51
|
Moghaddam M, Dzemidzic M, Guerrero D, Liu M, Alessi J, Plawecki MH, Harezlak J, Kareken DA, Goñi J. Tangent space functional reconfigurations in individuals at risk for alcohol use disorder. ARXIV 2024:arXiv:2405.15905v2. [PMID: 38827458 PMCID: PMC11142326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Human brain function dynamically adjusts to ever-changing stimuli from the external environment. Studies characterizing brain functional reconfiguration are nevertheless scarce. Here we present a principled mathematical framework to quantify brain functional reconfiguration when engaging and disengaging from a stop signal task (SST). We apply tangent space projection (a Riemannian geometry mapping technique) to transform functional connectomes (FCs) of 54 participants and quantify functional reconfiguration using the correlation distance of the resulting tangent-FCs. Our goal was to compare functional reconfigurations in individuals at risk for alcohol use disorder (AUD). We hypothesized that functional reconfigurations when transitioning to/from a task would be influenced by family history of alcohol use disorder (FHA) and other AUD risk factors. Multilinear regression models showed that engaging and disengaging functional reconfiguration were associated with FHA and recent drinking. When engaging in the SST after a rest condition, functional reconfiguration was negatively associated with recent drinking, while functional reconfiguration when disengaging from the SST was negatively associated with FHA. In both models, several other factors contributed to the functional reconfiguration. This study demonstrates that tangent-FCs can characterize task-induced functional reconfiguration, and that it is related to AUD risk.
Collapse
Affiliation(s)
- Mahdi Moghaddam
- School of Industrial Engineering, Purdue University, West-Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West-Lafayette, IN, USA
| | - Mario Dzemidzic
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Daniel Guerrero
- School of Industrial Engineering, Purdue University, West-Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West-Lafayette, IN, USA
| | - Mintao Liu
- School of Industrial Engineering, Purdue University, West-Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West-Lafayette, IN, USA
| | - Jonathan Alessi
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Martin H Plawecki
- Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN USA
| | - Jaroslaw Harezlak
- Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, IN, USA
| | - David A Kareken
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN USA
| | - Joaquín Goñi
- School of Industrial Engineering, Purdue University, West-Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West-Lafayette, IN, USA
- Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West-Lafayette, IN, USA
| |
Collapse
|
52
|
Amos TJ, Guragai B, Rao Q, Li W, Jin Z, Zhang J, Li L. Task functional networks predict individual differences in the speed of emotional facial discrimination. Neuroimage 2024; 297:120715. [PMID: 38945182 DOI: 10.1016/j.neuroimage.2024.120715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 04/21/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024] Open
Abstract
Every individual experiences negative emotions, such as fear and anger, significantly influencing how external information is perceived and processed. With the gradual rise in brain-behavior relationship studies, analyses investigating individual differences in negative emotion processing and a more objective measure such as the response time (RT) remain unexplored. This study aims to address this gap by establishing that the individual differences in the speed of negative facial emotion discrimination can be predicted from whole-brain functional connectivity when participants were performing a face discrimination task. Employing the connectome predictive modeling (CPM) framework, we demonstrated this in the young healthy adult group from the Human Connectome Project-Young Adults (HCP-YA) dataset and the healthy group of the Boston Adolescent Neuroimaging of Depression and Anxiety (BANDA) dataset. We identified distinct network contributions in the adult and adolescent predictive models. The highest represented brain networks involved in the adult model predictions included representations from the motor, visual association, salience, and medial frontal networks. Conversely, the adolescent predictive models showed substantial contributions from the cerebellum-frontoparietal network interactions. Finally, we observed that despite the successful within-dataset prediction in healthy adults and adolescents, the predictive models failed in the cross-dataset generalization. In conclusion, our study shows that individual differences in the speed of emotional facial discrimination can be predicted in healthy adults and adolescent samples using their functional connectivity during negative facial emotion processing. Future research is needed in the derivation of more generalizable models.
Collapse
Affiliation(s)
- Toluwani Joan Amos
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China
| | - Bishal Guragai
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China
| | - Qianru Rao
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China
| | - Wenjuan Li
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China
| | - Zhenlan Jin
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China
| | - Junjun Zhang
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China.
| | - Ling Li
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China.
| |
Collapse
|
53
|
Sadil P, Lindquist MA. From Maps to Models: A Survey on the Reliability of Small Studies of Task-Based fMRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606611. [PMID: 39149240 PMCID: PMC11326202 DOI: 10.1101/2024.08.05.606611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Task-based functional magnetic resonance imaging is a powerful tool for studying brain function, but neuroimaging research produces ongoing concerns regarding small-sample studies and how to interpret them. Although it is well understood that larger samples are preferable, many situations require researchers to make judgments from small studies, including reviewing the existing literature, analyzing pilot data, or assessing subsamples. Quantitative guidance on how to make these judgments remains scarce. To address this, we leverage the Human Connectome Project's Young Adult dataset to survey various analyses-from regional activation maps to predictive models. We find that, for some classic analyses such as detecting regional activation or cluster peak location, studies with as few as 40 subjects are adequate, although this depends crucially on effect sizes. For predictive modeling, similar sizes can be adequate for detecting whether features are predictable, but at least an order of magnitude more (at least hundreds) may be required for developing consistent predictions. These results offer valuable insights for designing and interpreting fMRI studies, emphasizing the importance of considering effect size, sample size, and analysis approach when assessing the reliability of findings. We hope that this survey serves as a reference for identifying which kinds of research questions can be reliably answered with small-scale studies.
Collapse
Affiliation(s)
- Patrick Sadil
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland 21205, USA
| | - Martin A Lindquist
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland 21205, USA
| |
Collapse
|
54
|
Guan Y, Li J, Wei Y, Shi PT, Yang C, Yun X, Quan Q, Wang WJ, Yu XG, Wei M. Brain functional connectivity alterations in patients with anterior cruciate ligament injury. Brain Res 2024; 1836:148956. [PMID: 38657888 DOI: 10.1016/j.brainres.2024.148956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Recent advancements in neuroimaging have illustrated that anterior cruciate ligament (ACL) injuries could impact the central nervous system (CNS), causing neuroplastic changes in the brain beyond the traditionally understood biomechanical consequences. While most of previous functional magnetic resonance imaging (fMRI) studies have focused on localized cortical activity changes post-injury, emerging research has suggested disruptions in functional connectivity across the brain. However, these prior investigations, albeit pioneering, have been constrained by two limitations: a reliance on small-sample participant cohorts, often limited to two to three patients, potentially limiting the generalizability of findings, and an adherence to region of interest based analysis, which may overlook broader network interactions. To address these limitations, our study employed resting-state fMRI to assess whole-brain functional connectivity in 15 ACL-injured patients, comparing them to matched controls using two distinct network analysis methods. Using Network-Based Statistics, we identified widespread reductions in connectivity that spanned across multiple brain regions. Further modular connectivity analysis showed significant decreases in inter-modular connectivity between the sensorimotor and cerebellar modules, and intra-modular connectivity within the default-mode network in ACL-injured patients. Our results thus highlight a shift from localized disruptions to network-wide dysfunctions, suggesting that ACL injuries induce widespread CNS changes. This enhanced understanding has the potential to stimulate the development of strategies aiming to restore functional connectivity and improve recovery outcomes.
Collapse
Affiliation(s)
- Yu Guan
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing 100142, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Ji Li
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing 100142, China
| | - Yu Wei
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing 100142, China
| | - Peng-Tao Shi
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing 100142, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Chen Yang
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing 100142, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Xing Yun
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing 100142, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Qi Quan
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing 100142, China; Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Wen-Juan Wang
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing 100142, China
| | - Xin-Guang Yu
- Department of Neurosurgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Min Wei
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing 100142, China; Medical School of Chinese PLA, Beijing 100853, China.
| |
Collapse
|
55
|
Ng C, Huang P, Cho Y, Lee P, Liu Y, Chang T. Frontoparietal and salience network synchronizations during nonsymbolic magnitude processing predict brain age and mathematical performance in youth. Hum Brain Mapp 2024; 45:e26777. [PMID: 39046114 PMCID: PMC11267564 DOI: 10.1002/hbm.26777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
The development and refinement of functional brain circuits crucial to human cognition is a continuous process that spans from childhood to adulthood. Research increasingly focuses on mapping these evolving configurations, with the aim to identify markers for functional impairments and atypical development. Among human cognitive systems, nonsymbolic magnitude representations serve as a foundational building block for future success in mathematical learning and achievement for individuals. Using task-based frontoparietal (FPN) and salience network (SN) features during nonsymbolic magnitude processing alongside machine learning algorithms, we developed a framework to construct brain age prediction models for participants aged 7-30. Our study revealed differential developmental profiles in the synchronization within and between FPN and SN networks. Specifically, we observed a linear increase in FPN connectivity, concomitant with a decline in SN connectivity across the age span. A nonlinear U-shaped trajectory in the connectivity between the FPN and SN was discerned, revealing reduced FPN-SN synchronization among adolescents compared to both pediatric and adult cohorts. Leveraging the Gradient Boosting machine learning algorithm and nested fivefold stratified cross-validation with independent training datasets, we demonstrated that functional connectivity measures of the FPN and SN nodes predict chronological age, with a correlation coefficient of .727 and a mean absolute error of 2.944 between actual and predicted ages. Notably, connectivity within the FPN emerged as the most contributing feature for age prediction. Critically, a more matured brain age estimate is associated with better arithmetic performance. Our findings shed light on the intricate developmental changes occurring in the neural networks supporting magnitude representations. We emphasize brain age estimation as a potent tool for understanding cognitive development and its relationship to mathematical abilities across the critical developmental period of youth. PRACTITIONER POINTS: This study investigated the prolonged changes in the brain's architecture across childhood, adolescence, and adulthood, with a focus on task-state frontoparietal and salience networks. Distinct developmental pathways were identified: frontoparietal synchronization strengthens consistently throughout development, while salience network connectivity diminishes with age. Furthermore, adolescents show a unique dip in connectivity between these networks. Leveraging advanced machine learning methods, we accurately predicted individuals' ages based on these brain circuits, with a more mature estimated brain age correlating with better math skills.
Collapse
Affiliation(s)
- Chan‐Tat Ng
- Department of PsychologyNational Chengchi UniversityTaipeiTaiwan
| | - Po‐Hsien Huang
- Department of PsychologyNational Chengchi UniversityTaipeiTaiwan
- Research Center for Mind, Brain & LearningNational Chengchi UniversityTaipeiTaiwan
| | - Yi‐Cheng Cho
- Department of PsychologyNational Chengchi UniversityTaipeiTaiwan
| | - Pei‐Hong Lee
- Research Center for Mind, Brain & LearningNational Chengchi UniversityTaipeiTaiwan
| | - Yi‐Chang Liu
- Research Center for Mind, Brain & LearningNational Chengchi UniversityTaipeiTaiwan
| | - Ting‐Ting Chang
- Department of PsychologyNational Chengchi UniversityTaipeiTaiwan
- Research Center for Mind, Brain & LearningNational Chengchi UniversityTaipeiTaiwan
| |
Collapse
|
56
|
Mori K, Zatorre R. State-dependent connectivity in auditory-reward networks predicts peak pleasure experiences to music. PLoS Biol 2024; 22:e3002732. [PMID: 39133721 PMCID: PMC11318860 DOI: 10.1371/journal.pbio.3002732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/03/2024] [Indexed: 08/16/2024] Open
Abstract
Music can evoke pleasurable and rewarding experiences. Past studies that examined task-related brain activity revealed individual differences in musical reward sensitivity traits and linked them to interactions between the auditory and reward systems. However, state-dependent fluctuations in spontaneous neural activity in relation to music-driven rewarding experiences have not been studied. Here, we used functional MRI to examine whether the coupling of auditory-reward networks during a silent period immediately before music listening can predict the degree of musical rewarding experience of human participants (N = 49). We used machine learning models and showed that the functional connectivity between auditory and reward networks, but not others, could robustly predict subjective, physiological, and neurobiological aspects of the strong musical reward of chills. Specifically, the right auditory cortex-striatum/orbitofrontal connections predicted the reported duration of chills and the activation level of nucleus accumbens and insula, whereas the auditory-amygdala connection was associated with psychophysiological arousal. Furthermore, the predictive model derived from the first sample of individuals was generalized in an independent dataset using different music samples. The generalization was successful only for state-like, pre-listening functional connectivity but not for stable, intrinsic functional connectivity. The current study reveals the critical role of sensory-reward connectivity in pre-task brain state in modulating subsequent rewarding experience.
Collapse
Affiliation(s)
- Kazuma Mori
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Osaka, Japan
| | - Robert Zatorre
- Montréal Neurological Institute, McGill University, Montréal, Canada
- International Laboratory for Brain, Music and Sound Research, Montréal, Canada
- Centre for Research in Brain, Language and Music, Montréal, Canada
| |
Collapse
|
57
|
Dubois J, Field RM, Jawhar S, Koch EM, Aghajan ZM, Miller N, Perdue KL, Taylor M. Reliability of brain metrics derived from a Time-Domain Functional Near-Infrared Spectroscopy System. Sci Rep 2024; 14:17500. [PMID: 39080458 PMCID: PMC11289386 DOI: 10.1038/s41598-024-68555-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
With the growing interest in establishing brain-based biomarkers for precision medicine, there is a need for noninvasive, scalable neuroimaging devices that yield valid and reliable metrics. Kernel's second-generation Flow2 Time-Domain Functional Near-Infrared Spectroscopy (TD-fNIRS) system meets the requirements of noninvasive and scalable neuroimaging, and uses a validated modality to measure brain function. In this work, we investigate the test-retest reliability (TRR) of a set of metrics derived from the Flow2 recordings. We adopted a repeated-measures design with 49 healthy participants, and quantified TRR over multiple time points and different headsets-in different experimental conditions including a resting state, a sensory, and a cognitive task. Results demonstrated high reliability in resting state features including hemoglobin concentrations, head tissue light attenuation, amplitude of low frequency fluctuations, and functional connectivity. Additionally, passive auditory and Go/No-Go inhibitory control tasks each exhibited similar activation patterns across days. Notably, areas with the highest reliability were in auditory regions during the auditory task, and right prefrontal regions during the Go/No-Go task, consistent with prior literature. This study underscores the reliability of Flow2-derived metrics, supporting its potential to actualize the vision of using brain-based biomarkers for diagnosis, treatment selection and treatment monitoring of neuropsychiatric and neurocognitive disorders.
Collapse
Affiliation(s)
- Julien Dubois
- Kernel, 10361 Jefferson Blvd, Culver City, CA, 90232, USA
| | - Ryan M Field
- Kernel, 10361 Jefferson Blvd, Culver City, CA, 90232, USA
| | - Sami Jawhar
- Kernel, 10361 Jefferson Blvd, Culver City, CA, 90232, USA
| | - Erin M Koch
- Kernel, 10361 Jefferson Blvd, Culver City, CA, 90232, USA
| | | | - Naomi Miller
- Kernel, 10361 Jefferson Blvd, Culver City, CA, 90232, USA
| | | | - Moriah Taylor
- Kernel, 10361 Jefferson Blvd, Culver City, CA, 90232, USA
| |
Collapse
|
58
|
Dhamala E, Bassett DS, Yeo T, Holmes AJ. Functional brain networks are associated with both sex and gender in children. SCIENCE ADVANCES 2024; 10:eadn4202. [PMID: 38996031 PMCID: PMC11244548 DOI: 10.1126/sciadv.adn4202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/12/2024] [Indexed: 07/14/2024]
Abstract
Sex and gender are associated with human behavior throughout the life span and across health and disease, but whether they are associated with similar or distinct neural phenotypes is unknown. Here, we demonstrate that, in children, sex and gender are uniquely reflected in the intrinsic functional connectivity of the brain. Somatomotor, visual, control, and limbic networks are preferentially associated with sex, while network correlates of gender are more distributed throughout the cortex. These results suggest that sex and gender are irreducible to one another not only in society but also in biology.
Collapse
Affiliation(s)
- Elvisha Dhamala
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Uniondale, NY, USA
| | - Dani S. Bassett
- University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - Thomas Yeo
- Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Avram J. Holmes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
59
|
da Silva Castanheira J, Wiesman AI, Hansen JY, Misic B, Baillet S. The neurophysiological brain-fingerprint of Parkinson's disease. EBioMedicine 2024; 105:105201. [PMID: 38908100 PMCID: PMC11253223 DOI: 10.1016/j.ebiom.2024.105201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Research in healthy young adults shows that characteristic patterns of brain activity define individual "brain-fingerprints" that are unique to each person. However, variability in these brain-fingerprints increases in individuals with neurological conditions, challenging the clinical relevance and potential impact of the approach. Our study shows that brain-fingerprints derived from neurophysiological brain activity are associated with pathophysiological and clinical traits of individual patients with Parkinson's disease (PD). METHODS We created brain-fingerprints from task-free brain activity recorded through magnetoencephalography in 79 PD patients and compared them with those from two independent samples of age-matched healthy controls (N = 424 total). We decomposed brain activity into arrhythmic and rhythmic components, defining distinct brain-fingerprints for each type from recording durations of up to 4 min and as short as 30 s. FINDINGS The arrhythmic spectral components of cortical activity in patients with Parkinson's disease are more variable over short periods, challenging the definition of a reliable brain-fingerprint. However, by isolating the rhythmic components of cortical activity, we derived brain-fingerprints that distinguished between patients and healthy controls with about 90% accuracy. The most prominent cortical features of the resulting Parkinson's brain-fingerprint are mapped to polyrhythmic activity in unimodal sensorimotor regions. Leveraging these features, we also demonstrate that Parkinson's symptom laterality can be decoded directly from cortical neurophysiological activity. Furthermore, our study reveals that the cortical topography of the Parkinson's brain-fingerprint aligns with that of neurotransmitter systems affected by the disease's pathophysiology. INTERPRETATION The increased moment-to-moment variability of arrhythmic brain-fingerprints challenges patient differentiation and explains previously published results. We outline patient-specific rhythmic brain signaling features that provide insights into both the neurophysiological signature and symptom laterality of Parkinson's disease. Thus, the proposed definition of a rhythmic brain-fingerprint of Parkinson's disease may contribute to novel, refined approaches to patient stratification. Symmetrically, we discuss how rhythmic brain-fingerprints may contribute to the improved identification and testing of therapeutic neurostimulation targets. FUNDING Data collection and sharing for this project was provided by the Quebec Parkinson Network (QPN), the Pre-symptomatic Evaluation of Novel or Experimental Treatments for Alzheimer's Disease (PREVENT-AD; release 6.0) program, the Cambridge Centre for Aging Neuroscience (Cam-CAN), and the Open MEG Archives (OMEGA). The QPN is funded by a grant from Fonds de Recherche du Québec - Santé (FRQS). PREVENT-AD was launched in 2011 as a $13.5 million, 7-year public-private partnership using funds provided by McGill University, the FRQS, an unrestricted research grant from Pfizer Canada, the Levesque Foundation, the Douglas Hospital Research Centre and Foundation, the Government of Canada, and the Canada Fund for Innovation. The Brainstorm project is supported by funding to SB from the NIH (R01-EB026299-05). Further funding to SB for this study included a Discovery grant from the Natural Sciences and Engineering Research Council of Canada of Canada (436355-13), and the CIHR Canada research Chair in Neural Dynamics of Brain Systems (CRC-2017-00311).
Collapse
Affiliation(s)
| | - Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Justine Y Hansen
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
60
|
Kim W, Kim MJ. Adaptive-to-maladaptive gradient of emotion regulation tendencies are embedded in the functional-structural hybrid connectome. Psychol Med 2024; 54:2299-2311. [PMID: 38533787 DOI: 10.1017/s0033291724000473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
BACKGROUND Emotion regulation tendencies are well-known transdiagnostic markers of psychopathology, but their neurobiological foundations have mostly been examined within the theoretical framework of cortical-subcortical interactions. METHODS We explored the connectome-wide neural correlates of emotion regulation tendencies using functional and diffusion magnetic resonance images of healthy young adults (N = 99; age 20-30; 28 females). We first tested the importance of considering both the functional and structural connectome through intersubject representational similarity analyses. Then, we employed a canonical correlation analysis between the functional-structural hybrid connectome and 23 emotion regulation strategies. Lastly, we sought to externally validate the results on a transdiagnostic adolescent sample (N = 93; age 11-19; 34 females). RESULTS First, interindividual similarity of emotion regulation profiles was significantly correlated with interindividual similarity of the functional-structural hybrid connectome, more so than either the functional or structural connectome. Canonical correlation analysis revealed that an adaptive-to-maladaptive gradient of emotion regulation tendencies mapped onto a specific configuration of covariance within the functional-structural hybrid connectome, which primarily involved functional connections in the motor network and the visual networks as well as structural connections in the default mode network and the subcortical-cerebellar network. In the transdiagnostic adolescent dataset, stronger functional signatures of the found network were associated with higher general positive affect through more frequent use of adaptive coping strategies. CONCLUSIONS Taken together, our study illustrates a gradient of emotion regulation tendencies that is best captured when simultaneously considering the functional and structural connections across the whole brain.
Collapse
Affiliation(s)
- Wonyoung Kim
- Department of Psychology, Emory University, Atlanta, GA, USA
- Department of Psychology, Sungkyunkwan University, Seoul, South Korea
| | - M Justin Kim
- Department of Psychology, Sungkyunkwan University, Seoul, South Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
| |
Collapse
|
61
|
Wang B, Yuan Y, Yang L, Huang Y, Zhang X, Zhang X, Yan W, Li Y, Li D, Xiang J, Yang J, Liu M. Multi-hierarchy Network Configuration Can Predict Brain States and Performance. J Cogn Neurosci 2024; 36:1695-1714. [PMID: 38579269 DOI: 10.1162/jocn_a_02153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The brain is a hierarchical modular organization that varies across functional states. Network configuration can better reveal network organization patterns. However, the multi-hierarchy network configuration remains unknown. Here, we propose an eigenmodal decomposition approach to detect modules at multi-hierarchy, which can identify higher-layer potential submodules and is consistent with the brain hierarchical structure. We defined three metrics: node configuration matrix, combinability, and separability. Node configuration matrix represents network configuration changes between layers. Separability reflects network configuration from global to local, whereas combinability shows network configuration from local to global. First, we created a random network to verify the feasibility of the method. Results show that separability of real networks is larger than that of random networks, whereas combinability is smaller than random networks. Then, we analyzed a large data set incorporating fMRI data from resting and seven distinct tasking conditions. Experiment results demonstrates the high similarity in node configuration matrices for different task conditions, whereas the tasking states have less separability and greater combinability between modules compared with the resting state. Furthermore, the ability of brain network configuration can predict brain states and cognition performance. Crucially, derived from tasks are highlighted with greater power than resting, showing that task-induced attributes have a greater ability to reveal individual differences. Together, our study provides novel perspectives for analyzing the organization structure of complex brain networks at multi-hierarchy, gives new insights to further unravel the working mechanisms of the brain, and adds new evidence for tasking states to better characterize and predict behavioral traits.
Collapse
Affiliation(s)
- Bin Wang
- Taiyuan University of Technology
| | | | - Lan Yang
- Taiyuan University of Technology
| | | | - Xi Zhang
- Taiyuan University of Technology
| | | | | | - Ying Li
- Taiyuan University of Technology
| | | | | | | | | |
Collapse
|
62
|
Wu D, Li X. Connectome-based prediction of individual behaviors via convolutional graph propagation network. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40040023 DOI: 10.1109/embc53108.2024.10781694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Humans possess huge individual differences in behaviors and understanding how the individual differences in brain give rise to the individual differences in behaviors is crucial for understanding the mechanism of brain function. Previous studies indicate that brain functional connectome is important for explaining the individual differences in behaviors and many researchers have already conducted connectome based prediction of individual behaviors. However, the ability of current connectome based prediction model is still limited. In this study, we proposed the convolutional graph propagation network (cGPN) which is a graph neural network that performs graph convolution on the brain connectome and propagates information between brain regions. We performed the individual predictions of many cognitive behaviors and demonstrated that cGPN outperforms various baseline models and achieves state of the art performance in connectome based prediction. The current results contribute to the understanding of behavioral individual differences and may also help to identify the mechanism of brain function.
Collapse
|
63
|
Yue WL, Ng KK, Liu S, Qian X, Chong JSX, Koh AJ, Ong MQW, Ting SKS, Ng ASL, Kandiah N, Yeo BTT, Zhou JH. Differential spatial working memory-related functional network reconfiguration in young and older adults. Netw Neurosci 2024; 8:395-417. [PMID: 38952809 PMCID: PMC11142455 DOI: 10.1162/netn_a_00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/05/2024] [Indexed: 07/03/2024] Open
Abstract
Functional brain networks have preserved architectures in rest and task; nevertheless, previous work consistently demonstrated task-related brain functional reorganization. Efficient rest-to-task functional network reconfiguration is associated with better cognition in young adults. However, aging and cognitive load effects, as well as contributions of intra- and internetwork reconfiguration, remain unclear. We assessed age-related and load-dependent effects on global and network-specific functional reconfiguration between rest and a spatial working memory (SWM) task in young and older adults, then investigated associations between functional reconfiguration and SWM across loads and age groups. Overall, global and network-level functional reconfiguration between rest and task increased with age and load. Importantly, more efficient functional reconfiguration associated with better performance across age groups. However, older adults relied more on internetwork reconfiguration of higher cognitive and task-relevant networks. These reflect the consistent importance of efficient network updating despite recruitment of additional functional networks to offset reduction in neural resources and a change in brain functional topology in older adults. Our findings generalize the association between efficient functional reconfiguration and cognition to aging and demonstrate distinct brain functional reconfiguration patterns associated with SWM in aging, highlighting the importance of combining rest and task measures to study aging cognition.
Collapse
Affiliation(s)
- Wan Lin Yue
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore
| | - Kwun Kei Ng
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore
| | - Siwei Liu
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore
| | - Xing Qian
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore
| | - Joanna Su Xian Chong
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore
| | - Amelia Jialing Koh
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore
| | - Marcus Qin Wen Ong
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore
| | | | | | - Nagaendran Kandiah
- National Neuroscience Institute, Singapore
- Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore
| | - B. T. Thomas Yeo
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital
- Department of Electrical and Computer Engineering, N.1 Institute for Health and Memory Networks Program, National University of Singapore
| | - Juan Helen Zhou
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore
- Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore
| |
Collapse
|
64
|
Weng Y, Kruschwitz J, Rueda-Delgado LM, Ruddy K, Boyle R, Franzen L, Serin E, Nweze T, Hanson J, Smyth A, Farnan T, Banaschewski T, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, McGrath J, Nees F, Orfanos DP, Paus T, Poustka L, Holz N, Fröhner JH, Smolka MN, Vaidya N, Schumann G, Walter H, Whelan R. A robust brain network for sustained attention from adolescence to adulthood that predicts later substance use. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587900. [PMID: 38617224 PMCID: PMC11014614 DOI: 10.1101/2024.04.03.587900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Substance use, including cigarettes and cannabis, is associated with poorer sustained attention in late adolescence and early adulthood. Previous studies were predominantly cross-sectional or under-powered and could not indicate if impairment in sustained attention was a predictor of substance-use or a marker of the inclination to engage in such behaviour. This study explored the relationship between sustained attention and substance use across a longitudinal span from ages 14 to 23 in over 1,000 participants. Behaviours and brain connectivity associated with diminished sustained attention at age 14 predicted subsequent increases in cannabis and cigarette smoking, establishing sustained attention as a robust biomarker for vulnerability to substance use. Individual differences in network strength relevant to sustained attention were preserved across developmental stages and sustained attention networks generalized to participants in an external dataset. In summary, brain networks of sustained attention are robust, consistent, and able to predict aspects of later substance use.
Collapse
Affiliation(s)
- Yihe Weng
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Johann Kruschwitz
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Collaborative Research Centre (SFB 940) "Volition and Cognitive Control", Technische Universität Dresden, 01069, Dresden, Germany
| | - Laura M Rueda-Delgado
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Kathy Ruddy
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
- School of Psychology, Queens University Belfast, Belfast, Northern Ireland, UK
| | - Rory Boyle
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Luisa Franzen
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Emin Serin
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Charité -Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, 10117, Berlin, Germany
- Bernstein Center for Computational Neuroscience, 10115, Berlin, Germany
| | | | - Jamie Hanson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA; Learning Research & Development Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alannah Smyth
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Tom Farnan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, United Kingdom
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131 Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, 05405 Burlington, Vermont, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 "Trajectoires développementales & psychiatrie", University Paris-Saclay, CNRS; Ecole Normale Supérieure Paris-Saclay, Centre Borelli; Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 "Trajectoires développementales & psychiatrie", University Paris-Saclay, CNRS; Ecole Normale Supérieure Paris-Saclay, Centre Borelli; Gif-sur-Yvette; and AP-HP. Sorbonne University, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 "Trajectoires développementales & psychiatrie", University Paris-Saclay, CNRS; Ecole Normale Supérieure Paris-Saclay, Centre Borelli; Gif-sur-Yvette; and Psychiatry Department, EPS Barthélémy Durand, Etampes, France
| | - Jane McGrath
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | | | - Tomáš Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine and Centre Hosptalier Universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
- Departments of Psychiatry and Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Nathalie Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| |
Collapse
|
65
|
Chang X, Yang ZH, Yan W, Liu ZT, Luo C, Yao DZ. A new model for dynamic mapping of effective connectivity in task fMRI. Brain Res Bull 2024; 212:110938. [PMID: 38641153 DOI: 10.1016/j.brainresbull.2024.110938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 04/21/2024]
Abstract
Whole-brain dynamic functional connectivity is a growing area in neuroimaging research, encompassing data-driven methods for investigating how large-scale brain networks dynamically reorganize during resting states. However, this approach has been rarely applied to functional magnetic resonance imaging (fMRI) data acquired during task performance. In this study, we first combined the psychophysiological interactions (PPI) and sliding-window methods to analyze dynamic effective connectivity of fMRI data obtained from subjects performing the N-back task within the Human Connectome Project dataset. We then proposed a hypothetical model called Condition Activated Specific Trajectory (CAST) to represent a series of spatiotemporal synchronous changes in significantly activated connections across time windows, which we refer to as a trajectory. Our finding demonstrate that the CAST model outperforms other models in terms of intra-group consistency of individual spatial pattern of PPI connectivity, overall representational ability of temporal variability and hierarchy for individual task performance and cognitive traits. This dynamic view afforded by the CAST model reflects the intrinsic nature of coherent brain activities.
Collapse
Affiliation(s)
- Xin Chang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 2019RU035, People's Republic of China
| | - Zhi-Huan Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 2019RU035, People's Republic of China
| | - Wei Yan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 2019RU035, People's Republic of China
| | - Ze-Tao Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 2019RU035, People's Republic of China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 2019RU035, People's Republic of China; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| | - De-Zhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 2019RU035, People's Republic of China; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
66
|
Makowski C, Brown TT, Zhao W, Hagler Jr DJ, Parekh P, Garavan H, Nichols TE, Jernigan TL, Dale AM. Leveraging the adolescent brain cognitive development study to improve behavioral prediction from neuroimaging in smaller replication samples. Cereb Cortex 2024; 34:bhae223. [PMID: 38880786 PMCID: PMC11180541 DOI: 10.1093/cercor/bhae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
Neuroimaging is a popular method to map brain structural and functional patterns to complex human traits. Recently published observations cast doubt upon these prospects, particularly for prediction of cognitive traits from structural and resting state functional magnetic resonance imaging (MRI). We leverage baseline data from thousands of children in the Adolescent Brain Cognitive DevelopmentSM Study to inform the replication sample size required with univariate and multivariate methods across different imaging modalities to detect reproducible brain-behavior associations. We demonstrate that by applying multivariate methods to high-dimensional brain imaging data, we can capture lower dimensional patterns of structural and functional brain architecture that correlate robustly with cognitive phenotypes and are reproducible with only 41 individuals in the replication sample for working memory-related functional MRI, and ~ 100 subjects for structural and resting state MRI. Even with 100 random re-samplings of 100 subjects in discovery, prediction can be adequately powered with 66 subjects in replication for multivariate prediction of cognition with working memory task functional MRI. These results point to an important role for neuroimaging in translational neurodevelopmental research and showcase how findings in large samples can inform reproducible brain-behavior associations in small sample sizes that are at the heart of many research programs and grants.
Collapse
Affiliation(s)
- Carolina Makowski
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, United States
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Timothy T Brown
- Department of Neurosciences, University of California San Diego, La Jolla, CA,, United States
| | - Weiqi Zhao
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, United States
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, United States
| | - Donald J Hagler Jr
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, United States
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Pravesh Parekh
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont, Burlington, VT, United States
| | - Thomas E Nichols
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Terry L Jernigan
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, United States
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, United States
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
- Department of Neurosciences, University of California San Diego, La Jolla, CA,, United States
| |
Collapse
|
67
|
Dan R, Whitton AE, Treadway MT, Rutherford AV, Kumar P, Ironside ML, Kaiser RH, Ren B, Pizzagalli DA. Brain-based graph-theoretical predictive modeling to map the trajectory of anhedonia, impulsivity, and hypomania from the human functional connectome. Neuropsychopharmacology 2024; 49:1162-1170. [PMID: 38480910 PMCID: PMC11109096 DOI: 10.1038/s41386-024-01842-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/27/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
Clinical assessments often fail to discriminate between unipolar and bipolar depression and identify individuals who will develop future (hypo)manic episodes. To address this challenge, we developed a brain-based graph-theoretical predictive model (GPM) to prospectively map symptoms of anhedonia, impulsivity, and (hypo)mania. Individuals seeking treatment for mood disorders (n = 80) underwent an fMRI scan, including (i) resting-state and (ii) a reinforcement-learning (RL) task. Symptoms were assessed at baseline as well as at 3- and 6-month follow-ups. A whole-brain functional connectome was computed for each fMRI task, and the GPM was applied for symptom prediction using cross-validation. Prediction performance was evaluated by comparing the GPM to a corresponding null model. In addition, the GPM was compared to the connectome-based predictive modeling (CPM). Cross-sectionally, the GPM predicted anhedonia from the global efficiency (a graph theory metric that quantifies information transfer across the connectome) during the RL task, and impulsivity from the centrality (a metric that captures the importance of a region) of the left anterior cingulate cortex during resting-state. At 6-month follow-up, the GPM predicted (hypo)manic symptoms from the local efficiency of the left nucleus accumbens during the RL task and anhedonia from the centrality of the left caudate during resting-state. Notably, the GPM outperformed the CPM, and GPM derived from individuals with unipolar disorders predicted anhedonia and impulsivity symptoms for individuals with bipolar disorders. Importantly, the generalizability of cross-sectional models was demonstrated in an external validation sample. Taken together, across DSM mood diagnoses, efficiency and centrality of the reward circuit predicted symptoms of anhedonia, impulsivity, and (hypo)mania, cross-sectionally and prospectively. The GPM is an innovative modeling approach that may ultimately inform clinical prediction at the individual level.
Collapse
Affiliation(s)
- Rotem Dan
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Alexis E Whitton
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Black Dog Institute, University of New South Wales, Sydney, Australia
| | - Michael T Treadway
- Department of Psychology, Emory University, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Ashleigh V Rutherford
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Poornima Kumar
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Manon L Ironside
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Roselinde H Kaiser
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Boyu Ren
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Laboratory for Psychiatric Biostatistics, McLean Hospital, Belmont, MA, USA
| | - Diego A Pizzagalli
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
68
|
Kraljević N, Langner R, Küppers V, Raimondo F, Patil KR, Eickhoff SB, Müller VI. Network and state specificity in connectivity-based predictions of individual behavior. Hum Brain Mapp 2024; 45:e26753. [PMID: 38864353 PMCID: PMC11167405 DOI: 10.1002/hbm.26753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 04/17/2024] [Accepted: 05/23/2024] [Indexed: 06/13/2024] Open
Abstract
Predicting individual behavior from brain functional connectivity (FC) patterns can contribute to our understanding of human brain functioning. This may apply in particular if predictions are based on features derived from circumscribed, a priori defined functional networks, which improves interpretability. Furthermore, some evidence suggests that task-based FC data may yield more successful predictions of behavior than resting-state FC data. Here, we comprehensively examined to what extent the correspondence of functional network priors and task states with behavioral target domains influences the predictability of individual performance in cognitive, social, and affective tasks. To this end, we used data from the Human Connectome Project for large-scale out-of-sample predictions of individual abilities in working memory (WM), theory-of-mind cognition (SOCIAL), and emotion processing (EMO) from FC of corresponding and non-corresponding states (WM/SOCIAL/EMO/resting-state) and networks (WM/SOCIAL/EMO/whole-brain connectome). Using root mean squared error and coefficient of determination to evaluate model fit revealed that predictive performance was rather poor overall. Predictions from whole-brain FC were slightly better than those from FC in task-specific networks, and a slight benefit of predictions based on FC from task versus resting state was observed for performance in the WM domain. Beyond that, we did not find any significant effects of a correspondence of network, task state, and performance domains. Together, these results suggest that multivariate FC patterns during both task and resting states contain rather little information on individual performance levels, calling for a reconsideration of how the brain mediates individual differences in mental abilities.
Collapse
Affiliation(s)
- Nevena Kraljević
- Institute of Systems Neuroscience, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Neuroscience and Medicine (INM‐7: Brain and Behaviour)Research Centre JülichJülichGermany
| | - Robert Langner
- Institute of Systems Neuroscience, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Neuroscience and Medicine (INM‐7: Brain and Behaviour)Research Centre JülichJülichGermany
| | - Vincent Küppers
- Institute of Neuroscience and Medicine (INM‐7: Brain and Behaviour)Research Centre JülichJülichGermany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Federico Raimondo
- Institute of Systems Neuroscience, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Neuroscience and Medicine (INM‐7: Brain and Behaviour)Research Centre JülichJülichGermany
| | - Kaustubh R. Patil
- Institute of Systems Neuroscience, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Neuroscience and Medicine (INM‐7: Brain and Behaviour)Research Centre JülichJülichGermany
| | - Simon B. Eickhoff
- Institute of Systems Neuroscience, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Neuroscience and Medicine (INM‐7: Brain and Behaviour)Research Centre JülichJülichGermany
| | - Veronika I. Müller
- Institute of Systems Neuroscience, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Neuroscience and Medicine (INM‐7: Brain and Behaviour)Research Centre JülichJülichGermany
| |
Collapse
|
69
|
Zhang S, Jung K, Langner R, Florin E, Eickhoff SB, Popovych OV. Impact of data processing varieties on DCM estimates of effective connectivity from task-fMRI. Hum Brain Mapp 2024; 45:e26751. [PMID: 38864293 PMCID: PMC11167406 DOI: 10.1002/hbm.26751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/05/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024] Open
Abstract
Effective connectivity (EC) refers to directional or causal influences between interacting neuronal populations or brain regions and can be estimated from functional magnetic resonance imaging (fMRI) data via dynamic causal modeling (DCM). In contrast to functional connectivity, the impact of data processing varieties on DCM estimates of task-evoked EC has hardly ever been addressed. We therefore investigated how task-evoked EC is affected by choices made for data processing. In particular, we considered the impact of global signal regression (GSR), block/event-related design of the general linear model (GLM) used for the first-level task-evoked fMRI analysis, type of activation contrast, and significance thresholding approach. Using DCM, we estimated individual and group-averaged task-evoked EC within a brain network related to spatial conflict processing for all the parameters considered and compared the differences in task-evoked EC between any two data processing conditions via between-group parametric empirical Bayes (PEB) analysis and Bayesian data comparison (BDC). We observed strongly varying patterns of the group-averaged EC depending on the data processing choices. In particular, task-evoked EC and parameter certainty were strongly impacted by GLM design and type of activation contrast as revealed by PEB and BDC, respectively, whereas they were little affected by GSR and the type of significance thresholding. The event-related GLM design appears to be more sensitive to task-evoked modulations of EC, but provides model parameters with lower certainty than the block-based design, while the latter is more sensitive to the type of activation contrast than is the event-related design. Our results demonstrate that applying different reasonable data processing choices can substantially alter task-evoked EC as estimated by DCM. Such choices should be made with care and, whenever possible, varied across parallel analyses to evaluate their impact and identify potential convergence for robust outcomes.
Collapse
Affiliation(s)
- Shufei Zhang
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM‐7)Research Centre JülichJülichGermany
- Institute for Systems Neuroscience, Medical FacultyHeinrich‐Heine University DüsseldorfDüsseldorfGermany
| | - Kyesam Jung
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM‐7)Research Centre JülichJülichGermany
- Institute for Systems Neuroscience, Medical FacultyHeinrich‐Heine University DüsseldorfDüsseldorfGermany
| | - Robert Langner
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM‐7)Research Centre JülichJülichGermany
- Institute for Systems Neuroscience, Medical FacultyHeinrich‐Heine University DüsseldorfDüsseldorfGermany
| | - Esther Florin
- Institute of Clinical Neuroscience and Medical Psychology, Medical FacultyHeinrich‐Heine University DüsseldorfDüsseldorfGermany
| | - Simon B. Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM‐7)Research Centre JülichJülichGermany
- Institute for Systems Neuroscience, Medical FacultyHeinrich‐Heine University DüsseldorfDüsseldorfGermany
| | - Oleksandr V. Popovych
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM‐7)Research Centre JülichJülichGermany
- Institute for Systems Neuroscience, Medical FacultyHeinrich‐Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
70
|
Bernstein-Eliav M, Tavor I. The Prediction of Brain Activity from Connectivity: Advances and Applications. Neuroscientist 2024; 30:367-377. [PMID: 36250457 PMCID: PMC11107130 DOI: 10.1177/10738584221130974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The human brain is composed of multiple, discrete, functionally specialized regions that are interconnected to form large-scale distributed networks. Using advanced brain-imaging methods and machine-learning analytical approaches, recent studies have demonstrated that regional brain activity during the performance of various cognitive tasks can be accurately predicted from patterns of task-independent brain connectivity. In this review article, we first present evidence for the predictability of brain activity from structural connectivity (i.e., white matter connections) and functional connectivity (i.e., temporally synchronized task-free activations). We then discuss the implications of such predictions to clinical populations, such as patients diagnosed with psychiatric disorders or neurologic diseases, and to the study of brain-behavior associations. We conclude that connectivity may serve as an infrastructure that dictates brain activity, and we pinpoint several open questions and directions for future research.
Collapse
Affiliation(s)
| | - Ido Tavor
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Strauss Center for Computational Neuroimaging, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
71
|
Misaki M, Young K, Tsuchiyagaito A, Savitz J, Guinjoan SM. Clinical Response to Neurofeedback in Major Depression Relates to Subtypes of Whole-Brain Activation Patterns During Training. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592108. [PMID: 38746338 PMCID: PMC11092668 DOI: 10.1101/2024.05.01.592108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Major Depressive Disorder (MDD) poses a significant public health challenge due to its high prevalence and the substantial burden it places on individuals and healthcare systems. Real-time functional magnetic resonance imaging neurofeedback (rtfMRI-NF) shows promise as a treatment for this disorder, although its mechanisms of action remain unclear. This study investigated whole-brain response patterns during rtfMRI-NF training to explain interindividual variability in clinical efficacy in MDD. We analyzed data from 95 participants (67 active, 28 control) with MDD from previous rtfMRI-NF studies designed to increase left amygdala activation through positive autobiographical memory recall. Significant symptom reduction was observed in the active group (t=-4.404, d=-0.704, p<0.001) but not in the control group (t=-1.609, d=-0.430, p=0.111). However, left amygdala activation did not account for the variability in clinical efficacy. To elucidate the brain training process underlying the clinical effect, we examined whole-brain activation patterns during two critical phases of the neurofeedback procedure: activation during the self-regulation period, and transient responses to feedback signal presentations. Using a systematic process involving feature selection, manifold extraction, and clustering with cross-validation, we identified two subtypes of regulation activation and three subtypes of brain responses to feedback signals. These subtypes were significantly associated with the clinical effect (regulation subtype: F=8.735, p=0.005; feedback response subtype: F=5.326, p=0.008; subtypes' interaction: F=3.471, p=0.039). Subtypes associated with significant symptom reduction were characterized by selective increases in control regions, including lateral prefrontal areas, and decreases in regions associated with self-referential thinking, such as default mode areas. These findings suggest that large-scale brain activity during training is more critical for clinical efficacy than the level of activation in the neurofeedback target region itself. Tailoring neurofeedback training to incorporate these patterns could significantly enhance its therapeutic efficacy.
Collapse
|
72
|
Madar A, Kurtz-David V, Hakim A, Levy DJ, Tavor I. Pre-acquired Functional Connectivity Predicts Choice Inconsistency. J Neurosci 2024; 44:e0453232024. [PMID: 38508713 PMCID: PMC11063819 DOI: 10.1523/jneurosci.0453-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 03/22/2024] Open
Abstract
Economic choice theories usually assume that humans maximize utility in their choices. However, studies have shown that humans make inconsistent choices, leading to suboptimal behavior, even without context-dependent manipulations. Previous studies showed that activation in value and motor networks are associated with inconsistent choices at the moment of choice. Here, we investigated if the neural predispositions, measured before a choice task, can predict choice inconsistency in a later risky choice task. Using functional connectivity (FC) measures from resting-state functional magnetic resonance imaging (rsfMRI), derived before any choice was made, we aimed to predict subjects' inconsistency levels in a later-performed choice task. We hypothesized that rsfMRI FC measures extracted from value and motor brain areas would predict inconsistency. Forty subjects (21 females) completed a rsfMRI scan before performing a risky choice task. We compared models that were trained on FC that included only hypothesized value and motor regions with models trained on whole-brain FC. We found that both model types significantly predicted inconsistency levels. Moreover, even the whole-brain models relied mostly on FC between value and motor areas. For external validation, we used a neural network pretrained on FC matrices of 37,000 subjects and fine-tuned it on our data and again showed significant predictions. Together, this shows that the tendency for choice inconsistency is predicted by predispositions of the nervous system and that synchrony between the motor and value networks plays a crucial role in this tendency.
Collapse
Affiliation(s)
- Asaf Madar
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Vered Kurtz-David
- Coller School of Management, Tel Aviv University, Tel Aviv 69978, Israel
- Grossman School of Medicine, New York University, New York, New York 10016
| | - Adam Hakim
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dino J Levy
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- Coller School of Management, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ido Tavor
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Anatomy and Anthropology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
73
|
Dhamala E, Chopra S, Ooi LQ, Rubio JM, Yeo BT, Malhotra AK, Holmes AJ. Sex differences in the functional network underpinnings of psychotic-like experiences in children. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590660. [PMID: 38712263 PMCID: PMC11071409 DOI: 10.1101/2024.04.22.590660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Psychotic-like experiences (PLEs) include a range of sub-threshold symptoms that resemble aspects of psychosis but do not necessarily indicate the presence of psychiatric illness. These experiences are highly prevalent in youth and are associated with developmental disruptions across social, academic, and emotional domains. While not all youth who report PLEs develop psychosis, many develop other psychiatric illnesses during adolescence and adulthood. As such, PLEs are theorized to represent early markers of poor mental health. Here, we characterized the similarities and differences in the neurobiological underpinnings of childhood PLEs across the sexes using a large sample from the ABCD Study (n=5,260), revealing sex-specific associations between functional networks connectivity and PLEs. We find that although the networks associated with PLEs overlap to some extent across the sexes, there are also crucial differences. In females, PLEs are associated with dispersed cortical and non-cortical connections, whereas in males, they are primarily associated with functional connections within limbic, temporal parietal, somato/motor, and visual networks. These results suggest that early transdiagnostic markers of psychopathology may be distinct across the sexes, further emphasizing the need to consider sex in psychiatric research as well as clinical practice.
Collapse
Affiliation(s)
- Elvisha Dhamala
- Institute of Behavioral Sciences, Feinstein Institutes for Medical Research, Manhasset, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Uniondale, USA
| | - Sidhant Chopra
- Department of Psychology, Yale University, New Haven, USA
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, USA
| | - Leon Q.R. Ooi
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, National University of Singapore, Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jose M. Rubio
- Institute of Behavioral Sciences, Feinstein Institutes for Medical Research, Manhasset, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Uniondale, USA
| | - B.T. Thomas Yeo
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, National University of Singapore, Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, USA
| | - Anil K. Malhotra
- Institute of Behavioral Sciences, Feinstein Institutes for Medical Research, Manhasset, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Uniondale, USA
| | - Avram J. Holmes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, USA
| |
Collapse
|
74
|
Rodriguez RX, Noble S, Camp CC, Scheinost D. Connectome caricatures: removing large-amplitude co-activation patterns in resting-state fMRI emphasizes individual differences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588578. [PMID: 38645002 PMCID: PMC11030410 DOI: 10.1101/2024.04.08.588578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
High-amplitude co-activation patterns are sparsely present during resting-state fMRI but drive functional connectivity1-5. Further, they resemble task activation patterns and are well-studied3,5-10. However, little research has characterized the remaining majority of the resting-state signal. In this work, we introduced caricaturing-a method to project resting-state data to a subspace orthogonal to a manifold of co-activation patterns estimated from the task fMRI data. Projecting to this subspace removes linear combinations of these co-activation patterns from the resting-state data to create Caricatured connectomes. We used rich task data from the Human Connectome Project (HCP)11 and the UCLA Consortium for Neuropsychiatric Phenomics12 to construct a manifold of task co-activation patterns. Caricatured connectomes were created by projecting resting-state data from the HCP and the Yale Test-Retest13 datasets away from this manifold. Like caricatures, these connectomes emphasized individual differences by reducing between-individual similarity and increasing individual identification14. They also improved predictive modeling of brain-phenotype associations. As caricaturing removes group-relevant task variance, it is an initial attempt to remove task-like co-activations from rest. Therefore, our results suggest that there is a useful signal beyond the dominating co-activations that drive resting-state functional connectivity, which may better characterize the brain's intrinsic functional architecture.
Collapse
Affiliation(s)
| | - Stephanie Noble
- Dept. of Psychology, Northeastern University
- Dept. of Bioengineering, Northeastern University
- Center for Cognitive and Brain Health, Northeastern University
| | - Chris C Camp
- Interdepartmental Neuroscience Program, Yale School of Medicine
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine
- Dept. of Radiology and Biomedical Imaging, Yale School of Medicine
- Dept. of Biomedical Engineering, Yale School of Engineering and Applied Science
- Dept. of Statistics and Data Science, Yale University
- Child Study Center, Yale School of Medicine
- Wu Tsai Institute, Yale University
| |
Collapse
|
75
|
Del Mauro G, Wang Z. Cross-subject brain entropy mapping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588307. [PMID: 38645267 PMCID: PMC11030347 DOI: 10.1101/2024.04.05.588307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
We present a method to map the regional similarity between resting state fMRI activities of different individuals. The similarity was measured using cross-entropy. Group level patterns were displayed based on the Human Connectome Project Youth data. While we only showed the cross-subject brain entropy (BEN) mapping results in this manuscript, the same concept can be directly extended to map the cross-sessional BEN and the cross-regional cross-subject or subject-session BEN.
Collapse
Affiliation(s)
- G Del Mauro
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Schoold of Medicine
| | - Z Wang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Schoold of Medicine
| |
Collapse
|
76
|
Rasero J, Betzel R, Sentis AI, Kraynak TE, Gianaros PJ, Verstynen T. Similarity in evoked responses does not imply similarity in macroscopic network states. Netw Neurosci 2024; 8:335-354. [PMID: 38711543 PMCID: PMC11073549 DOI: 10.1162/netn_a_00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/17/2023] [Indexed: 05/08/2024] Open
Abstract
It is commonplace in neuroscience to assume that if two tasks activate the same brain areas in the same way, then they are recruiting the same underlying networks. Yet computational theory has shown that the same pattern of activity can emerge from many different underlying network representations. Here we evaluated whether similarity in activation necessarily implies similarity in network architecture by comparing region-wise activation patterns and functional correlation profiles from a large sample of healthy subjects (N = 242). Participants performed two executive control tasks known to recruit nearly identical brain areas, the color-word Stroop task and the Multi-Source Interference Task (MSIT). Using a measure of instantaneous functional correlations, based on edge time series, we estimated the task-related networks that differed between incongruent and congruent conditions. We found that the two tasks were much more different in their network profiles than in their evoked activity patterns at different analytical levels, as well as for a wide range of methodological pipelines. Our results reject the notion that having the same activation patterns means two tasks engage the same underlying representations, suggesting that task representations should be independently evaluated at both node and edge (connectivity) levels.
Collapse
Affiliation(s)
- Javier Rasero
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- School of Data Science, University of Virginia, Charlottesville, VA, USA
| | - Richard Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Amy Isabella Sentis
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
| | - Thomas E. Kraynak
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter J. Gianaros
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy Verstynen
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
- Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
77
|
Zhuo L, Jin Z, Xie K, Li S, Lin F, Zhang J, Li L. Identifying individual's distractor suppression using functional connectivity between anatomical large-scale brain regions. Neuroimage 2024; 289:120552. [PMID: 38387742 DOI: 10.1016/j.neuroimage.2024.120552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/24/2024] Open
Abstract
Distractor suppression (DS) is crucial in goal-oriented behaviors, referring to the ability to suppress irrelevant information. Current evidence points to the prefrontal cortex as an origin region of DS, while subcortical, occipital, and temporal regions are also implicated. The present study aimed to examine the contribution of communications between these brain regions to visual DS. To do it, we recruited two independent cohorts of participants for the study. One cohort participated in a visual search experiment where a salient distractor triggering distractor suppression to measure their DS and the other cohort filled out a Cognitive Failure Questionnaire to assess distractibility in daily life. Both cohorts collected resting-state functional magnetic resonance imaging (rs-fMRI) data to investigate function connectivity (FC) underlying DS. First, we generated predictive models of the DS measured in visual search task using resting-state functional connectivity between large anatomical regions. It turned out that the models could successfully predict individual's DS, indicated by a significant correlation between the actual and predicted DS (r = 0.32, p < 0.01). Importantly, Prefrontal-Temporal, Insula-Limbic and Parietal-Occipital connections contributed to the prediction model. Furthermore, the model could also predict individual's daily distractibility in the other independent cohort (r = -0.34, p < 0.05). Our findings showed the efficiency of the predictive models of distractor suppression encompassing connections between large anatomical regions and highlighted the importance of the communications between attention-related and visual information processing regions in distractor suppression. Current findings may potentially provide neurobiological markers of visual distractor suppression.
Collapse
Affiliation(s)
- Lei Zhuo
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Zhenlan Jin
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China.
| | - Ke Xie
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Simeng Li
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Feng Lin
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Junjun Zhang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Ling Li
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China.
| |
Collapse
|
78
|
Ziontz J, Harrison TM, Chen X, Giorgio J, Adams JN, Wang Z, Jagust W, Alzheimer’s Disease Neuroimaging Initiative. Behaviorally meaningful functional networks mediate the effect of Alzheimer's pathology on cognition. Cereb Cortex 2024; 34:bhae134. [PMID: 38602736 PMCID: PMC11008686 DOI: 10.1093/cercor/bhae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/25/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
Tau pathology is associated with cognitive impairment in both aging and Alzheimer's disease, but the functional and structural bases of this relationship remain unclear. We hypothesized that the integrity of behaviorally meaningful functional networks would help explain the relationship between tau and cognitive performance. Using resting state fMRI, we identified unique networks related to episodic memory and executive function cognitive domains. The episodic memory network was particularly related to tau pathology measured with positron emission tomography in the entorhinal and temporal cortices. Further, episodic memory network strength mediated the relationship between tau pathology and cognitive performance above and beyond neurodegeneration. We replicated the association between these networks and tau pathology in a separate cohort of older adults, including both cognitively unimpaired and mildly impaired individuals. Together, these results suggest that behaviorally meaningful functional brain networks represent a functional mechanism linking tau pathology and cognition.
Collapse
Affiliation(s)
- Jacob Ziontz
- Helen Wills Neuroscience Institute, UC Berkeley, 250 Warren Hall, 2195 Hearst Ave, Berkeley, CA 94720, United States
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, UC Berkeley, 250 Warren Hall, 2195 Hearst Ave, Berkeley, CA 94720, United States
| | - Xi Chen
- Helen Wills Neuroscience Institute, UC Berkeley, 250 Warren Hall, 2195 Hearst Ave, Berkeley, CA 94720, United States
| | - Joseph Giorgio
- Helen Wills Neuroscience Institute, UC Berkeley, 250 Warren Hall, 2195 Hearst Ave, Berkeley, CA 94720, United States
- School of Psychological Sciences, College of Engineering, Science and the Environment, University of Newcastle, University Dr, Callaghan, Newcastle, NSW 2305, Australia
| | - Jenna N Adams
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, 1400 Biological Sciences III, University of California, Irvine, Irvine, CA 92697, United States
| | - Zehao Wang
- Helen Wills Neuroscience Institute, UC Berkeley, 250 Warren Hall, 2195 Hearst Ave, Berkeley, CA 94720, United States
| | - William Jagust
- Helen Wills Neuroscience Institute, UC Berkeley, 250 Warren Hall, 2195 Hearst Ave, Berkeley, CA 94720, United States
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | | |
Collapse
|
79
|
Wang S, Constable T, Zhang H, Zhao Y. Heterogeneity Analysis on Multi-state Brain Functional Connectivity and Adolescent Neurocognition. J Am Stat Assoc 2024; 119:851-863. [PMID: 39371422 PMCID: PMC11451334 DOI: 10.1080/01621459.2024.2311363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 01/03/2024] [Accepted: 01/22/2024] [Indexed: 10/08/2024]
Abstract
Brain functional connectivity or connectome, a unique measure for brain functional organization, provides a great potential to explain the neurobiological underpinning of behavioral profiles. Existing connectome-based analyses highly concentrate on brain activities under a single cognitive state, and fail to consider heterogeneity when attempting to characterize brain-to-behavior relationships. In this work, we study the complex impact of multi-state functional connectivity on behaviors by analyzing the data from a recent landmark brain development and child health study. We propose a nonparametric, Bayesian supervised heterogeneity analysis to uncover neurodevelopmental subtypes with distinct effect mechanisms. We impose stochastic block structures to identify network-based functional phenotypes and develop a variational expectation-maximization algorithm to facilitate an efficient posterior computation. Through integrating resting-state and task-related functional connectomes, we dissect heterogeneous effect mechanisms on children's fluid intelligence from the functional network phenotypes including Fronto-parietal Network and Default Mode Network under different cognitive states. Based on extensive simulations, we further confirm the superior performance of our method on uncovering brain-to-behavior relationships.
Collapse
Affiliation(s)
- Shiying Wang
- Department of Biostatistics, Yale University, New Haven, CT
| | - Todd Constable
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT
| | - Heping Zhang
- Department of Biostatistics, Yale University, New Haven, CT
| | - Yize Zhao
- Department of Biostatistics, Yale University, New Haven, CT
| |
Collapse
|
80
|
Li B, Tong L, Zhang C, Chen P, Wang L, Yan B. Prediction of image interpretation cognitive ability under different mental workloads: a task-state fMRI study. Cereb Cortex 2024; 34:bhae100. [PMID: 38494891 DOI: 10.1093/cercor/bhae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
Visual imaging experts play an important role in multiple fields, and studies have shown that the combination of functional magnetic resonance imaging and machine learning techniques can predict cognitive abilities, which provides a possible method for selecting individuals with excellent image interpretation skills. We recorded behavioral data and neural activity of 64 participants during image interpretation tasks under different workloads. Based on the comprehensive image interpretation ability, participants were divided into two groups. general linear model analysis showed that during image interpretation tasks, the high-ability group exhibited higher activation in middle frontal gyrus (MFG), fusiform gyrus, inferior occipital gyrus, superior parietal gyrus, inferior parietal gyrus, and insula compared to the low-ability group. The radial basis function Support Vector Machine (SVM) algorithm shows the most excellent performance in predicting participants' image interpretation abilities (Pearson correlation coefficient = 0.54, R2 = 0.31, MSE = 0.039, RMSE = 0.002). Variable importance analysis indicated that the activation features of the fusiform gyrus and MFG played an important role in predicting this ability. Our study revealed the neural basis related to image interpretation ability when exposed to different mental workloads. Additionally, our results demonstrated the efficacy of machine learning algorithms in extracting neural activation features to predict such ability.
Collapse
Affiliation(s)
- Bao Li
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Science Avenue 62, Zhengzhou, 450001, China
| | - Li Tong
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Science Avenue 62, Zhengzhou, 450001, China
| | - Chi Zhang
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Science Avenue 62, Zhengzhou, 450001, China
| | - Panpan Chen
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Science Avenue 62, Zhengzhou, 450001, China
| | - Linyuan Wang
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Science Avenue 62, Zhengzhou, 450001, China
| | - Bin Yan
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Science Avenue 62, Zhengzhou, 450001, China
| |
Collapse
|
81
|
Ye J, Mehta S, Peterson H, Ibrahim A, Saeed G, Linsky S, Kreinin I, Tsang S, Nwanaji-Enwerem U, Raso A, Arora J, Tokoglu F, Yip SW, Alice Hahn C, Lacadie C, Greene AS, Constable RT, Barry DT, Redeker NS, Yaggi H, Scheinost D. Investigating brain dynamics and their association with cognitive control in opioid use disorder using naturalistic and drug cue paradigms. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.25.24303340. [PMID: 38464297 PMCID: PMC10925365 DOI: 10.1101/2024.02.25.24303340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Objectives Opioid use disorder (OUD) impacts millions of people worldwide. The prevalence and debilitating effects of OUD present a pressing need to understand its neural mechanisms to provide more targeted interventions. Prior studies have linked altered functioning in large-scale brain networks with clinical symptoms and outcomes in OUD. However, these investigations often do not consider how brain responses change over time. Time-varying brain network engagement can convey clinically relevant information not captured by static brain measures. Methods We investigated brain dynamic alterations in individuals with OUD by applying a new multivariate computational framework to movie-watching (i.e., naturalistic; N=76) and task-based (N=70) fMRI. We further probed the associations between cognitive control and brain dynamics during a separate drug cue paradigm in individuals with OUD. Results Compared to healthy controls (N=97), individuals with OUD showed decreased variability in the engagement of recurring brain states during movie-watching. We also found that worse cognitive control was linked to decreased variability during the rest period when no opioid-related stimuli were present. Conclusions These findings suggest that individuals with OUD may experience greater difficulty in effectively engaging brain networks in response to evolving internal or external demands. Such inflexibility may contribute to aberrant response inhibition and biased attention toward opioid-related stimuli, two hallmark characteristics of OUD. By incorporating temporal information, the current study introduces novel information about how brain dynamics are altered in individuals with OUD and their behavioral implications.
Collapse
Affiliation(s)
- Jean Ye
- Interdepartmental Neuroscience Program, Yale University
| | - Saloni Mehta
- Department of Radiology & Biomedical Imaging, Yale School of Medicine
| | | | - Ahmad Ibrahim
- Department of Internal Medicine, Yale School of Medicine
| | - Gul Saeed
- Department of Internal Medicine, Roger Williams Medical Center
| | | | - Iouri Kreinin
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine
| | | | | | - Anthony Raso
- Frank H. Netter M.D. School of Medicine, Quinnipiac University
| | - Jagriti Arora
- Department of Radiology & Biomedical Imaging, Yale School of Medicine
| | - Fuyuze Tokoglu
- Department of Radiology & Biomedical Imaging, Yale School of Medicine
| | - Sarah W Yip
- Interdepartmental Neuroscience Program, Yale University
- Department of Psychiatry, Yale School of Medicine
- Child Study Center, Yale School of Medicine
| | - C Alice Hahn
- Yale Center for Clinical Investigation, Yale School of Medicine
| | - Cheryl Lacadie
- Department of Radiology & Biomedical Imaging, Yale School of Medicine
| | | | - R Todd Constable
- Interdepartmental Neuroscience Program, Yale University
- Department of Radiology & Biomedical Imaging, Yale School of Medicine
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science
- Department of Neurosurgery, Yale School of Medicine
| | - Declan T Barry
- Department of Psychiatry, Yale School of Medicine
- Child Study Center, Yale School of Medicine
- Department of Research, APT foundation
| | | | - Henry Yaggi
- Department of Internal Medicine, Yale School of Medicine
- Clinical Epidemiology Research Center, VA CT Healthcare System
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale University
- Department of Radiology & Biomedical Imaging, Yale School of Medicine
- Child Study Center, Yale School of Medicine
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science
- Department of Statistics & Data Science, Yale School of Medicine
| |
Collapse
|
82
|
Peterson M, Floris DL, Nielsen JA. Parsing Brain Network Specialization: A Replication and Expansion of Wang et al. (2014). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580153. [PMID: 38405819 PMCID: PMC10888742 DOI: 10.1101/2024.02.13.580153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
One organizing principle of the human brain is hemispheric specialization, or the dominance of a specific function or cognitive process in one hemisphere or the other. Previously, Wang et al. (2014) identified networks putatively associated with language and attention as being specialized to the left and right hemispheres, respectively; and a dual-specialization of the executive control network. However, it remains unknown which networks are specialized when specialization is examined within individuals using a higher resolution parcellation, as well as which connections are contributing the most to a given network's specialization. In the present study, we estimated network specialization across three datasets using the autonomy index and a novel method of deconstructing network specialization. After examining the reliability of these methods as implemented on an individual level, we addressed two hypotheses. First, we hypothesized that the most specialized networks would include those associated with language, visuospatial attention, and executive control. Second, we hypothesized that within-network contributions to specialization would follow a within-between network gradient or a specialization gradient. We found that the majority of networks exhibited greater within-hemisphere connectivity than between-hemisphere connectivity. Among the most specialized networks were networks associated with language, attention, and executive control. Additionally, we found that the greatest network contributions were within-network, followed by those from specialized networks.
Collapse
Affiliation(s)
- Madeline Peterson
- Department of Psychology, Brigham Young University, Provo, UT, 84602, USA
| | - Dorothea L Floris
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Jared A Nielsen
- Department of Psychology, Brigham Young University, Provo, UT, 84602, USA
- Neuroscience Center, Brigham Young University, Provo, UT, 84604, USA
| |
Collapse
|
83
|
Busch EL, Rapuano KM, Anderson KM, Rosenberg MD, Watts R, Casey BJ, Haxby JV, Feilong M. Dissociation of Reliability, Heritability, and Predictivity in Coarse- and Fine-Scale Functional Connectomes during Development. J Neurosci 2024; 44:e0735232023. [PMID: 38148152 PMCID: PMC10866091 DOI: 10.1523/jneurosci.0735-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/09/2023] [Accepted: 11/16/2023] [Indexed: 12/28/2023] Open
Abstract
The functional connectome supports information transmission through the brain at various spatial scales, from exchange between broad cortical regions to finer-scale, vertex-wise connections that underlie specific information processing mechanisms. In adults, while both the coarse- and fine-scale functional connectomes predict cognition, the fine scale can predict up to twice the variance as the coarse-scale functional connectome. Yet, past brain-wide association studies, particularly using large developmental samples, focus on the coarse connectome to understand the neural underpinnings of individual differences in cognition. Using a large cohort of children (age 9-10 years; n = 1,115 individuals; both sexes; 50% female, including 170 monozygotic and 219 dizygotic twin pairs and 337 unrelated individuals), we examine the reliability, heritability, and behavioral relevance of resting-state functional connectivity computed at different spatial scales. We use connectivity hyperalignment to improve access to reliable fine-scale (vertex-wise) connectivity information and compare the fine-scale connectome with the traditional parcel-wise (coarse scale) functional connectomes. Though individual differences in the fine-scale connectome are more reliable than those in the coarse-scale, they are less heritable. Further, the alignment and scale of connectomes influence their ability to predict behavior, whereby some cognitive traits are equally well predicted by both connectome scales, but other, less heritable cognitive traits are better predicted by the fine-scale connectome. Together, our findings suggest there are dissociable individual differences in information processing represented at different scales of the functional connectome which, in turn, have distinct implications for heritability and cognition.
Collapse
Affiliation(s)
- Erica L Busch
- Department of Psychology, Yale University, New Haven, Connecticut, 06510
| | - Kristina M Rapuano
- Department of Psychology, Yale University, New Haven, Connecticut, 06510
| | - Kevin M Anderson
- Department of Psychology, Yale University, New Haven, Connecticut, 06510
| | - Monica D Rosenberg
- Department of Psychology, University of Chicago, Chicago, Illinois, 60637
| | - Richard Watts
- Department of Psychology, Yale University, New Haven, Connecticut, 06510
| | - B J Casey
- Department of Psychology, Yale University, New Haven, Connecticut, 06510
| | - James V Haxby
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire, 03755
| | - Ma Feilong
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire, 03755
| |
Collapse
|
84
|
Raykov PP, Knights E, Cam-Can, Henson RN. Does functional system segregation mediate the effects of lifestyle on cognition in older adults? Neurobiol Aging 2024; 134:126-134. [PMID: 38070445 PMCID: PMC10789480 DOI: 10.1016/j.neurobiolaging.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 01/02/2024]
Abstract
Healthy aging is typically accompanied by cognitive decline. Previous work has shown that engaging in multiple, non-work activities during midlife can have a protective effect on cognition several decades later, rendering it less dependent on brain structural health; the definition of "cognitive reserve". Other work has shown that increasing age is associated with reduced segregation of large-scale brain functional networks. Here we tested the hypothesis that functional segregation (SyS) mediates this effect of middle-aged lifestyle on late-life cognition. We used fMRI data from three tasks in the CamCAN dataset, together with cognitive data on fluid intelligence, episodic memory, and retrospective lifestyle data from the Lifetime of Experiences Questionnaire (LEQ). In all three tasks, we showed that SyS related to fluid intelligence even after adjusting for the (nonlinear) age effects. However, we found no evidence that SyS in late-life mediated the relationship between non-specific (non-occupation) midlife activities and either measure of cognition in late-life. Thus, the brain correlates of cognitive reserve arising from mid-life activities remain to be discovered.
Collapse
Affiliation(s)
- Petar P Raykov
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, UK.
| | - Ethan Knights
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, UK
| | - Cam-Can
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, UK; Department of Psychiatry, University of Cambridge, UK
| | - Richard N Henson
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, UK; Department of Psychiatry, University of Cambridge, UK
| |
Collapse
|
85
|
Zhang L, Feng J, Liu C, Hu H, Zhou Y, Yang G, Peng X, Li T, Chen C, Xue G. Improved estimation of general cognitive ability and its neural correlates with a large battery of cognitive tasks. Cereb Cortex 2024; 34:bhad510. [PMID: 38183183 DOI: 10.1093/cercor/bhad510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 01/07/2024] Open
Abstract
Elucidating the neural mechanisms of general cognitive ability (GCA) is an important mission of cognitive neuroscience. Recent large-sample cohort studies measured GCA through multiple cognitive tasks and explored its neural basis, but they did not investigate how task number, factor models, and neural data type affect the estimation of GCA and its neural correlates. To address these issues, we tested 1,605 Chinese young adults with 19 cognitive tasks and Raven's Advanced Progressive Matrices (RAPM) and collected resting state and n-back task fMRI data from a subsample of 683 individuals. Results showed that GCA could be reliably estimated by multiple tasks. Increasing task number enhances both reliability and validity of GCA estimates and reliably strengthens their correlations with brain data. The Spearman model and hierarchical bifactor model yield similar GCA estimates. The bifactor model has better model fit and stronger correlation with RAPM but explains less variance and shows weaker correlations with brain data than does the Spearman model. Notably, the n-back task-based functional connectivity patterns outperform resting-state fMRI in predicting GCA. These results suggest that GCA derived from a multitude of cognitive tasks serves as a valid measure of general intelligence and that its neural correlates could be better characterized by task fMRI than resting-state fMRI data.
Collapse
Affiliation(s)
- Liang Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, PR China
| | - Junjiao Feng
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Chuqi Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, PR China
| | - Huinan Hu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, PR China
| | - Yu Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, PR China
| | - Gangyao Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, PR China
| | - Xiaojing Peng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, PR China
| | - Tong Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, PR China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, CA 92697, USA
| | - Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, PR China
- Chinese Institute for Brain Research, Beijing 102206, PR China
| |
Collapse
|
86
|
Bottom-Tanzer S, Corella S, Meyer J, Sommer M, Bolaños L, Murphy T, Quiñones S, Heiney S, Shtrahman M, Whalen M, Oren R, Higley MJ, Cardin JA, Noubary F, Armbruster M, Dulla C. Traumatic brain injury disrupts state-dependent functional cortical connectivity in a mouse model. Cereb Cortex 2024; 34:bhae038. [PMID: 38365273 PMCID: PMC11486687 DOI: 10.1093/cercor/bhae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/18/2024] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of death in young people and can cause cognitive and motor dysfunction and disruptions in functional connectivity between brain regions. In human TBI patients and rodent models of TBI, functional connectivity is decreased after injury. Recovery of connectivity after TBI is associated with improved cognition and memory, suggesting an important link between connectivity and functional outcome. We examined widespread alterations in functional connectivity following TBI using simultaneous widefield mesoscale GCaMP7c calcium imaging and electrocorticography (ECoG) in mice injured using the controlled cortical impact (CCI) model of TBI. Combining CCI with widefield cortical imaging provides us with unprecedented access to characterize network connectivity changes throughout the entire injured cortex over time. Our data demonstrate that CCI profoundly disrupts functional connectivity immediately after injury, followed by partial recovery over 3 weeks. Examining discrete periods of locomotion and stillness reveals that CCI alters functional connectivity and reduces theta power only during periods of behavioral stillness. Together, these findings demonstrate that TBI causes dynamic, behavioral state-dependent changes in functional connectivity and ECoG activity across the cortex.
Collapse
Affiliation(s)
- Samantha Bottom-Tanzer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
- MD/PhD Program, Tufts University School of Medicine, Boston, MA 02111, United States
- Neuroscience Program, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, United States
| | - Sofia Corella
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
- MD/PhD Program, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Jochen Meyer
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Mary Sommer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
| | - Luis Bolaños
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Timothy Murphy
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Sadi Quiñones
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
- Neuroscience Program, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, United States
| | - Shane Heiney
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Matthew Shtrahman
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States
| | - Michael Whalen
- Department of Pediatrics, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02115, United States
| | - Rachel Oren
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, United States
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, United States
| | - Michael J Higley
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, United States
| | - Jessica A Cardin
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, United States
| | - Farzad Noubary
- Department of Health Sciences, Northeastern University, Boston, MA 02115, United States
| | - Moritz Armbruster
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
| | - Chris Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
| |
Collapse
|
87
|
Zugman A, Ringlein GV, Finn ES, Lewis KM, Berman E, Silverman WK, Lebowitz ER, Pine DS, Winkler AM. Brain Functional Connectivity and Anatomical Features as Predictors of Cognitive Behavioral Therapy Outcome for Anxiety in Youths. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.29.24301959. [PMID: 38352528 PMCID: PMC10862993 DOI: 10.1101/2024.01.29.24301959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Background Because pediatric anxiety disorders precede the onset of many other problems, successful prediction of response to the first-line treatment, cognitive-behavioral therapy (CBT), could have major impact. However, existing clinical models are weakly predictive. The current study evaluates whether structural and resting-state functional magnetic resonance imaging can predict post-CBT anxiety symptoms. Methods Two datasets were studied: (A) one consisted of n=54 subjects with an anxiety diagnosis, who received 12 weeks of CBT, and (B) one consisted of n=15 subjects treated for 8 weeks. Connectome Predictive Modeling (CPM) was used to predict treatment response, as assessed with the PARS; additionally we investigated models using anatomical features, instead of functional connectivity. The main analysis included network edges positively correlated with treatment outcome, and age, sex, and baseline anxiety severity as predictors. Results from alternative models and analyses also are presented. Model assessments utilized 1000 bootstraps, resulting in a 95% CI for R2, r and mean absolute error (MAE). Outcomes The main model showed a mean absolute error of approximately 3.5 (95%CI: [3.1-3.8]) points a R2 of 0.08 [-0.14 - 0.26] and r of 0.38 [0.24 - 0.511]. When testing this model in the left-out sample (B) the results were similar, with a MAE of 3.4 [2.8 - 4.7], R2-0.65 [-2.29 - 0.16] and r of 0.4 [0.24 - 0.54]. The anatomical metrics showed a similar pattern, where models rendered overall low R2. Interpretation The analysis showed that models based on earlier promising results failed to predict clinical outcomes. Despite the small sample size, the current study does not support extensive use of CPM to predict outcome in pediatric anxiety.
Collapse
Affiliation(s)
- Andre Zugman
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Grace V. Ringlein
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Emily S. Finn
- Psychological and Brain Sciences, Dartmouth College, 3 Maynard St, Hanover, NH, 03755, USA
| | - Krystal M. Lewis
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Erin Berman
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Wendy K. Silverman
- Child Study Center, Yale University, 230 South Frontage Rd., New Haven, CT 06520, USA
| | - Eli R. Lebowitz
- Child Study Center, Yale University, 230 South Frontage Rd., New Haven, CT 06520, USA
| | - Daniel S. Pine
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Anderson M. Winkler
- Division of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, 1 West University Blvd, Brownsville, TX 78520, USA
| |
Collapse
|
88
|
Adkinson BD, Rosenblatt M, Dadashkarimi J, Tejavibulya L, Jiang R, Noble S, Scheinost D. Brain-phenotype predictions can survive across diverse real-world data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576916. [PMID: 38328100 PMCID: PMC10849571 DOI: 10.1101/2024.01.23.576916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Recent work suggests that machine learning models predicting psychiatric treatment outcomes based on clinical data may fail when applied to unharmonized samples. Neuroimaging predictive models offer the opportunity to incorporate neurobiological information, which may be more robust to dataset shifts. Yet, among the minority of neuroimaging studies that undertake any form of external validation, there is a notable lack of attention to generalization across dataset-specific idiosyncrasies. Research settings, by design, remove the between-site variations that real-world and, eventually, clinical applications demand. Here, we rigorously test the ability of a range of predictive models to generalize across three diverse, unharmonized samples: the Philadelphia Neurodevelopmental Cohort (n=1291), the Healthy Brain Network (n=1110), and the Human Connectome Project in Development (n=428). These datasets have high inter-dataset heterogeneity, encompassing substantial variations in age distribution, sex, racial and ethnic minority representation, recruitment geography, clinical symptom burdens, fMRI tasks, sequences, and behavioral measures. We demonstrate that reproducible and generalizable brain-behavior associations can be realized across diverse dataset features with sample sizes in the hundreds. Results indicate the potential of functional connectivity-based predictive models to be robust despite substantial inter-dataset variability. Notably, for the HCPD and HBN datasets, the best predictions were not from training and testing in the same dataset (i.e., cross-validation) but across datasets. This result suggests that training on diverse data may improve prediction in specific cases. Overall, this work provides a critical foundation for future work evaluating the generalizability of neuroimaging predictive models in real-world scenarios and clinical settings.
Collapse
Affiliation(s)
- Brendan D Adkinson
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Matthew Rosenblatt
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Javid Dadashkarimi
- Department of Radiology, Athinoula. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA, 02129, USA
| | - Link Tejavibulya
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Rongtao Jiang
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Stephanie Noble
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Bioengineering, Northeastern University, Boston, MA, 02120, USA
- Department of Psychology, Northeastern University, Boston, MA, 02115, USA
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Statistics & Data Science, Yale University, New Haven, CT, 06520, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT, 06510, USA
| |
Collapse
|
89
|
Metzen D, Stammen C, Fraenz C, Schlüter C, Johnson W, Güntürkün O, DeYoung CG, Genç E. Investigating robust associations between functional connectivity based on graph theory and general intelligence. Sci Rep 2024; 14:1368. [PMID: 38228689 DOI: 10.1038/s41598-024-51333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/29/2023] [Indexed: 01/18/2024] Open
Abstract
Previous research investigating relations between general intelligence and graph-theoretical properties of the brain's intrinsic functional network has yielded contradictory results. A promising approach to tackle such mixed findings is multi-center analysis. For this study, we analyzed data from four independent data sets (total N > 2000) to identify robust associations amongst samples between g factor scores and global as well as node-specific graph metrics. On the global level, g showed no significant associations with global efficiency or small-world propensity in any sample, but significant positive associations with global clustering coefficient in two samples. On the node-specific level, elastic-net regressions for nodal efficiency and local clustering yielded no brain areas that exhibited consistent associations amongst data sets. Using the areas identified via elastic-net regression in one sample to predict g in other samples was not successful for local clustering and only led to one significant, one-way prediction across data sets for nodal efficiency. Thus, using conventional graph theoretical measures based on resting-state imaging did not result in replicable associations between functional connectivity and general intelligence.
Collapse
Affiliation(s)
- Dorothea Metzen
- Biopsychology, Institute for Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, 44801, Bochum, Germany.
- Institute of Psychology, Department of Educational Sciences and Psychology, TU Dortmund University, 44227, Dortmund, Germany.
| | - Christina Stammen
- Department of Psychology and Neuroscience, Leibniz Research Centre for Working Environment and Human Factors (IfADo), 44139, Dortmund, Germany
| | - Christoph Fraenz
- Department of Psychology and Neuroscience, Leibniz Research Centre for Working Environment and Human Factors (IfADo), 44139, Dortmund, Germany
| | - Caroline Schlüter
- Biopsychology, Institute for Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Wendy Johnson
- Department of Psychology, University of Edinburgh, EH8 9JZ, Edinburgh, UK
| | - Onur Güntürkün
- Biopsychology, Institute for Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Colin G DeYoung
- Department of Psychology, University of Minnesota, 55455, Minneapolis, MN, USA
| | - Erhan Genç
- Department of Psychology and Neuroscience, Leibniz Research Centre for Working Environment and Human Factors (IfADo), 44139, Dortmund, Germany
| |
Collapse
|
90
|
Nugiel T, Demeter DV, Mitchell ME, Garza A, Hernandez AE, Juranek J, Church JA. Brain connectivity and academic skills in English learners. Cereb Cortex 2024; 34:bhad414. [PMID: 38044467 PMCID: PMC10793574 DOI: 10.1093/cercor/bhad414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/11/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
English learners (ELs) are a rapidly growing population in schools in the United States with limited experience and proficiency in English. To better understand the path for EL's academic success in school, it is important to understand how EL's brain systems are used for academic learning in English. We studied, in a cohort of Hispanic middle-schoolers (n = 45, 22F) with limited English proficiency and a wide range of reading and math abilities, brain network properties related to academic abilities. We applied a method for localizing brain regions of interest (ROIs) that are group-constrained, yet individually specific, to test how resting state functional connectivity between regions that are important for academic learning (reading, math, and cognitive control regions) are related to academic abilities. ROIs were selected from task localizers probing reading and math skills in the same participants. We found that connectivity across all ROIs, as well as connectivity of just the cognitive control ROIs, were positively related to measures of reading skills but not math skills. This work suggests that cognitive control brain systems have a central role for reading in ELs. Our results also indicate that an individualized approach for localizing brain function may clarify brain-behavior relationships.
Collapse
Affiliation(s)
- Tehila Nugiel
- Department of Psychology, Florida State University, Tallahassee, FL 32304, United States
| | - Damion V Demeter
- Department of Cognitive Science, University of California San Diego, La Jolla, CA 92037, United States
| | - Mackenzie E Mitchell
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - AnnaCarolina Garza
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, United States
| | - Arturo E Hernandez
- Department of Psychology, University of Houston, Houston, TX 77204, United States
| | - Jenifer Juranek
- Department of Pediatrics, University of Texas Health Science Center, Houston, TX 77225, United States
| | - Jessica A Church
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, United States
- Biomedical Imaging Center, The University of Texas at Austin, Austin, TX 78712, United States
| |
Collapse
|
91
|
Lang J, Yang LZ, Li H. TSP-GNN: a novel neuropsychiatric disorder classification framework based on task-specific prior knowledge and graph neural network. Front Neurosci 2023; 17:1288882. [PMID: 38188031 PMCID: PMC10768162 DOI: 10.3389/fnins.2023.1288882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
Neuropsychiatric disorder (ND) is often accompanied by abnormal functional connectivity (FC) patterns in specific task contexts. The distinctive task-specific FC patterns can provide valuable features for ND classification models using deep learning. However, most previous studies rely solely on the whole-brain FC matrix without considering the prior knowledge of task-specific FC patterns. Insight by the decoding studies on brain-behavior relationship, we develop TSP-GNN, which extracts task-specific prior (TSP) connectome patterns and employs graph neural network (GNN) for disease classification. TSP-GNN was validated using publicly available datasets. Our results demonstrate that different ND types show distinct task-specific connectivity patterns. Compared with the whole-brain node characteristics, utilizing task-specific nodes enhances the accuracy of ND classification. TSP-GNN comprises the first attempt to incorporate prior task-specific connectome patterns and the power of deep learning. This study elucidates the association between brain dysfunction and specific cognitive processes, offering valuable insights into the cognitive mechanism of neuropsychiatric disease.
Collapse
Affiliation(s)
- Jinwei Lang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Li-Zhuang Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Hai Li
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
92
|
Knodt AR, Elliott ML, Whitman ET, Winn A, Addae A, Ireland D, Poulton R, Ramrakha S, Caspi A, Moffitt TE, Hariri AR. Test-retest reliability and predictive utility of a macroscale principal functional connectivity gradient. Hum Brain Mapp 2023; 44:6399-6417. [PMID: 37851700 PMCID: PMC10681655 DOI: 10.1002/hbm.26517] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/23/2023] [Accepted: 09/30/2023] [Indexed: 10/20/2023] Open
Abstract
Mapping individual differences in brain function has been hampered by poor reliability as well as limited interpretability. Leveraging patterns of brain-wide functional connectivity (FC) offers some promise in this endeavor. In particular, a macroscale principal FC gradient that recapitulates a hierarchical organization spanning molecular, cellular, and circuit level features along a sensory-to-association cortical axis has emerged as both a parsimonious and interpretable measure of individual differences in behavior. However, the measurement reliabilities of this FC gradient have not been fully evaluated. Here, we assess the reliabilities of both global and regional principal FC gradient measures using test-retest data from the young adult Human Connectome Project (HCP-YA) and the Dunedin Study. Analyses revealed that the reliabilities of principal FC gradient measures were (1) consistently higher than those for traditional edge-wise FC measures, (2) higher for FC measures derived from general FC (GFC) in comparison with resting-state FC, and (3) higher for longer scan lengths. We additionally examined the relative utility of these principal FC gradient measures in predicting cognition and aging in both datasets as well as the HCP-aging dataset. These analyses revealed that regional FC gradient measures and global gradient range were significantly associated with aging in all three datasets, and moderately associated with cognition in the HCP-YA and Dunedin Study datasets, reflecting contractions and expansions of the cortical hierarchy, respectively. Collectively, these results demonstrate that measures of the principal FC gradient, especially derived using GFC, effectively capture a reliable feature of the human brain subject to interpretable and biologically meaningful individual variation, offering some advantages over traditional edge-wise FC measures in the search for brain-behavior associations.
Collapse
Affiliation(s)
- Annchen R. Knodt
- Department of Psychology and NeuroscienceDuke UniversityDurhamNorth CarolinaUSA
| | - Maxwell L. Elliott
- Department of Psychology, Center for Brain ScienceHarvard UniversityCambridgeMassachusettsUSA
| | - Ethan T. Whitman
- Department of Psychology and NeuroscienceDuke UniversityDurhamNorth CarolinaUSA
| | - Alex Winn
- Department of Psychology and NeuroscienceDuke UniversityDurhamNorth CarolinaUSA
| | - Angela Addae
- Department of Psychology and NeuroscienceDuke UniversityDurhamNorth CarolinaUSA
| | - David Ireland
- Dunedin Multidisciplinary Health and Development Research Unit, Department of PsychologyUniversity of OtagoDunedinNew Zealand
| | - Richie Poulton
- Dunedin Multidisciplinary Health and Development Research Unit, Department of PsychologyUniversity of OtagoDunedinNew Zealand
| | - Sandhya Ramrakha
- Dunedin Multidisciplinary Health and Development Research Unit, Department of PsychologyUniversity of OtagoDunedinNew Zealand
| | - Avshalom Caspi
- Department of Psychology and NeuroscienceDuke UniversityDurhamNorth CarolinaUSA
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNorth CarolinaUSA
- Institute of Psychiatry, Psychology, and NeuroscienceKing's College LondonLondonUK
| | - Terrie E. Moffitt
- Department of Psychology and NeuroscienceDuke UniversityDurhamNorth CarolinaUSA
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNorth CarolinaUSA
- Institute of Psychiatry, Psychology, and NeuroscienceKing's College LondonLondonUK
| | - Ahmad R. Hariri
- Department of Psychology and NeuroscienceDuke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
93
|
Mummaneni A, Kardan O, Stier AJ, Chamberlain TA, Chao AF, Berman MG, Rosenberg MD. Functional brain connectivity predicts sleep duration in youth and adults. Hum Brain Mapp 2023; 44:6293-6307. [PMID: 37916784 PMCID: PMC10681648 DOI: 10.1002/hbm.26488] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 11/03/2023] Open
Abstract
Sleep is critical to a variety of cognitive functions and insufficient sleep can have negative consequences for mood and behavior across the lifespan. An important open question is how sleep duration is related to functional brain organization which may in turn impact cognition. To characterize the functional brain networks related to sleep across youth and young adulthood, we analyzed data from the publicly available Human Connectome Project (HCP) dataset, which includes n-back task-based and resting-state fMRI data from adults aged 22-35 years (task n = 896; rest n = 898). We applied connectome-based predictive modeling (CPM) to predict participants' mean sleep duration from their functional connectivity patterns. Models trained and tested using 10-fold cross-validation predicted self-reported average sleep duration for the past month from n-back task and resting-state connectivity patterns. We replicated this finding in data from the 2-year follow-up study session of the Adolescent Brain Cognitive Development (ABCD) Study, which also includes n-back task and resting-state fMRI for adolescents aged 11-12 years (task n = 786; rest n = 1274) as well as Fitbit data reflecting average sleep duration per night over an average duration of 23.97 days. CPMs trained and tested with 10-fold cross-validation again predicted sleep duration from n-back task and resting-state functional connectivity patterns. Furthermore, demonstrating that predictive models are robust across independent datasets, CPMs trained on rest data from the HCP sample successfully generalized to predict sleep duration in the ABCD Study sample and vice versa. Thus, common resting-state functional brain connectivity patterns reflect sleep duration in youth and young adults.
Collapse
Affiliation(s)
| | - Omid Kardan
- Department of PsychologyThe University of ChicagoChicagoIllinoisUSA
- Department of PsychiatryUniversity of MichiganAnn ArborMichiganUSA
| | - Andrew J. Stier
- Department of PsychologyThe University of ChicagoChicagoIllinoisUSA
| | - Taylor A. Chamberlain
- Department of PsychologyThe University of ChicagoChicagoIllinoisUSA
- Department of PsychologyColumbia UniversityNew YorkNew YorkUSA
| | - Alfred F. Chao
- Department of PsychologyThe University of ChicagoChicagoIllinoisUSA
| | - Marc G. Berman
- Department of PsychologyThe University of ChicagoChicagoIllinoisUSA
- Neuroscience InstituteThe University of ChicagoChicagoIllinoisUSA
| | - Monica D. Rosenberg
- Department of PsychologyThe University of ChicagoChicagoIllinoisUSA
- Neuroscience InstituteThe University of ChicagoChicagoIllinoisUSA
| |
Collapse
|
94
|
Zhang H, Chen K, Bao J, Wu H. Oxytocin enhances the triangular association among behavior, resting-state, and task-state functional connectivity. Hum Brain Mapp 2023; 44:6074-6089. [PMID: 37771300 PMCID: PMC10619367 DOI: 10.1002/hbm.26498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Considerable advances in the role of oxytocin (OT) effect on behavior and the brain network have been made, but the effect of OT on the association between inter-individual differences in functional connectivity (FC) and behavior is elusive. Here, by using a face-perception task and multiple connectome-based predictive models, we aimed to (1) determine whether OT could enhance the association among behavioral performance, resting-state FC (rsFC), and task-state FC (tsFC) and (2) if so, explore the role of OT in enhancing this triangular association. We found that in the OT group, the prediction performance of using rsFC or tsFC to predict task behavior was higher than that of the PL group. Additionally, the correlation coefficient between rsFC and tsFC was substantially higher in the OT group than in the PL group. The strength of these associations could be partly explained by OT altering the brain's FCs related to social cognition and face perception in both the resting and task states, mainly in brain regions such as the limbic system, prefrontal cortex, temporal poles, and temporoparietal junction. Taken together, these results provide novel evidence and a corresponding mechanism for how neuropeptides cause increased associations among inter-individual differences across different levels (e.g., behavior and large-scale brain networks in both resting and task-state), and may inspire future research on the role of neuropeptides in the cross levels association of both clinical and nonclinical use.
Collapse
Affiliation(s)
- Haoming Zhang
- Centre for Cognitive and Brain Sciences and Department of PsychologyUniversity of MacauMacauChina
| | - Kun Chen
- Centre for Cognitive and Brain Sciences and Department of PsychologyUniversity of MacauMacauChina
| | - Jin Bao
- Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced TechnologyChinese Academy of Sciences (CAS)ShenzhenChina
- Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenChina
| | - Haiyan Wu
- Centre for Cognitive and Brain Sciences and Department of PsychologyUniversity of MacauMacauChina
| |
Collapse
|
95
|
da Silva Castanheira J, Wiesman AI, Hansen JY, Misic B, Baillet S, PREVENT-AD Research Group, Quebec Parkinson Network. The neurophysiological brain-fingerprint of Parkinson's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.03.23285441. [PMID: 36798232 PMCID: PMC9934726 DOI: 10.1101/2023.02.03.23285441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
In this study, we investigate the clinical potential of brain-fingerprints derived from electrophysiological brain activity for diagnostics and progression monitoring of Parkinson's disease (PD). We obtained brain-fingerprints from PD patients and age-matched healthy controls using short, task-free magnetoencephalographic recordings. The rhythmic components of the individual brain-fingerprint distinguished between patients and healthy participants with approximately 90% accuracy. The most prominent cortical features of the Parkinson's brain-fingerprint mapped to polyrhythmic activity in unimodal sensorimotor regions. Leveraging these features, we also show that Parkinson's disease stages can be decoded directly from cortical neurophysiological activity. Additionally, our study reveals that the cortical topography of the Parkinson's brain-fingerprint aligns with that of neurotransmitter systems affected by the disease's pathophysiology. We further demonstrate that the arrhythmic components of cortical activity are more variable over short periods of time in patients with Parkinson's disease than in healthy controls, making individual differentiation between patients based on these features more challenging and explaining previous negative published results. Overall, we outline patient-specific rhythmic brain signaling features that provide insights into both the neurophysiological signature and clinical staging of Parkinson's disease. For this reason, the proposed definition of a rhythmic brain-fingerprint of Parkinson's disease may contribute to novel, refined approaches to patient stratification and to the improved identification and testing of therapeutic neurostimulation targets.
Collapse
Affiliation(s)
| | - Alex I. Wiesman
- Montreal Neurological Institute, McGill University, Montreal QC, Canada
| | - Justine Y. Hansen
- Montreal Neurological Institute, McGill University, Montreal QC, Canada
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, Montreal QC, Canada
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal QC, Canada
| | | | | |
Collapse
|
96
|
Brindley SR, Skyberg AM, Graves AJ, Connelly JJ, Puglia MH, Morris JP. Functional brain connectivity during social attention predicts individual differences in social skill. Soc Cogn Affect Neurosci 2023; 18:nsad055. [PMID: 37930994 PMCID: PMC10630402 DOI: 10.1093/scan/nsad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/10/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023] Open
Abstract
Social attention involves selectively attending to and encoding socially relevant information. We investigated the neural systems underlying the wide range of variability in both social attention ability and social experience in a neurotypical sample. Participants performed a selective social attention task, while undergoing fMRI and completed self-report measures of social functioning. Using connectome-based predictive modeling, we demonstrated that individual differences in whole-brain functional connectivity patterns during selective attention to faces predicted task performance. Individuals with more cerebellar-occipital connectivity performed better on the social attention task, suggesting more efficient social information processing. Then, we estimated latent communities of autistic and socially anxious traits using exploratory graph analysis to decompose heterogeneity in social functioning between individuals. Connectivity strength within the identified social attention network was associated with social skills, such that more temporal-parietal connectivity predicted fewer challenges with social communication and interaction. These findings demonstrate that individual differences in functional connectivity strength during a selective social attention task are related to varying levels of self-reported social skill.
Collapse
Affiliation(s)
- Samantha R Brindley
- University of Virginia Department of Psychology, Charlottesville, VA 22904, USA
| | - Amalia M Skyberg
- University of Virginia Department of Psychology, Charlottesville, VA 22904, USA
| | - Andrew J Graves
- University of Virginia Department of Psychology, Charlottesville, VA 22904, USA
| | - Jessica J Connelly
- University of Virginia Department of Psychology, Charlottesville, VA 22904, USA
| | | | - James P Morris
- University of Virginia Department of Psychology, Charlottesville, VA 22904, USA
- University of Virginia Department of Neurology, Charlottesville, VA 22908, USA
| |
Collapse
|
97
|
Heckner MK, Cieslik EC, Paas Oliveros LK, Eickhoff SB, Patil KR, Langner R. Predicting executive functioning from brain networks: modality specificity and age effects. Cereb Cortex 2023; 33:10997-11009. [PMID: 37782935 PMCID: PMC10646699 DOI: 10.1093/cercor/bhad338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 10/04/2023] Open
Abstract
Healthy aging is associated with structural and functional network changes in the brain, which have been linked to deterioration in executive functioning (EF), while their neural implementation at the individual level remains unclear. As the biomarker potential of individual resting-state functional connectivity (RSFC) patterns has been questioned, we investigated to what degree individual EF abilities can be predicted from the gray-matter volume (GMV), regional homogeneity, fractional amplitude of low-frequency fluctuations (fALFF), and RSFC within EF-related, perceptuo-motor, and whole-brain networks in young and old adults. We examined whether the differences in out-of-sample prediction accuracy were modality-specific and depended on age or task-demand levels. Both uni- and multivariate analysis frameworks revealed overall low prediction accuracies and moderate-to-weak brain-behavior associations (R2 < 0.07, r < 0.28), further challenging the idea of finding meaningful markers for individual EF performance with the metrics used. Regional GMV, well linked to overall atrophy, carried the strongest information about individual EF differences in older adults, whereas fALFF, measuring functional variability, did so for younger adults. Our study calls for future research analyzing more global properties of the brain, different task-states and applying adaptive behavioral testing to result in sensitive predictors for young and older adults, respectively.
Collapse
Affiliation(s)
- Marisa K Heckner
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, 52425 Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Edna C Cieslik
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, 52425 Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Lya K Paas Oliveros
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, 52425 Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, 52425 Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, 52425 Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Robert Langner
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, 52425 Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| |
Collapse
|
98
|
Liu X, Yang L. Individual differences in the language task-evoked and resting-state functional networks. Front Hum Neurosci 2023; 17:1283069. [PMID: 38021226 PMCID: PMC10656779 DOI: 10.3389/fnhum.2023.1283069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/29/2023] [Indexed: 12/01/2023] Open
Abstract
The resting state functional network is highly variable across individuals. However, inter-individual differences in functional networks evoked by language tasks and their comparison with resting state are still unclear. To address these two questions, we used T1 anatomical data and functional brain imaging data of resting state and a story comprehension task from the Human Connectome Project (HCP) to characterize functional network variability and investigate the uniqueness of the functional network in both task and resting states. We first demonstrated that intrinsic and task-induced functional networks exhibited remarkable differences across individuals, and language tasks can constrain inter-individual variability in the functional brain network. Furthermore, we found that the inter-individual variability of functional networks in two states was broadly consistent and spatially heterogeneous, with high-level association areas manifesting more significant variability than primary visual processing areas. Our results suggested that the functional network underlying language comprehension is unique at the individual level, and the inter-individual variability architecture of the functional network is broadly consistent in language task and resting state.
Collapse
Affiliation(s)
- Xin Liu
- Air Force Medical Center, Air Force Medical University, Beijing, China
| | - Liu Yang
- Air Force Medical Center, Air Force Medical University, Beijing, China
| |
Collapse
|
99
|
Yip SW, Lichenstein SD, Liang Q, Chaarani B, Dager A, Pearlson G, Banaschewski T, Bokde ALW, Desrivières S, Flor H, Grigis A, Gowland P, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, Nees F, Orfanos DP, Paus T, Poustka L, Hohmann S, Millenet S, Fröhner JH, Smolka MN, Vaidya N, Walter H, Whelan R, Schumann G, Garavan H. Brain Networks and Adolescent Alcohol Use. JAMA Psychiatry 2023; 80:1131-1141. [PMID: 37647053 PMCID: PMC10469292 DOI: 10.1001/jamapsychiatry.2023.2949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/15/2023] [Indexed: 09/01/2023]
Abstract
Importance Alcohol misuse in adolescence is a leading cause of disability and mortality in youth and is associated with higher risk for alcohol use disorder. Brain mechanisms underlying risk of alcohol misuse may inform prevention and intervention efforts. Objective To identify neuromarkers of alcohol misuse using a data-driven approach, with specific consideration of neurodevelopmental sex differences. Design, Setting, and Participants Longitudinal multisite functional magnetic resonance imaging (fMRI) data collected at ages 14 and 19 years were used to assess whole-brain patterns of functional organization associated with current and future alcohol use risk as measured by the Alcohol Use Disorder Identification Test (AUDIT). Primary data were collected by the IMAGEN consortium, a European multisite study of adolescent neurodevelopment. Model generalizability was further tested using data acquired in a single-site study of college alcohol consumption conducted in the US. The primary sample was a developmental cohort of 1359 adolescents with neuroimaging, phenotyping, and alcohol use data. Model generalizability was further assessed in a separate cohort of 114 individuals. Main Outcomes and Measures Brain-behavior model accuracy, as defined by the correspondence between model-predicted and actual AUDIT scores in held-out testing data, Bonferroni corrected across the number of models run at each time point, 2-tailed α < .008, as determined via permutation testing. Results Among 1359 individuals in the study, the mean (SD) age was 14.42 (0.40) years, and 729 individuals (54%) were female. The data-driven, whole-brain connectivity approach identified networks associated with vulnerability for future and current AUDIT-defined alcohol use risk (primary outcome, as specified above, future: ρ, 0.22; P < .001 and present: ρ, 0.27; P < .001). Results further indicated sex divergence in the accuracies of brain-behavior models, such that female-only models consistently outperformed male-only models. Specifically, female-only models identified networks conferring vulnerability for future and current severity using data acquired during both reward and inhibitory fMRI tasks. In contrast, male-only models were successful in accurately identifying networks using data acquired during the inhibitory control-but not reward-task, indicating domain specificity of alcohol use risk networks in male adolescents only. Conclusions and Relevance These data suggest that interventions focusing on inhibitory control processes may be effective in combating alcohol use risk in male adolescents but that both inhibitory and reward-related processes are likely of relevance to alcohol use behaviors in female adolescents. They further identify novel networks of alcohol use risk in youth, which may be used to identify adolescents who are at risk and inform intervention efforts.
Collapse
Affiliation(s)
- Sarah W. Yip
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, Connecticut
- Child Study Center, Yale School of Medicine, New Haven, Connecticut
| | - Sarah D. Lichenstein
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Qinghao Liang
- Department of Biomedical Engineering, Yale School of Medicine, New Haven, Connecticut
| | - Bader Chaarani
- Department of Psychiatry, University of Vermont, Burlington
| | - Alecia Dager
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Godfrey Pearlson
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, Connecticut
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Arun L. W. Bokde
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, United Kingdom
| | - Sylvane Desrivières
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, United Kingdom
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Antoine Grigis
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy Campus Charité Mitte, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 Trajectoires développementales & psychiatrie, University Paris-Saclay, University Paris Cité, CNRS, Ecole Normale Supérieure Paris-Saclay, Centre Borelli, Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 Trajectoires développementales & psychiatrie, University Paris-Saclay, CNRS, Ecole Normale Supérieure Paris-Saclay, Centre Borelli, Gif-sur-Yvette, and AP-HP, Sorbonne University, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 Trajectoires développementales & psychiatrie, University Paris-Saclay, CNRS, Ecole Normale Supérieure Paris-Saclay, Centre Borelli, Gif-sur-Yvette, and Psychiatry Department, EPS Barthélémy Durand, Etampes, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | | | - Tomáš Paus
- Department of Psychiatry, Faculty of Medicine and Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Juliane H. Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N. Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine, Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Germany
| | - Henrik Walter
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine, Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine, Institute for Science and Technology of Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont, Burlington
- Department of Psychology, University of Vermont, Burlington
| |
Collapse
|
100
|
Misaki M, Tsuchiyagaito A, Guinjoan SM, Rohan ML, Paulus MP. Trait repetitive negative thinking in depression is associated with functional connectivity in negative thinking state rather than resting state. J Affect Disord 2023; 340:843-854. [PMID: 37582464 PMCID: PMC10528904 DOI: 10.1016/j.jad.2023.08.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/17/2023]
Abstract
Resting-state functional connectivity (RSFC) has been proposed as a potential indicator of repetitive negative thinking (RNT) in depression. However, identifying the specific functional process associated with RSFC alterations is challenging, and it remains unclear whether alterations in RSFC for depressed individuals are directly related to the RNT process or to individual characteristics distinct from the negative thinking process per se. To investigate the relationship between RSFC alterations and the RNT process in individuals with major depressive disorder (MDD), we compared RSFC with functional connectivity during an induced negative-thinking state (NTFC) in terms of their predictability of RNT traits and associated whole-brain connectivity patterns using connectome-based predictive modeling (CPM) and connectome-wide association (CWA) analyses. Thirty-six MDD participants and twenty-six healthy control participants underwent both resting state and induced negative thinking state fMRI scans. Both RSFC and NTFC distinguished between healthy and depressed individuals with CPM. However, trait RNT in depressed individuals, as measured by the Ruminative Responses Scale-Brooding subscale, was only predictable from NTFC, not from RSFC. CWA analysis revealed that negative thinking in depression was associated with higher functional connectivity between the default mode and executive control regions, which was not observed in RSFC. These findings suggest that RNT in depression involves an active mental process encompassing multiple brain regions across functional networks, which is not represented in the resting state. Although RSFC indicates brain functional alterations in MDD, they may not directly reflect the negative thinking process.
Collapse
Affiliation(s)
- Masaya Misaki
- Laureate Institute for Brain Research, Tulsa, OK, USA; Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA.
| | - Aki Tsuchiyagaito
- Laureate Institute for Brain Research, Tulsa, OK, USA; Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| | - Salvador M Guinjoan
- Laureate Institute for Brain Research, Tulsa, OK, USA; Department of Psychiatry, Oklahoma University Health Sciences Center at Tulsa, Tulsa, OK, USA
| | | | | |
Collapse
|