/2023] Open
Abstract
The proteins CLOCK and BMAL1 form a heterodimeric transcription factor essential to circadian rhythms in mammals. Daily rhythms of CLOCK-BMAL1 DNA binding activity are known to oscillate with target gene expression in vivo. Here we present a highly sensitive assay that recapitulates native CLOCK-BMAL1 DNA binding rhythms from crude tissue extracts, which we call the Clock Protein-DNA Binding Assay (CPDBA). This method can detect less than 2-fold differences in DNA binding activity, and can deliver results in two hours or less using 10 microliters or less of crude extract, while requiring neither specialized equipment nor expensive probes. To demonstrate the sensitivity and versatility of this assay, we show that enzymatic removal of phosphate groups from proteins in tissue extracts or pharmacological inhibition of casein kinase I in cell culture increased CLOCK-BMAL1 DNA binding activity by ~1.5 to ~2 fold, as measured by the CPDBA. In addition, we show that the CPDBA can measure CLOCK-BMAL1 binding to reconstituted chromatin. The CPDBA is a sensitive, fast, efficient and versatile probe of clock function.
Collapse
|
59
|
Gillessen M, Kwak PB, Tamayo A. A simple method to measure CLOCK-BMAL1 DNA binding activity in tissue and cell extracts. F1000Res 2017; 6:1316. [PMID: 28928952 PMCID: PMC5580408 DOI: 10.12688/f1000research.11685.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2017] [Indexed: 12/14/2022] Open
Abstract
The proteins CLOCK and BMAL1 form a heterodimeric transcription factor essential to circadian rhythms in mammals. Daily rhythms of CLOCK-BMAL1 DNA binding activity are known to oscillate with target gene expression in vivo. Here we present a highly sensitive assay that recapitulates native CLOCK-BMAL1 DNA binding rhythms from crude tissue extracts, which we call the Clock Protein-DNA Binding Assay (CPDBA). This method can detect less than 2-fold differences in DNA binding activity, and can deliver results in two hours or less using 10 microliters (~10 micrograms) or less of crude extract, while requiring neither specialized equipment nor expensive probes. To demonstrate the sensitivity and versatility of this assay, we show that enzymatic removal of phosphate groups from proteins in tissue extracts or pharmacological inhibition of casein kinase I in cell culture increased CLOCK-BMAL1 DNA binding activity by ~1.5 to ~2 fold, as measured by the CPDBA. In addition, we show that the CPDBA can measure CLOCK-BMAL1 binding to reconstituted chromatin. The CPDBA is a sensitive, fast, efficient and versatile probe of clock function.
Collapse
Affiliation(s)
- Maud Gillessen
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA.,Department of Biology, University of Namur, 5000 Namur, Belgium
| | - Pieter Bas Kwak
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Alfred Tamayo
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
60
|
Tomita T, Kurita R, Onishi Y. Epigenetic regulation of the circadian clock: role of 5-aza-2'-deoxycytidine. Biosci Rep 2017; 37:BSR20170053. [PMID: 28487473 PMCID: PMC5437938 DOI: 10.1042/bsr20170053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/30/2017] [Accepted: 05/08/2017] [Indexed: 12/18/2022] Open
Abstract
We have been investigating transcriptional regulation of the BMAL1 gene, a critical component of the mammalian clock system including DNA methylation. Here, a more detailed analysis of the regulation of DNA methylation of BMAL1 proceeded in RPMI8402 lymphoma cells. We found that CpG islands in the BMAL1 and the PER2 promoters were hyper- and hypomethylated, respectively and that 5-aza-2'-deoxycytidine (aza-dC) not only enhanced PER2 gene expression but also PER2 oscillation within 24 h in RPMI8402 cells. That is, such hypermethylation of CpG islands in the BMAL1 promoter restricted PER2 expression which was recovered by aza-dC within 1 day in these cells. These results suggest that the circadian clock system can be recovered through BMAL1 expression induced by aza-dC within a day. The RPIB9 promoter of RPMI8402 cells, which is a methylation hotspot in lymphoblastic leukemia, was also hypermethylated and aza-dC gradually recovered RPIB9 expression in 3 days. In addition, methylation-specific PCR revealed a different degree of aza-dC-induced methylation release between BMAL1 and RPIB9 These results suggest that the aza-dC-induced recovery of gene expression from DNA methylation is dependent on a gene, for example the rapid response to demethylation by the circadian system, and thus, is of importance to clinical strategies for treating cancer.
Collapse
Affiliation(s)
- Tatsunosuke Tomita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Higashi 1-1-1, Tsukuba 305-8566, Japan
| | - Ryoji Kurita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Higashi 1-1-1, Tsukuba 305-8566, Japan
| | - Yoshiaki Onishi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Higashi 1-1-1, Tsukuba 305-8566, Japan
| |
Collapse
|
61
|
Abstract
Biological clocks are autonomous anticipatory oscillators that play a critical role in the organization and information processing from genome to whole organisms. Transformative advances into the clock system have opened insight into fundamental mechanisms through which clocks program energy transfer from sunlight into organic matter and potential energy, in addition to cell development and genotoxic stress response. The identification of clocks in nearly every single cell of the body raises questions as to how this gives rise to rhythmic physiology in multicellular organisms and how environmental signals entrain clocks to geophysical time. Here, we consider advances in understanding how regulatory networks emergent in clocks give rise to cell type-specific functions within tissues to affect homeostasis.
Collapse
Affiliation(s)
- Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. .,The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
62
|
Patke A, Murphy PJ, Onat OE, Krieger AC, Özçelik T, Campbell SS, Young MW. Mutation of the Human Circadian Clock Gene CRY1 in Familial Delayed Sleep Phase Disorder. Cell 2017; 169:203-215.e13. [PMID: 28388406 DOI: 10.1016/j.cell.2017.03.027] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 02/18/2017] [Accepted: 03/20/2017] [Indexed: 12/12/2022]
Abstract
Patterns of daily human activity are controlled by an intrinsic circadian clock that promotes ∼24 hr rhythms in many behavioral and physiological processes. This system is altered in delayed sleep phase disorder (DSPD), a common form of insomnia in which sleep episodes are shifted to later times misaligned with the societal norm. Here, we report a hereditary form of DSPD associated with a dominant coding variation in the core circadian clock gene CRY1, which creates a transcriptional inhibitor with enhanced affinity for circadian activator proteins Clock and Bmal1. This gain-of-function CRY1 variant causes reduced expression of key transcriptional targets and lengthens the period of circadian molecular rhythms, providing a mechanistic link to DSPD symptoms. The allele has a frequency of up to 0.6%, and reverse phenotyping of unrelated families corroborates late and/or fragmented sleep patterns in carriers, suggesting that it affects sleep behavior in a sizeable portion of the human population.
Collapse
Affiliation(s)
- Alina Patke
- Laboratory of Genetics, The Rockefeller University, New York, NY 10065, USA.
| | - Patricia J Murphy
- Laboratory of Human Chronobiology, Weill Cornell Medical College, White Plains, NY 10605, USA
| | - Onur Emre Onat
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara 06800, Turkey
| | - Ana C Krieger
- Department of Medicine, Center for Sleep Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Tayfun Özçelik
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara 06800, Turkey
| | - Scott S Campbell
- Laboratory of Human Chronobiology, Weill Cornell Medical College, White Plains, NY 10605, USA
| | - Michael W Young
- Laboratory of Genetics, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
63
|
Papazyan R, Zhang Y, Lazar MA. Genetic and epigenomic mechanisms of mammalian circadian transcription. Nat Struct Mol Biol 2017; 23:1045-1052. [PMID: 27922611 DOI: 10.1038/nsmb.3324] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/13/2016] [Indexed: 12/27/2022]
Abstract
The mammalian molecular clock comprises a complex network of transcriptional programs that integrates environmental signals with physiological pathways in a tissue-specific manner. Emerging technologies are extending knowledge of basic clock features by uncovering their underlying molecular mechanisms, thus setting the stage for a 'systems' view of the molecular clock. Here we discuss how recent data from genome-wide genetic and epigenetic studies have informed the understanding of clock function. In addition to its importance in human physiology and disease, the clock mechanism provides an ideal model to assess general principles of dynamic transcription regulation in vivo.
Collapse
Affiliation(s)
- Romeo Papazyan
- Division of Endocrinology, Diabetes, and Metabolism; Department of Medicine; Department of Genetics; and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuxiang Zhang
- Division of Endocrinology, Diabetes, and Metabolism; Department of Medicine; Department of Genetics; and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism; Department of Medicine; Department of Genetics; and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
64
|
Cao Y, Wang RH. Associations among Metabolism, Circadian Rhythm and Age-Associated Diseases. Aging Dis 2017; 8:314-333. [PMID: 28580187 PMCID: PMC5440111 DOI: 10.14336/ad.2016.1101] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/01/2016] [Indexed: 12/12/2022] Open
Abstract
Accumulating epidemiological studies have implicated a strong link between age associated metabolic diseases and cancer, though direct and irrefutable evidence is missing. In this review, we discuss the connection between Warburg effects and tumorigenesis, as well as adaptive responses to environment such as circadian rhythms on molecular pathways involved in metabolism. We also review the central role of the sirtuin family of proteins in physiological modulation of cellular processes and age-associated metabolic diseases. We also provide a macroscopic view of how the circadian rhythm affects metabolism and may be involved in cell metabolism reprogramming and cancer pathogenesis. The aberrations in metabolism and the circadian system may lead to age-associated diseases directly or through intermediates. These intermediates may be either mutated or reprogrammed, thus becoming responsible for chromatin modification and oncogene transcription. Integration of circadian rhythm and metabolic reprogramming in the holistic understanding of metabolic diseases and cancer may provide additional insights into human diseases.
Collapse
Affiliation(s)
- Yiwei Cao
- Faculty of Health Science, University of Macau, Macau, China
| | - Rui-Hong Wang
- Faculty of Health Science, University of Macau, Macau, China
| |
Collapse
|
65
|
Mendoza-Viveros L, Bouchard-Cannon P, Hegazi S, Cheng AH, Pastore S, Cheng HYM. Molecular modulators of the circadian clock: lessons from flies and mice. Cell Mol Life Sci 2017; 74:1035-1059. [PMID: 27689221 PMCID: PMC11107503 DOI: 10.1007/s00018-016-2378-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/03/2016] [Accepted: 09/22/2016] [Indexed: 12/16/2022]
Abstract
Circadian timekeeping is a ubiquitous mechanism that enables organisms to maintain temporal coordination between internal biological processes and time of the local environment. The molecular basis of circadian rhythms lies in a set of transcription-translation feedback loops (TTFLs) that drives the rhythmic transcription of core clock genes, whose level and phase of expression serve as the marker of circadian time. However, it has become increasingly evident that additional regulatory mechanisms impinge upon the TTFLs to govern the properties and behavior of the circadian clock. Such mechanisms include changes in chromatin architecture, interactions with other transcription factor networks, post-transcriptional control by RNA modifications, alternative splicing and microRNAs, and post-translational regulation of subcellular trafficking and protein degradation. In this review, we will summarize the current knowledge of circadian clock regulation-from transcriptional to post-translational-drawing from literature pertaining to the Drosophila and murine circadian systems.
Collapse
Affiliation(s)
- Lucia Mendoza-Viveros
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Pascale Bouchard-Cannon
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Sara Hegazi
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Arthur H Cheng
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Stephen Pastore
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Hai-Ying Mary Cheng
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada.
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada.
| |
Collapse
|
66
|
Alexander M, Burch JB, Steck SE, Chen CF, Hurley TG, Cavicchia P, Shivappa N, Guess J, Zhang H, Youngstedt SD, Creek KE, Lloyd S, Jones K, Hébert JR. Case-control study of candidate gene methylation and adenomatous polyp formation. Int J Colorectal Dis 2017; 32:183-192. [PMID: 27771773 PMCID: PMC5288296 DOI: 10.1007/s00384-016-2688-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/12/2016] [Indexed: 02/04/2023]
Abstract
PURPOSE Colorectal cancer (CRC) is one of the most common and preventable forms of cancer but remains the second leading cause of cancer-related death. Colorectal adenomas are precursor lesions that develop in 70-90 % of CRC cases. Identification of peripheral biomarkers for adenomas would help to enhance screening efforts. This exploratory study examined the methylation status of 20 candidate markers in peripheral blood leukocytes and their association with adenoma formation. METHODS Patients recruited from a local endoscopy clinic provided informed consent and completed an interview to ascertain demographic, lifestyle, and adenoma risk factors. Cases were individuals with a histopathologically confirmed adenoma, and controls included patients with a normal colonoscopy or those with histopathological findings not requiring heightened surveillance (normal biopsy, hyperplastic polyp). Methylation-specific polymerase chain reaction was used to characterize candidate gene promoter methylation. Odds ratios (ORs) and 95 % confidence intervals (95% CIs) were calculated using unconditional multivariable logistic regression to test the hypothesis that candidate gene methylation differed between cases and controls, after adjustment for confounders. RESULTS Complete data were available for 107 participants; 36 % had adenomas (men 40 %, women 31 %). Hypomethylation of the MINT1 locus (OR 5.3, 95% CI 1.0-28.2) and the PER1 (OR 2.9, 95% CI 1.1-7.7) and PER3 (OR 11.6, 95% CI 1.6-78.5) clock gene promoters was more common among adenoma cases. While specificity was moderate to high for the three markers (71-97 %), sensitivity was relatively low (18-45 %). CONCLUSION Follow-up of these epigenetic markers is suggested to further evaluate their utility for adenoma screening or surveillance.
Collapse
Affiliation(s)
- M Alexander
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA
| | - J B Burch
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA.
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA.
- William Jennings Bryant Dorn Department of Veterans Affairs Medical Center, Columbia, SC, USA.
| | - S E Steck
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA
| | - C-F Chen
- Center for Molecular Studies, Greenwood Genetic Center, Greenwood, SC, USA
| | - T G Hurley
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
| | - P Cavicchia
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA
- Division of Community Health Promotion, Florida Department of Health, Tallahassee, FL, USA
| | - N Shivappa
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA
| | - J Guess
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA
| | - H Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - S D Youngstedt
- College of Nursing and Health Innovation, College of Health Solutions, Arizona State University and Phoenix VA Health Care System, Phoenix, AZ, USA
| | - K E Creek
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - S Lloyd
- South Carolina Medical Endoscopy Center, and Department of Family Medicine, University of South Carolina School of Medicine, Columbia, SC, USA
| | - K Jones
- Center for Molecular Studies, Greenwood Genetic Center, Greenwood, SC, USA
| | - J R Hébert
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA
- Department of Family and Preventive Medicine, School of Medicine, University of South Carolin, Columbia, SC, USA
| |
Collapse
|
67
|
Michael AK, Fribourgh JL, Van Gelder RN, Partch CL. Animal Cryptochromes: Divergent Roles in Light Perception, Circadian Timekeeping and Beyond. Photochem Photobiol 2017; 93:128-140. [PMID: 27891621 DOI: 10.1111/php.12677] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/09/2016] [Indexed: 12/15/2022]
Abstract
Cryptochromes are evolutionarily related to the light-dependent DNA repair enzyme photolyase, serving as major regulators of circadian rhythms in insects and vertebrate animals. There are two types of cryptochromes in the animal kingdom: Drosophila-like CRYs that act as nonvisual photopigments linking circadian rhythms to the environmental light/dark cycle, and vertebrate-like CRYs that do not appear to sense light directly, but control the generation of circadian rhythms by acting as transcriptional repressors. Some animals have both types of CRYs, while others possess only one. Cryptochromes have two domains, the photolyase homology region (PHR) and an extended, intrinsically disordered C-terminus. While all animal CRYs share a high degree of sequence and structural homology in their PHR domains, the C-termini are divergent in both length and sequence identity. Recently, cryptochrome function has been shown to extend beyond its pivotal role in circadian clocks, participating in regulation of the DNA damage response, cancer progression and glucocorticoid signaling, as well as being implicated as possible magnetoreceptors. In this review, we provide a historical perspective on the discovery of animal cryptochromes, examine similarities and differences of the two types of animal cryptochromes and explore some of the divergent roles for this class of proteins.
Collapse
Affiliation(s)
- Alicia K Michael
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA
| | - Jennifer L Fribourgh
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA
| | | | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA.,Center for Circadian Biology, University of California San Diego, San Diego, CA
| |
Collapse
|
68
|
Takahashi JS. Transcriptional architecture of the mammalian circadian clock. NATURE REVIEWS. GENETICS 2016. [PMID: 27990019 DOI: 10.1038/nrg.2016.150]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Circadian clocks are endogenous oscillators that control 24-hour physiological and behavioural processes in organisms. These cell-autonomous clocks are composed of a transcription-translation-based autoregulatory feedback loop. With the development of next-generation sequencing approaches, biochemical and genomic insights into circadian function have recently come into focus. Genome-wide analyses of the clock transcriptional feedback loop have revealed a global circadian regulation of processes such as transcription factor occupancy, RNA polymerase II recruitment and initiation, nascent transcription, and chromatin remodelling. The genomic targets of circadian clocks are pervasive and are intimately linked to the regulation of metabolism, cell growth and physiology.
Collapse
Affiliation(s)
- Joseph S Takahashi
- Howard Hughes Medical Institute, Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, NA4.118, Dallas, Texas 75390-9111, USA
| |
Collapse
|
69
|
Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 2016; 18:164-179. [PMID: 27990019 DOI: 10.1038/nrg.2016.150] [Citation(s) in RCA: 1680] [Impact Index Per Article: 186.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Circadian clocks are endogenous oscillators that control 24-hour physiological and behavioural processes in organisms. These cell-autonomous clocks are composed of a transcription-translation-based autoregulatory feedback loop. With the development of next-generation sequencing approaches, biochemical and genomic insights into circadian function have recently come into focus. Genome-wide analyses of the clock transcriptional feedback loop have revealed a global circadian regulation of processes such as transcription factor occupancy, RNA polymerase II recruitment and initiation, nascent transcription, and chromatin remodelling. The genomic targets of circadian clocks are pervasive and are intimately linked to the regulation of metabolism, cell growth and physiology.
Collapse
Affiliation(s)
- Joseph S Takahashi
- Howard Hughes Medical Institute, Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, NA4.118, Dallas, Texas 75390-9111, USA
| |
Collapse
|
70
|
Kwok RS, Lam VH, Chiu JC. Understanding the role of chromatin remodeling in the regulation of circadian transcription in Drosophila. Fly (Austin) 2016; 9:145-54. [PMID: 26926115 PMCID: PMC4862430 DOI: 10.1080/19336934.2016.1143993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Circadian clocks enable organisms to anticipate daily changes in the environment and coordinate temporal rhythms in physiology and behavior with the 24-h day-night cycle. The robust cycling of circadian gene expression is critical for proper timekeeping, and is regulated by transcription factor binding, RNA polymerase II (RNAPII) recruitment and elongation, and post-transcriptional mechanisms. Recently, it has become clear that dynamic alterations in chromatin landscape at the level of histone posttranslational modification and nucleosome density facilitate rhythms in transcription factor recruitment and RNAPII activity, and are essential for progression through activating and repressive phases of circadian transcription. Here, we discuss the characterization of the BRAHMA (BRM) chromatin-remodeling protein in Drosophila in the context of circadian clock regulation. By dissecting its catalytic vs. non-catalytic activities, we propose a model in which the non-catalytic activity of BRM functions to recruit repressive factors to limit the transcriptional output of CLOCK (CLK) during the active phase of circadian transcription, while the primary function of the ATP-dependent catalytic activity is to tune and prevent over-recruitment of negative regulators by increasing nucleosome density. Finally, we divulge ongoing efforts and investigative directions toward a deeper mechanistic understanding of transcriptional regulation of circadian gene expression at the chromatin level.
Collapse
Affiliation(s)
- Rosanna S Kwok
- a Department of Entomology and Nematology ; University of California Davis ; Davis , CA 95616 , USA
| | - Vu H Lam
- a Department of Entomology and Nematology ; University of California Davis ; Davis , CA 95616 , USA
| | - Joanna C Chiu
- a Department of Entomology and Nematology ; University of California Davis ; Davis , CA 95616 , USA
| |
Collapse
|
71
|
Hirano A, Fu YH, Ptáček LJ. The intricate dance of post-translational modifications in the rhythm of life. Nat Struct Mol Biol 2016; 23:1053-1060. [DOI: 10.1038/nsmb.3326] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/14/2016] [Indexed: 12/26/2022]
|
72
|
Abstract
There is a dynamic interplay between metabolic processes and gene regulation via the remodeling of chromatin. Most chromatin-modifying enzymes use cofactors, which are products of metabolic processes. This article explores the biosynthetic pathways of the cofactors nicotinamide adenine dinucleotide (NAD), acetyl coenzyme A (acetyl-CoA), S-adenosyl methionine (SAM), α-ketoglutarate, and flavin adenine dinucleotide (FAD), and their role in metabolically regulating chromatin processes. A more detailed look at the interaction between chromatin and the metabolic processes of circadian rhythms and aging is described as a paradigm for this emerging interdisciplinary field.
Collapse
Affiliation(s)
- Shelley L Berger
- Department of Cell & Developmental Biology, Department of Biology, and Department of Genetics, Epigenetics Program, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6508
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697-4049
| |
Collapse
|
73
|
Hurley JM, Loros JJ, Dunlap JC. Circadian Oscillators: Around the Transcription-Translation Feedback Loop and on to Output. Trends Biochem Sci 2016; 41:834-846. [PMID: 27498225 DOI: 10.1016/j.tibs.2016.07.009] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/10/2016] [Accepted: 07/14/2016] [Indexed: 12/20/2022]
Abstract
From cyanobacteria to mammals, organisms have evolved timing mechanisms to adapt to environmental changes in order to optimize survival and improve fitness. To anticipate these regular daily cycles, many organisms manifest ∼24h cell-autonomous oscillations that are sustained by transcription-translation-based or post-transcriptional negative-feedback loops that control a wide range of biological processes. With an eye to identifying emerging common themes among cyanobacterial, fungal, and animal clocks, some major recent developments in the understanding of the mechanisms that regulate these oscillators and their output are discussed. These include roles for antisense transcription, intrinsically disordered proteins, codon bias in clock genes, and a more focused discussion of post-transcriptional and translational regulation as a part of both the oscillator and output.
Collapse
Affiliation(s)
- Jennifer M Hurley
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Jennifer J Loros
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| |
Collapse
|
74
|
Gutierrez-Martinez P, Rossi DJ, Beerman I. DNA Damage and Aging Around the Clock. Trends Mol Med 2016; 22:635-637. [PMID: 27345866 DOI: 10.1016/j.molmed.2016.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 06/10/2016] [Indexed: 10/21/2022]
Abstract
The hematopoietic system undergoes many changes during aging, but the causes and molecular mechanisms behind these changes are not well understood. Wang et al. have recently implicated a circadian rhythm gene, Per2, as playing a role in the DNA damage response and in the expression of lymphoid genes in aged hematopoietic stem cells.
Collapse
Affiliation(s)
- Paula Gutierrez-Martinez
- Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Derrick J Rossi
- Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Isabel Beerman
- Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
75
|
Shi G, Xie P, Qu Z, Zhang Z, Dong Z, An Y, Xing L, Liu Z, Dong Y, Xu G, Yang L, Liu Y, Xu Y. Distinct Roles of HDAC3 in the Core Circadian Negative Feedback Loop Are Critical for Clock Function. Cell Rep 2016; 14:823-834. [PMID: 26776516 DOI: 10.1016/j.celrep.2015.12.076] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/11/2015] [Accepted: 12/15/2015] [Indexed: 01/30/2023] Open
Abstract
In the core mammalian circadian negative feedback loop, the BMAL1-CLOCK complex activates the transcription of the genes Period (Per) and Cryptochrome (Cry). To close the negative feedback loop, the PER-CRY complex interacts with the BMAL1-CLOCK complex to repress its activity. These two processes are separated temporally to ensure clock function. Here, we show that histone deacetylase 3 (HDAC3) is a critical component of the circadian negative feedback loop by regulating both the activation and repression processes in a deacetylase activity-independent manner. Genetic depletion of Hdac3 results in low-amplitude circadian rhythms and dampened E-box-driven transcription. In subjective morning, HDAC3 is required for the efficient transcriptional activation process by regulating BMAL1 stability. In subjective night, however, HDAC3 blocks FBXL3-mediated CRY1 degradation and strongly promotes BMAL1 and CRY1 association. Therefore, these two opposing but temporally separated roles of HDAC3 in the negative feedback loop provide a mechanism for robust circadian gene expression.
Collapse
Affiliation(s)
- Guangsen Shi
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing 210061, China
| | - Pancheng Xie
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing 210061, China
| | - Zhipeng Qu
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing 210061, China
| | - Zhihui Zhang
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing 210061, China
| | - Zhen Dong
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing 210061, China
| | - Yang An
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing 210061, China
| | - Lijuan Xing
- Cambridge-Suda Genomic Research Center, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Zhiwei Liu
- Cambridge-Suda Genomic Research Center, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Yingying Dong
- Cambridge-Suda Genomic Research Center, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Guoqiang Xu
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Ling Yang
- Cambridge-Suda Genomic Research Center, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Ying Xu
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing 210061, China; Cambridge-Suda Genomic Research Center, Soochow University, 199 Renai Road, Suzhou 215123, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200433, China.
| |
Collapse
|
76
|
Tamayo AG, Duong HA, Robles MS, Mann M, Weitz CJ. Histone monoubiquitination by Clock-Bmal1 complex marks Per1 and Per2 genes for circadian feedback. Nat Struct Mol Biol 2015; 22:759-66. [PMID: 26323038 PMCID: PMC4600324 DOI: 10.1038/nsmb.3076] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/29/2015] [Indexed: 12/26/2022]
Abstract
Circadian rhythms in mammals are driven by a feedback loop in which the transcription factor Clock-Bmal1 activates expression of Per and Cry proteins, which together form a large nuclear complex (Per complex) that represses Clock-Bmal1 activity. We found that mouse Clock-Bmal1 recruits the Ddb1-Cullin-4 ubiquitin ligase to Per (Per1 and Per2), Cry (Cry1 and Cry2) and other circadian target genes. Histone H2B monoubiquitination at Per genes was rhythmic and depended on Bmal1, Ddb1 and Cullin-4a. Depletion of Ddb1-Cullin-4a or an independent decrease in H2B monoubiquitination caused defective circadian feedback and decreased the association of the Per complex with DNA-bound Clock-Bmal1. Clock-Bmal1 thus covalently marks Per genes for subsequent recruitment of the Per complex. Our results reveal a chromatin-mediated signal from the positive to the negative limb of the clock that provides a licensing mechanism for circadian feedback.
Collapse
Affiliation(s)
- Alfred G Tamayo
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hao A Duong
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria S Robles
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Charles J Weitz
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
77
|
Zhao H, Sifakis E, Sumida N, Millán-Ariño L, Scholz B, Svensson J, Chen X, Ronnegren A, Mallet de Lima C, Varnoosfaderani F, Shi C, Loseva O, Yammine S, Israelsson M, Rathje LS, Németi B, Fredlund E, Helleday T, Imreh M, Göndör A. PARP1- and CTCF-Mediated Interactions between Active and Repressed Chromatin at the Lamina Promote Oscillating Transcription. Mol Cell 2015; 59:984-97. [DOI: 10.1016/j.molcel.2015.07.019] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 05/20/2015] [Accepted: 07/21/2015] [Indexed: 11/28/2022]
|
78
|
Abstract
In mammals, molecular circadian rhythms are generated by autoregulatory transcriptional-translational feedback loops with PERIOD/CRYPTOCHROME containing complexes inhibiting the transcription of their own genes. Although the major circadian oscillator components seem to be identified, an increasing number of additional factors modulating core clock component functions are being discovered. In a systematic screen using short hairpin RNA in human clock reporter cells, we identified FBXL11 (also known as KDM2A), a histone-demethylase, whose gene dosage is crucial for a correct circadian period. Knockdown of FBXL11 leads to period shortening and overexpression to period lengthening. In addition, altering FBXL11 gene dosage modulates clock gene transcript levels, most prominently that of Nr1d1. FBXL11 exercises its role in the mammalian circadian clock by acting as a negative element on CLOCK/BMAL1 and RORα-induced transcription. It binds directly to the promoter regions of CLOCK/BMAL1-regulated genes via a CXXC-type zinc finger motif in a circadian phase-dependent manner; however, the histone-demethylase activity of FBXL11 is not required for transcriptional repression. Therefore, we propose FBXL11 as a novel component of the circadian clock that regulates the circadian gene expression by a so far unknown mechanism.
Collapse
Affiliation(s)
- Silke Reischl
- Laboratory of Chronobiology, Charité-Universitätsmedizin, Berlin, Germany
| | - Achim Kramer
- Laboratory of Chronobiology, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
79
|
Abstract
PURPOSE OF REVIEW The interplay between circadian rhythm and cancer has been suggested for more than a decade based on the observations that shift work and cancer incidence are linked. Accumulating evidence implicates the circadian clock in cancer survival and proliferation pathways. At the molecular level, multiple control mechanisms have been proposed to link circadian transcription and cell-cycle control to tumorigenesis. RECENT FINDINGS The circadian gating of the cell cycle and subsequent control of cell proliferation is an area of active investigation. Moreover, the circadian clock is a transcriptional system that is intricately regulated at the epigenetic level. Interestingly, the epigenetic landscape at the level of histone modifications, DNA methylation, and small regulatory RNAs are differentially controlled in cancer cells. This concept raises the possibility that epigenetic control is a common thread linking the clock with cancer, though little scientific evidence is known to date. SUMMARY This review focuses on the link between circadian clock and cancer, and speculates on the possible connections at the epigenetic level that could further link the circadian clock to tumor initiation or progression.
Collapse
|
80
|
Bosler O, Girardet C, Franc JL, Becquet D, François-Bellan AM. Structural plasticity of the circadian timing system. An overview from flies to mammals. Front Neuroendocrinol 2015; 38:50-64. [PMID: 25703789 DOI: 10.1016/j.yfrne.2015.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/22/2022]
Abstract
The circadian timing system orchestrates daily variations in physiology and behavior through coordination of multioscillatory cell networks that are highly plastic in responding to environmental changes. Over the last decade, it has become clear that this plasticity involves structural changes and that the changes may be observed not only in central brain regions where the master clock cells reside but also in clock-controlled structures. This review considers experimental data in invertebrate and vertebrate model systems, mainly flies and mammals, illustrating various forms of structural circadian plasticity from cellular to circuit-based levels. It highlights the importance of these plastic events in the functional adaptation of the clock to the changing environment.
Collapse
Affiliation(s)
- Olivier Bosler
- Aix-Marseille Université, CNRS, CRN2M, UMR 7286, Faculté de médecine, secteur nord, Boulevard Pierre Dramard, CS 80011, F-13344 Marseille cedex 15, France.
| | - Clémence Girardet
- Aix-Marseille Université, CNRS, CRN2M, UMR 7286, Faculté de médecine, secteur nord, Boulevard Pierre Dramard, CS 80011, F-13344 Marseille cedex 15, France.
| | - Jean-Louis Franc
- Aix-Marseille Université, CNRS, CRN2M, UMR 7286, Faculté de médecine, secteur nord, Boulevard Pierre Dramard, CS 80011, F-13344 Marseille cedex 15, France
| | - Denis Becquet
- Aix-Marseille Université, CNRS, CRN2M, UMR 7286, Faculté de médecine, secteur nord, Boulevard Pierre Dramard, CS 80011, F-13344 Marseille cedex 15, France
| | - Anne-Marie François-Bellan
- Aix-Marseille Université, CNRS, CRN2M, UMR 7286, Faculté de médecine, secteur nord, Boulevard Pierre Dramard, CS 80011, F-13344 Marseille cedex 15, France
| |
Collapse
|
81
|
How is the inner circadian clock controlled by interactive clock proteins?: Structural analysis of clock proteins elucidates their physiological role. FEBS Lett 2015; 589:1516-29. [PMID: 25999309 DOI: 10.1016/j.febslet.2015.05.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 12/12/2022]
Abstract
Most internationally travelled researchers will have encountered jetlag. If not, working odd hours makes most of us feel somehow dysfunctional. How can all this be linked to circadian rhythms and circadian clocks? In this review, we define circadian clocks, their composition and underlying molecular mechanisms. We describe and discuss recent crystal structures of Drosophila and mammalian core clock components and the enormous impact they had on the understanding of circadian clock mechanisms. Finally, we highlight the importance of circadian clocks for the daily regulation of human/mammalian physiology and show connections to overall fitness, health and disease.
Collapse
|
82
|
Martínez de Paz A, Sanchez-Mut JV, Samitier-Martí M, Petazzi P, Sáez M, Szczesna K, Huertas D, Esteller M, Ausió J. Circadian cycle-dependent MeCP2 and brain chromatin changes. PLoS One 2015; 10:e0123693. [PMID: 25875630 PMCID: PMC4395115 DOI: 10.1371/journal.pone.0123693] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/06/2015] [Indexed: 11/30/2022] Open
Abstract
Methyl CpG binding protein 2 (MeCP2) is a chromosomal protein of the brain, very abundant especially in neurons, where it plays an important role in the regulation of gene expression. Hence it has the potential to be affected by the mammalian circadian cycle. We performed expression analyses of mice brain frontal cortices obtained at different time points and we found that the levels of MeCP2 are altered circadianly, affecting overall organization of brain chromatin and resulting in a circadian-dependent regulation of well-stablished MeCP2 target genes. Furthermore, this data suggests that alterations of MeCP2 can be responsible for the sleeping disorders arising from pathological stages, such as in autism and Rett syndrome.
Collapse
Affiliation(s)
- Alexia Martínez de Paz
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Jose Vicente Sanchez-Mut
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Mireia Samitier-Martí
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Paolo Petazzi
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Mauricio Sáez
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Karolina Szczesna
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Dori Huertas
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
- Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- * E-mail: (ME); (JA)
| | - Juan Ausió
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
- * E-mail: (ME); (JA)
| |
Collapse
|
83
|
Li N, Joska TM, Ruesch CE, Coster SJ, Belden WJ. The frequency natural antisense transcript first promotes, then represses, frequency gene expression via facultative heterochromatin. Proc Natl Acad Sci U S A 2015; 112:4357-4362. [PMID: 25831497 PMCID: PMC4394252 DOI: 10.1073/pnas.1406130112] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The circadian clock is controlled by a network of interconnected feedback loops that require histone modifications and chromatin remodeling. Long noncoding natural antisense transcripts (NATs) originate from Period in mammals and frequency (frq) in Neurospora. To understand the role of NATs in the clock, we put the frq antisense transcript qrf (frq spelled backwards) under the control of an inducible promoter. Replacing the endogenous qrf promoter altered heterochromatin formation and DNA methylation at frq. In addition, constitutive, low-level induction of qrf caused a dramatic effect on the endogenous rhythm and elevated circadian output. Surprisingly, even though qrf is needed for heterochromatic silencing, induction of qrf initially promoted frq gene expression by creating a more permissible local chromatin environment. The observation that antisense expression can initially promote sense gene expression before silencing via heterochromatin formation at convergent loci is also found when a NAT to hygromycin resistance gene is driven off the endogenous vivid (vvd) promoter in the Δvvd strain. Facultative heterochromatin silencing at frq functions in a parallel pathway to previously characterized VVD-dependent silencing and is needed to establish the appropriate circadian phase. Thus, repression via dicer-independent siRNA-mediated facultative heterochromatin is largely independent of, and occurs alongside, other feedback processes.
Collapse
Affiliation(s)
- Na Li
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Tammy M Joska
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Catherine E Ruesch
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Samuel J Coster
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - William J Belden
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| |
Collapse
|
84
|
Abstract
The molecular circadian clock orchestrates the daily cyclical expression of thousands of genes. Disruption of this transcriptional program leads to a variety of pathologies, including insomnia, depression and metabolic disorders. Circadian rhythms in gene expression rely on specific chromatin transitions which are ultimately coordinated by the molecular clock. As a consequence, a highly plastic and dynamic circadian epigenome can be delineated across different tissues and cell types. Intriguingly, genome topology appears to coordinate cyclic transcription at circadian interactomes, in which circadian genes are in physical contact within the cell nucleus in a time-specific manner. Moreover, the clock machinery shows functional interplays with key metabolic regulators, thereby connecting the circadian epigenome to cellular metabolism. Unraveling the molecular aspects of such interplays is likely to reveal new therapeutic strategies towards the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Lorena Aguilar-Arnal
- Center for Epigenetics and Metabolism, Unit 904 of INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, Unit 904 of INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697
| |
Collapse
|
85
|
Kim JY, Kwak PB, Gebert M, Duong HA, Weitz CJ. Purification and Analysis of PERIOD Protein Complexes of the Mammalian Circadian Clock. Methods Enzymol 2015; 551:197-210. [DOI: 10.1016/bs.mie.2014.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
86
|
Gustafson CL, Partch CL. Emerging models for the molecular basis of mammalian circadian timing. Biochemistry 2014; 54:134-49. [PMID: 25303119 PMCID: PMC4303291 DOI: 10.1021/bi500731f] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mammalian circadian timekeeping arises from a transcription-based feedback loop driven by a set of dedicated clock proteins. At its core, the heterodimeric transcription factor CLOCK:BMAL1 activates expression of Period, Cryptochrome, and Rev-Erb genes, which feed back to repress transcription and create oscillations in gene expression that confer circadian timing cues to cellular processes. The formation of different clock protein complexes throughout this transcriptional cycle helps to establish the intrinsic ∼24 h periodicity of the clock; however, current models of circadian timekeeping lack the explanatory power to fully describe this process. Recent studies confirm the presence of at least three distinct regulatory complexes: a transcriptionally active state comprising the CLOCK:BMAL1 heterodimer with its coactivator CBP/p300, an early repressive state containing PER:CRY complexes, and a late repressive state marked by a poised but inactive, DNA-bound CLOCK:BMAL1:CRY1 complex. In this review, we analyze high-resolution structures of core circadian transcriptional regulators and integrate biochemical data to suggest how remodeling of clock protein complexes may be achieved throughout the 24 h cycle. Defining these detailed mechanisms will provide a foundation for understanding the molecular basis of circadian timing and help to establish new platforms for the discovery of therapeutics to manipulate the clock.
Collapse
Affiliation(s)
- Chelsea L Gustafson
- Department of Chemistry and Biochemistry, University of California , Santa Cruz, California 95064, United States
| | | |
Collapse
|
87
|
Kim JY, Kwak PB, Weitz CJ. Specificity in circadian clock feedback from targeted reconstitution of the NuRD corepressor. Mol Cell 2014; 56:738-748. [PMID: 25453762 DOI: 10.1016/j.molcel.2014.10.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 09/11/2014] [Accepted: 10/17/2014] [Indexed: 12/22/2022]
Abstract
Mammalian circadian rhythms are generated by a negative feedback loop in which PERIOD (PER) proteins accumulate, form a large nuclear complex (PER complex), and bind the transcription factor CLOCK-BMAL1, repressing their own expression. We found that mouse PER complexes include the Mi-2/nucleosome remodelling and deacetylase (NuRD) transcriptional corepressor. Unexpectedly, two NuRD subunits, CHD4 and MTA2, constitutively associate with CLOCK-BMAL1, with CHD4 functioning to promote CLOCK-BMAL1 transcriptional activity. At the onset of negative feedback, the PER complex delivers the remaining complementary NuRD subunits to DNA-bound CLOCK-BMAL1, thereby reconstituting a NuRD corepressor that is important for circadian transcriptional feedback and clock function. The PER complex thus acquires full repressor activity only upon successful targeting of CLOCK-BMAL1. Our results show how specificity is generated in the clock despite its dependence on generic transcriptional regulators and reveal the existence of active communication between the positive and negative limbs of the circadian feedback loop.
Collapse
Affiliation(s)
- Jin Young Kim
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Pieter Bas Kwak
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Charles J Weitz
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
88
|
Ruesch CE, Ramakrishnan M, Park J, Li N, Chong HS, Zaman R, Joska TM, Belden WJ. The histone H3 lysine 9 methyltransferase DIM-5 modifies chromatin at frequency and represses light-activated gene expression. G3 (BETHESDA, MD.) 2014; 5:93-101. [PMID: 25429045 PMCID: PMC4291474 DOI: 10.1534/g3.114.015446] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 11/19/2014] [Indexed: 01/22/2023]
Abstract
The transcriptional program controlling the circadian rhythm requires coordinated regulation of chromatin. Characterization of the chromodomain helicase DNA-binding enzyme CHD1 revealed DNA methylation in the promoter of the central clock gene frequency (frq) in Neurospora crassa. In this report, we show that the DNA methylation at frq is not only dependent on the DNA methyltransferase DIM-2 but also on the H3K9 methyltransferase DIM-5 and HP1. Histone H3 lysine 9 trimethylation (H3K9me3) occurs at frq and is most prominent 30 min after light-activated expression. Strains lacking dim-5 have an increase in light-induced transcription, and more White Collar-2 is found associated with the frq promoter. Consistent with the notion that DNA methylation assists in establishing the proper circadian phase, loss of H3K9 methylation results in a phase advance suggesting it delays the onset of frq expression. The dim-5 deletion strain displays an increase in circadian-regulated conidia formation on race tubes and there is a synthetic genetic interaction between dim-5 and ras-1(bd). These results indicate DIM-5 has a regulatory role in muting circadian output. Overall, the data support a model where facultative heterochromatic at frq serves to establish the appropriate phase, mute the light response, and repress circadian output.
Collapse
Affiliation(s)
- Catherine E Ruesch
- Department of Animal Sciences, Rutgers, The State University of New Jersey, School of Environmental and Biological Sciences, New Brunswick, New Jersey 08901
| | - Mukund Ramakrishnan
- Department of Animal Sciences, Rutgers, The State University of New Jersey, School of Environmental and Biological Sciences, New Brunswick, New Jersey 08901
| | - Jinhee Park
- Department of Animal Sciences, Rutgers, The State University of New Jersey, School of Environmental and Biological Sciences, New Brunswick, New Jersey 08901
| | - Na Li
- Department of Animal Sciences, Rutgers, The State University of New Jersey, School of Environmental and Biological Sciences, New Brunswick, New Jersey 08901
| | - Hin S Chong
- Department of Animal Sciences, Rutgers, The State University of New Jersey, School of Environmental and Biological Sciences, New Brunswick, New Jersey 08901
| | - Riasat Zaman
- Department of Animal Sciences, Rutgers, The State University of New Jersey, School of Environmental and Biological Sciences, New Brunswick, New Jersey 08901
| | - Tammy M Joska
- Department of Animal Sciences, Rutgers, The State University of New Jersey, School of Environmental and Biological Sciences, New Brunswick, New Jersey 08901
| | - William J Belden
- Department of Animal Sciences, Rutgers, The State University of New Jersey, School of Environmental and Biological Sciences, New Brunswick, New Jersey 08901
| |
Collapse
|
89
|
Dual modes of CLOCK:BMAL1 inhibition mediated by Cryptochrome and Period proteins in the mammalian circadian clock. Genes Dev 2014; 28:1989-98. [PMID: 25228643 PMCID: PMC4173159 DOI: 10.1101/gad.249417.114] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mammalian circadian clock is based on a transcription–translation feedback loop in which CLOCK and BMAL1 proteins act as transcriptional activators of Cryptochrome and Period genes, which encode proteins that repress CLOCK–BMAL1 with a periodicity of ∼ 24 h. Ye et al. show that CRY binds to CLOCK–BMAL1 at the promoter and inhibits CLOCK–BMAL1-dependent transcription without dissociating the complex. PER alone has no effect on CLOCK–BMAL1-activated transcription, but in the presence of CRY, nuclear entry of PER inhibits transcription by displacing CLOCK–BMAL1 from the promoter. The mammalian circadian clock is based on a transcription–translation feedback loop (TTFL) in which CLOCK and BMAL1 proteins act as transcriptional activators of Cryptochrome and Period genes, which encode proteins that repress CLOCK–BMAL1 with a periodicity of ∼24 h. In this model, the mechanistic roles of CRY and PER are unclear. Here, we used a controlled targeting system to introduce CRY1 or PER2 into the nuclei of mouse cells with defined circadian genotypes to characterize the functions of CRY and PER. Our data show that CRY is the primary repressor in the TTFL: It binds to CLOCK–BMAL1 at the promoter and inhibits CLOCK–BMAL1-dependent transcription without dissociating the complex (“blocking”-type repression). PER alone has no effect on CLOCK–BMAL1-activated transcription. However, in the presence of CRY, nuclear entry of PER inhibits transcription by displacing CLOCK–BMAL1 from the promoter (“displacement”-type repression). In light of these findings, we propose a new model for the mammalian circadian clock in which the negative arm of the TTFL proceeds by two different mechanisms during the circadian cycle.
Collapse
|
90
|
Regulated DNA methylation and the circadian clock: implications in cancer. BIOLOGY 2014; 3:560-77. [PMID: 25198253 PMCID: PMC4192628 DOI: 10.3390/biology3030560] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/12/2014] [Accepted: 08/15/2014] [Indexed: 01/10/2023]
Abstract
Since the cloning and discovery of DNA methyltransferases (DNMT), there has been a growing interest in DNA methylation, its role as an epigenetic modification, how it is established and removed, along with the implications in development and disease. In recent years, it has become evident that dynamic DNA methylation accompanies the circadian clock and is found at clock genes in Neurospora, mice and cancer cells. The relationship among the circadian clock, cancer and DNA methylation at clock genes suggests a correlative indication that improper DNA methylation may influence clock gene expression, contributing to the etiology of cancer. The molecular mechanism underlying DNA methylation at clock loci is best studied in the filamentous fungi, Neurospora crassa, and recent data indicate a mechanism analogous to the RNA-dependent DNA methylation (RdDM) or RNAi-mediated facultative heterochromatin. Although it is still unclear, DNA methylation at clock genes may function as a terminal modification that serves to prevent the regulated removal of histone modifications. In this capacity, aberrant DNA methylation may serve as a readout of misregulated clock genes and not as the causative agent. This review explores the implications of DNA methylation at clock loci and describes what is currently known regarding the molecular mechanism underlying DNA methylation at circadian clock genes.
Collapse
|
91
|
Goriki A, Hatanaka F, Myung J, Kim JK, Yoritaka T, Tanoue S, Abe T, Kiyonari H, Fujimoto K, Kato Y, Todo T, Matsubara A, Forger D, Takumi T. A novel protein, CHRONO, functions as a core component of the mammalian circadian clock. PLoS Biol 2014; 12:e1001839. [PMID: 24736997 PMCID: PMC3988004 DOI: 10.1371/journal.pbio.1001839] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 03/07/2014] [Indexed: 02/06/2023] Open
Abstract
Circadian rhythms are controlled by a system of negative and positive genetic feedback loops composed of clock genes. Although many genes have been implicated in these feedback loops, it is unclear whether our current list of clock genes is exhaustive. We have recently identified Chrono as a robustly cycling transcript through genome-wide profiling of BMAL1 binding on the E-box. Here, we explore the role of Chrono in cellular timekeeping. Remarkably, endogenous CHRONO occupancy around E-boxes shows a circadian oscillation antiphasic to BMAL1. Overexpression of Chrono leads to suppression of BMAL1-CLOCK activity in a histone deacetylase (HDAC) -dependent manner. In vivo loss-of-function studies of Chrono including Avp neuron-specific knockout (KO) mice display a longer circadian period of locomotor activity. Chrono KO also alters the expression of core clock genes and impairs the response of the circadian clock to stress. CHRONO forms a complex with the glucocorticoid receptor and mediates glucocorticoid response. Our comprehensive study spotlights a previously unrecognized clock component of an unsuspected negative circadian feedback loop that is independent of another negative regulator, Cry2, and that integrates behavioral stress and epigenetic control for efficient metabolic integration of the clock.
Collapse
Affiliation(s)
- Akihiro Goriki
- RIKEN Brain Science Institute, Wako, Saitama, Japan
- Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan
| | - Fumiyuki Hatanaka
- RIKEN Brain Science Institute, Wako, Saitama, Japan
- Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan
| | - Jihwan Myung
- RIKEN Brain Science Institute, Wako, Saitama, Japan
- Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan
| | - Jae Kyoung Kim
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Takashi Yoritaka
- Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan
| | - Shintaro Tanoue
- Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Chuo, Kobe, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Chuo, Kobe, Japan
| | - Katsumi Fujimoto
- Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan
| | - Yukio Kato
- Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan
| | - Takashi Todo
- Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Akio Matsubara
- Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan
| | - Daniel Forger
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako, Saitama, Japan
- Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Chiyoda, Tokyo, Japan
| |
Collapse
|