51
|
Bunbury F, Deery E, Sayer AP, Bhardwaj V, Harrison EL, Warren MJ, Smith AG. Exploring the onset of B 12 -based mutualisms using a recently evolved Chlamydomonas auxotroph and B 12 -producing bacteria. Environ Microbiol 2022; 24:3134-3147. [PMID: 35593514 PMCID: PMC9545926 DOI: 10.1111/1462-2920.16035] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 12/01/2022]
Abstract
Cobalamin (vitamin B12 ) is a cofactor for essential metabolic reactions in multiple eukaryotic taxa, including major primary producers such as algae, and yet only prokaryotes can produce it. Many bacteria can colonize the algal phycosphere, forming stable communities that gain preferential access to photosynthate and in return provide compounds such as B12 . Extended coexistence can then drive gene loss, leading to greater algal-bacterial interdependence. In this study, we investigate how a recently evolved B12 -dependent strain of Chlamydomonas reinhardtii, metE7, forms a mutualism with certain bacteria, including the rhizobium Mesorhizobium loti and even a strain of the gut bacterium E. coli engineered to produce cobalamin. Although metE7 was supported by B12 producers, its growth in co-culture was slower than the B12 -independent wild-type, suggesting that high bacterial B12 provision may be necessary to favour B12 auxotrophs and their evolution. Moreover, we found that an E. coli strain that releases more B12 makes a better mutualistic partner, and although this trait may be more costly in isolation, greater B12 release provided an advantage in co-cultures. We hypothesize that, given the right conditions, bacteria that release more B12 may be selected for, particularly if they form close interactions with B12 -dependent algae.
Collapse
Affiliation(s)
- Freddy Bunbury
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Evelyne Deery
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NH, UK
| | - Andrew P Sayer
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Vaibhav Bhardwaj
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Ellen L Harrison
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NH, UK.,Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|
52
|
Srinivas S, Berger M, Brinkhoff T, Niggemann J. Impact of Quorum Sensing and Tropodithietic Acid Production on the Exometabolome of Phaeobacter inhibens. Front Microbiol 2022; 13:917969. [PMID: 35801100 PMCID: PMC9253639 DOI: 10.3389/fmicb.2022.917969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/03/2022] [Indexed: 11/29/2022] Open
Abstract
Microbial interactions shape ecosystem diversity and chemistry through production and exchange of organic compounds, but the impact of regulatory mechanisms on production and release of these exometabolites is largely unknown. We studied the extent and nature of impact of two signaling molecules, tropodithietic acid (TDA) and the quorum sensing molecule acyl homoserine lactone (AHL) on the exometabolome of the model bacterium Phaeobacter inhibens DSM 17395, a member of the ubiquitous marine Roseobacter group. Exometabolomes of the wild type, a TDA and a QS (AHL-regulator) negative mutant were analyzed via Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Based on a total of 996 reproducibly detected molecular masses, exometabolomes of the TDA and QS negative mutant were ∼70% dissimilar to each other, and ∼90 and ∼60% dissimilar, respectively, to that of the wild type. Moreover, at any sampled growth phase, 40–60% of masses detected in any individual exometabolome were unique to that strain, while only 10–12% constituted a shared “core exometabolome.” Putative annotation revealed exometabolites of ecological relevance such as vitamins, amino acids, auxins, siderophore components and signaling compounds with different occurrence patterns in the exometabolomes of the three strains. Thus, this study demonstrates that signaling molecules, such as AHL and TDA, extensively impact the composition of bacterial exometabolomes with potential consequences for species interactions in microbial communities.
Collapse
Affiliation(s)
- Sujatha Srinivas
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Martine Berger
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Jutta Niggemann
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
53
|
Bioactive Compounds for Quorum Sensing Signal-Response Systems in Marine Phycosphere. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10050699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Quorum sensing in the phycosphere refers to a sensor system in which bacteria secrete bioactive compounds to coordinate group behavior relying on cell density. It is an important way for algae and bacteria to communicate with each other and achieve interactions. It has been determined that quorum sensing is widely presented in the marine phycosphere, which involves a variety of bioactive compounds. Focused on these compounds in marine phycosphere, this review summarizes the types and structures of the compounds, describes the methods in detection and functional evaluation, discusses the ecological functions regulated by the compounds, such as modulating microbial colonization, achieving algae–bacteria mutualism or competition and contributing to marine biogeochemical cycles. Meanwhile, the application prospects of the compounds are also proposed, including controlling harmful algal blooms and producing biofuel. Future research should focus on improving detection techniques, developing more model systems and investigating the effects of climate change on the quorum-sensing pathway to further understand the mechanism and application potential of quorum sensing compounds. This review aims to present an overview of current research carried out in order to provide the reader with perspective on bioactive compounds involved in quorum sensing.
Collapse
|
54
|
Co-culturing of microalgae and bacteria in real wastewaters alters indigenous bacterial communities enhancing effluent bioremediation. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
55
|
Vacant S, Benites LF, Salmeron C, Intertaglia L, Norest M, Cadoudal A, Sanchez F, Caceres C, Piganeau G. Long-Term Stability of Bacterial Associations in a Microcosm of Ostreococcus tauri (Chlorophyta, Mamiellophyceae). FRONTIERS IN PLANT SCIENCE 2022; 13:814386. [PMID: 35463414 PMCID: PMC9024300 DOI: 10.3389/fpls.2022.814386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Phytoplankton-bacteria interactions rule over carbon fixation in the sunlit ocean, yet only a handful of phytoplanktonic-bacteria interactions have been experimentally characterized. In this study, we investigated the effect of three bacterial strains isolated from a long-term microcosm experiment with one Ostreococcus strain (Chlorophyta, Mamiellophyceae). We provided evidence that two Roseovarius strains (Alphaproteobacteria) had a beneficial effect on the long-term survival of the microalgae whereas one Winogradskyella strain (Flavobacteriia) led to the collapse of the microalga culture. Co-cultivation of the beneficial and the antagonistic strains also led to the loss of the microalga cells. Metagenomic analysis of the microcosm is consistent with vitamin B12 synthesis by the Roseovarius strains and unveiled two additional species affiliated to Balneola (Balneolia) and Muricauda (Flavobacteriia), which represent less than 4% of the reads, whereas Roseovarius and Winogradskyella recruit 57 and 39% of the reads, respectively. These results suggest that the low-frequency bacterial species may antagonize the algicidal effect of Winogradskyella in the microbiome of Ostreococcus tauri and thus stabilize the microalga persistence in the microcosm. Altogether, these results open novel perspectives into long-term stability of phytoplankton cultures.
Collapse
Affiliation(s)
- Sophie Vacant
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, Centre National de la Recherche Scientifique, Oceanological Observatory of Banyuls, Banyuls-sur-Mer, France
| | - L. Felipe Benites
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, Centre National de la Recherche Scientifique, Oceanological Observatory of Banyuls, Banyuls-sur-Mer, France
| | - Christophe Salmeron
- Sorbonne Université, Centre National de la Recherche Scientifique, Observatoire Océanologique de Banyuls, FR3724, Banyuls-sur-Mer, France
| | - Laurent Intertaglia
- Sorbonne Université, Centre National de la Recherche Scientifique, Observatoire Océanologique de Banyuls, FR3724, Banyuls-sur-Mer, France
| | - Manon Norest
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, Centre National de la Recherche Scientifique, Oceanological Observatory of Banyuls, Banyuls-sur-Mer, France
| | - Adrien Cadoudal
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, Centre National de la Recherche Scientifique, Oceanological Observatory of Banyuls, Banyuls-sur-Mer, France
| | - Frederic Sanchez
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, Centre National de la Recherche Scientifique, Oceanological Observatory of Banyuls, Banyuls-sur-Mer, France
| | - Carlos Caceres
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, Centre National de la Recherche Scientifique, Oceanological Observatory of Banyuls, Banyuls-sur-Mer, France
| | - Gwenael Piganeau
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, Centre National de la Recherche Scientifique, Oceanological Observatory of Banyuls, Banyuls-sur-Mer, France
| |
Collapse
|
56
|
Perera IA, Abinandan S, Subashchandrabose SR, Venkateswarlu K, Cole N, Naidu R, Megharaj M. Extracellular Polymeric Substances Drive Symbiotic Interactions in Bacterial‒Microalgal Consortia. MICROBIAL ECOLOGY 2022; 83:596-607. [PMID: 34132846 DOI: 10.1007/s00248-021-01772-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
The importance of several factors that drive the symbiotic interactions between bacteria and microalgae in consortia has been well realised. However, the implication of extracellular polymeric substances (EPS) released by the partners remains unclear. Therefore, the present study focused on the influence of EPS in developing consortia of a bacterium, Variovorax paradoxus IS1, with a microalga, Tetradesmus obliquus IS2 or Coelastrella sp. IS3, all isolated from poultry slaughterhouse wastewater. The bacterium increased the specific growth rates of microalgal species significantly in the consortia by enhancing the uptake of nitrate (88‒99%) and phosphate (92‒95%) besides accumulating higher amounts of carbohydrates and proteins. The EPS obtained from exudates, collected from the bacterial or microalgal cultures, contained numerous phytohormones, vitamins, polysaccharides and amino acids that are likely involved in interspecies interactions. The addition of EPS obtained from V. paradoxus IS1 to the culture medium doubled the growth of both the microalgal strains. The EPS collected from T. obliquus IS2 significantly increased the growth of V. paradoxus IS1, but there was no apparent change in bacterial growth when it was cultured in the presence of EPS from Coelastrella sp. IS3. These observations indicate that the interaction between V. paradoxus IS1 and T. obliquus IS2 was mutualism, while commensalism was the interaction between the bacterial strain and Coelastrella sp. IS3. Our present findings thus, for the first time, unveil the EPS-induced symbiotic interactions among the partners involved in bacterial‒microalgal consortia.
Collapse
Affiliation(s)
- Isiri Adhiwarie Perera
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
| | - Sudharsanam Abinandan
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia
| | - Suresh R Subashchandrabose
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, 515003, India
| | - Nicole Cole
- Analytical and Biomolecular Research Facility (ABRF), The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia.
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
57
|
Oruganti RK, Katam K, Show PL, Gadhamshetty V, Upadhyayula VKK, Bhattacharyya D. A comprehensive review on the use of algal-bacterial systems for wastewater treatment with emphasis on nutrient and micropollutant removal. Bioengineered 2022; 13:10412-10453. [PMID: 35441582 PMCID: PMC9161886 DOI: 10.1080/21655979.2022.2056823] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/08/2022] Open
Abstract
The scarcity of water resources and environmental pollution have highlighted the need for sustainable wastewater treatment. Existing conventional treatment systems are energy-intensive and not always able to meet stringent disposal standards. Recently, algal-bacterial systems have emerged as environmentally friendly sustainable processes for wastewater treatment and resource recovery. The algal-bacterial systems work on the principle of the symbiotic relationship between algae and bacteria. This paper comprehensively discusses the most recent studies on algal-bacterial systems for wastewater treatment, factors affecting the treatment, and aspects of resource recovery from the biomass. The algal-bacterial interaction includes cell-to-cell communication, substrate exchange, and horizontal gene transfer. The quorum sensing (QS) molecules and their effects on algal-bacterial interactions are briefly discussed. The effect of the factors such as pH, temperature, C/N/P ratio, light intensity, and external aeration on the algal-bacterial systems have been discussed. An overview of the modeling aspects of algal-bacterial systems has been provided. The algal-bacterial systems have the potential for removing micropollutants because of the diverse possible interactions between algae-bacteria. The removal mechanisms of micropollutants - sorption, biodegradation, and photodegradation, have been reviewed. The harvesting methods and resource recovery aspects have been presented. The major challenges associated with algal-bacterial systems for real scale implementation and future perspectives have been discussed. Integrating wastewater treatment with the algal biorefinery concept reduces the overall waste component in a wastewater treatment system by converting the biomass into a useful product, resulting in a sustainable system that contributes to the circular bioeconomy.
Collapse
Affiliation(s)
- Raj Kumar Oruganti
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, India
| | - Keerthi Katam
- Department of Civil Engineering, École Centrale School of Engineering, Mahindra University, India
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham, Malaysia
| | - Venkataramana Gadhamshetty
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid, South Dakota, USA
| | | | - Debraj Bhattacharyya
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, India
| |
Collapse
|
58
|
Bacterial response to spatial gradients of algal-derived nutrients in a porous microplate. THE ISME JOURNAL 2022; 16:1036-1045. [PMID: 34789844 PMCID: PMC8940921 DOI: 10.1038/s41396-021-01147-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 09/28/2021] [Accepted: 10/21/2021] [Indexed: 11/26/2022]
Abstract
Photosynthetic microalgae are responsible for 50% of the global atmospheric CO2 fixation into organic matter and hold potential as a renewable bioenergy source. Their metabolic interactions with the surrounding microbial community (the algal microbiome) play critical roles in carbon cycling, but due to methodological limitations, it has been challenging to examine how community development is influenced by spatial proximity to their algal host. Here we introduce a copolymer-based porous microplate to co-culture algae and bacteria, where metabolites are constantly exchanged between the microorganisms while maintaining physical separation. In the microplate, we found that the diatom Phaeodactylum tricornutum accumulated to cell abundances ~20 fold higher than under normal batch conditions due to constant replenishment of nutrients through the porous structure. We also demonstrate that algal-associated bacteria, both single isolates and complex communities, responded to inorganic nutrients away from their host as well as organic nutrients originating from the algae in a spatially predictable manner. These experimental findings coupled with a mathematical model suggest that host proximity and algal culture growth phase impact bacterial community development in a taxon-specific manner through organic and inorganic nutrient availability. Our novel system presents a useful tool to investigate universal metabolic interactions between microbes in aquatic ecosystems.
Collapse
|
59
|
Exchange of Vitamin B 1 and Its Biosynthesis Intermediates Shapes the Composition of Synthetic Microbial Cocultures and Reveals Complexities of Nutrient Sharing. J Bacteriol 2022; 204:e0050321. [PMID: 35357164 DOI: 10.1128/jb.00503-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Microbial communities occupy diverse niches in nature, and community members routinely exchange a variety of nutrients among themselves. While large-scale metagenomic and metabolomic studies shed some light on these exchanges, the contribution of individual species and the molecular details of specific interactions are difficult to track. In this study, we follow the exchange of vitamin B1 (thiamin) and its intermediates between microbes within synthetic cocultures of Escherichia coli and Vibrio anguillarum. Thiamin contains two moieties, 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) and 4-methyl-5-(2-hydroxyethyl)thiazole (THZ), which are synthesized by distinct pathways using enzymes ThiC and ThiG, respectively, and then coupled by ThiE to form thiamin. Even though E. coli ΔthiC, ΔthiE, and ΔthiG mutants are thiamin auxotrophs, we observed that cocultures of ΔthiC-ΔthiE and ΔthiC-ΔthiG mutants are able to grow in a thiamin-deficient medium, whereas the ΔthiE-ΔthiG coculture does not. Further, the exchange of thiamin and its intermediates in V. anguillarum cocultures and in mixed cocultures of V. anguillarum and E. coli revealed that there exist specific patterns for thiamin metabolism and exchange among these microbes. Our findings show that HMP is shared more frequently than THZ, concurrent with previous observations that free HMP and HMP auxotrophy is commonly found in various environments. Furthermore, we observe that the availability of exogenous thiamin in the media affects whether these strains interact with each other or grow independently. These findings collectively underscore the importance of the exchange of essential metabolites as a defining factor in building and modulating synthetic or natural microbial communities. IMPORTANCE Vitamin B1 (thiamin) is an essential nutrient for cellular metabolism. Microorganisms that are unable to synthesize thiamin either fully or in part exogenously obtain it from their environment or via exchanges with other microbial members in their community. In this study, we created synthetic microbial cocultures that rely on sharing thiamin and its biosynthesis intermediates and observed that some of them are preferentially exchanged. We also observed that the coculture composition is dictated by the production and/or availability of thiamin and its intermediates. Our studies with synthetic cocultures provide the molecular basis for understanding thiamin sharing among microorganisms and lay out broad guidelines for setting up synthetic microbial cocultures by using the exchange of an essential metabolite as their foundation.
Collapse
|
60
|
Tomasch J, Ringel V, Wang H, Freese HM, Bartling P, Brinkmann H, Vollmers J, Jarek M, Wagner-Döbler I, Petersen J. Fatal affairs - conjugational transfer of a dinoflagellate-killing plasmid between marine Rhodobacterales. Microb Genom 2022; 8:000787. [PMID: 35254236 PMCID: PMC9176285 DOI: 10.1099/mgen.0.000787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The roseobacter group of marine bacteria is characterized by a mosaic distribution of ecologically important phenotypes. These are often encoded on mobile extrachromosomal replicons. So far, conjugation had only been experimentally proven between the two model organisms Phaeobacter inhibens and Dinoroseobacter shibae. Here, we show that two large natural RepABC-type plasmids from D. shibae can be transferred into representatives of all known major Rhodobacterales lineages. Complete genome sequencing of the newly established Phaeobacter inhibens transconjugants confirmed their genomic integrity. The conjugated plasmids were stably maintained as single copy number replicons in the genuine as well as the new host. Co-cultivation of Phaeobacter inhibens and the transconjugants with the dinoflagellate Prorocentrum minimum demonstrated that Phaeobacter inhibens is a probiotic strain that improves the yield and stability of the dinoflagellate culture. The transconjugant carrying the 191 kb plasmid, but not the 126 kb sister plasmid, killed the dinoflagellate in co-culture.
Collapse
Affiliation(s)
- Jürgen Tomasch
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Science – Centre Algatech, Třeboň, Czech Republic
- *Correspondence: Jürgen Tomasch,
| | - Victoria Ringel
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hui Wang
- Institute of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Heike M. Freese
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Pascal Bartling
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Present address: Schülke & Mayr GmbH, Norderstedt, Germany
| | - Henner Brinkmann
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - John Vollmers
- Institute for Biological Interfaces 5: Biotechnology and Microbial Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Michael Jarek
- Group Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Irene Wagner-Döbler
- Institute of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Jörn Petersen
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- *Correspondence: Jörn Petersen,
| |
Collapse
|
61
|
Pierce EC, Dutton RJ. Putting microbial interactions back into community contexts. Curr Opin Microbiol 2022; 65:56-63. [PMID: 34739927 DOI: 10.1016/j.mib.2021.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 08/31/2021] [Accepted: 10/08/2021] [Indexed: 02/05/2023]
Abstract
Microbial interactions are key aspects of the biology of microbiomes. Recently, there has been a shift in the field towards studying interactions in more representative contexts, whether using multispecies model microbial communities or by looking at interactions in situ. Across diverse microbial systems, these studies have begun to identify common interaction mechanisms. These mechanisms include interactions related to toxic molecules, nutrient competition and cross-feeding, access to metals, signaling pathways, pH changes, and interactions within biofilms. Leveraging technological innovations, many of these studies have used an interdisciplinary approach combining genetic, metabolomic, imaging, and/or microfluidic techniques to gain insight into mechanisms of microbial interactions and into the impact of these interactions on microbiomes.
Collapse
Affiliation(s)
- Emily C Pierce
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Rachel J Dutton
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA; Center for Microbiome Innovation, Jacobs School of Engineering, University of California, San Diego, La Jolla, USA.
| |
Collapse
|
62
|
Mansky J, Wang H, Ebert M, Härtig E, Jahn D, Tomasch J, Wagner-Döbler I. The Influence of Genes on the "Killer Plasmid" of Dinoroseobacter shibae on Its Symbiosis With the Dinoflagellate Prorocentrum minimum. Front Microbiol 2022; 12:804767. [PMID: 35154034 PMCID: PMC8831719 DOI: 10.3389/fmicb.2021.804767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/13/2021] [Indexed: 01/05/2023] Open
Abstract
The marine bacterium Dinoroseobacter shibae shows a Jekyll-and-Hyde behavior in co-culture with the dinoflagellate Prorocentrum minimum: In the initial symbiotic phase it provides the essential vitamins B12 (cobalamin) and B1 (thiamine) to the algae. In the later pathogenic phase it kills the dinoflagellate. The killing phenotype is determined by the 191 kb plasmid and can be conjugated into other Roseobacters. From a transposon-library of D. shibae we retrieved 28 mutants whose insertion sites were located on the 191 kb plasmid. We co-cultivated each of them with P. minimum in L1 medium lacking vitamin B12. With 20 mutant strains no algal growth beyond the axenic control lacking B12 occurred. Several of these genes were predicted to encode proteins from the type IV secretion system (T4SS). They are apparently essential for establishing the symbiosis. With five transposon mutant strains, the initial symbiotic phase was intact but the later pathogenic phase was lost in co-culture. In three of them the insertion sites were located in an operon predicted to encode genes for biotin (B7) uptake. Both P. minimum and D. shibae are auxotrophic for biotin. We hypothesize that the bacterium depletes the medium from biotin resulting in apoptosis of the dinoflagellate.
Collapse
Affiliation(s)
- Johannes Mansky
- Institute for Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Hui Wang
- Institute for Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Matthias Ebert
- Institute for Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Elisabeth Härtig
- Institute for Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Dieter Jahn
- Institute for Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Jürgen Tomasch
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Sciences – Centre Algatech, Třeboň, Czechia
| | - Irene Wagner-Döbler
- Institute for Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| |
Collapse
|
63
|
Microbial Plankton Community Structure and Function Responses to Vitamin B 12 and B 1 Amendments in an Upwelling System. Appl Environ Microbiol 2021; 87:e0152521. [PMID: 34495690 PMCID: PMC8552899 DOI: 10.1128/aem.01525-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
B vitamins are essential cofactors for practically all living organisms on Earth and are produced by a selection of microorganisms. An imbalance between high demand and limited production, in concert with abiotic processes, may explain the low availability of these vitamins in marine systems. Natural microbial communities from surface shelf water in the productive area off northwestern Spain were enclosed in mesocosms in winter, spring, and summer 2016. In order to explore the impact of B-vitamin availability on microbial community composition (16S and 18S rRNA gene sequence analysis) and bacterial function (metatranscriptomics analysis) in different seasons, enrichment experiments were conducted with seawater from the mesocosms. Our findings revealed that significant increases in phytoplankton or prokaryote biomass associated with vitamin B12 and/or B1 amendments were not accompanied by significant changes in community composition, suggesting that most of the microbial taxa benefited from the external B-vitamin supply. Metatranscriptome analysis suggested that many bacteria were potential consumers of vitamins B12 and B1, although the relative abundance of reads related to synthesis was ca. 3.6-fold higher than that related to uptake. Alteromonadales and Oceanospirillales accounted for important portions of vitamin B1 and B12 synthesis gene transcription, despite accounting for only minor portions of the bacterial community. Flavobacteriales appeared to be involved mostly in vitamin B12 and B1 uptake, and Pelagibacterales expressed genes involved in vitamin B1 uptake. Interestingly, the relative expression of vitamin B12 and B1 synthesis genes among bacteria strongly increased upon inorganic nutrient amendment. Collectively, these findings suggest that upwelling events intermittently occurring during spring and summer in productive ecosystems may ensure an adequate production of these cofactors to sustain high levels of phytoplankton growth and biomass. IMPORTANCE B vitamins are essential growth factors for practically all living organisms on Earth that are produced by a selection of microorganisms. An imbalance between high demand and limited production may explain the low concentration of these compounds in marine systems. In order to explore the impact of B-vitamin availability on bacteria and algae in the coastal waters off northwestern Spain, six experiments were conducted with natural surface water enclosed in winter, spring, and summer. Our findings revealed that increases in phytoplankton or bacterial growth associated with B12 and/or B1 amendments were not accompanied by significant changes in community composition, suggesting that most microorganisms benefited from the B-vitamin supply. Our analyses confirmed the role of many bacteria as consumers of vitamins B12 and B1, although the relative abundance of genes related to synthesis was ca. 3.6-fold higher than that related to uptake. Interestingly, prokaryote expression of B12 and B1 synthesis genes strongly increased when inorganic nutrients were added. Collectively, these findings suggest that upwelling of cold and nutrient-rich waters occurring during spring and summer in this coastal area may ensure an adequate production of B vitamins to sustain high levels of algae growth and biomass.
Collapse
|
64
|
Yao J, Zeng Y, Wang M, Tang YQ. Energy Availability Determines Strategy of Microbial Amino Acid Synthesis in Volatile Fatty Acid-Fed Anaerobic Methanogenic Chemostats. Front Microbiol 2021; 12:744834. [PMID: 34671332 PMCID: PMC8521154 DOI: 10.3389/fmicb.2021.744834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/30/2021] [Indexed: 12/03/2022] Open
Abstract
In natural communities, microbes exchange a variety of metabolites (public goods) with each other, which drives the evolution of auxotroph and shapes interdependent patterns at community-level. However, factors that determine the strategy of public goods synthesis for a given community member still remains to be elucidated. In anaerobic methanogenic communities, energy availability of different community members is largely varied. We hypothesized that this uneven energy availability contributed to the heterogeneity of public goods synthesis ability among the members in these communities. We tested this hypothesis by analyzing the synthetic strategy of amino acids of the bacterial and archaeal members involved in four previously enriched anaerobic methanogenic communities residing in thermophilic chemostats. Our analyses indicate that most of the members in the communities did not possess ability to synthesize all the essential amino acids, suggesting they exchanged these essential public goods to establish interdependent patterns for survival. Importantly, we found that the amino acid synthesis ability of a functional group was largely determined by how much energy it could obtain from its metabolism in the given environmental condition. Moreover, members within a functional group also possessed different amino acid synthesis abilities, which are related to their features of energy metabolism. Our study reveals that energy availability is a key driver of microbial evolution in presence of metabolic specialization at community level and suggests the feasibility of managing anaerobic methanogenic communities for better performance through controlling the metabolic interactions involved.
Collapse
Affiliation(s)
| | | | - Miaoxiao Wang
- College of Architecture and Environment, Sichuan University, Chengdu, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu, China
| |
Collapse
|
65
|
Cao JY, Wang YY, Wu MN, Kong ZY, Lin JH, Ling T, Xu SM, Ma SN, Zhang L, Zhou CX, Yan XJ, Xu JL. RNA-seq Insights Into the Impact of Alteromonas macleodii on Isochrysis galbana. Front Microbiol 2021; 12:711998. [PMID: 34566917 PMCID: PMC8456094 DOI: 10.3389/fmicb.2021.711998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Phycospheric bacteria may be the key biological factors affecting the growth of algae. However, the studies about interaction between Isochrysis galbana and its phycospheric bacteria are limited. Here, we show that a marine heterotrophic bacterium, Alteromonas macleodii, enhanced the growth of I. galbana, and inhibited non-photochemical quenching (NPQ) and superoxide dismutase (SOD) activities of this microalgae. Further, we explored this phenomenon via examining how the entire transcriptomes of I. galbana changed when it was co-cultured with A. macleodii. Notable increase was observed in transcripts related to photosynthesis, carbon fixation, oxidative phosphorylation, ribosomal proteins, biosynthetic enzymes, and transport processes of I. galbana in the presence of A. macleodii, suggesting the introduction of the bacterium might have introduced increased production and transport of carbon compounds and other types of biomolecules. Besides, the transcriptome changed largely corresponded to reduced stress conditions for I. galbana, as inferred from the depletion of transcripts encoding DNA repair enzymes, superoxide dismutase (SOD) and other stress-response proteins. Taken together, the presence of A. macleodii mainly enhanced photosynthesis and biosynthesis of I. galbana and protected it from stress, especially oxidative stress. Transfer of fixed organic carbon, but perhaps other types of biomolecules, between the autotroph and the heterotroph might happen in I. galbana-A. macleodii co-culture. The present work provides novel insights into the transcriptional consequences of I. galbana of mutualism with its heterotrophic bacterial partner, and mutually beneficial associations existing in I. galbana-A. macleodii might be explored to improve productivity and sustainability of aquaculture algal rearing systems.
Collapse
Affiliation(s)
- Jia-Yi Cao
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education of China, Ningbo University, Ningbo, China
| | - Ying-Ying Wang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education of China, Ningbo University, Ningbo, China
| | - Min-Nan Wu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education of China, Ningbo University, Ningbo, China
| | - Zhou-Yan Kong
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education of China, Ningbo University, Ningbo, China
| | - Jing-Hao Lin
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education of China, Ningbo University, Ningbo, China
| | - Ting Ling
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education of China, Ningbo University, Ningbo, China
| | - Si-Min Xu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education of China, Ningbo University, Ningbo, China
| | - Shuo-Nan Ma
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education of China, Ningbo University, Ningbo, China
| | - Lin Zhang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education of China, Ningbo University, Ningbo, China
| | - Cheng-Xu Zhou
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education of China, Ningbo University, Ningbo, China
| | - Xiao-Jun Yan
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Ji-Lin Xu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education of China, Ningbo University, Ningbo, China
| |
Collapse
|
66
|
Isaac A, Francis B, Amann RI, Amin SA. Tight Adherence (Tad) Pilus Genes Indicate Putative Niche Differentiation in Phytoplankton Bloom Associated Rhodobacterales. Front Microbiol 2021; 12:718297. [PMID: 34447362 PMCID: PMC8383342 DOI: 10.3389/fmicb.2021.718297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/19/2021] [Indexed: 11/14/2022] Open
Abstract
The multiple interactions of phytoplankton and bacterioplankton are central for our understanding of aquatic environments. A prominent example of those is the consistent association of diatoms with Alphaproteobacteria of the order Rhodobacterales. These photoheterotrophic bacteria have traditionally been described as generalists that scavenge dissolved organic matter. Many observations suggest that members of this clade are specialized in colonizing the microenvironment of diatom cells, known as the phycosphere. However, the molecular mechanisms that differentiate Rhodobacterales generalists and phycosphere colonizers are poorly understood. We investigated Rhodobacterales in the North Sea during the 2010–2012 spring blooms using a time series of 38 deeply sequenced metagenomes and 10 metaproteomes collected throughout these events. Rhodobacterales metagenome assembled genomes (MAGs) were recurrently abundant. They exhibited the highest gene enrichment and protein expression of small-molecule transporters, such as monosaccharides, thiamine and polyamine transporters, and anaplerotic pathways, such as ethylmalonyl and propanoyl-CoA metabolic pathways, all suggestive of a generalist lifestyle. Metaproteomes indicated that the species represented by these MAGs were the dominant suppliers of vitamin B12 during the blooms, concomitant with a significant enrichment of genes related to vitamin B12 biosynthesis suggestive of association with diatom phycospheres. A closer examination of putative generalists and colonizers showed that putative generalists had persistently higher relative abundance throughout the blooms and thus produced more than 80% of Rhodobacterales transport proteins, suggesting rapid growth. In contrast, putative phycosphere colonizers exhibited large fluctuation in relative abundance across the different blooms and correlated strongly with particular diatom species that were dominant during the blooms each year. The defining feature of putative phycosphere colonizers is the presence of the tight adherence (tad) gene cluster, which is responsible for the assembly of adhesive pili that presumably enable attachment to diatom hosts. In addition, putative phycosphere colonizers possessed higher prevalence of secondary metabolite biosynthetic gene clusters, particularly homoserine lactones, which can regulate bacterial attachment through quorum sensing. Altogether, these findings suggest that while many members of Rhodobacterales are competitive during diatom blooms, only a subset form close associations with diatoms by colonizing their phycospheres.
Collapse
Affiliation(s)
- Ashley Isaac
- Marine Microbial Ecology Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.,Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Ben Francis
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Rudolf I Amann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Shady A Amin
- Marine Microbial Ecology Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
67
|
Pinto J, Lami R, Krasovec M, Grimaud R, Urios L, Lupette J, Escande ML, Sanchez F, Intertaglia L, Grimsley N, Piganeau G, Sanchez-Brosseau S. Features of the Opportunistic Behaviour of the Marine Bacterium Marinobacter algicola in the Microalga Ostreococcus tauri Phycosphere. Microorganisms 2021; 9:microorganisms9081777. [PMID: 34442856 PMCID: PMC8399681 DOI: 10.3390/microorganisms9081777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
Although interactions between microalgae and bacteria are observed in both natural environment and the laboratory, the modalities of coexistence of bacteria inside microalgae phycospheres in laboratory cultures are mostly unknown. Here, we focused on well-controlled cultures of the model green picoalga Ostreococcus tauri and the most abundant member of its phycosphere, Marinobacter algicola. The prevalence of M. algicola in O. tauri cultures raises questions about how this bacterium maintains itself under laboratory conditions in the microalga culture. The results showed that M. algicola did not promote O. tauri growth in the absence of vitamin B12 while M. algicola depended on O. tauri to grow in synthetic medium, most likely to obtain organic carbon sources provided by the microalgae. M. algicola grew on a range of lipids, including triacylglycerols that are known to be produced by O. tauri in culture during abiotic stress. Genomic screening revealed the absence of genes of two particular modes of quorum-sensing in Marinobacter genomes which refutes the idea that these bacterial communication systems operate in this genus. To date, the ‘opportunistic’ behaviour of M. algicola in the laboratory is limited to several phytoplanktonic species including Chlorophyta such as O. tauri. This would indicate a preferential occurrence of M. algicola in association with these specific microalgae under optimum laboratory conditions.
Collapse
Affiliation(s)
- Jordan Pinto
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; (J.P.); (M.K.); (J.L.); (F.S.); (N.G.); (G.P.)
| | - Raphaël Lami
- Sorbonne Université, CNRS, USR 3579 Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France;
| | - Marc Krasovec
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; (J.P.); (M.K.); (J.L.); (F.S.); (N.G.); (G.P.)
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Régis Grimaud
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, 64000 Pau, France; (R.G.); (L.U.)
| | - Laurent Urios
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, 64000 Pau, France; (R.G.); (L.U.)
| | - Josselin Lupette
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; (J.P.); (M.K.); (J.L.); (F.S.); (N.G.); (G.P.)
- Université de Bordeaux, CNRS, UMR 5200 Laboratoire de Biogenèse Membranaire, 33140 Villenave d’Ornon, France
| | - Marie-Line Escande
- Sorbonne Université, CNRS, FR 3724, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; (M.-L.E.); (L.I.)
| | - Frédéric Sanchez
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; (J.P.); (M.K.); (J.L.); (F.S.); (N.G.); (G.P.)
| | - Laurent Intertaglia
- Sorbonne Université, CNRS, FR 3724, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; (M.-L.E.); (L.I.)
| | - Nigel Grimsley
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; (J.P.); (M.K.); (J.L.); (F.S.); (N.G.); (G.P.)
| | - Gwenaël Piganeau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; (J.P.); (M.K.); (J.L.); (F.S.); (N.G.); (G.P.)
| | - Sophie Sanchez-Brosseau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; (J.P.); (M.K.); (J.L.); (F.S.); (N.G.); (G.P.)
- Correspondence:
| |
Collapse
|
68
|
Dow L. How Do Quorum-Sensing Signals Mediate Algae-Bacteria Interactions? Microorganisms 2021; 9:microorganisms9071391. [PMID: 34199114 PMCID: PMC8307130 DOI: 10.3390/microorganisms9071391] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Quorum sensing (QS) describes a process by which bacteria can sense the local cell density of their own species, thus enabling them to coordinate gene expression and physiological processes on a community-wide scale. Small molecules called autoinducers or QS signals, which act as intraspecies signals, mediate quorum sensing. As our knowledge of QS has progressed, so too has our understanding of the structural diversity of QS signals, along with the diversity of bacteria conducting QS and the range of ecosystems in which QS takes place. It is now also clear that QS signals are more than just intraspecies signals. QS signals mediate interactions between species of prokaryotes, and between prokaryotes and eukaryotes. In recent years, our understanding of QS signals as mediators of algae-bacteria interactions has advanced such that we are beginning to develop a mechanistic understanding of their effects. This review will summarize the recent efforts to understand how different classes of QS signals contribute to the interactions between planktonic microalgae and bacteria in our oceans, primarily N-acyl-homoserine lactones, their degradation products of tetramic acids, and 2-alkyl-4-quinolones. In particular, this review will discuss the ways in which QS signals alter microalgae growth and metabolism, namely as direct effectors of photosynthesis, regulators of the cell cycle, and as modulators of other algicidal mechanisms. Furthermore, the contribution of QS signals to nutrient acquisition is discussed, and finally, how microalgae can modulate these small molecules to dampen their effects.
Collapse
Affiliation(s)
- Lachlan Dow
- Root Microbe Interactions Laboratory, Australian National University, Canberra 0200, Australia
| |
Collapse
|
69
|
Feng X, Chu X, Qian Y, Henson MW, Lanclos VC, Qin F, Barnes S, Zhao Y, Thrash JC, Luo H. Mechanisms driving genome reduction of a novel Roseobacter lineage. ISME JOURNAL 2021; 15:3576-3586. [PMID: 34145391 DOI: 10.1038/s41396-021-01036-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 01/21/2023]
Abstract
Members of the marine Roseobacter group are key players in the global carbon and sulfur cycles. While over 300 species have been described, only 2% possess reduced genomes (mostly 3-3.5 Mbp) compared to an average roseobacter (>4 Mbp). These taxonomic minorities are phylogenetically diverse but form a Pelagic Roseobacter Cluster (PRC) at the genome content level. Here, we cultivated eight isolates constituting a novel Roseobacter lineage which we named 'CHUG'. Metagenomic and metatranscriptomic read recruitment analyses showed that CHUG members are globally distributed and active in marine pelagic environments. CHUG members possess some of the smallest genomes (~2.6 Mb) among all known roseobacters, but they do not exhibit canonical features of typical bacterioplankton lineages theorized to have undergone genome streamlining processes, like higher coding density, fewer paralogues and rarer pseudogenes. While CHUG members form a genome content cluster with traditional PRC members, they show important differences. Unlike other PRC members, neither the relative abundances of CHUG members nor their relative gene expression levels are correlated with chlorophyll a concentration across the global samples. CHUG members cannot utilize most phytoplankton-derived metabolites or synthesize vitamin B12, a key metabolite mediating the roseobacter-phytoplankton interactions. This combination of features is evidence for the hypothesis that CHUG members may have evolved a free-living lifestyle decoupled from phytoplankton. This ecological transition was accompanied by the loss of signature genes involved in roseobacter-phytoplankton symbiosis, suggesting that relaxation of purifying selection owing to lifestyle shift is likely an important driver of genome reduction in CHUG.
Collapse
Affiliation(s)
- Xiaoyuan Feng
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, SAR, Hong Kong.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Xiao Chu
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, SAR, Hong Kong
| | - Yang Qian
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, SAR, Hong Kong
| | - Michael W Henson
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.,Department of Geophysical Sciences, University of Chicago, Chicago, IL, USA
| | - V Celeste Lanclos
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Fang Qin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shelby Barnes
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Yanlin Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - J Cameron Thrash
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, SAR, Hong Kong. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
70
|
Wang M, Liu X, Nie Y, Wu XL. Selfishness driving reductive evolution shapes interdependent patterns in spatially structured microbial communities. THE ISME JOURNAL 2021; 15:1387-1401. [PMID: 33343001 PMCID: PMC8115099 DOI: 10.1038/s41396-020-00858-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 11/14/2020] [Accepted: 11/24/2020] [Indexed: 12/28/2022]
Abstract
Microbes release a wide variety of metabolites to the environment that benefit the whole population, called public goods. Public goods sharing drives adaptive function loss, and allows the rise of metabolic cross-feeding. However, how public goods sharing governs the succession of communities over evolutionary time scales remains unclear. To resolve this issue, we constructed an individual-based model, where an autonomous population that possessed functions to produce three essential public goods, was allowed to randomly lose functions. Simulations revealed that function loss genotypes could evolve from the autonomous ancestor, driven by the selfish public production trade-off at the individual level. These genotypes could then automatically develop to three possible types of interdependent patterns: complete functional division, one-way dependency, and asymmetric functional complementation, which were influenced by function cost and function redundancy. In addition, we found random evolutionary events, i.e., the priority and the relative spatial positioning of genotype emergence, are also important in governing community assembly. Moreover, communities occupied by interdependent patterns exhibited better resistance to environmental perturbation, suggesting such patterns are selectively favored. Our work integrates ecological interactions with evolution dynamics, providing a new perspective to explain how reductive evolution shapes microbial interdependencies and governs the succession of communities.
Collapse
Affiliation(s)
- Miaoxiao Wang
- College of Engineering, Peking University, 100871, Beijing, China
| | - Xiaonan Liu
- College of Engineering, Peking University, 100871, Beijing, China
| | - Yong Nie
- College of Engineering, Peking University, 100871, Beijing, China.
| | - Xiao-Lei Wu
- College of Engineering, Peking University, 100871, Beijing, China.
- Institute of Ocean Research, Peking University, 100871, Beijing, China.
- Institute of Ecology, Peking University, 100871, Beijing, China.
| |
Collapse
|
71
|
Perera IA, Abinandan S, R Subashchandrabose S, Venkateswarlu K, Naidu R, Megharaj M. Microalgal-bacterial consortia unveil distinct physiological changes to facilitate growth of microalgae. FEMS Microbiol Ecol 2021; 97:6105210. [PMID: 33476378 DOI: 10.1093/femsec/fiab012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/19/2021] [Indexed: 01/05/2023] Open
Abstract
Physiological changes that drive the microalgal-bacterial consortia are poorly understood so far. In the present novel study, we initially assessed five morphologically distinct microalgae for their ability in establishing consortia in Bold's basal medium with a bacterial strain, Variovorax paradoxus IS1, all isolated from wastewaters. Tetradesmus obliquus IS2 and Coelastrella sp. IS3 were further selected for gaining insights into physiological changes, including those of metabolomes in consortia involving V. paradoxus IS1. The distinct parameters investigated were pigments (chlorophyll a, b, and carotenoids), reactive oxygen species (ROS), lipids and metabolites that are implicated in major metabolic pathways. There was a significant increase (>1.2-fold) in pigments, viz., chlorophyll a, b and carotenoids, decrease in ROS and an enhanced lipid yield (>2-fold) in consortia than in individual cultures. In addition, the differential regulation of cellular metabolites such as sugars, amino acids, organic acids and phytohormones was distinct among the two microalgal-bacterial consortia. Our results thus indicate that the selected microalgal strains, T. obliquus IS2 and Coelastrella sp. IS3, developed efficient consortia with V. paradoxus IS1 by effecting the required physiological changes, including metabolomics. Such microalgal-bacterial consortia could largely be used in wastewater treatment and for production of value-added metabolites.
Collapse
Affiliation(s)
- Isiri Adhiwarie Perera
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia
| | - Sudharsanam Abinandan
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia.,Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia
| | - Suresh R Subashchandrabose
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia
| | - Kadiyala Venkateswarlu
- Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu 515003, Andhra Pradesh, India
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia.,Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia.,Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia
| |
Collapse
|
72
|
Dittami SM, Arboleda E, Auguet JC, Bigalke A, Briand E, Cárdenas P, Cardini U, Decelle J, Engelen AH, Eveillard D, Gachon CMM, Griffiths SM, Harder T, Kayal E, Kazamia E, Lallier FH, Medina M, Marzinelli EM, Morganti TM, Núñez Pons L, Prado S, Pintado J, Saha M, Selosse MA, Skillings D, Stock W, Sunagawa S, Toulza E, Vorobev A, Leblanc C, Not F. A community perspective on the concept of marine holobionts: current status, challenges, and future directions. PeerJ 2021; 9:e10911. [PMID: 33665032 PMCID: PMC7916533 DOI: 10.7717/peerj.10911] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/16/2021] [Indexed: 12/19/2022] Open
Abstract
Host-microbe interactions play crucial roles in marine ecosystems. However, we still have very little understanding of the mechanisms that govern these relationships, the evolutionary processes that shape them, and their ecological consequences. The holobiont concept is a renewed paradigm in biology that can help to describe and understand these complex systems. It posits that a host and its associated microbiota with which it interacts, form a holobiont, and have to be studied together as a coherent biological and functional unit to understand its biology, ecology, and evolution. Here we discuss critical concepts and opportunities in marine holobiont research and identify key challenges in the field. We highlight the potential economic, sociological, and environmental impacts of the holobiont concept in marine biological, evolutionary, and environmental sciences. Given the connectivity and the unexplored biodiversity specific to marine ecosystems, a deeper understanding of such complex systems requires further technological and conceptual advances, e.g., the development of controlled experimental model systems for holobionts from all major lineages and the modeling of (info)chemical-mediated interactions between organisms. Here we propose that one significant challenge is to bridge cross-disciplinary research on tractable model systems in order to address key ecological and evolutionary questions. This first step is crucial to decipher the main drivers of the dynamics and evolution of holobionts and to account for the holobiont concept in applied areas, such as the conservation, management, and exploitation of marine ecosystems and resources, where practical solutions to predict and mitigate the impact of human activities are more important than ever.
Collapse
Affiliation(s)
- Simon M Dittami
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | - Enrique Arboleda
- FR2424, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | | | - Arite Bigalke
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Enora Briand
- Laboratoire Phycotoxines, Ifremer, Nantes, France
| | - Paco Cárdenas
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Ulisse Cardini
- Integrative Marine Ecology Dept, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Johan Decelle
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, Grenoble, France
| | | | - Damien Eveillard
- Laboratoire des Sciences Numériques de Nantes (LS2N), Université de Nantes, CNRS, Nantes, France
| | - Claire M M Gachon
- Scottish Marine Institute, Scottish Association for Marine Science, Oban, United Kingdom
| | - Sarah M Griffiths
- School of Science and the Environment, Manchester Metropolitan University, Manchester, United Kingdom
| | | | - Ehsan Kayal
- FR2424, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | | | - François H Lallier
- Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, University Park, United States of America
| | - Ezequiel M Marzinelli
- Ecology and Environment Research Centre, The University of Sydney, Sydney, Australia.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,Sydney Institute of Marine Science, Mosman, Australia
| | | | - Laura Núñez Pons
- Section Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Soizic Prado
- Molecules of Communication and Adaptation of Microorganisms (UMR 7245), National Museum of Natural History, CNRS, Paris, France
| | - José Pintado
- Instituto de Investigaciones Marinas, CSIC, Vigo, Spain
| | - Mahasweta Saha
- Benthic Ecology, Helmholtz Center for Ocean Research, Kiel, Germany.,Marine Ecology and Biodiversity, Plymouth Marine Laboratory, Plymouth, United Kingdom
| | - Marc-André Selosse
- National Museum of Natural History, Département Systématique et Evolution, Paris, France.,Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Derek Skillings
- Philosophy Department, University of Pennsylvania, Philadelphia, United States of America
| | - Willem Stock
- Laboratory of Protistology & Aquatic Ecology, Department of Biology, Ghent University, Ghent, Belgium
| | - Shinichi Sunagawa
- Dept. of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH, Zürich, Switzerland
| | - Eve Toulza
- IHPE, Univ. de Montpellier, CNRS, IFREMER, UPDV, Perpignan, France
| | - Alexey Vorobev
- CEA - Institut de Biologie François Jacob, Genoscope, Evry, France
| | - Catherine Leblanc
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | - Fabrice Not
- Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| |
Collapse
|
73
|
Fritts RK, McCully AL, McKinlay JB. Extracellular Metabolism Sets the Table for Microbial Cross-Feeding. Microbiol Mol Biol Rev 2021; 85:e00135-20. [PMID: 33441489 PMCID: PMC7849352 DOI: 10.1128/mmbr.00135-20] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The transfer of nutrients between cells, or cross-feeding, is a ubiquitous feature of microbial communities with emergent properties that influence our health and orchestrate global biogeochemical cycles. Cross-feeding inevitably involves the externalization of molecules. Some of these molecules directly serve as cross-fed nutrients, while others can facilitate cross-feeding. Altogether, externalized molecules that promote cross-feeding are diverse in structure, ranging from small molecules to macromolecules. The functions of these molecules are equally diverse, encompassing waste products, enzymes, toxins, signaling molecules, biofilm components, and nutrients of high value to most microbes, including the producer cell. As diverse as the externalized and transferred molecules are the cross-feeding relationships that can be derived from them. Many cross-feeding relationships can be summarized as cooperative but are also subject to exploitation. Even those relationships that appear to be cooperative exhibit some level of competition between partners. In this review, we summarize the major types of actively secreted, passively excreted, and directly transferred molecules that either form the basis of cross-feeding relationships or facilitate them. Drawing on examples from both natural and synthetic communities, we explore how the interplay between microbial physiology, environmental parameters, and the diverse functional attributes of extracellular molecules can influence cross-feeding dynamics. Though microbial cross-feeding interactions represent a burgeoning field of interest, we may have only begun to scratch the surface.
Collapse
Affiliation(s)
- Ryan K Fritts
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | | | - James B McKinlay
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
74
|
Su HN, Zhang YZ. Lifestyle of bacteria in deep sea. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:15-17. [PMID: 33006410 DOI: 10.1111/1758-2229.12891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Hai-Nan Su
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
75
|
Joglar V, Álvarez-Salgado XA, Gago-Martinez A, Leao JM, Pérez-Martínez C, Pontiller B, Lundin D, Pinhassi J, Fernández E, Teira E. Cobalamin and microbial plankton dynamics along a coastal to offshore transect in the Eastern North Atlantic Ocean. Environ Microbiol 2021; 23:1559-1583. [PMID: 33346385 DOI: 10.1111/1462-2920.15367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/30/2022]
Abstract
Cobalamin (B12) is an essential cofactor that is exclusively synthesized by some prokaryotes while many prokaryotes and eukaryotes require an external supply of B12. The spatial and temporal availability of B12 is poorly understood in marine ecosystems. Field measurements of B12 along with a large set of ancillary biotic and abiotic factors were obtained during three oceanographic cruises in the NW Iberian Peninsula, covering different spatial and temporal scales. B12 concentrations were remarkably low (<1.5 pM) in all samples, being significantly higher at the subsurface Eastern North Atlantic Central Water than at shallower depths, suggesting that B12 supply in this water mass is greater than demand. Multiple regression models excluded B12 concentration as predictive variable for phytoplankton biomass or production, regardless of the presence of B12-requiring algae. Prokaryote production was the best predictor for primary production, and eukaryote community composition was better correlated with prokaryote community composition than with nutritional resources, suggesting that biotic interactions play a significant role in regulating microbial communities. Interestingly, co-occurrence network analyses based on 16S and 18S rRNA sequences allowed the identification of significant associations between potential B12 producers and consumers (e.g. Thaumarchaeota and Dynophyceae, or Amylibacter and Ostreococcus respectively), which can now be investigated using model systems in the laboratory.
Collapse
Affiliation(s)
- Vanessa Joglar
- Centro de Investigación Mariña da Universidade de Vigo (CIM-UVIGO), Spain.,Departamento Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, Vigo, 36310, Spain
| | | | - Ana Gago-Martinez
- Food and Analytical Chemistry Department, Chemistry Faculty, Department of Analytical and Food Chemistry, University of Vigo, Vigo, Campus Universitario de Vigo, 36310, Spain
| | - Jose M Leao
- Food and Analytical Chemistry Department, Chemistry Faculty, Department of Analytical and Food Chemistry, University of Vigo, Vigo, Campus Universitario de Vigo, 36310, Spain
| | - Clara Pérez-Martínez
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Stuvaregatan 4, 39231, Sweden
| | - Benjamin Pontiller
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Stuvaregatan 4, 39231, Sweden
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Stuvaregatan 4, 39231, Sweden
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Stuvaregatan 4, 39231, Sweden
| | - Emilio Fernández
- Centro de Investigación Mariña da Universidade de Vigo (CIM-UVIGO), Spain.,Departamento Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, Vigo, 36310, Spain
| | - Eva Teira
- Centro de Investigación Mariña da Universidade de Vigo (CIM-UVIGO), Spain.,Departamento Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, Vigo, 36310, Spain
| |
Collapse
|
76
|
Li L, Wang S, Wang H, Sahu SK, Marin B, Li H, Xu Y, Liang H, Li Z, Cheng S, Reder T, Çebi Z, Wittek S, Petersen M, Melkonian B, Du H, Yang H, Wang J, Wong GKS, Xu X, Liu X, Van de Peer Y, Melkonian M, Liu H. The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants. Nat Ecol Evol 2020; 4:1220-1231. [PMID: 32572216 PMCID: PMC7455551 DOI: 10.1038/s41559-020-1221-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 05/12/2020] [Indexed: 12/31/2022]
Abstract
Genome analysis of the pico-eukaryotic marine green alga Prasinoderma coloniale CCMP 1413 unveils the existence of a novel phylum within green plants (Viridiplantae), the Prasinodermophyta, which diverged before the split of Chlorophyta and Streptophyta. Structural features of the genome and gene family comparisons revealed an intermediate position of the P. coloniale genome (25.3 Mb) between the extremely compact, small genomes of picoplanktonic Mamiellophyceae (Chlorophyta) and the larger, more complex genomes of early-diverging streptophyte algae. Reconstruction of the minimal core genome of Viridiplantae allowed identification of an ancestral toolkit of transcription factors and flagellar proteins. Adaptations of P. coloniale to its deep-water, oligotrophic environment involved expansion of light-harvesting proteins, reduction of early light-induced proteins, evolution of a distinct type of C4 photosynthesis and carbon-concentrating mechanism, synthesis of the metal-complexing metabolite picolinic acid, and vitamin B1, B7 and B12 auxotrophy. The P. coloniale genome provides first insights into the dawn of green plant evolution.
Collapse
Affiliation(s)
- Linzhou Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Sibo Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Hongli Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Birger Marin
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany
| | - Haoyuan Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yan Xu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Hongping Liang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics (Ghent University) and Center for Plant Systems Biology, Ghent, Belgium
| | - Shifeng Cheng
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Tanja Reder
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany
| | - Zehra Çebi
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany
| | - Sebastian Wittek
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany
| | - Morten Petersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Barbara Melkonian
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany
- Central Collection of Algal Cultures, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Huanming Yang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Jian Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Gane Ka-Shu Wong
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- Department of Biological Sciences and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China
| | - Xin Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics (Ghent University) and Center for Plant Systems Biology, Ghent, Belgium.
- College of Horticulture, Nanjing Agricultural University, Nanjing, China.
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| | - Michael Melkonian
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany.
- Central Collection of Algal Cultures, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
77
|
Cryptic speciation of a pelagic Roseobacter population varying at a few thousand nucleotide sites. ISME JOURNAL 2020; 14:3106-3119. [PMID: 32814868 DOI: 10.1038/s41396-020-00743-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/28/2020] [Accepted: 08/07/2020] [Indexed: 01/14/2023]
Abstract
A drop of seawater contains numerous microspatial niches at the scale relevant to microbial activities. Examples are abiotic niches such as detrital particles that show different sizes and organic contents, and biotic niches resulting from bacteria-phage and bacteria-phytoplankton interactions. A common practice to investigate the impact of microenvironments on bacterial evolution is to separate the microenvironments physically and compare the bacterial inhabitants from each. It remains poorly understood, however, which microenvironment primarily drives bacterioplankton evolution in the pelagic ocean. By applying a dilution cultivation approach to an undisturbed coastal water sample, we isolate a bacterial population affiliated with the globally dominant Roseobacter group. Although varying at just a few thousand nucleotide sites across the whole genomes, members of this clonal population are diverging into two genetically separated subspecies. Genes underlying speciation are not unique to subspecies but instead clustered at the shared regions that represent ~6% of the genomic DNA. They are primarily involved in vitamin synthesis, motility, oxidative defense, carbohydrate, and amino acid utilization, consistent with the known strategies that roseobacters take to interact with phytoplankton and particles. Physiological assays corroborate that one subspecies outcompetes the other in these traits. Our results indicate that the microenvironments in the pelagic ocean represented by phytoplankton and organic particles are likely important niches that drive the cryptic speciation of the Roseobacter population, though microhabitats contributed by other less abundant pelagic hosts cannot be ruled out.
Collapse
|
78
|
Sokolovskaya OM, Shelton AN, Taga ME. Sharing vitamins: Cobamides unveil microbial interactions. Science 2020; 369:369/6499/eaba0165. [PMID: 32631870 DOI: 10.1126/science.aba0165] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microbial communities are essential to fundamental processes on Earth. Underlying the compositions and functions of these communities are nutritional interdependencies among individual species. One class of nutrients, cobamides (the family of enzyme cofactors that includes vitamin B12), is widely used for a variety of microbial metabolic functions, but these structurally diverse cofactors are synthesized by only a subset of bacteria and archaea. Advances at different scales of study-from individual isolates, to synthetic consortia, to complex communities-have led to an improved understanding of cobamide sharing. Here, we discuss how cobamides affect microbes at each of these three scales and how integrating different approaches leads to a more complete understanding of microbial interactions.
Collapse
Affiliation(s)
- Olga M Sokolovskaya
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Amanda N Shelton
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Michiko E Taga
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
79
|
Genome-enabled phylogenetic and functional reconstruction of an araphid pennate diatom Plagiostriata sp. CCMP470, previously assigned as a radial centric diatom, and its bacterial commensal. Sci Rep 2020; 10:9449. [PMID: 32523048 PMCID: PMC7287063 DOI: 10.1038/s41598-020-65941-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022] Open
Abstract
Diatoms are an ecologically fundamental and highly diverse group of algae, dominating marine primary production in both open-water and coastal communities. The diatoms include both centric species, which may have radial or polar symmetry, and the pennates, which include raphid and araphid species and arose within the centric lineage. Here, we use combined microscopic and molecular information to reclassify a diatom strain CCMP470, previously annotated as a radial centric species related to Leptocylindrus danicus, as an araphid pennate species in the staurosiroid lineage, within the genus Plagiostriata. CCMP470 shares key ultrastructural features with Plagiostriata taxa, such as the presence of a sternum with parallel striae, and the presence of a highly reduced labiate process on its valve; and this evolutionary position is robustly supported by multigene phylogenetic analysis. We additionally present a draft genome of CCMP470, which is the first genome available for a staurosiroid lineage. 270 Pfams (19%) found in the CCMP470 genome are not known in other diatom genomes, which otherwise does not hold big novelties compared to genomes of non-staurosiroid diatoms. Notably, our DNA library contains the genome of a bacterium within the Rhodobacterales, an alpha-proteobacterial lineage known frequently to associate with algae. We demonstrate the presence of commensal alpha-proteobacterial sequences in other published algal genome and transcriptome datasets, which may indicate widespread and persistent co-occurrence.
Collapse
|
80
|
Stock W, Blommaert L, De Troch M, Mangelinckx S, Willems A, Vyverman W, Sabbe K. Host specificity in diatom-bacteria interactions alleviates antagonistic effects. FEMS Microbiol Ecol 2020; 95:5606784. [PMID: 31647551 DOI: 10.1093/femsec/fiz171] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/23/2019] [Indexed: 11/13/2022] Open
Abstract
While different microalgae tend to be associated with different bacteria, it remains unclear whether such specific associations are beneficial for the microalgae. We assessed the impact of bacterial isolates, derived from various marine benthic diatoms, on the growth of several strains belonging to the Cylindrotheca closterium diatom species complex. We first tested the effect of 35 different bacterial isolates on the growth of a single C. closterium strain, and then evaluated the impact of 8 of these isolates on the growth of 6 C. closterium strains and 1 Cylindrotheca fusiformis strain. Surprisingly, most interactions were neutral to antagonistic. The interactions were highly specific, with diatom growth in the presence of specific bacteria differing between Cylindrotheca strains and species, and closely related bacteria eliciting contrasting diatom growth responses. These differences could be related to the origin of the bacterial isolates, as only isolates from foreign diatom hosts significantly reduced diatom growth, implying coadaptation between different Cylindrotheca strains and their associated bacteria. Interestingly, the antagonistic effect of a Marinobacter strain was alleviated by the presence of a microbial inoculum that was native to the diatom host, suggesting that coadapted bacteria might also benefit their host indirectly by preventing the establishment of harmful bacteria.
Collapse
Affiliation(s)
- Willem Stock
- Laboratory of Protistology and Aquatic Ecology, Biology Department, Ghent University, Krijgslaan 281-S8, 9000 Ghent, Belgium
| | - Lander Blommaert
- Laboratory of Protistology and Aquatic Ecology, Biology Department, Ghent University, Krijgslaan 281-S8, 9000 Ghent, Belgium
| | - Marleen De Troch
- Marine Biology, Biology Department, Ghent University, Krijgslaan 281-S8, 9000 Ghent, Belgium
| | - Sven Mangelinckx
- SynBioC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Anne Willems
- Laboratory of Microbiology, Biology Department, Ghent University, Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Wim Vyverman
- Laboratory of Protistology and Aquatic Ecology, Biology Department, Ghent University, Krijgslaan 281-S8, 9000 Ghent, Belgium
| | - Koen Sabbe
- Laboratory of Protistology and Aquatic Ecology, Biology Department, Ghent University, Krijgslaan 281-S8, 9000 Ghent, Belgium
| |
Collapse
|
81
|
Bunbury F, Helliwell KE, Mehrshahi P, Davey MP, Salmon DL, Holzer A, Smirnoff N, Smith AG. Responses of a Newly Evolved Auxotroph of Chlamydomonas to B 12 Deprivation. PLANT PHYSIOLOGY 2020; 183:167-178. [PMID: 32079734 PMCID: PMC7210614 DOI: 10.1104/pp.19.01375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/04/2020] [Indexed: 05/10/2023]
Abstract
The corrinoid B12 is synthesized only by prokaryotes yet is widely required by eukaryotes as an enzyme cofactor. Microalgae have evolved B12 dependence on multiple occasions, and we previously demonstrated that experimental evolution of the non-B12-requiring alga Chlamydomonas reinhardtii in media supplemented with B12 generated a B12-dependent mutant (hereafter metE7). This clone provides a unique opportunity to study the physiology of a nascent B12 auxotroph. Our analyses demonstrate that B12 deprivation of metE7 disrupts C1 metabolism, causes an accumulation of starch and triacylglycerides, and leads to a decrease in photosynthetic pigments, proteins, and free amino acids. B12 deprivation also caused a substantial increase in reactive oxygen species, which preceded rapid cell death. Survival could be improved without compromising growth by simultaneously depriving the cells of nitrogen, suggesting a type of cross protection. Significantly, we found further improvements in survival under B12 limitation and an increase in B12 use efficiency after metE7 underwent a further period of experimental evolution, this time in coculture with a B12-producing bacterium. Therefore, although an early B12-dependent alga would likely be poorly adapted to coping with B12 deprivation, association with B12-producers can ensure long-term survival whilst also providing a suitable environment for evolving mechanisms to tolerate B12 limitation better.
Collapse
Affiliation(s)
- Freddy Bunbury
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, United Kingdom
| | - Katherine E Helliwell
- Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth EX4 4PY, United Kingdom
- School of Biosciences, University of Exeter, Exeter, PL1 2PB, United Kingdom
| | - Payam Mehrshahi
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, United Kingdom
| | - Matthew P Davey
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, United Kingdom
| | - Deborah L Salmon
- School of Biosciences, University of Exeter, Exeter, PL1 2PB, United Kingdom
| | - Andre Holzer
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, United Kingdom
| | - Nicholas Smirnoff
- School of Biosciences, University of Exeter, Exeter, PL1 2PB, United Kingdom
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, United Kingdom
| |
Collapse
|
82
|
|
83
|
Ma AT, Tyrell B, Beld J. Specificity of cobamide remodeling, uptake and utilization in Vibrio cholerae. Mol Microbiol 2019; 113:89-102. [PMID: 31609521 DOI: 10.1111/mmi.14402] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2019] [Indexed: 12/11/2022]
Abstract
Cobamides are a group of compounds including vitamin B12 that can vary at the lower base position of the nucleotide loop. They are synthesized de novo by only a subset of prokaryotes, but some organisms encode partial biosynthesis pathways for converting one variant to another (remodeling) or completing biosynthesis from an intermediate (corrinoid salvaging). Here, we explore the cobamide specificity in Vibrio cholerae through examination of three natural variants representing major cobamide groups: commercially available cobalamin, and isolated pseudocobalamin and p-cresolylcobamide. We show that BtuB, the outer membrane corrinoid transporter, mediates the uptake of all three variants and the intermediate cobinamide. Our previous work suggested that V. cholerae could convert pseudocobalamin produced by cyanobacteria into cobalamin. In this work, cobamide specificity in V. cholerae is demonstrated by remodeling of pseudocobalamin and salvaging of cobinamide to produce cobalamin. Cobamide remodeling in V. cholerae is distinct from the canonical pathway requiring amidohydrolase CbiZ, and heterologous expression of V. cholerae CobS was sufficient for remodeling. Furthermore, function of V. cholerae cobamide-dependent methionine synthase MetH was robustly supported by cobalamin and p-cresolylcobamide, but not pseudocobalamin. Notably, the inability of V. cholerae to produce and utilize pseudocobalamin contrasts with enteric bacteria like Salmonella.
Collapse
Affiliation(s)
- Amy T Ma
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Breanna Tyrell
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Joris Beld
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| |
Collapse
|
84
|
Gude S, Taga ME. Multi-faceted approaches to discovering and predicting microbial nutritional interactions. Curr Opin Biotechnol 2019; 62:58-64. [PMID: 31597114 DOI: 10.1016/j.copbio.2019.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/08/2019] [Accepted: 08/20/2019] [Indexed: 01/07/2023]
Abstract
Nearly all microbes rely on other species in their environment to provide nutrients they are unable to produce. Nutritional interactions include not only the exchange of carbon and nitrogen compounds, but also amino acids and cofactors. Interactions involving cross-feeding of cobamides, the vitamin B12 family of cofactors, have been developed as a model for nutritional interactions across species and environments. In addition to experimental studies, new developments in culture-independent methodologies such as genomics and modeling now enable the prediction of nutritional interactions in a broad range of organisms including those that cannot be cultured in the laboratory. New insights into the mechanisms and evolution of microbial nutritional interactions are beginning to emerge by combining experimental, genomic, and modeling approaches.
Collapse
Affiliation(s)
- Sebastian Gude
- Department of Plant & Microbial Biology, University of California, Berkeley, CA USA
| | - Michiko E Taga
- Department of Plant & Microbial Biology, University of California, Berkeley, CA USA.
| |
Collapse
|