51
|
Kim JS, Jeon H, Lee H, Ko JM, Kim Y, Choi M, Nishimura G, Kim OH, Cho TJ. Biallelic novel mutations of the COL27A1 gene in a patient with Steel syndrome. Hum Genome Var 2021; 8:17. [PMID: 33963180 PMCID: PMC8105406 DOI: 10.1038/s41439-021-00149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/18/2021] [Accepted: 04/07/2021] [Indexed: 11/09/2022] Open
Abstract
An 11-year-old Korean boy presented with short stature, hip dysplasia, radial head dislocation, carpal coalition, genu valgum, and fixed patellar dislocation and was clinically diagnosed with Steel syndrome. Scrutinizing the trio whole-exome sequencing data revealed novel compound heterozygous mutations of COL27A1 (c.[4229_4233dup]; [3718_5436del], p.[Gly1412Argfs*157];[Gly1240_Lys1812del]) in the proband, which were inherited from heterozygous parents. The maternal mutation was a large deletion encompassing exons 38–60, which was challenging to detect.
Collapse
Affiliation(s)
- Jong Seop Kim
- Division of Pediatric Orthopaedics, Seoul National University Children's Hospital and Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyoungseok Jeon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyeran Lee
- Division of Pediatric Orthopaedics, Seoul National University Children's Hospital and Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung Min Ko
- Department of Pediatrics, Seoul National University Children's Hospital and Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yonghwan Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Gen Nishimura
- Center for Intractable Disease, Saitama Medical University Hospital, Saitama, Japan
| | - Ok-Hwa Kim
- Department of Pediatric Radiology, VIC365 Children's Hospital, Incheon, Republic of Korea
| | - Tae-Joon Cho
- Division of Pediatric Orthopaedics, Seoul National University Children's Hospital and Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
52
|
Roifman M, Chung BHY, Reid DM, Teitelbaum R, Martin N, Nield LE, Thompson M, Shannon P, Chitayat D. Heterozygous NOTCH1 deletion associated with variable congenital heart defects. Clin Genet 2021; 99:836-841. [PMID: 33630301 DOI: 10.1111/cge.13948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/03/2021] [Accepted: 02/20/2021] [Indexed: 01/03/2023]
Abstract
Pathogenic heterozygous variants in the NOTCH1 gene are known to be associated with both left and right-sided congenital cardiac anomalies with strikingly incomplete penetrance and variable phenotypic expressivity. De novo NOTCH1 whole gene deletion has been reported rarely in the literature and its association with cardiac defects is less well established. Here, we report four cases of NOTCH1 gene deletion from two families associated with a spectrum of congenital heart defects from bicuspid aortic valve to complex cardiac anomalies. This is the first description of a familial NOTCH1 deletion, showing apparently high penetrance, which may be unique to this mechanism of disease. Immunohistochemical staining of cardiac tissue demonstrated reduced levels of NOTCH1 expression in both the left and right ventricular outflow tracts. These cases suggest that haploinsufficiency caused by NOTCH1 gene deletion is associated with both mild and severe cardiac defects, similar to those caused by pathogenic variants in the gene, but with apparently higher, if not complete, penetrance.
Collapse
Affiliation(s)
- Maian Roifman
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.,Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Brian Hon Yin Chung
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Paediatrics and Adolescent Medicine LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Diane Myles Reid
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Ronni Teitelbaum
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Martin
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Lynne E Nield
- Division of Cardiology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Megan Thompson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Fetal Pathology, Kaiser Permanente Oakland Medical Center, Oakland, California, USA
| | - Patrick Shannon
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - David Chitayat
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.,Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
53
|
Biallelic CDK9 variants as a cause of a new multiple-malformation syndrome with retinal dystrophy mimicking the CHARGE syndrome. J Hum Genet 2021; 66:1021-1027. [PMID: 33640901 PMCID: PMC8472910 DOI: 10.1038/s10038-021-00909-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 11/26/2022]
Abstract
CDK9 has been considered a candidate gene involved in the CHARGE-like syndrome in a pair of cousins. We report an 8-year-old boy with a strikingly similar phenotype including facial asymmetry, microtia with preauricular tags and bilateral hearing loss, cleft lip and palate, cardiac dysrhythmia, and undescended testes. Joint contracture, no finger flexion creases, and large halluces were the same as those of a previously reported patient with homozygous CDK9 variants. The ocular phenotype included blepharophimosis, lacrimal duct obstruction, eyelid dermoids, Duane syndrome-like abduction deficit, and congenital cataracts. Optical coherence tomography and electroretinography evaluations revealed severe retinal dystrophy had developed at an early age. Trio-based whole-exome sequencing identified compound heterozygous variants in CDK9 [p.(A288T) of maternal origin and p.(R303C) of paternal origin] in the patient. Variants’ kinase activities were reduced compared with wild type. We concluded that CDK9 biallelic variants cause a CHARGE-like malformation syndrome with retinal dystrophy as a distinguishing feature.
Collapse
|
54
|
Li Q, Gulati A, Lemaire M, Nottoli T, Bale A, Tufro A. Rho-GTPase Activating Protein myosin MYO9A identified as a novel candidate gene for monogenic focal segmental glomerulosclerosis. Kidney Int 2021; 99:1102-1117. [PMID: 33412162 DOI: 10.1016/j.kint.2020.12.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 01/18/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a podocytopathy leading to kidney failure, whose molecular cause frequently remains unresolved. Here, we describe a rare MYO9A loss of function nonsense heterozygous mutation (p.Arg701∗) as a possible contributor to disease in a sibling pair with familial FSGS/proteinuria. MYO9A variants of uncertain significance were identified by whole exome sequencing in a cohort of 94 biopsy proven patients with FSGS. MYO9A is an unconventional myosin with a Rho-GAP domain that controls epithelial cell junction assembly, crosslinks and bundles actin and deactivates the small GTPase protein encoded by the RHOA gene. RhoA activity is associated with cytoskeleton regulation of actin stress fiber formation and actomyosin contractility. Myo9A was detected in mouse and human podocytes in vitro and in vivo. Knockin mice carrying the p.Arg701∗MYO9A (Myo9AR701X) generated by gene editing developed proteinuria, podocyte effacement and FSGS. Kidneys and podocytes from Myo9AR701X/+ mutant mice revealed Myo9A haploinsufficiency, increased RhoA activity, decreased Myo9A-actin-calmodulin interaction, impaired podocyte attachment and migration. Our results indicate that Myo9A is a novel component of the podocyte cytoskeletal apparatus that regulates RhoA activity and podocyte function. Thus, Myo9AR701X/+ knock-in mice recapitulate the proband FSGS phenotype, demonstrate that p.R701X Myo9A is an FSGS-causing mutation in mice and suggest that heterozygous loss-of-function MYO9A mutations may cause a novel form of human autosomal dominant FSGS. Hence, identification of MYO9A pathogenic variants in additional individuals with familial or sporadic FSGS is needed to ascertain the gene contribution to disease.
Collapse
Affiliation(s)
- Qi Li
- Department of Pediatrics, Nephrology Section, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ashima Gulati
- Department of Internal Medicine, Nephrology Section, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mathieu Lemaire
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Timothy Nottoli
- Yale Gene Editing Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Allen Bale
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Alda Tufro
- Department of Pediatrics, Nephrology Section, Yale School of Medicine, New Haven, Connecticut, USA; Department of Cell and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
55
|
Ahn LY, Coatti GC, Liu J, Gumus E, Schaffer AE, Miranda HC. An epilepsy-associated ACTL6B variant captures neuronal hyperexcitability in a human induced pluripotent stem cell model. J Neurosci Res 2021; 99:110-123. [PMID: 33141462 PMCID: PMC7756336 DOI: 10.1002/jnr.24747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 01/01/2023]
Abstract
ACTL6B is a component of the neuronal BRG1/brm-associated factor (nBAF) complex, which is required for chromatin remodeling in postmitotic neurons. We recently reported biallelic pathogenic variants in ACTL6B in patients diagnosed with early infantile epileptic encephalopathy, subtype 76 (EIEE-76), presenting with severe, global developmental delay, epileptic encephalopathy, cerebral atrophy, and abnormal central nervous system myelination. However, the pathophysiological mechanisms underlying their phenotype is unknown. Here, we investigate the molecular pathogenesis of ACTL6B p.(Val421_Cys425del) using in silico 3D protein modeling predictions and patient-specific induced pluripotent stem cell-derived neurons. We found neurons derived from EIEE-76 patients showed impaired accumulation of ACTL6B compared to unaffected relatives, caused by reduced protein stability. Furthermore, EIEE-76 patient-derived neurons had dysregulated nBAF target gene expression, including genes important for neuronal development and disease. Multielectrode array system analysis unveiled elevated electrophysiological activity of EIEE-76 patients-derived neurons, consistent with the patient phenotype. Taken together, our findings validate a new model for EIEE-76 and reveal how reduced ACTL6B expression affects neuronal function.
Collapse
Affiliation(s)
- Lucie Y. Ahn
- Department of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOHUSA,Medical Scientist Training ProgramCase Western Reserve UniversityClevelandOHUSA
| | - Giuliana C. Coatti
- Department of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOHUSA
| | - Jingyi Liu
- Department of PathologyCase Western Reserve UniversityClevelandOHUSA
| | - Evren Gumus
- Department of Medical GeneticsFaculty of MedicineMugla Sitki Kocman UniversityMuglaTurkey,Department of Medical GeneticsFaculty of MedicineUniversity of HarranSanliurfaTurkey
| | - Ashleigh E. Schaffer
- Department of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOHUSA,Center for RNA Science and TherapeuticsCase Western Reserve UniversityClevelandOHUSA
| | - Helen C. Miranda
- Department of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOHUSA,Department of NeurosciencesCase Western Reserve UniversityClevelandOHUSA
| |
Collapse
|
56
|
Maddirevula S, Shamseldin HE, Sirr A, AlAbdi L, Lo RS, Ewida N, Al-Qahtani M, Hashem M, Abdulwahab F, Aboyousef O, Kaya N, Monies D, Salem MH, Al Harbi N, Aldhalaan HM, Alzaidan H, Almanea HM, Alsalamah AK, Al Mutairi F, Ismail S, Abdel-Salam GMH, Alhashem A, Asery A, Faqeih E, AlQassmi A, Al-Hamoudi W, Algoufi T, Shagrani M, Dudley AM, Alkuraya FS. Exploiting the Autozygome to Support Previously Published Mendelian Gene-Disease Associations: An Update. Front Genet 2020; 11:580484. [PMID: 33456446 PMCID: PMC7806527 DOI: 10.3389/fgene.2020.580484] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/30/2020] [Indexed: 01/06/2023] Open
Abstract
There is a growing interest in standardizing gene-disease associations for the purpose of facilitating the proper classification of variants in the context of Mendelian diseases. One key line of evidence is the independent observation of pathogenic variants in unrelated individuals with similar phenotypes. Here, we expand on our previous effort to exploit the power of autozygosity to produce homozygous pathogenic variants that are otherwise very difficult to encounter in the homozygous state due to their rarity. The identification of such variants in genes with only tentative associations to Mendelian diseases can add to the existing evidence when observed in the context of compatible phenotypes. In this study, we report 20 homozygous variants in 18 genes (ADAMTS18, ARNT2, ASTN1, C3, DMBX1, DUT, GABRB3, GM2A, KIF12, LOXL3, NUP160, PTRHD1, RAP1GDS1, RHOBTB2, SIGMAR1, SPAST, TENM3, and WASHC5) that satisfy the ACMG classification for pathogenic/likely pathogenic if the involved genes had confirmed rather than tentative links to diseases. These variants were selected because they were truncating, founder with compelling segregation or supported by robust functional assays as with the DUT variant that we present its validation using yeast model. Our findings support the previously reported disease associations for these genes and represent a step toward their confirmation.
Collapse
Affiliation(s)
- Sateesh Maddirevula
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hanan E Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Amy Sirr
- Pacific Northwest Research Institute, Seattle, WA, United States
| | - Lama AlAbdi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Russell S Lo
- Pacific Northwest Research Institute, Seattle, WA, United States
| | - Nour Ewida
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mashael Al-Qahtani
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Omar Aboyousef
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Namik Kaya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Dorota Monies
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - May H Salem
- Pediatric Nephrology Service, Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Naffaa Al Harbi
- Pediatric Nephrology Service, Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Hesham M Aldhalaan
- Department of Neuroscience, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hamad Alzaidan
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Hadeel M Almanea
- Anatomic Pathology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Abrar K Alsalamah
- Vitreoretinal and Uveitis Divisions, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Fuad Al Mutairi
- Medical Genetics Division, Department of Pediatrics, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Samira Ismail
- Human Genetics & Genome Research Division, Clinical Genetics Department, Center of Excellence of Human Genetics, National Research Centre, Cairo, Egypt
| | - Ghada M H Abdel-Salam
- Human Genetics & Genome Research Division, Clinical Genetics Department, Center of Excellence of Human Genetics, National Research Centre, Cairo, Egypt
| | - Amal Alhashem
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.,Department of Pediatric, Prince Sultan Medical Military City, Riyadh, Saudi Arabia
| | - Ali Asery
- Section of Pediatric Gastroenterology, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Eissa Faqeih
- Department of Pediatric Subspecialties, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Amal AlQassmi
- Pediatric Neurology, King Saud Medical City, Riyadh, Saudi Arabia
| | - Waleed Al-Hamoudi
- Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Talal Algoufi
- King Faisal Specialist Hospital and Research Center, Organ Transplant Centre, Riyadh, Saudi Arabia
| | - Mohammad Shagrani
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.,King Faisal Specialist Hospital and Research Center, Organ Transplant Centre, Riyadh, Saudi Arabia
| | - Aimée M Dudley
- Pacific Northwest Research Institute, Seattle, WA, United States
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
57
|
Satoh C, Kondoh T, Shimizu H, Kinoshita A, Mishima H, Nishimura G, Miyazaki M, Okano K, Kumai Y, Yoshiura KI. Brothers with novel compound heterozygous mutations in COL27A1 causing dental and genital abnormalities. Eur J Med Genet 2020; 64:104125. [PMID: 33359165 DOI: 10.1016/j.ejmg.2020.104125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/03/2020] [Accepted: 12/17/2020] [Indexed: 01/15/2023]
Abstract
COL27A1 encodes a collagen type XXVII alpha 1 chain. It is the product of this gene that provides the structural support of connective tissue and is reported to be the causative gene of Steel syndrome (OMIM #615155). The primary symptoms of patients with this defect are consistent with systemic bone disease; however, recent reports note findings of intellectual disability and hearing loss. In this study, we identified novel COL27A1 compound heterozygous variants in two brothers with rhizomelia and congenital hip dislocation as well as dental and genital abnormalities that have not yet been reported in Steel syndrome. This variant, of maternal origin, caused an amino acid substitution of arginine for glycine, c.2026G>C or p.G676R, in the collagen helix domain, which is assumed to damage the structure of the helix. The paternally transmitted variant, c.2367G>A, is located at the 3' end of exon 12, and cDNA analysis revealed a splicing alteration. These novel, compound heterozygous COL27A1 variants might indicate an association of the gene with tooth and genital abnormalities.
Collapse
Affiliation(s)
- Chisei Satoh
- Department of Otolaryngology-Head and Neck Surgery, Unit of Translation Medicine, Japan; Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tatsuro Kondoh
- Division of Developmental Disabilities, Misakaenosono Mutsumi Developmental, Medical and Welfare Center, Isahaya, Japan
| | - Hitomi Shimizu
- Department of Pediatrics, Saiseikai Nagasaki Hospital, Nagasaki, Japan
| | - Akira Kinoshita
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroyuki Mishima
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Gen Nishimura
- Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan
| | | | - Kunihiko Okano
- Department of Orthopaedic Surgery, Nagasaki Prefectural Center for Handicapped Children, Isahaya, Japan
| | - Yoshihiko Kumai
- Department of Otolaryngology-Head and Neck Surgery, Unit of Translation Medicine, Japan
| | - Koh-Ichiro Yoshiura
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| |
Collapse
|
58
|
Salo AM, Myllyharju J. Prolyl and lysyl hydroxylases in collagen synthesis. Exp Dermatol 2020; 30:38-49. [PMID: 32969070 DOI: 10.1111/exd.14197] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022]
Abstract
Collagens are the most abundant proteins in the extracellular matrix. They provide a framework to build organs and tissues and give structural support to make them resistant to mechanical load and forces. Several intra- and extracellular modifications are needed to make functional collagen molecules, intracellular post-translational modifications of proline and lysine residues having key roles in this. In this article, we provide a review on the enzymes responsible for the proline and lysine modifications, that is collagen prolyl 4-hydroxylases, 3-hydroxylases and lysyl hydroxylases, and discuss their biological functions and involvement in diseases.
Collapse
Affiliation(s)
- Antti M Salo
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Johanna Myllyharju
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
59
|
Abstract
Myosins constitute a superfamily of actin-based molecular motor proteins that mediates a variety of cellular activities including muscle contraction, cell migration, intracellular transport, the formation of membrane projections, cell adhesion, and cell signaling. The 12 myosin classes that are expressed in humans share sequence similarities especially in the N-terminal motor domain; however, their enzymatic activities, regulation, ability to dimerize, binding partners, and cellular functions differ. It is becoming increasingly apparent that defects in myosins are associated with diseases including cardiomyopathies, colitis, glomerulosclerosis, neurological defects, cancer, blindness, and deafness. Here, we review the current state of knowledge regarding myosins and disease.
Collapse
|
60
|
Alfares A, Alsubaie L, Aloraini T, Alaskar A, Althagafi A, Alahmad A, Rashid M, Alswaid A, Alothaim A, Eyaid W, Ababneh F, Albalwi M, Alotaibi R, Almutairi M, Altharawi N, Alsamer A, Abdelhakim M, Kafkas S, Mineta K, Cheung N, Abdallah AM, Büchmann-Møller S, Fukasawa Y, Zhao X, Rajan I, Hoehndorf R, Al Mutairi F, Gojobori T, Alfadhel M. What is the right sequencing approach? Solo VS extended family analysis in consanguineous populations. BMC Med Genomics 2020; 13:103. [PMID: 32680510 PMCID: PMC7368798 DOI: 10.1186/s12920-020-00743-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/19/2020] [Indexed: 02/04/2023] Open
Abstract
Background Testing strategies is crucial for genetics clinics and testing laboratories. In this study, we tried to compare the hit rate between solo and trio and trio plus testing and between trio and sibship testing. Finally, we studied the impact of extended family analysis, mainly in complex and unsolved cases. Methods Three cohorts were used for this analysis: one cohort to assess the hit rate between solo, trio and trio plus testing, another cohort to examine the impact of the testing strategy of sibship genome vs trio-based analysis, and a third cohort to test the impact of an extended family analysis of up to eight family members to lower the number of candidate variants. Results The hit rates in solo, trio and trio plus testing were 39, 40, and 41%, respectively. The total number of candidate variants in the sibship testing strategy was 117 variants compared to 59 variants in the trio-based analysis. We noticed that the average number of coding candidate variants in trio-based analysis was 1192 variants and 26,454 noncoding variants, and this number was lowered by 50–75% after adding additional family members, with up to two coding and 66 noncoding homozygous variants only, in families with eight family members. Conclusion There was no difference in the hit rate between solo and extended family members. Trio-based analysis was a better approach than sibship testing, even in a consanguineous population. Finally, each additional family member helped to narrow down the number of variants by 50–75%. Our findings could help clinicians, researchers and testing laboratories select the most cost-effective and appropriate sequencing approach for their patients. Furthermore, using extended family analysis is a very useful tool for complex cases with novel genes.
Collapse
Affiliation(s)
- Ahmed Alfares
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia. .,Department of Pediatrics, College of Medicine, Qassim University, Qassim, Saudi Arabia. .,Qassim University, Department of Pediatrics, Almulyda, Saudi Arabia.
| | - Lamia Alsubaie
- Division of Genetics, Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Taghrid Aloraini
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Aljoharah Alaskar
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Azza Althagafi
- Computer, Electrical & Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ahmed Alahmad
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Mamoon Rashid
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Abdulrahman Alswaid
- Division of Genetics, Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Ali Alothaim
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Wafaa Eyaid
- Division of Genetics, Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Faroug Ababneh
- Division of Genetics, Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Mohammed Albalwi
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Raniah Alotaibi
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Mashael Almutairi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Nouf Altharawi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Alhanouf Alsamer
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Marwa Abdelhakim
- Computer, Electrical & Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Senay Kafkas
- Computer, Electrical & Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Katsuhiko Mineta
- Computer, Electrical & Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Nicole Cheung
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, 23955-6900, Saudi Arabia
| | - Abdallah M Abdallah
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Stine Büchmann-Møller
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, 23955-6900, Saudi Arabia
| | - Yoshinori Fukasawa
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, 23955-6900, Saudi Arabia
| | - Xiang Zhao
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, 23955-6900, Saudi Arabia
| | - Issaac Rajan
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, 23955-6900, Saudi Arabia
| | - Robert Hoehndorf
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, 23955-6900, Saudi Arabia
| | - Fuad Al Mutairi
- Division of Genetics, Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Takashi Gojobori
- Biological and Environmental Science and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Majid Alfadhel
- Division of Genetics, Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
61
|
First reported case of Steel syndrome in the European population: A novel homozygous mutation in COL27A1 and review of the literature. Eur J Med Genet 2020; 63:103939. [DOI: 10.1016/j.ejmg.2020.103939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/19/2020] [Accepted: 04/23/2020] [Indexed: 01/01/2023]
|
62
|
Alsahan N, Alkuraya FS. Confirming TBC1D32-related ciliopathy in humans. Am J Med Genet A 2020; 182:1985-1987. [PMID: 32573025 DOI: 10.1002/ajmg.a.61717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/12/2020] [Accepted: 05/17/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Nada Alsahan
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
63
|
A Almuqbil M, Vernon HJ, Ferguson M, Kline AD. PARS2-associated mitochondrial disease: A case report of a patient with prolonged survival and literature review. Mol Genet Metab Rep 2020; 24:100613. [PMID: 32514400 PMCID: PMC7267727 DOI: 10.1016/j.ymgmr.2020.100613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 10/24/2022] Open
Abstract
Biallelic pathogenic variants in mitochondrial aminoacyl-tRNA synthetase (mt-aaRS) PARS2 are associated with mitochondrial cytopathy. Here, we report the tenth case of an individual with biallelic PARS2 pathogenic variants, detected by exome sequencing (ES), and a literature review of ten cases of PARS2 mutations. Our patient displayed symptoms and clinical and laboratory findings similar to those reported previously with normal lactate levels. These symptoms included seizure disorder (which was managed with antiepileptics), developmental delay, and progressive cardiomyopathy which manifested at 19 years of age. The patient received a vitamin regimen including antioxidants as part of his treatment regimen. While further studies are required to conclusively establish the beneficial role of vitamin and cofactor administration on the mitochondria in PARS2-associated mitochondrial disease, these factors may have delayed the onset of cardiomyopathy.
Collapse
Affiliation(s)
- Mohammed A Almuqbil
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA.,Division of Pediatric Neurology, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, King Abdullah Specialist Children's Hospital - Ministry of National Guard, Riyadh, Saudi Arabia
| | - Hilary J Vernon
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Marcia Ferguson
- Harvey Institute for Human Genetics, Greater Baltimore Medical Center, Baltimore, MD, USA
| | - Antonie D Kline
- Harvey Institute for Human Genetics, Greater Baltimore Medical Center, Baltimore, MD, USA
| |
Collapse
|
64
|
Kalmár T, Szakszon K, Maróti Z, Zimmermann A, Máté A, Zombor M, Bereczki C, Sztriha L. A Novel Homozygous Frameshift WDR81 Mutation associated with Microlissencephaly, Corpus Callosum Agenesis, and Pontocerebellar Hypoplasia. J Pediatr Genet 2020; 10:159-163. [PMID: 33996189 DOI: 10.1055/s-0040-1712916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
Microlissencephaly is a brain malformation characterized by microcephaly and extremely simplified gyral pattern. It may be associated with corpus callosum agenesis and pontocerebellar hypoplasia. In this case report, we described two siblings, a boy and a girl, with this complex brain malformation and lack of any development. In the girl, exome sequencing of a gene set representing 4,813 genes revealed a homozygous AG deletion in exon 7 of the WDR81 gene, leading to a frameshift (c.4668_4669delAG, p.Gly1557AspfsTer16). The parents were heterozygous for this mutation. The boy died without proper genetic testing. Our findings expand the phenotypic and genotypic spectrum of WDR81 gene mutations.
Collapse
Affiliation(s)
- Tibor Kalmár
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Katalin Szakszon
- Department of Pediatrics, University of Debrecen, Debrecen, Hungary
| | - Zoltán Maróti
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Alíz Zimmermann
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Adrienn Máté
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Melinda Zombor
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Csaba Bereczki
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - László Sztriha
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| |
Collapse
|
65
|
Seidahmed MZ, Hamad MH, AlBakheet A, Elmalik SA, AlDrees A, Al-Sufayan J, Alorainy I, Ghozzi IM, Colak D, Salih MA, Kaya N. Ancient founder mutation in RUBCN: a second unrelated family confirms Salih ataxia (SCAR15). BMC Neurol 2020; 20:207. [PMID: 32450808 PMCID: PMC7249383 DOI: 10.1186/s12883-020-01761-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/03/2020] [Indexed: 11/24/2022] Open
Abstract
Background Homozygous frameshift mutation in RUBCN (KIAA0226), known to result in endolysosomal machinery defects, has previously been reported in a single Saudi family with autosomal recessive spinocerebellar ataxia (Salih ataxia, SCAR15, OMIM # 615705). The present report describes the clinical, neurophysiologic, neuroimaging, and genetic findings in a second unrelated Saudi family with two affected children harboring identical homozygous frameshift mutation in the gene. It also explores and documents an ancient founder cerebellar ataxia mutation in the Arabian Peninsula. Case presentation The present family has two affected males (aged 6.5 and 17 years) with unsteady gait apparent since learning to walk at 2.5 and 3 years, respectively. The younger patient showed gait ataxia and normal reflexes. The older patient had saccadic eye movement, dysarthria, mild upper and lower limb and gait ataxia (on tandem walking), and enhanced reflexes in the lower limbs. Cognitive abilities were mildly impaired in the younger sibling (IQ 67) and borderline in the older patient (IQ 72). Nerve conduction studies were normal in both patients. MRI was normal at 2.5 years in the younger sibling. Brain MRI showed normal cerebellar volume and folia in the older sibling at the age of 6 years, and revealed minimal superior vermian atrophy at the age of 16 years. Autozygome and exome analysis showed both affected have previously reported homoallelic mutation in RUBCN (NM_014687:exon18:c.2624delC:p.A875fs), whereas the parents are carriers. Autozygosity mapping focused on smallest haplotype on chromosome 3 and mutation age analysis revealed the mutation occurred approximately 1550 years ago spanning about 62 generations. Conclusions Our findings validate the slowly progressive phenotype of Salih ataxia (SCAR15, OMIM # 615705) by an additional family. Haplotype sharing attests to a common founder, an ancient RUBCN mutation in the Arab population.
Collapse
Affiliation(s)
- Mohammed Z Seidahmed
- Neonatology Unit, Department of Pediatrics, Security Forces Hospital, Riyadh, 11481, Saudi Arabia.
| | - Muddathir H Hamad
- Division of Pediatric Neurology, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Albandary AlBakheet
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, MBC: 03, P.O. Box 3354, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Salah A Elmalik
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abdulmajeed AlDrees
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Jumanah Al-Sufayan
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, MBC: 03, P.O. Box 3354, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Ibrahim Alorainy
- Department of Radiology and Diagnostic Imaging, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim M Ghozzi
- Department of Internal Medicine, Division of Neurology, Security Forces Hospital, Riyadh, Saudi Arabia
| | - Dilek Colak
- Department of Biostatistics, Epidemiology, and Scientific Computing, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mustafa A Salih
- Division of Pediatric Neurology, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Namik Kaya
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, MBC: 03, P.O. Box 3354, Riyadh, 11211, Kingdom of Saudi Arabia.
| |
Collapse
|
66
|
Gonzaga-Jauregui C, Yesil G, Nistala H, Gezdirici A, Bayram Y, Nannuru KC, Pehlivan D, Yuan B, Jimenez J, Sahin Y, Paine IS, Akdemir ZC, Rajamani S, Staples J, Dronzek J, Howell K, Fatih JM, Smaldone S, Schlesinger AE, Ramírez N, Cornier AS, Kelly MA, Haber R, Chim SM, Nieman K, Wu N, Walls J, Poueymirou W, Siao CJ, Sutton VR, Williams MS, Posey JE, Gibbs RA, Carlo S, Tegay DH, Economides AN, Lupski JR. Functional biology of the Steel syndrome founder allele and evidence for clan genomics derivation of COL27A1 pathogenic alleles worldwide. Eur J Hum Genet 2020; 28:1243-1264. [PMID: 32376988 PMCID: PMC7608441 DOI: 10.1038/s41431-020-0632-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 01/20/2023] Open
Abstract
Previously we reported the identification of a homozygous COL27A1 (c.2089G>C; p.Gly697Arg) missense variant and proposed it as a founder allele in Puerto Rico segregating with Steel syndrome (STLS, MIM #615155); a rare osteochondrodysplasia characterized by short stature, congenital bilateral hip dysplasia, carpal coalitions, and scoliosis. We now report segregation of this variant in five probands from the initial clinical report defining the syndrome and an additional family of Puerto Rican descent with multiple affected adult individuals. We modeled the orthologous variant in murine Col27a1 and found it recapitulates some of the major Steel syndrome associated skeletal features including reduced body length, scoliosis, and a more rounded skull shape. Characterization of the in vivo murine model shows abnormal collagen deposition in the extracellular matrix and disorganization of the proliferative zone of the growth plate. We report additional COL27A1 pathogenic variant alleles identified in unrelated consanguineous Turkish kindreds suggesting Clan Genomics and identity-by-descent homozygosity contributing to disease in this population. The hypothesis that carrier states for this autosomal recessive osteochondrodysplasia may contribute to common complex traits is further explored in a large clinical population cohort. Our findings augment our understanding of COL27A1 biology and its role in skeletal development; and expand the functional allelic architecture in this gene underlying both rare and common disease phenotypes.
Collapse
Affiliation(s)
| | - Gozde Yesil
- Istanbul Faculty of Medicine Department of Medical Genetics, Istanbul University, 34093, Istanbul, Turkey
| | - Harikiran Nistala
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | - Alper Gezdirici
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, 34303, Istanbul, Turkey
| | - Yavuz Bayram
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Pediatrics, Division of Pediatric Neurology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Yavuz Sahin
- Medical Genetics, Genoks Genetics Center, 06570, Ankara, Turkey
| | - Ingrid S Paine
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Jeffrey Staples
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | - John Dronzek
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | - Kristen Howell
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Alan E Schlesinger
- Texas Children's Hospital, Houston, TX, 77030, USA.,Department of Radiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Alberto S Cornier
- Genetics Section, San Jorge Children's Hospital, San Juan, PR, 00912, USA.,Ponce Health Sciences University, Ponce, PR, 00716, USA.,Department of Pediatrics, Universidad Central del Caribe School of Medicine, Bayamon, PR, 00960, USA
| | | | - Robert Haber
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | - Shek Man Chim
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | - Kristy Nieman
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | - Nan Wu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Orthopedic Surgery, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, and Medical Research Center of Orthopedics, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 100730, Beijing, China
| | | | | | | | - Chia-Jen Siao
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Texas Children's Hospital, Houston, TX, 77030, USA
| | | | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Simon Carlo
- Mayagüez Medical Center, Mayagüez, PR, 00681, USA.,Ponce Health Sciences University, Ponce, PR, 00716, USA
| | - David H Tegay
- Department of Pediatrics, Division of Medical Genetics, Cohen Children's Medical Center of Northwell Health, New Hyde Park, NY, 11040, USA
| | - Aris N Economides
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA.,Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Texas Children's Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
67
|
Wenderski W, Wang L, Krokhotin A, Walsh JJ, Li H, Shoji H, Ghosh S, George RD, Miller EL, Elias L, Gillespie MA, Son EY, Staahl BT, Baek ST, Stanley V, Moncada C, Shipony Z, Linker SB, Marchetto MCN, Gage FH, Chen D, Sultan T, Zaki MS, Ranish JA, Miyakawa T, Luo L, Malenka RC, Crabtree GR, Gleeson JG. Loss of the neural-specific BAF subunit ACTL6B relieves repression of early response genes and causes recessive autism. Proc Natl Acad Sci U S A 2020; 117:10055-10066. [PMID: 32312822 PMCID: PMC7211998 DOI: 10.1073/pnas.1908238117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Synaptic activity in neurons leads to the rapid activation of genes involved in mammalian behavior. ATP-dependent chromatin remodelers such as the BAF complex contribute to these responses and are generally thought to activate transcription. However, the mechanisms keeping such "early activation" genes silent have been a mystery. In the course of investigating Mendelian recessive autism, we identified six families with segregating loss-of-function mutations in the neuronal BAF (nBAF) subunit ACTL6B (originally named BAF53b). Accordingly, ACTL6B was the most significantly mutated gene in the Simons Recessive Autism Cohort. At least 14 subunits of the nBAF complex are mutated in autism, collectively making it a major contributor to autism spectrum disorder (ASD). Patient mutations destabilized ACTL6B protein in neurons and rerouted dendrites to the wrong glomerulus in the fly olfactory system. Humans and mice lacking ACTL6B showed corpus callosum hypoplasia, indicating a conserved role for ACTL6B in facilitating neural connectivity. Actl6b knockout mice on two genetic backgrounds exhibited ASD-related behaviors, including social and memory impairments, repetitive behaviors, and hyperactivity. Surprisingly, mutation of Actl6b relieved repression of early response genes including AP1 transcription factors (Fos, Fosl2, Fosb, and Junb), increased chromatin accessibility at AP1 binding sites, and transcriptional changes in late response genes associated with early response transcription factor activity. ACTL6B loss is thus an important cause of recessive ASD, with impaired neuron-specific chromatin repression indicated as a potential mechanism.
Collapse
Affiliation(s)
- Wendy Wenderski
- Department of Pathology, Stanford Medical School, Palo Alto, CA 94305
- Department of Genetics, Stanford Medical School, Palo Alto, CA 94305
- Department of Developmental Biology, Stanford Medical School, Palo Alto, CA 94305
- Howard Hughes Medical Institute, Stanford University, Palo Alto, CA 94305
| | - Lu Wang
- Department of Neuroscience, University of California San Diego, La Jolla, CA 92037
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92037
- Rady Children's Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92037
| | - Andrey Krokhotin
- Department of Pathology, Stanford Medical School, Palo Alto, CA 94305
- Department of Genetics, Stanford Medical School, Palo Alto, CA 94305
- Department of Developmental Biology, Stanford Medical School, Palo Alto, CA 94305
- Howard Hughes Medical Institute, Stanford University, Palo Alto, CA 94305
| | - Jessica J Walsh
- Nancy Pritztker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford Medical School, Palo Alto, CA 94305
| | - Hongjie Li
- Howard Hughes Medical Institute, Stanford University, Palo Alto, CA 94305
- Department of Biology, Stanford University, Palo Alto, CA 94305
| | - Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 470-1192 Toyoake, Aichi, Japan
| | - Shereen Ghosh
- Department of Neuroscience, University of California San Diego, La Jolla, CA 92037
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92037
- Rady Children's Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92037
| | - Renee D George
- Department of Neuroscience, University of California San Diego, La Jolla, CA 92037
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92037
- Rady Children's Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92037
| | - Erik L Miller
- Department of Pathology, Stanford Medical School, Palo Alto, CA 94305
- Department of Genetics, Stanford Medical School, Palo Alto, CA 94305
- Department of Developmental Biology, Stanford Medical School, Palo Alto, CA 94305
- Howard Hughes Medical Institute, Stanford University, Palo Alto, CA 94305
| | - Laura Elias
- Department of Pathology, Stanford Medical School, Palo Alto, CA 94305
- Department of Genetics, Stanford Medical School, Palo Alto, CA 94305
- Department of Developmental Biology, Stanford Medical School, Palo Alto, CA 94305
- Howard Hughes Medical Institute, Stanford University, Palo Alto, CA 94305
| | | | - Esther Y Son
- Department of Pathology, Stanford Medical School, Palo Alto, CA 94305
- Department of Genetics, Stanford Medical School, Palo Alto, CA 94305
- Department of Developmental Biology, Stanford Medical School, Palo Alto, CA 94305
- Howard Hughes Medical Institute, Stanford University, Palo Alto, CA 94305
| | - Brett T Staahl
- Department of Pathology, Stanford Medical School, Palo Alto, CA 94305
- Department of Genetics, Stanford Medical School, Palo Alto, CA 94305
- Department of Developmental Biology, Stanford Medical School, Palo Alto, CA 94305
- Howard Hughes Medical Institute, Stanford University, Palo Alto, CA 94305
| | - Seung Tae Baek
- Department of Neuroscience, University of California San Diego, La Jolla, CA 92037
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92037
- Rady Children's Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92037
| | - Valentina Stanley
- Department of Neuroscience, University of California San Diego, La Jolla, CA 92037
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92037
- Rady Children's Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92037
| | - Cynthia Moncada
- Department of Pathology, Stanford Medical School, Palo Alto, CA 94305
- Department of Genetics, Stanford Medical School, Palo Alto, CA 94305
- Department of Developmental Biology, Stanford Medical School, Palo Alto, CA 94305
- Howard Hughes Medical Institute, Stanford University, Palo Alto, CA 94305
| | - Zohar Shipony
- Department of Pathology, Stanford Medical School, Palo Alto, CA 94305
- Department of Genetics, Stanford Medical School, Palo Alto, CA 94305
- Department of Developmental Biology, Stanford Medical School, Palo Alto, CA 94305
- Howard Hughes Medical Institute, Stanford University, Palo Alto, CA 94305
| | - Sara B Linker
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Maria C N Marchetto
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Dillon Chen
- Department of Neuroscience, University of California San Diego, La Jolla, CA 92037
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92037
- Rady Children's Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92037
| | - Tipu Sultan
- Department of Pediatric Neurology, Institute of Child Health, Children Hospital Lahore, 54000 Lahore, Pakistan
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, 12311 Cairo, Egypt
| | | | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 470-1192 Toyoake, Aichi, Japan
| | - Liqun Luo
- Howard Hughes Medical Institute, Stanford University, Palo Alto, CA 94305
- Department of Biology, Stanford University, Palo Alto, CA 94305
| | - Robert C Malenka
- Nancy Pritztker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford Medical School, Palo Alto, CA 94305
| | - Gerald R Crabtree
- Department of Pathology, Stanford Medical School, Palo Alto, CA 94305;
- Department of Genetics, Stanford Medical School, Palo Alto, CA 94305
- Department of Developmental Biology, Stanford Medical School, Palo Alto, CA 94305
- Howard Hughes Medical Institute, Stanford University, Palo Alto, CA 94305
| | - Joseph G Gleeson
- Department of Neuroscience, University of California San Diego, La Jolla, CA 92037;
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92037
- Rady Children's Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92037
| |
Collapse
|
68
|
Yarwood R, Hellicar J, Woodman PG, Lowe M. Membrane trafficking in health and disease. Dis Model Mech 2020; 13:13/4/dmm043448. [PMID: 32433026 PMCID: PMC7197876 DOI: 10.1242/dmm.043448] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Membrane trafficking pathways are essential for the viability and growth of cells, and play a major role in the interaction of cells with their environment. In this At a Glance article and accompanying poster, we outline the major cellular trafficking pathways and discuss how defects in the function of the molecular machinery that mediates this transport lead to various diseases in humans. We also briefly discuss possible therapeutic approaches that may be used in the future treatment of trafficking-based disorders. Summary: This At a Glance article and poster summarise the major intracellular membrane trafficking pathways and associated molecular machineries, and describe how defects in these give rise to disease in humans.
Collapse
Affiliation(s)
- Rebecca Yarwood
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - John Hellicar
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Philip G Woodman
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Martin Lowe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
69
|
Morisada N, Hamada R, Miura K, Ye MJ, Nozu K, Hattori M, Iijima K. Bardet-Biedl syndrome in two unrelated patients with identical compound heterozygous SCLT1 mutations. CEN Case Rep 2020; 9:260-265. [PMID: 32253632 DOI: 10.1007/s13730-020-00472-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/29/2020] [Indexed: 12/23/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) is a rare autosomal recessive ciliopathy characterized by retinitis pigmentosa (RP), truncal obesity, cognitive impairment, hypogonadism in men, polydactyly, and renal abnormalities with severe renal dysfunction. Twenty-two causative genes have already been reported for this disorder. In this study, we identified two unrelated Japanese patients with clinical diagnoses of BBS associated with compound heterozygous SCLT1 mutation. Patient 1 was a 10-year-old girl, and patient 2 was a 22-year-old man. Both the patients showed severe renal dysfunction in childhood, RP, mild intellectual disability, short stature, and truncal obesity, without oral aberrations and polydactyly. Patient 2 also had hypogonadism. We identified two missense variants in SCLT1, c.[1218G > A] and [1631A > G], in both the patients by next-generation sequencing. Subsequent cDNA analysis revealed that c.1218G > A affected exon 14 skipping in SCLT1. To date, SCLT1 has been reported as the causative gene of oral-facial-digital syndrome type IX, and Senior-Løken syndrome. The phenotypes of both the present patients were compatible with BBS. These results highlight SCLT1 as an additional candidate for BBS phenotype in an autosomal recessive manner.
Collapse
Affiliation(s)
- Naoya Morisada
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan. .,Department of Clinical Genetics, Hyogo Prefectural Kobe Children's Hospital, 1-6-7, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| | - Riku Hamada
- Department of Nephrology, Tokyo Metropolitan Children's Medical Center, 2-8-29, Musashidai, Fuchu, Tokyo, 183-8561, Japan
| | - Kenichiro Miura
- Department of Pediatric Nephrology, Tokyo Women's Medical University, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Ming Juan Ye
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Motoshi Hattori
- Department of Pediatric Nephrology, Tokyo Women's Medical University, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
70
|
Shamseldin HE, Shaheen R, Ewida N, Bubshait DK, Alkuraya H, Almardawi E, Howaidi A, Sabr Y, Abdalla EM, Alfaifi AY, Alghamdi JM, Alsagheir A, Alfares A, Morsy H, Hussein MH, Al-Muhaizea MA, Shagrani M, Al Sabban E, Salih MA, Meriki N, Khan R, Almugbel M, Qari A, Tulba M, Mahnashi M, Alhazmi K, Alsalamah AK, Nowilaty SR, Alhashem A, Hashem M, Abdulwahab F, Ibrahim N, Alshidi T, AlObeid E, Alenazi MM, Alzaidan H, Rahbeeni Z, Al-Owain M, Sogaty S, Seidahmed MZ, Alkuraya FS. The morbid genome of ciliopathies: an update. Genet Med 2020; 22:1051-1060. [PMID: 32055034 DOI: 10.1038/s41436-020-0761-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Ciliopathies are highly heterogeneous clinical disorders of the primary cilium. We aim to characterize a large cohort of ciliopathies phenotypically and molecularly. METHODS Detailed phenotypic and genomic analysis of patients with ciliopathies, and functional characterization of novel candidate genes. RESULTS In this study, we describe 125 families with ciliopathies and show that deleterious variants in previously reported genes, including cryptic splicing variants, account for 87% of cases. Additionally, we further support a number of previously reported candidate genes (BBIP1, MAPKBP1, PDE6D, and WDPCP), and propose nine novel candidate genes (CCDC67, CCDC96, CCDC172, CEP295, FAM166B, LRRC34, TMEM17, TTC6, and TTC23), three of which (LRRC34, TTC6, and TTC23) are supported by functional assays that we performed on available patient-derived fibroblasts. From a phenotypic perspective, we expand the phenomenon of allelism that characterizes ciliopathies by describing novel associations including WDR19-related Stargardt disease and SCLT1- and CEP164-related Bardet-Biedl syndrome. CONCLUSION In this cohort of phenotypically and molecularly characterized ciliopathies, we draw important lessons that inform the clinical management and the diagnostics of this class of disorders as well as their basic biology.
Collapse
Affiliation(s)
- Hanan E Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ranad Shaheen
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nour Ewida
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Dalal K Bubshait
- Department of Pediatrics, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hisham Alkuraya
- Department of Ophthalmology, Specialized Medical Center Hospital, Riyadh, Saudi Arabia
| | - Elham Almardawi
- Department of Obstetrics and Gynecology, Security Forces Hospital, Riyadh, Saudi Arabia
| | - Ali Howaidi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Yasser Sabr
- Deparment of Obstetrics and Gynecology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ebtesam M Abdalla
- Human Genetics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Abdullah Y Alfaifi
- Department of Pediatrics, Security Forces Hospital, Riyadh, Saudi Arabia
| | | | - Afaf Alsagheir
- Endocrinology Section, Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ahmed Alfares
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Heba Morsy
- Human Genetics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Maged H Hussein
- Nephrology Section, Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohammad A Al-Muhaizea
- Department of Neuroscience, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohammad Shagrani
- Organ Transplant Center, King Faisal Specialist Hospital and Research Center, and College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Essam Al Sabban
- Nephrology Section, Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mustafa A Salih
- Division of Pediatric Neurology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Neama Meriki
- Department of Obstetrics and Gynecology, Security Forces Hospital, Riyadh, Saudi Arabia
| | - Rubina Khan
- Depatment of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Maisoon Almugbel
- Depatment of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Alya Qari
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Maha Tulba
- Depatment of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohammed Mahnashi
- Divison of Genetics, Department of General Pediatrics, King Fahad Central Hospital, Jazan, Saudi Arabia
| | - Khalid Alhazmi
- Divison of Genetics, Department of General Pediatrics, King Fahad Central Hospital, Jazan, Saudi Arabia
| | - Abrar K Alsalamah
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Sawsan R Nowilaty
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Amal Alhashem
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Niema Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tarfa Alshidi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eman AlObeid
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mona M Alenazi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hamad Alzaidan
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Zuhair Rahbeeni
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohammed Al-Owain
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sameera Sogaty
- Department of Pediatrics, King Fahad General Hospital, Jeddah, Saudi Arabia
| | | | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. .,Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia. .,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
71
|
Pölsler L, Schatz UA, Simma B, Zschocke J, Rudnik-Schöneborn S. A Syrian patient with Steel syndrome due to compound heterozygous COL27A1 mutations with colobomata of the eye. Am J Med Genet A 2020; 182:730-734. [PMID: 31913554 PMCID: PMC7079147 DOI: 10.1002/ajmg.a.61478] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/04/2019] [Accepted: 12/22/2019] [Indexed: 01/14/2023]
Abstract
The joint occurrence of short stature, congenital dislocation of the hip, carpal coalition, dislocation of the radial head, cavus deformity, scoliosis, and vertebral anomalies was first described in 1993 by Steel et al. (OMIM #615155) in 23 children from Puerto Rico. The condition is caused by a deficient matrix protein, collagen type XXVII alpha 1 chain, due to bi‐allelic loss of function mutations in the gene COL27A1. Outside of Puerto Rico, only four families have been described, in three of which the patients also had hearing loss. However, structural eye defects have not yet been reported in conjunction with this rare autosomal recessive syndrome. Here, we describe a 9‐year‐old girl born to nonconsanguineous Syrian parents with the characteristic features of Steel syndrome, including short stature, massive malalignment of large joints, kyphoscoliosis, hearing loss, and typical facial dysmorphism. However, she was also born with bilateral colobomata of the irides and choroido‐retinae with unilateral affection of the macula. Whole exome sequencing identified two pathogenic compound heterozygous variants in COL27A1: c.93del, p.(Phe32Leufs*71) and c.3075del, p.(Lys1026Argfs*33). There was no discernible alternative cause for the colobomata. Our findings might indicate an association of this exceptionally rare disorder caused by COL27A1 mutations with developmental defects of the eye from the anophthalmia/microphthalmia/coloboma spectrum.
Collapse
Affiliation(s)
- Laura Pölsler
- Institute of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Ulrich A Schatz
- Institute of Human Genetics, Medical University Innsbruck, Innsbruck, Austria.,Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität Munich, Munich, Germany
| | - Burkhard Simma
- Department of Pediatrics and Adolescent Medicine, Academic Teaching Hospital LKH Feldkirch, Feldkich, Austria
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
72
|
Amlie-Wolf L, Moyer-Harasink S, Carr AM, Giampietro P, Schneider A, Simon M. Three new patients with Steel syndrome and a Puerto Rican specific COL27A1 mutation. Am J Med Genet A 2020; 182:798-803. [PMID: 31903681 DOI: 10.1002/ajmg.a.61465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 11/20/2019] [Accepted: 12/05/2019] [Indexed: 11/09/2022]
Abstract
Steel syndrome was initially described by H. H. Steel in 1993 in Puerto Rico, at which time he described the clinical findings required for diagnosis. The responsible gene, COL27A1, was identified in 2015 (Gonzaga-Jauregui et al., European Journal of Human Genetics, 2015;23:342-346). Eleven patients have previously been described with Steel syndrome and homozygous COL27A1 mutations, with eight having an apparent founder mutation, p.Gly697Arg. We describe three more patients identified at Einstein Medical Center Philadelphia and St. Christopher's Hospital for Children (Philadelphia, PA) diagnosed with Steel syndrome. All three are of Puerto Rican ancestry with the previously described founder mutation and had either hip dislocations or hip dysplasia. Radial head dislocation was only identified in one patient while short stature and scoliosis were noted in two of these patients. There are now 51 patients in the literature with Steel syndrome, including the 3 patients in this article, and 14 patients with a genetically confirmed Steel syndrome diagnosis.
Collapse
Affiliation(s)
| | | | - Ann-Marie Carr
- Center for Children with Special Health Care Needs, St. Christopher's Hospital for Children, Philadelphia, Pennsylvania
| | - Philip Giampietro
- Division of Genetics, Rutgers-Robert Wood Johnson Hospital, New Brunswick, New Jersey
| | - Adele Schneider
- Einstein Medical Center Philadelphia Genetics, Philadelphia, Pennsylvania
| | - Mitchell Simon
- Division of General Diagnostic Radiology and the Section of Pediatric Radiology, Rutgers-Robert Wood Johnson Hospital, New Brunswick, New Jersey
| |
Collapse
|
73
|
Class IX Myosins: Motorized RhoGAP Signaling Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1239:381-389. [PMID: 32451867 DOI: 10.1007/978-3-030-38062-5_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Class IX myosins are simultaneously motor and signaling molecules. In addition to myosin class-specific functions of the tail region, they feature unique motor properties. Within their motor region they contain a long insertion with a calmodulin- and a F-actin-binding site. The rate-limiting step in the ATPase cycle is ATP hydrolysis rather than, typical for other myosins, the release of either product. This means that class IX myosins spend a large fraction of their cycle time in the ATP-bound state, which is typically a low F-actin affinity state. Nevertheless, class IX myosins in the ATP-bound state stochastically switch between a low and a high F-actin affinity state. Single motor domains even show characteristics of processive movement towards the plus end of actin filaments. The insertion thereby acts as an actin tether. The motor domain transports as intramolecular cargo a signaling Rho GTPase-activating protein domain located in the tail region. Rho GTPase-activating proteins catalyze the conversion of active GTP-bound Rho to inactive GDP-bound Rho by stimulating GTP hydrolysis. In cells, Rho activity regulates actin cytoskeleton organization and actomyosin II contractility. Thus, class IX myosins regulate cell morphology, cell migration, cell-cell junctions and membrane trafficking. These cellular functions affect embryonic development, adult organ homeostasis and immune responses. Human diseases associated with mutations in the two class IX myosins, Myo9a and Myo9b, have been identified, including hydrocephalus and congenital myasthenic syndrome in connection with Myo9a and autoimmune diseases in connection with Myo9b.
Collapse
|
74
|
Lai B, Wang J, Fagenson A, Sun Y, Saredy J, Lu Y, Nanayakkara G, Yang WY, Yu D, Shao Y, Drummer C, Johnson C, Saaoud F, Zhang R, Yang Q, Xu K, Mastascusa K, Cueto R, Fu H, Wu S, Sun L, Zhu P, Qin X, Yu J, Fan D, Shen YH, Sun J, Rogers T, Choi ET, Wang H, Yang X. Twenty Novel Disease Group-Specific and 12 New Shared Macrophage Pathways in Eight Groups of 34 Diseases Including 24 Inflammatory Organ Diseases and 10 Types of Tumors. Front Immunol 2019; 10:2612. [PMID: 31824480 PMCID: PMC6880770 DOI: 10.3389/fimmu.2019.02612] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/21/2019] [Indexed: 12/21/2022] Open
Abstract
The mechanisms underlying pathophysiological regulation of tissue macrophage (Mφ) subsets remain poorly understood. From the expression of 207 Mφ genes comprising 31 markers for 10 subsets, 45 transcription factors (TFs), 56 immunometabolism enzymes, 23 trained immunity (innate immune memory) enzymes, and 52 other genes in microarray data, we made the following findings. (1) When 34 inflammation diseases and tumor types were grouped into eight categories, there was differential expression of the 31 Mφ markers and 45 Mφ TFs, highlighted by 12 shared and 20 group-specific disease pathways. (2) Mφ in lung, liver, spleen, and intestine (LLSI-Mφ) express higher M1 Mφ markers than lean adipose tissue Mφ (ATMφ) physiologically. (3) Pro-adipogenic TFs C/EBPα and PPARγ and proinflammatory adipokine leptin upregulate the expression of M1 Mφ markers. (4) Among 10 immune checkpoint receptors (ICRs), LLSI-Mφ and bone marrow (BM) Mφ express higher levels of CD274 (PDL-1) than ATMφ, presumably to counteract the M1 dominant status via its reverse signaling behavior. (5) Among 24 intercellular communication exosome mediators, LLSI- and BM- Mφ prefer to use RAB27A and STX3 than RAB31 and YKT6, suggesting new inflammatory exosome mediators for propagating inflammation. (6) Mφ in peritoneal tissue and LLSI-Mφ upregulate higher levels of immunometabolism enzymes than does ATMφ. (7) Mφ from peritoneum and LLSI-Mφ upregulate more trained immunity enzyme genes than does ATMφ. Our results suggest that multiple new mechanisms including the cell surface, intracellular immunometabolism, trained immunity, and TFs may be responsible for disease group-specific and shared pathways. Our findings have provided novel insights on the pathophysiological regulation of tissue Mφ, the disease group-specific and shared pathways of Mφ, and novel therapeutic targets for cancers and inflammations.
Collapse
Affiliation(s)
- Bin Lai
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiwei Wang
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Alexander Fagenson
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Division of Abdominal Organ Transplantation, Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yu Sun
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jason Saredy
- Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yifan Lu
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Gayani Nanayakkara
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - William Y Yang
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Daohai Yu
- Department of Clinical Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Charles Drummer
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Candice Johnson
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Fatma Saaoud
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ruijing Zhang
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Qian Yang
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Keman Xu
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Kevin Mastascusa
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ramon Cueto
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hangfei Fu
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Susu Wu
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Lizhe Sun
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Peiqian Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuebin Qin
- Division of Vascular and Endovascular Surgery, Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Tulane National Primate Research Center, School of Medicine, Tulane University, Covington, LA, United States
| | - Jun Yu
- Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Daping Fan
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Ying H Shen
- Cardiothoracic Surgery Research Laboratory, Texas Heart Institute, Houston, TX, United States.,Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Jianxin Sun
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Thomas Rogers
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Eric T Choi
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Division of Vascular and Endovascular Surgery, Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Tulane National Primate Research Center, School of Medicine, Tulane University, Covington, LA, United States
| | - Hong Wang
- Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
75
|
Bruel AL, Nambot S, Quéré V, Vitobello A, Thevenon J, Assoum M, Moutton S, Houcinat N, Lehalle D, Jean-Marçais N, Chevarin M, Jouan T, Poë C, Callier P, Tisserand E, Philippe C, Them FTM, Duffourd Y, Faivre L, Thauvin-Robinet C. Increased diagnostic and new genes identification outcome using research reanalysis of singleton exome sequencing. Eur J Hum Genet 2019; 27:1519-1531. [PMID: 31231135 PMCID: PMC6777617 DOI: 10.1038/s41431-019-0442-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/30/2019] [Accepted: 05/21/2019] [Indexed: 12/31/2022] Open
Abstract
In clinical exome sequencing (cES), the American College of Medical Genetics and Genomics recommends limiting variant interpretation to established human-disease genes. The diagnostic yield of cES in intellectual disability and/or multiple congenital anomalies (ID/MCA) is currently about 30%. Though the results may seem acceptable for rare diseases, they mean that 70% of affected individuals remain genetically undiagnosed. Further analysis extended to all mutated genes in a research environment is a valuable strategy for improving diagnostic yields. This study presents the results of systematic research reanalysis of negative cES in a cohort of 313 individuals with ID/MCA. We identified 17 new genes not related to human disease, implicated 22 non-OMIM disease-causing genes recently or previously rarely related to disease, and described 1 new phenotype associated with a known gene. Twenty-six candidate genes were identified and are waiting for future recurrence. Overall, we diagnose 15% of the individuals with initial negative cES, increasing the diagnostic yield from 30% to more than 40% (or 46% if strong candidate genes are considered). This study demonstrates the power of such extended research reanalysis to increase scientific knowledge of rare diseases. These novel findings can then be applied in the field of diagnostics.
Collapse
Affiliation(s)
- Ange-Line Bruel
- Inserm UMR 1231 GAD, Genetics of Developmental disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France.
| | - Sophie Nambot
- Inserm UMR 1231 GAD, Genetics of Developmental disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France
| | - Virginie Quéré
- Inserm UMR 1231 GAD, Genetics of Developmental disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France
| | - Antonio Vitobello
- Inserm UMR 1231 GAD, Genetics of Developmental disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France
- Unité Fonctionnelle "Innovation diagnostique dans les maladies rares" laboratoire de génétique chromosomique et moléculaire, Plateau Technique de Biologie, CHU Dijon, Dijon, France
| | - Julien Thevenon
- Inserm UMR 1231 GAD, Genetics of Developmental disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France
- Centre de Référence Maladies Rares "Anomalies du Développement et syndromes maformatifs", FHU-TRANSLAD, CHU Dijon Bourgogne, France
| | - Mirna Assoum
- Inserm UMR 1231 GAD, Genetics of Developmental disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France
| | - Sébastien Moutton
- Inserm UMR 1231 GAD, Genetics of Developmental disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France
- Centre de Référence Maladies Rares "Anomalies du Développement et syndromes maformatifs", FHU-TRANSLAD, CHU Dijon Bourgogne, France
| | - Nada Houcinat
- Inserm UMR 1231 GAD, Genetics of Developmental disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France
- Centre de Référence Maladies Rares "Anomalies du Développement et syndromes maformatifs", FHU-TRANSLAD, CHU Dijon Bourgogne, France
| | - Daphné Lehalle
- Inserm UMR 1231 GAD, Genetics of Developmental disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France
- Centre de Référence Maladies Rares "Anomalies du Développement et syndromes maformatifs", FHU-TRANSLAD, CHU Dijon Bourgogne, France
| | - Nolwenn Jean-Marçais
- Inserm UMR 1231 GAD, Genetics of Developmental disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France
- Centre de Référence Maladies Rares "Anomalies du Développement et syndromes maformatifs", FHU-TRANSLAD, CHU Dijon Bourgogne, France
| | - Martin Chevarin
- Inserm UMR 1231 GAD, Genetics of Developmental disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France
- Unité Fonctionnelle "Innovation diagnostique dans les maladies rares" laboratoire de génétique chromosomique et moléculaire, Plateau Technique de Biologie, CHU Dijon, Dijon, France
| | - Thibaud Jouan
- Inserm UMR 1231 GAD, Genetics of Developmental disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France
| | - Charlotte Poë
- Inserm UMR 1231 GAD, Genetics of Developmental disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France
- Unité Fonctionnelle "Innovation diagnostique dans les maladies rares" laboratoire de génétique chromosomique et moléculaire, Plateau Technique de Biologie, CHU Dijon, Dijon, France
| | - Patrick Callier
- Inserm UMR 1231 GAD, Genetics of Developmental disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France
- Unité Fonctionnelle "Innovation diagnostique dans les maladies rares" laboratoire de génétique chromosomique et moléculaire, Plateau Technique de Biologie, CHU Dijon, Dijon, France
| | - Emilie Tisserand
- Inserm UMR 1231 GAD, Genetics of Developmental disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France
| | - Christophe Philippe
- Inserm UMR 1231 GAD, Genetics of Developmental disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France
- Unité Fonctionnelle "Innovation diagnostique dans les maladies rares" laboratoire de génétique chromosomique et moléculaire, Plateau Technique de Biologie, CHU Dijon, Dijon, France
| | - Frédéric Tran Mau Them
- Inserm UMR 1231 GAD, Genetics of Developmental disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France
- Unité Fonctionnelle "Innovation diagnostique dans les maladies rares" laboratoire de génétique chromosomique et moléculaire, Plateau Technique de Biologie, CHU Dijon, Dijon, France
| | - Yannis Duffourd
- Inserm UMR 1231 GAD, Genetics of Developmental disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France
- Unité Fonctionnelle "Innovation diagnostique dans les maladies rares" laboratoire de génétique chromosomique et moléculaire, Plateau Technique de Biologie, CHU Dijon, Dijon, France
| | - Laurence Faivre
- Inserm UMR 1231 GAD, Genetics of Developmental disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France
- Centre de Référence Maladies Rares "Anomalies du Développement et syndromes maformatifs", FHU-TRANSLAD, CHU Dijon Bourgogne, France
| | - Christel Thauvin-Robinet
- Inserm UMR 1231 GAD, Genetics of Developmental disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France
- Unité Fonctionnelle "Innovation diagnostique dans les maladies rares" laboratoire de génétique chromosomique et moléculaire, Plateau Technique de Biologie, CHU Dijon, Dijon, France
- Centre de Référence Maladies Rares "Anomalies du Développement et syndromes maformatifs", FHU-TRANSLAD, CHU Dijon Bourgogne, France
- Centre de Référence Maladies Rares "Déficiences Intellectuelles de causes rares", FHU-TRANSLAD, CHU Dijon Bourgogne, France
| |
Collapse
|
76
|
Schneeberger PE, Bierhals T, Neu A, Hempel M, Kutsche K. de novo MEPCE nonsense variant associated with a neurodevelopmental disorder causes disintegration of 7SK snRNP and enhanced RNA polymerase II activation. Sci Rep 2019; 9:12516. [PMID: 31467394 PMCID: PMC6715695 DOI: 10.1038/s41598-019-49032-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
In eukaryotes, the elongation phase of transcription by RNA polymerase II (RNAP II) is regulated by the transcription elongation factor b (P-TEFb), composed of Cyclin-T1 and cyclin-dependent kinase 9. The release of RNAP II is mediated by phosphorylation through P-TEFb that in turn is under control by the inhibitory 7SK small nuclear ribonucleoprotein (snRNP) complex. The 7SK snRNP consists of the 7SK non-coding RNA and the proteins MEPCE, LARP7, and HEXIM1/2. Biallelic LARP7 loss-of-function variants underlie Alazami syndrome characterized by growth retardation and intellectual disability. We report a boy with global developmental delay and seizures carrying the de novo MEPCE nonsense variant c.1552 C > T/p.(Arg518*). mRNA and protein analyses identified nonsense-mediated mRNA decay to underlie the decreased amount of MEPCE in patient fibroblasts followed by LARP7 and 7SK snRNA downregulation and HEXIM1 upregulation. Reduced binding of HEXIM1 to Cyclin-T1, hyperphosphorylation of the RNAP II C-terminal domain, and upregulated expression of ID2, ID3, MRPL11 and snRNAs U1, U2 and U4 in patient cells are suggestive of enhanced activation of P-TEFb. Flavopiridol treatment and ectopic MEPCE protein expression in patient fibroblasts rescued increased expression of six RNAP II-sensitive genes and suggested a possible repressive effect of MEPCE on P-TEFb-dependent transcription of specific genes.
Collapse
Affiliation(s)
- Pauline E Schneeberger
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Axel Neu
- Childrens Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
77
|
Murakami Y, Nguyen TTM, Baratang N, Raju PK, Knaus A, Ellard S, Jones G, Lace B, Rousseau J, Ajeawung NF, Kamei A, Minase G, Akasaka M, Araya N, Koshimizu E, van den Ende J, Erger F, Altmüller J, Krumina Z, Strautmanis J, Inashkina I, Stavusis J, El-Gharbawy A, Sebastian J, Puri RD, Kulshrestha S, Verma IC, Maier EM, Haack TB, Israni A, Baptista J, Gunning A, Rosenfeld JA, Liu P, Joosten M, Rocha ME, Hashem MO, Aldhalaan HM, Alkuraya FS, Miyatake S, Matsumoto N, Krawitz PM, Rossignol E, Kinoshita T, Campeau PM. Mutations in PIGB Cause an Inherited GPI Biosynthesis Defect with an Axonal Neuropathy and Metabolic Abnormality in Severe Cases. Am J Hum Genet 2019; 105:384-394. [PMID: 31256876 PMCID: PMC6698938 DOI: 10.1016/j.ajhg.2019.05.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/28/2019] [Indexed: 11/15/2022] Open
Abstract
Proteins anchored to the cell surface via glycosylphosphatidylinositol (GPI) play various key roles in the human body, particularly in development and neurogenesis. As such, many developmental disorders are caused by mutations in genes involved in the GPI biosynthesis and remodeling pathway. We describe ten unrelated families with bi-allelic mutations in PIGB, a gene that encodes phosphatidylinositol glycan class B, which transfers the third mannose to the GPI. Ten different PIGB variants were found in these individuals. Flow cytometric analysis of blood cells and fibroblasts from the affected individuals showed decreased cell surface presence of GPI-anchored proteins. Most of the affected individuals have global developmental and/or intellectual delay, all had seizures, two had polymicrogyria, and four had a peripheral neuropathy. Eight children passed away before four years old. Two of them had a clinical diagnosis of DOORS syndrome (deafness, onychodystrophy, osteodystrophy, mental retardation, and seizures), a condition that includes sensorineural deafness, shortened terminal phalanges with small finger and toenails, intellectual disability, and seizures; this condition overlaps with the severe phenotypes associated with inherited GPI deficiency. Most individuals tested showed elevated alkaline phosphatase, which is a characteristic of the inherited GPI deficiency but not DOORS syndrome. It is notable that two severely affected individuals showed 2-oxoglutaric aciduria, which can be seen in DOORS syndrome, suggesting that severe cases of inherited GPI deficiency and DOORS syndrome might share some molecular pathway disruptions.
Collapse
Affiliation(s)
- Yoshiko Murakami
- Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Thi Tuyet Mai Nguyen
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Nissan Baratang
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Praveen K Raju
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Alexej Knaus
- Insitute for Genomic Statistics and Bioinformatics, University Hospital Bonn, 53127 Bonn, Germany
| | - Sian Ellard
- Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Gabriela Jones
- Clinical Genetics Department, Nottingham University Hospitals NHS Trust, Nottingham NGS 1PB, UK
| | - Baiba Lace
- Centre Hospitalier Universitaire de Québec, 2705 Boulevard Laurier, Ville de Québec, QC G1V 4G2, Canada
| | - Justine Rousseau
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Norbert Fonya Ajeawung
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Atsushi Kamei
- Department of Pediatrics, School of Medicine, Iwate Medical University, Morioka, Iwate 020-8505, Japan
| | - Gaku Minase
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Manami Akasaka
- Department of Pediatrics, School of Medicine, Iwate Medical University, Morioka, Iwate 020-8505, Japan
| | - Nami Araya
- Department of Pediatrics, School of Medicine, Iwate Medical University, Morioka, Iwate 020-8505, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | | | - Florian Erger
- Institute of Human Genetics, University Hospital of Cologne, and Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
| | - Zita Krumina
- Deparment of Biology and Microbiology, Riga Stradinš University, Riga, LV-1029, Latvia
| | | | - Inna Inashkina
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1 k-1, Riga LV-1067, Latvia
| | - Janis Stavusis
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1 k-1, Riga LV-1067, Latvia
| | - Areeg El-Gharbawy
- Department of Medical Genetics, Children's Hospital of Pittsburgh of University Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Jessica Sebastian
- Department of Medical Genetics, Children's Hospital of Pittsburgh of University Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Ratna Dua Puri
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Samarth Kulshrestha
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Ishwar C Verma
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Esther M Maier
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, 80337 Munich, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72074 Tübingen, Germany; Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Anil Israni
- Department of Paediatric Neurology, Leicester Royal Infirmary, Leicester LE1 5WW, UK
| | - Julia Baptista
- Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Adam Gunning
- Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Marieke Joosten
- Dept of Clinical Genetics, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | | | - Mais O Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Hesham M Aldhalaan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Peter M Krawitz
- Insitute for Genomic Statistics and Bioinformatics, University Hospital Bonn, 53127 Bonn, Germany
| | - Elsa Rossignol
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia; Department of Neurosciences, Centre Hospitalier Universitaire Sainte-Justine and University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Taroh Kinoshita
- Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Philippe M Campeau
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine and University of Montreal, Montreal, QC H3T 1C5, Canada.
| |
Collapse
|
78
|
Hancarova M, Babikyan D, Bendova S, Midyan S, Prchalova D, Shahsuvaryan G, Stranecky V, Sarkisian T, Sedlacek Z. A novel variant of C12orf4 in a consanguineous Armenian family confirms the etiology of autosomal recessive intellectual disability type 66 with delineation of the phenotype. Mol Genet Genomic Med 2019; 7:e865. [PMID: 31334606 PMCID: PMC6732288 DOI: 10.1002/mgg3.865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/01/2019] [Accepted: 07/05/2019] [Indexed: 01/07/2023] Open
Abstract
Background Intellectual disability (ID) is a feature of many rare diseases caused by thousands of genes. This genetic heterogeneity implies that pathogenic variants in a specific gene are found only in a small number of patients, and difficulties arise in the definition of prevailing genotype and characteristic phenotype associated with that gene. One of such very rare disorders is autosomal recessive ID type 66 (OMIM #618221) caused by defects in C12orf4. Up to now, six families have been reported with mostly truncating variants. The spectrum of the clinical phenotype was not emphasized in previous reports, and detailed phenotype was not always available from previous patients, especially from large cohort studies. Methods Exome sequencing was performed in a consanguineous Armenian family with two affected adult brothers. Results The patients carry a novel homozygous nonsense C12orf4 variant. The integration of previous data and phenotyping of the brothers indicate that the clinical picture of C12orf4 defects involves hypotonia in infancy, rather severe ID, speech impairment, and behavioral problems such as aggressiveness, unstable mood, and autistic features. Several other symptoms are more variable and less consistent. Conclusion This rather nonsyndromic and nonspecific clinical picture implies that additional patients with C12orf4 defects will likely continue to be identified using the “genotype‐first” approach, rather than based on clinical assessment. The phenotype needs further delineation in future reports.
Collapse
Affiliation(s)
- Miroslava Hancarova
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Davit Babikyan
- Department of Medical Genetics, Yerevan State Medical University after Mkhitar Heratsi, and Center of Medical Genetics and Primary Health Care, Yerevan, Armenia
| | - Sarka Bendova
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Susanna Midyan
- Department of Medical Genetics, Yerevan State Medical University after Mkhitar Heratsi, and Center of Medical Genetics and Primary Health Care, Yerevan, Armenia
| | - Darina Prchalova
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Gohar Shahsuvaryan
- Department of Medical Genetics, Yerevan State Medical University after Mkhitar Heratsi, and Center of Medical Genetics and Primary Health Care, Yerevan, Armenia
| | - Viktor Stranecky
- Department of Pediatrics and Adolescent Medicine, Charles University 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Tamara Sarkisian
- Department of Medical Genetics, Yerevan State Medical University after Mkhitar Heratsi, and Center of Medical Genetics and Primary Health Care, Yerevan, Armenia
| | - Zdenek Sedlacek
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
79
|
Yüksel Z, Yazol M, Gümüş E. Pathogenic homozygous variations in ACTL6B cause DECAM syndrome: Developmental delay, Epileptic encephalopathy, Cerebral Atrophy, and abnormal Myelination. Am J Med Genet A 2019; 179:1603-1608. [PMID: 31134736 DOI: 10.1002/ajmg.a.61210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/17/2019] [Accepted: 05/12/2019] [Indexed: 11/12/2022]
Abstract
The extensive usage of next generation sequencing, particularly for the patients affected with neurodevelopmental disorders, has increased our understanding and enabled identifying novel disorder genes. Here, we report an extended consanguineous family having at least three affected children with ACTL6B-related neurodevelopmental disorder and expand the known phenotypic spectrum by characterizing the clinical findings using a standardized vocabulary, Human Phenotype Ontology Terms.
Collapse
Affiliation(s)
- Zafer Yüksel
- Bioscientia Center for Human Genetics, Ingelheim, Germany
| | - Merve Yazol
- Department of Radiology, Sanliurfa Education and Research Hospital, Sanliurfa, Turkey
| | - Evren Gümüş
- Department of Medical Genetics, Faculty of Medicine, University of Harran, Sanliurfa, Turkey.,Department of Medical Genetics, Faculty of Medicine, Mugla Sitki Kocman University, Mugla, Turkey
| |
Collapse
|
80
|
Ewans LJ, Colley A, Gaston-Massuet C, Gualtieri A, Cowley MJ, McCabe MJ, Anand D, Lachke SA, Scietti L, Forneris F, Zhu Y, Ying K, Walsh C, Kirk EP, Miller D, Giunta C, Sillence D, Dinger M, Buckley M, Roscioli T. Pathogenic variants in PLOD3 result in a Stickler syndrome-like connective tissue disorder with vascular complications. J Med Genet 2019; 56:629-638. [DOI: 10.1136/jmedgenet-2019-106019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/28/2019] [Accepted: 04/25/2019] [Indexed: 12/24/2022]
Abstract
BackgroundPathogenic PLOD3 variants cause a connective tissue disorder (CTD) that has been described rarely. We further characterise this CTD and propose a clinical diagnostic label to improve recognition and diagnosis of PLOD3-related disease.MethodsReported PLOD3 phenotypes were compared with known CTDs utilising data from three further individuals from a consanguineous family with a homozygous PLOD3 c.809C>T; p.(Pro270Leu) variant. PLOD3 mRNA expression in the developing embryo was analysed for tissue-specific localisation. Mouse microarray expression data were assessed for phylogenetic gene expression similarities across CTDs with overlapping clinical features.ResultsKey clinical features included ocular abnormalities with risk for retinal detachment, sensorineural hearing loss, reduced palmar creases, finger contractures, prominent knees, scoliosis, low bone mineral density, recognisable craniofacial dysmorphisms, developmental delay and risk for vascular dissection. Collated clinical features showed most overlap with Stickler syndrome with variable features of Ehlers-Danlos syndrome (EDS) and epidermolysis bullosa (EB). Human lysyl hydroxylase 3/PLOD3 expression was localised to the developing cochlea, eyes, skin, forelimbs, heart and cartilage, mirroring the clinical phenotype of this disorder.ConclusionThese data are consistent with pathogenic variants in PLOD3 resulting in a clinically distinct Stickler-like syndrome with vascular complications and variable features of EDS and EB. Early identification of PLOD3 variants would improve monitoring for comorbidities and may avoid serious adverse ocular and vascular outcomes.
Collapse
|
81
|
Kloth K, Renner S, Burmester G, Steinemann D, Pabst B, Lorenz B, Simon R, Kolbe V, Hempel M, Rosenberger G. 16p13.11 microdeletion uncovers loss‐of‐function of a
MYH11
missense variant in a patient with megacystis‐microcolon‐intestinal‐hypoperistalsis syndrome. Clin Genet 2019; 96:85-90. [DOI: 10.1111/cge.13557] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/18/2019] [Accepted: 04/28/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Katja Kloth
- Institute of Human GeneticsUniversity Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Sina Renner
- Institute of Human GeneticsUniversity Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Gunter Burmester
- Department of PediatricsAltonaer Kinderkrankenhaus Hamburg Germany
| | - Doris Steinemann
- Department of Human GeneticsMedical Center Hannover Hannover Germany
| | - Brigitte Pabst
- Department of Human GeneticsMedical Center Hannover Hannover Germany
| | | | - Ronald Simon
- Institute of PathologyUniversity Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Verena Kolbe
- Institute of Human GeneticsUniversity Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Maja Hempel
- Institute of Human GeneticsUniversity Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Georg Rosenberger
- Institute of Human GeneticsUniversity Medical Center Hamburg‐Eppendorf Hamburg Germany
| |
Collapse
|
82
|
Fichera M, Failla P, Saccuzzo L, Miceli M, Salvo E, Castiglia L, Galesi O, Grillo L, Calì F, Greco D, Amato C, Romano C, Elia M. Mutations in ACTL6B, coding for a subunit of the neuron-specific chromatin remodeling complex nBAF, cause early onset severe developmental and epileptic encephalopathy with brain hypomyelination and cerebellar atrophy. Hum Genet 2019; 138:187-198. [PMID: 30656450 DOI: 10.1007/s00439-019-01972-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/04/2019] [Indexed: 12/16/2022]
Abstract
Developmental and epileptic encephalopathies (DEEs) are genetically heterogenous conditions, often characterized by early onset, EEG interictal epileptiform abnormalities, polymorphous and drug-resistant seizures, and neurodevelopmental impairments. In this study, we investigated the genetic defects in two siblings who presented with severe DEE, microcephaly, spastic tetraplegia, diffuse brain hypomyelination, cerebellar atrophy, short stature, and kyphoscoliosis. Whole exome next-generation sequencing (WES) identified in both siblings a homozygous non-sense variant in the ACTL6B gene (NM_016188:c.820C>T;p.Gln274*) coding for a subunit of the neuron-specific chromatin remodeling complex nBAF. To further support these findings, a targeted ACTL6B sequencing assay was performed on a cohort of 85 unrelated DEE individuals, leading to the identification of a homozygous missense variant (NM_016188:c.1045G>A;p.Gly349Ser) in a patient. This variant did not segregate in the unaffected siblings in this family and was classified as deleterious by several prediction softwares. Interestingly, in both families, homozygous patients shared a rather homogeneous phenotype. Very few patients with ACTL6B gene variants have been sporadically reported in WES cohort studies of patients with neurodevelopmental disorders and/or congenital brain malformations. However, the limited number of patients with incomplete clinical information yet reported in the literature did not allow to establish a strong gene-disease association. Here, we provide additional genetic and clinical data on three new cases that support the pathogenic role of ACTL6B gene mutation in a syndromic form of DEE.
Collapse
Affiliation(s)
- Marco Fichera
- Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy. .,Oasi Research Institute-IRCCS, Troina, Italy.
| | | | - Lucia Saccuzzo
- Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Martina Miceli
- Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Eliana Salvo
- Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Stark Z, Dolman L, Manolio TA, Ozenberger B, Hill SL, Caulfied MJ, Levy Y, Glazer D, Wilson J, Lawler M, Boughtwood T, Braithwaite J, Goodhand P, Birney E, North KN. Integrating Genomics into Healthcare: A Global Responsibility. Am J Hum Genet 2019; 104:13-20. [PMID: 30609404 PMCID: PMC6323624 DOI: 10.1016/j.ajhg.2018.11.014] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/20/2018] [Indexed: 01/09/2023] Open
Abstract
Genomic sequencing is rapidly transitioning into clinical practice, and implementation into healthcare systems has been supported by substantial government investment, totaling over US$4 billion, in at least 14 countries. These national genomic-medicine initiatives are driving transformative change under real-life conditions while simultaneously addressing barriers to implementation and gathering evidence for wider adoption. We review the diversity of approaches and current progress made by national genomic-medicine initiatives in the UK, France, Australia, and US and provide a roadmap for sharing strategies, standards, and data internationally to accelerate implementation.
Collapse
Affiliation(s)
- Zornitza Stark
- Australian Genomics Health Alliance, Melbourne VIC 3052, Australia; Murdoch Children's Research Institute, Melbourne VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne VIC 3052, Australia
| | - Lena Dolman
- Global Alliance for Genomics and Health, 661 University Avenue, Suite 510, Toronto, ON M5G 0A3, Canada; Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, ON M5G 0A3, Canada
| | - Teri A Manolio
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-2152, USA
| | - Brad Ozenberger
- All of Us Research Program, National Institutes of Health, Bethesda, MD 20892-2152, USA
| | - Sue L Hill
- National Health Service England, Skipton House, 80 London Road, London SE1 6LH, UK
| | - Mark J Caulfied
- Genomics England, Queen Mary University of London, Dawson Hall, London EC1M 6BQ, UK
| | - Yves Levy
- INSERM (French National Institute for Health and Medical Research), 75654 Paris Cedex 13, France
| | - David Glazer
- Verily Life Sciences, 269 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Julia Wilson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Mark Lawler
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Tiffany Boughtwood
- Australian Genomics Health Alliance, Melbourne VIC 3052, Australia; Murdoch Children's Research Institute, Melbourne VIC 3052, Australia
| | - Jeffrey Braithwaite
- Australian Genomics Health Alliance, Melbourne VIC 3052, Australia; Australian Institute of Health Innovation, Macquarie University, 75 Talavera Road, Sydney, NSW 2113, Australia
| | - Peter Goodhand
- Global Alliance for Genomics and Health, 661 University Avenue, Suite 510, Toronto, ON M5G 0A3, Canada; Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, ON M5G 0A3, Canada
| | - Ewan Birney
- Global Alliance for Genomics and Health, 661 University Avenue, Suite 510, Toronto, ON M5G 0A3, Canada; European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
| | - Kathryn N North
- Australian Genomics Health Alliance, Melbourne VIC 3052, Australia; Murdoch Children's Research Institute, Melbourne VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne VIC 3052, Australia; Global Alliance for Genomics and Health, 661 University Avenue, Suite 510, Toronto, ON M5G 0A3, Canada.
| |
Collapse
|