51
|
Imlay LS, Lawong AK, Gahalawat S, Kumar A, Xing C, Mittal N, Wittlin S, Churchyard A, Niederstrasser H, Crespo-Fernandez B, Posner BA, Gamo FJ, Baum J, Winzeler EA, LALEU B, Ready JM, Phillips MA. Fast-Killing Tyrosine Amide (( S)-SW228703) with Blood- and Liver-Stage Antimalarial Activity Associated with the Cyclic Amine Resistance Locus ( PfCARL). ACS Infect Dis 2023; 9:527-539. [PMID: 36763526 PMCID: PMC10053980 DOI: 10.1021/acsinfecdis.2c00527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Current malaria treatments are threatened by drug resistance, and new drugs are urgently needed. In a phenotypic screen for new antimalarials, we identified (S)-SW228703 ((S)-SW703), a tyrosine amide with asexual blood and liver stage activity and a fast-killing profile. Resistance to (S)-SW703 is associated with mutations in the Plasmodium falciparum cyclic amine resistance locus (PfCARL) and P. falciparum acetyl CoA transporter (PfACT), similarly to several other compounds that share features such as fast activity and liver-stage activity. Compounds with these resistance mechanisms are thought to act in the ER, though their targets are unknown. The tyramine of (S)-SW703 is shared with some reported PfCARL-associated compounds; however, we observed that strict S-stereochemistry was required for the activity of (S)-SW703, suggesting differences in the mechanism of action or binding mode. (S)-SW703 provides a new chemical series with broad activity for multiple life-cycle stages and a fast-killing mechanism of action, available for lead optimization to generate new treatments for malaria.
Collapse
Affiliation(s)
- Leah S. Imlay
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Aloysus K. Lawong
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Suraksha Gahalawat
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Nimisha Mittal
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, 4002, Basel, Switzerland
- University of Basel, 4002, Basel, Switzerland
| | - Alisje Churchyard
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Hanspeter Niederstrasser
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - Bruce A. Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - Jake Baum
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
- School of Biomedical Sciences, University of New South Wales, Kensington, NSW, Australia
| | - Elizabeth A. Winzeler
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Benoît LALEU
- Medicines for Malaria Venture, 1215 Geneva 15, Switzerland
| | - Joseph M. Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Margaret A. Phillips
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
52
|
Willems A, Kalaw A, Ecer A, Kotwal A, Roepe LD, Roepe PD. Structures of Plasmodium falciparum Chloroquine Resistance Transporter (PfCRT) Isoforms and Their Interactions with Chloroquine. Biochemistry 2023; 62:1093-1110. [PMID: 36800498 PMCID: PMC10950298 DOI: 10.1021/acs.biochem.2c00669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/02/2023] [Indexed: 02/19/2023]
Abstract
Using a recently elucidated atomic-resolution cryogenic electron microscopy (cryo-EM) structure for the Plasmodium falciparum chloroquine resistance transporter (PfCRT) protein 7G8 isoform as template [Kim, J.; Nature 2019, 576, 315-320], we use Monte Carlo molecular dynamics (MC/MD) simulations of PfCRT embedded in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membrane to solve energy-minimized structures for 7G8 PfCRT and two additional PfCRT isoforms that harbor 5 or 7 amino acid substitutions relative to 7G8 PfCRT. Guided by drug binding previously defined using chloroquine (CQ) photoaffinity probe labeling, we also use MC/MD energy minimization to elucidate likely CQ binding geometries for the three membrane-embedded isoforms. We inventory salt bridges and hydrogen bonds in these structures and summarize how the limited changes in primary sequence subtly perturb local PfCRT isoform structure. In addition, we use the "AlphaFold" artificial intelligence AlphaFold2 (AF2) algorithm to solve for domain structure that was not resolved in the previously reported 7G8 PfCRT cryo-EM structure, and perform MC/MD energy minimization for the membrane-embedded AF2 structures of all three PfCRT isoforms. We compare energy-minimized structures generated using cryo-EM vs AF2 templates. The results suggest how amino acid substitutions in drug resistance-associated isoforms of PfCRT influence PfCRT structure and CQ transport.
Collapse
Affiliation(s)
| | | | - Ayse Ecer
- Departments of Chemistry
and Biochemistry and Cellular and Molecular Biology, Georgetown University, 37th and O Streets NW, Washington, District of Columbia 20057, United States
| | - Amitesh Kotwal
- Departments of Chemistry
and Biochemistry and Cellular and Molecular Biology, Georgetown University, 37th and O Streets NW, Washington, District of Columbia 20057, United States
| | | | - Paul D. Roepe
- Departments of Chemistry
and Biochemistry and Cellular and Molecular Biology, Georgetown University, 37th and O Streets NW, Washington, District of Columbia 20057, United States
| |
Collapse
|
53
|
Deng C, Wu W, Yuan Y, Li G, Zhang H, Zheng S, Li M, Tan R, Wang Y, Nadia J, Feng D, Li D, Wu Z, Xu Q, Li C, Wang Z, Liang Y, Doehl JSP, Su X, Bacar A, Said Abdallah K, Mohamed H, Msa Mliva A, Wellems TE, Song J. Malaria Control by Mass Drug Administration With Artemisinin Plus Piperaquine on Grande Comore Island, Union of Comoros. Open Forum Infect Dis 2023; 10:ofad076. [PMID: 36910690 PMCID: PMC10003749 DOI: 10.1093/ofid/ofad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Background Mass drug administration (MDA) is a powerful tool for malaria control, but the medicines to use, dosing, number of rounds, and potential selection of drug resistance remain open questions. Methods Two monthly rounds of artemisinin-piperaquine (AP), each comprising 2 daily doses, were administered across the 7 districts of Grande Comore Island. In 3 districts, low-dose primaquine (PMQLD) was also given on the first day of each monthly round. Plasmodium falciparum malaria rates, mortality, parasitemias, adverse events, and genetic markers of potential drug resistance were evaluated. Results Average population coverages of 80%-82% were achieved with AP in 4 districts (registered population 258 986) and AP + PMQLD in 3 districts (83 696). The effectiveness of MDA was 96.27% (95% confidence interval [CI], 95.27%-97.06%; P < .00001) in the 4 AP districts and 97.46% (95% CI, 94.54%-98.82%; P < .00001) in the 3 AP + PMQLD districts. In comparative statistical modeling, the effectiveness of the 2 monthly rounds on Grande Comore Island was nearly as high as that of 3 monthly rounds of AP or AP + PMQLD in our earlier study on Anjouan Island. Surveys of pre-MDA and post-MDA samples showed no significant changes in PfK13 polymorphism rates, and no PfCRT mutations previously linked to piperaquine resistance in Southeast Asia were identified. Conclusions MDA with 2 monthly rounds of 2 daily doses of AP was highly effective on Grande Comore Island. The feasibility and lower expense of this 2-month versus 3-month regimen of AP may offer advantages for MDA programs in appropriate settings.
Collapse
Affiliation(s)
- Changsheng Deng
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Wanting Wu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Yueming Yuan
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Guoming Li
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Hongying Zhang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Shaoqin Zheng
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Mingqiang Li
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Ruixiang Tan
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Yuxin Wang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Julie Nadia
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Danhong Feng
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Di Li
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Zhibing Wu
- First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Qin Xu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Changqing Li
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Zhenhua Wang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Yuan Liang
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Johannes S P Doehl
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Xinzhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Affane Bacar
- National Malaria Center of The Union of Comoros, Moroni, The Union of Comoros
| | - Kamal Said Abdallah
- National Malaria Center of The Union of Comoros, Moroni, The Union of Comoros
| | - Hafidhou Mohamed
- National Malaria Center of The Union of Comoros, Moroni, The Union of Comoros
| | - Ahamada Msa Mliva
- National Malaria Center of The Union of Comoros, Moroni, The Union of Comoros
| | - Thomas E Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jianping Song
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
54
|
Insight into molecular diagnosis for antimalarial drug resistance of Plasmodium falciparum parasites: A review. Acta Trop 2023; 241:106870. [PMID: 36849091 DOI: 10.1016/j.actatropica.2023.106870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Malaria is an infectious disease transmitted by the female Anopheles mosquito and poses a severe threat to human health. At present, antimalarial drugs are the primary treatment for malaria. The widespread use of artemisinin-based combination therapies (ACTs) has dramatically reduced the number of malaria-related deaths; however, the emergence of resistance has the potential to reverse this progress. Accurate and timely diagnosis of drug-resistant strains of Plasmodium parasites via detecting molecular markers (such as Pfnhe1, Pfmrp, Pfcrt, Pfmdr1, Pfdhps, Pfdhfr, and Pfk13) is essential for malaria control and elimination. Here, we review the current techniques which commonly used for molecular diagnosis of antimalarial resistance in P. falciparum and discuss their sensitivities and specificities for different drug resistance-associated molecular markers, with the aim of providing insights into possible directions for future precise point-of-care testing (POCT) of antimalarial drug resistance of malaria parasites.
Collapse
|
55
|
Kattenberg JH, Fernandez-Miñope C, van Dijk NJ, Llacsahuanga Allcca L, Guetens P, Valdivia HO, Van geertruyden JP, Rovira-Vallbona E, Monsieurs P, Delgado-Ratto C, Gamboa D, Rosanas-Urgell A. Malaria Molecular Surveillance in the Peruvian Amazon with a Novel Highly Multiplexed Plasmodium falciparum AmpliSeq Assay. Microbiol Spectr 2023; 11:e0096022. [PMID: 36840586 PMCID: PMC10101074 DOI: 10.1128/spectrum.00960-22] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/02/2022] [Indexed: 02/24/2023] Open
Abstract
Molecular surveillance for malaria has great potential to support national malaria control programs (NMCPs). To bridge the gap between research and implementation, several applications (use cases) have been identified to align research, technology development, and public health efforts. For implementation at NMCPs, there is an urgent need for feasible and cost-effective tools. We designed a new highly multiplexed deep sequencing assay (Pf AmpliSeq), which is compatible with benchtop sequencers, that allows high-accuracy sequencing with higher coverage and lower cost than whole-genome sequencing (WGS), targeting genomic regions of interest. The novelty of the assay is its high number of targets multiplexed into one easy workflow, combining population genetic markers with 13 nearly full-length resistance genes, which is applicable for many different use cases. We provide the first proof of principle for hrp2 and hrp3 deletion detection using amplicon sequencing. Initial sequence data processing can be performed automatically, and subsequent variant analysis requires minimal bioinformatic skills using any tabulated data analysis program. The assay was validated using a retrospective sample collection (n = 254) from the Peruvian Amazon between 2003 and 2018. By combining phenotypic markers and a within-country 28-single-nucleotide-polymorphism (SNP) barcode, we were able to distinguish different lineages with multiple resistance haplotypes (in dhfr, dhps, crt and mdr1) and hrp2 and hrp3 deletions, which have been increasing in recent years. We found no evidence to suggest the emergence of artemisinin (ART) resistance in Peru. These findings indicate a parasite population that is under drug pressure but is susceptible to current antimalarials and demonstrate the added value of a highly multiplexed molecular tool to inform malaria strategies and surveillance systems. IMPORTANCE While the power of next-generation sequencing technologies to inform and guide malaria control programs has become broadly recognized, the integration of genomic data for operational incorporation into malaria surveillance remains a challenge in most countries where malaria is endemic. The main obstacles include limited infrastructure, limited access to high-throughput sequencing facilities, and the need for local capacity to run an in-country analysis of genomes at a large-enough scale to be informative for surveillance. In addition, there is a lack of standardized laboratory protocols and automated analysis pipelines to generate reproducible and timely results useful for relevant stakeholders. With our standardized laboratory and bioinformatic workflow, malaria genetic surveillance data can be readily generated by surveillance researchers and malaria control programs in countries of endemicity, increasing ownership and ensuring timely results for informed decision- and policy-making.
Collapse
Affiliation(s)
| | - Carlos Fernandez-Miñope
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Norbert J. van Dijk
- Institute of Tropical Medicine Antwerp, Biomedical Sciences Department, Antwerp, Belgium
| | - Lidia Llacsahuanga Allcca
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Pieter Guetens
- Institute of Tropical Medicine Antwerp, Biomedical Sciences Department, Antwerp, Belgium
| | - Hugo O. Valdivia
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | | | - Eduard Rovira-Vallbona
- Institute of Tropical Medicine Antwerp, Biomedical Sciences Department, Antwerp, Belgium
| | - Pieter Monsieurs
- Institute of Tropical Medicine Antwerp, Biomedical Sciences Department, Antwerp, Belgium
| | - Christopher Delgado-Ratto
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Anna Rosanas-Urgell
- Institute of Tropical Medicine Antwerp, Biomedical Sciences Department, Antwerp, Belgium
| |
Collapse
|
56
|
A Plasmodium falciparum RING Finger E3 Ubiquitin Ligase Modifies the Roles of PfMDR1 and PfCRT in Parasite Drug Responses. Antimicrob Agents Chemother 2023; 67:e0082122. [PMID: 36625569 PMCID: PMC9933707 DOI: 10.1128/aac.00821-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Protein ubiquitination is an important posttranslational regulation mechanism that mediates Plasmodium development and modifies parasite responses to antimalarial drugs. Although mutations in several parasite ubiquitination enzymes have been linked to increased drug tolerance, the molecular mechanisms by which ubiquitination pathways mediate these parasite responses remain largely unknown. Here, we investigate the roles of a Plasmodium falciparum ring finger ubiquitin ligase (PfRFUL) in parasite development and in responses to antimalarial drugs. We engineered a transgenic parasite having the Pfrful gene tagged with an HA-2A-NeoR-glmS sequence to knockdown (KD) Pfrful expression using glucosamine (GlcN). A Western blot analysis of the proteins from GlcN-treated pSLI-HA-NeoR-glmS-tagged (PfRFULg) parasites, relative to their wild-type (Dd2) controls, showed changes in the ubiquitination of numerous proteins. PfRFUL KD rendered the parasites more sensitive to multiple antimalarial drugs, including mefloquine, piperaquine, amodiaquine, and dihydroartemisinin. PfRFUL KD also decreased the protein level of the P. falciparum multiple drug resistance 1 protein (PfMDR1) and altered the ratio of two bands of the P. falciparum chloroquine resistance transporter (PfCRT), suggesting contributions to the changed drug responses by the altered ubiquitination of these two molecules. The inhibition of proteasomal protein degradation by epoxomicin increased the PfRFUL level, suggesting the degradation of PfRFUL by the proteasome pathways, whereas the inhibition of E3 ubiquitin ligase activities by JNJ26854165 reduced the PfRFUL level. This study reveals the potential mechanisms of PfRFUL in modifying the expression of drug transporters and their roles in parasite drug responses. PfRFUL could be a potential target for antimalarial drug development.
Collapse
|
57
|
Rana R, Khan N, Sandeepta S, Pati S, Das A, Bal M, Ranjit M. Molecular surveillance of anti-malarial drug resistance genes in Plasmodium falciparum isolates in Odisha, India. Malar J 2022; 21:394. [PMID: 36566182 PMCID: PMC9790123 DOI: 10.1186/s12936-022-04403-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/25/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Despite significant progress in eliminating malaria from the state of Odisha, India, the disease is still considered endemic. Artesunate plus sulfadoxine-pyrimethamine (AS + SP) has been introduced since 2010 as first-line treatment for uncomplicated Plasmodium falciparum malaria. This study aimed to investigate the prevalence of mutations associated with resistance to chloroquine (CQ), sulfadoxine-pyrimethamine (SP), and artesunate (ART) in P. falciparum parasites circulating in the state. METHODS A total of 239 isolates of P. falciparum mono infection were collected during July 2018-November 2020 from the four different geographical regions of the state. Genomic DNA was extracted from 200 µL of venous blood and amplified using nested polymerase chain reaction. Mutations on gene associated with CQ (Pfcrt and Pfmdr1) were assessed by PCR amplification and restriction fragment length polymorphism, artemisinin (Pfk13) gene by DNA sequencing and SP (Pfdhfr and Pfdhps) genes by allele-specific polymerase chain reaction (AsPCR). RESULTS The point mutation in Pfcrt (K76T) was detected 2.1%, in Pfmdr1 (N86Y) 3.4%, and no mutations were found in Pfkelch13 propeller domain. Prevalence of Pfdhfr, Pfdhps and Pfhdfr-Pfdhps (two locus) gene mutations were 50.43%, 47.05% and 49.79% respectively. The single, double, triple and quadruple point mutations in Pfdhfr gene was 11.2%, 8.2%, 17.2% and 3.4% while, in Pfdhps gene was 10.9%,19.5%, 9.5% and 2.7% respectively. Of the total 13 haplotypes found in Pfdhfr, 8 were detected for the first time in the state and of the total 26 haplotypes found in Pfdhps, 7 were detected for the fisrt time in the state. The linked quintuple mutation Pfdhfr (N51I-C59R-S108N)-Pfdhps (A437G-K540E) responsible for clinical failure (RIII level of resistance) of SP resistance and A16V-S108T mutation in Pfdhfr responsible for cycloguanil was absent. CONCLUSION The study has demonstrated a low prevalence of CQ resistance alleles in the study area. Despite the absence of the Pfkelch13 mutations, high prevalence of Pfdhfr and Pfdhps point mutations undermine the efficacy of SP partner drug, thereby threatening the P. falciparum malaria treatment policy. Therefore, continuous molecular and in vivo monitoring of ACT efficacy is warranted in Odisha.
Collapse
Affiliation(s)
- Ramakanta Rana
- grid.415796.80000 0004 1767 2364Molecular Epidemiology Laboratory, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha 751023 India
| | - Nikhat Khan
- grid.452686.b0000 0004 1767 2217Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh India
| | - Sonali Sandeepta
- grid.415796.80000 0004 1767 2364Molecular Epidemiology Laboratory, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha 751023 India
| | - Sanghamitra Pati
- grid.415796.80000 0004 1767 2364Molecular Epidemiology Laboratory, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha 751023 India
| | - Aparup Das
- grid.452686.b0000 0004 1767 2217Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh India
| | - Madhusmita Bal
- grid.415796.80000 0004 1767 2364Molecular Epidemiology Laboratory, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha 751023 India
| | - Manoranjan Ranjit
- grid.415796.80000 0004 1767 2364Molecular Epidemiology Laboratory, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha 751023 India
| |
Collapse
|
58
|
Duan M, Bai Y, Deng S, Ruan Y, Zeng W, Li X, Wang X, Zhao W, Zhao H, Sun K, Zhu W, Wu Y, Miao J, Kyaw MP, Yang Z, Cui L. Different In Vitro Drug Susceptibility Profile of Plasmodium falciparum Isolates from Two Adjacent Areas of Northeast Myanmar and Molecular Markers for Drug Resistance. Trop Med Infect Dis 2022; 7:tropicalmed7120442. [PMID: 36548697 PMCID: PMC9782301 DOI: 10.3390/tropicalmed7120442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The Greater Mekong Subregion (GMS) is the epicenter of antimalarial drug resistance. We determined in vitro susceptibilities to 11 drugs of culture-adapted Plasmodium falciparum isolates from adjacent areas (Laiza and Muse) along the China−Myanmar border. Parasites from this region were highly resistant to chloroquine and pyrimethamine but relatively sensitive to other antimalarial drugs. Consistently, the Dd2-like pfcrt mutations were fixed or almost fixed in both parasite populations, and new mutations mediating piperaquine resistance were not identified. Similarly, several mutations related to pfdhfr and pfdhps were also highly prevalent. Despite their geographical proximity, malaria parasites from Laiza showed significantly higher in vitro resistance to artemisinin derivatives, naphthoquine, pyronaridine, lumefantrine, and pyrimethamine than parasites from Muse. Likewise, the pfdhfr N51I, pfdhps A581G, pfmrp1 H785N, and pfk13 F446I mutations were significantly more frequent in Laiza than in Muse (p < 0.05). For the pfmdr1 mutations, Y184F was found only in Laiza (70%), whereas F1226Y was identified only in Muse (31.8%). Parasite isolates from Laiza showed a median RSA value of 5.0%, significantly higher than the 2.4% in Muse. Altogether, P. falciparum parasite populations from neighboring regions in the GMS may diverge substantially in their resistance to several antimalarial drugs. This information about different parasite populations will guide antimalarial treatment policies to effectively manage drug resistance during malaria elimination.
Collapse
Affiliation(s)
- Mengxi Duan
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Yao Bai
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Shuang Deng
- Department of Pathology, Kunming Medical University, Kunming 650500, China
| | - Yonghua Ruan
- Department of Pathology, Kunming Medical University, Kunming 650500, China
| | - Weilin Zeng
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Xiaosong Li
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Xun Wang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Wei Zhao
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Hui Zhao
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Kemin Sun
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Wenya Zhu
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Yiman Wu
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL 33612, USA
| | | | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming 650500, China
- Correspondence: (Z.Y.); (L.C.); Tel.: +86-871-68225541 (Z.Y.); +1-(813)-974-9606 (L.C.)
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL 33612, USA
- Correspondence: (Z.Y.); (L.C.); Tel.: +86-871-68225541 (Z.Y.); +1-(813)-974-9606 (L.C.)
| |
Collapse
|
59
|
Mairet-Khedim M, Roesch C, Khim N, Srun S, Bouillon A, Kim S, Ke S, Kauy C, Kloeung N, Eam R, Khean C, Kul C, Chy S, Leang R, Ringwald P, Barale JC, Witkowski B. Prevalence and characterization of piperaquine, mefloquine and artemisinin derivatives triple-resistant Plasmodium falciparum in Cambodia. J Antimicrob Chemother 2022; 78:411-417. [PMID: 36508338 PMCID: PMC9890270 DOI: 10.1093/jac/dkac403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/31/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In early 2016, in Preah Vihear, Northern Cambodia, artesunate/mefloquine was used to cope with dihydroartemisinin/piperaquine-resistant Plasmodium falciparum parasites. Following this policy, P. falciparum strains harbouring molecular markers associated with artemisinin, piperaquine and mefloquine resistance have emerged. However, the lack of a viable alternative led Cambodia to adopt artesunate/mefloquine countrywide, raising concerns about a surge of triple-resistant P. falciparum strains. OBJECTIVES To assess the prevalence of triple-resistant parasites after artesunate/mefloquine implementation countrywide in Cambodia and to characterize their phenotype. METHODS For this multicentric study, 846 samples were collected from 2016 to 2019. Genotyping of molecular markers associated with artemisinin, piperaquine and mefloquine resistance was coupled with phenotypic analyses. RESULTS Only four triple-resistant P. falciparum isolates (0.47%) were identified during the study period. These parasites combined the pfk13 polymorphism with pfmdr1 amplification, pfpm2 amplification and/or pfcrt mutations. They showed significantly higher tolerance to artemisinin, piperaquine and mefloquine and also to the mefloquine and piperaquine combination. CONCLUSIONS The use of artesunate/mefloquine countrywide in Cambodia has not led to a massive increase of triple-resistant P. falciparum parasites. However, these parasites circulate in the population, and exhibit clear resistance to piperaquine, mefloquine and their combination in vitro. This study demonstrates that P. falciparum can adapt to more complex drug associations, which should be considered in future therapeutic designs.
Collapse
Affiliation(s)
| | | | - Nimol Khim
- Institut Pasteur, Pasteur International Unit, Pasteur International Network, Malaria Translational Research Unit, Phnom Penh, Cambodia and Paris, France,Malaria Molecular Epidemiology Unit, Pasteur Institute of Cambodia, Phnom Penh, Cambodia
| | - Sreynet Srun
- Institut Pasteur, Pasteur International Unit, Pasteur International Network, Malaria Translational Research Unit, Phnom Penh, Cambodia and Paris, France,Malaria Molecular Epidemiology Unit, Pasteur Institute of Cambodia, Phnom Penh, Cambodia
| | - Anthony Bouillon
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, F-75015 Paris, France,Institut Pasteur, Pasteur International Unit, Pasteur International Network, Malaria Translational Research Unit, Phnom Penh, Cambodia and Paris, France
| | - Saorin Kim
- Institut Pasteur, Pasteur International Unit, Pasteur International Network, Malaria Translational Research Unit, Phnom Penh, Cambodia and Paris, France,Malaria Molecular Epidemiology Unit, Pasteur Institute of Cambodia, Phnom Penh, Cambodia
| | - Sopheakvatey Ke
- Institut Pasteur, Pasteur International Unit, Pasteur International Network, Malaria Translational Research Unit, Phnom Penh, Cambodia and Paris, France,Malaria Molecular Epidemiology Unit, Pasteur Institute of Cambodia, Phnom Penh, Cambodia
| | - Chhayleang Kauy
- Institut Pasteur, Pasteur International Unit, Pasteur International Network, Malaria Translational Research Unit, Phnom Penh, Cambodia and Paris, France,Malaria Molecular Epidemiology Unit, Pasteur Institute of Cambodia, Phnom Penh, Cambodia
| | - Nimol Kloeung
- Institut Pasteur, Pasteur International Unit, Pasteur International Network, Malaria Translational Research Unit, Phnom Penh, Cambodia and Paris, France,Malaria Molecular Epidemiology Unit, Pasteur Institute of Cambodia, Phnom Penh, Cambodia
| | - Rotha Eam
- Institut Pasteur, Pasteur International Unit, Pasteur International Network, Malaria Translational Research Unit, Phnom Penh, Cambodia and Paris, France,Malaria Molecular Epidemiology Unit, Pasteur Institute of Cambodia, Phnom Penh, Cambodia
| | - Chanra Khean
- Institut Pasteur, Pasteur International Unit, Pasteur International Network, Malaria Translational Research Unit, Phnom Penh, Cambodia and Paris, France,Malaria Molecular Epidemiology Unit, Pasteur Institute of Cambodia, Phnom Penh, Cambodia
| | - Chanvong Kul
- Institut Pasteur, Pasteur International Unit, Pasteur International Network, Malaria Translational Research Unit, Phnom Penh, Cambodia and Paris, France,Malaria Molecular Epidemiology Unit, Pasteur Institute of Cambodia, Phnom Penh, Cambodia
| | - Sophy Chy
- Institut Pasteur, Pasteur International Unit, Pasteur International Network, Malaria Translational Research Unit, Phnom Penh, Cambodia and Paris, France,Malaria Molecular Epidemiology Unit, Pasteur Institute of Cambodia, Phnom Penh, Cambodia
| | - Rithea Leang
- National Centre for Malariology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | | | | | | |
Collapse
|
60
|
Disparate selection of mutations in the dihydrofolate reductase gene (dhfr) of Plasmodium ovale curtisi and P. o. wallikeri in Africa. PLoS Negl Trop Dis 2022; 16:e0010977. [DOI: 10.1371/journal.pntd.0010977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 12/15/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Plasmodium ovale curtisi and P. ovale wallikeri are both endemic in sub-Saharan Africa, the Middle East and Southeast Asia. Molecular surveillance data for drug resistance in P. ovale spp. is limited at present. We analysed polymorphisms in the podhfr, pocrt and pocytb genes of P. ovale spp. in 147 samples collected from travelers returning to China from Africa. Two podhfr mutations, S58R and S113N/T were detected in P. ovale curtisi with high/moderate frequencies of 52.17% and 17.39%, respectively. Evidence of positive selection (dN/dS = 2.41) was found for podhfr in P. ovale curtisi and decreased diversity (He) of microsatellite markers flanking the mutant alleles suggests that selective sweeps have occurred for both. Mutations E34G (1.50%) and L43V (1.50%) in pocrt of P. ovale curtisi, and E34G (3.70%), I102M (1.80%) and V111F (1.80%) of P. ovale wallikeri were found at low frequencies. Mutations R66K (6.20%), R75K (11.63%) and R95K (3.88%) of pocytb were found in both P. ovale curtisi and P. ovale wallikeri. These results suggest that the podhfr gene of P. ovale curtisi may be subject to drug selection in Africa, warranting further attention. We observed significant differences in the prevalence and distribution of podhfr mutations between the two P. ovale species, suggestive of fundamental biological differences between them.
Collapse
|
61
|
Kong X, Feng J, Xu Y, Yan G, Zhou S. Molecular surveillance of artemisinin resistance-related Pfk13 and pfcrt polymorphisms in imported Plasmodium falciparum isolates reported in eastern China from 2015 to 2019. Malar J 2022; 21:369. [PMID: 36464686 PMCID: PMC9719650 DOI: 10.1186/s12936-022-04398-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/22/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND Artemisinin-based combination therapy (ACT) has been recommended as the first-line treatment by the World Health Organization to treat uncomplicated Plasmodium falciparum malaria. However, the emergence and spread of P. falciparum resistant to artemisinins and their partner drugs is a significant risk for the global effort to reduce disease burden facing the world. Currently, dihydroartemisinin-piperaquine (DHA-PPQ) is the most common drug used to treat P. falciparum, but little evidence about the resistance status targeting DHA (ACT drug) and its partner drug (PPQ) has been reported in Shandong Province, China. METHODS A retrospective study was conducted to explore the prevalence and spatial distribution of Pfk13 and Pfcrt polymorphisms (sites of 72-76, and 93-356) among imported P. falciparum isolates between years 2015-2019 in Shandong Province in eastern China. Individual epidemiological information was collected from a web-based reporting system were reviewed and analysed. RESULTS A total of 425 P. falciparum blood samples in 2015-2019 were included and 7.3% (31/425) carried Pfk13 mutations. Out of the isolates that carried Pfk13 mutations, 54.8% (17/31) were nonsynonymous polymorphisms. The mutant alleles A578S, Q613H, C469C, and S549S in Pfk13 were the more frequently detected allele, the mutation rate was the same as 9.7% (3/31). Another allele Pfk13 C580Y, closely associated with artemisinin (ART) resistance, was found as 3.2% (2/31), which was found in Cambodia. A total of 14 mutant isolates were identified in Western Africa countries (45.2%, 14/31). For the Pfcrt gene, the mutation rate was 18.1% (77/425). T76T356 and T76 were more frequent in all 13 different haplotypes with 26.0% (20/77) and 23.4% (18/77). The CVIET and CVIKT mutant at loci 72-76 have exhibited a prevalence of 19.5% (15/77) and 3.9% (3/77), respectively. The CVIET was mainly observed in samples from Congo (26.7%, 4/15) and Mozambique (26.7%, 4/15). No mutations were found at loci 97, 101 and 145. For polymorphisms at locus 356, a total of 24 isolates were identified and mainly from Congo (29.2%, 7/24). CONCLUSION These findings indicate a low prevalence of Pfk13 in the African isolates. However, the emergence and increase in the new alleles Pfcrt I356T, reveals a potential risk of drug pressure in PPQ among migrant workers returned from Africa. Therefore, continuous molecular surveillance of Pfcrt mutations and in vitro susceptibility tests related to PPQ are necessary.
Collapse
Affiliation(s)
- Xiangli Kong
- grid.508378.1National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai, People’s Republic of China ,Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, People’s Republic of China
| | - Jun Feng
- grid.430328.eShanghai Municipal Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Yan Xu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, People’s Republic of China
| | - Ge Yan
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, People’s Republic of China
| | - Shuisen Zhou
- grid.508378.1National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai, People’s Republic of China
| |
Collapse
|
62
|
Leski TA, Taitt CR, Colston SM, Bangura U, Holtz A, Yasuda CY, Reynolds ND, Lahai J, Lamin JM, Baio V, Ansumana R, Stenger DA, Vora GJ. Prevalence of malaria resistance-associated mutations in Plasmodium falciparum circulating in 2017–2018, Bo, Sierra Leone. Front Microbiol 2022; 13:1059695. [DOI: 10.3389/fmicb.2022.1059695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
IntroductionIn spite of promising medical, sociological, and engineering strategies and interventions to reduce the burden of disease, malaria remains a source of significant morbidity and mortality, especially among children in sub-Saharan Africa. In particular, progress in the development and administration of chemotherapeutic agents is threatened by evolved resistance to most of the antimalarials currently in use, including artemisinins.MethodsThis study analyzed the prevalence of mutations associated with antimalarial resistance in Plasmodium falciparum from 95 clinical samples collected from individuals with clinically confirmed malaria at a hospital in Bo, Sierra Leone between May 2017 and December 2018. The combination of polymerase chain reaction amplification and subsequent high throughput DNA sequencing was used to determine the presence of resistance-associated mutations in five P. falciparum genes – pfcrt, pfmdr1, pfdhfr, pfdhps and pfkelch13. The geographic origin of parasites was assigned using mitochondrial sequences.ResultsRelevant mutations were detected in the pfcrt (22%), pfmdr1 (>58%), pfdhfr (100%) and pfdhps (>80%) genes while no resistance-associated mutations were found in the pfkelch13 gene. The mitochondrial barcodes were consistent with a West African parasite origin with one exception indicating an isolate imported from East Africa.DiscussionDetection of the pfmdr1 NFSND haplotype in 50% of the samples indicated the increasing prevalence of strains with elevated tolerance to artemeter + lumefantrine (AL) threatening the combination currently used to treat uncomplicated malaria in Sierra Leone. The frequency of mutations linked to resistance to antifolates suggests widespread resistance to the drug combination used for intermittent preventive treatment during pregnancy.
Collapse
|
63
|
Wicht KJ, Small-Saunders JL, Hagenah LM, Mok S, Fidock DA. Mutant PfCRT Can Mediate Piperaquine Resistance in African Plasmodium falciparum With Reduced Fitness and Increased Susceptibility to Other Antimalarials. J Infect Dis 2022; 226:2021-2029. [PMID: 36082431 PMCID: PMC9704436 DOI: 10.1093/infdis/jiac365] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/06/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Additional therapeutic strategies could benefit efforts to reverse the recent increase in malaria cases in sub-Saharan Africa, which mostly affects young children. A primary candidate is dihydroartemisinin + piperaquine (DHA + PPQ), which is effective for uncomplicated malaria treatment, seasonal malaria chemoprevention, and intermittent preventive treatment. In Southeast Asia, Plasmodium falciparum parasites acquired PPQ resistance, mediated primarily by mutations in the P falciparum chloroquine resistance transporter PfCRT. The recent emergence in Africa of DHA-resistant parasites creates an imperative to assess whether PPQ resistance could emerge in African parasites with distinct PfCRT isoforms. METHODS We edited 2 PfCRT mutations known to mediate high-grade PPQ resistance in Southeast Asia into GB4 parasites from Gabon. Gene-edited clones were profiled in antimalarial concentration-response and fitness assays. RESULTS The PfCRT F145I mutation mediated moderate PPQ resistance in GB4 parasites but with a substantial fitness cost. No resistance was observed with the PfCRT G353V mutant. Both edited clones became significantly more susceptible to amodiaquine, chloroquine, and quinine. CONCLUSIONS A single PfCRT mutation can mediate PPQ resistance in GB4 parasites, but with a growth defect that may preclude its spread without further genetic adaptations. Our findings support regional use of drug combinations that exert opposing selective pressures on PfCRT.
Collapse
Affiliation(s)
- Kathryn J Wicht
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - Jennifer L Small-Saunders
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimalarial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York , New York, USA
| | - Laura M Hagenah
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimalarial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York , New York, USA
| |
Collapse
|
64
|
Win KN, Manopwisedjaroen K, Phumchuea K, Suansomjit C, Chotivanich K, Lawpoolsri S, Cui L, Sattabongkot J, Nguitragool W. Molecular markers of dihydroartemisinin-piperaquine resistance in northwestern Thailand. Malar J 2022; 21:352. [PMID: 36437462 PMCID: PMC9701414 DOI: 10.1186/s12936-022-04382-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Dihydroartemisinin-piperaquine (DHA-PPQ) combination therapy is the current first-line treatment for Plasmodium falciparum malaria in Thailand. Since its introduction in 2015, resistance to this drug combination has emerged in the eastern part of the Greater Mekong Subregion including the eastern part of Thailand near Cambodia. This study aimed to assess whether the resistance genotypes have arisen the western part of country. METHODS Fifty-seven P. falciparum-infected blood samples were collected in Tak province of northwestern Thailand between 2013 and 2019. Resistance to DHA was examined through the single nucleotide polymorphisms (SNPs) of kelch13. PPQ resistance was examined through the copy number plasmepsin-2 and the SNPs of Pfcrt. RESULTS Among the samples whose kelch13 were successfully sequenced, approximately half (31/55; 56%) had mutation associated with artemisinin resistance, including G533S (23/55; 42%), C580Y (6/55; 11%), and G538V (2/55; 4%). During the study period, G533S mutation appeared and increased from 20% (4/20) in 2014 to 100% (9/9) in 2019. No plasmepsin-2 gene amplification was observed, but one sample (1/54) had the Pfcrt F145I mutation previously implicated in PPQ resistance. CONCLUSIONS Kelch13 mutation was common in Tak Province in 2013-2019. A new mutation G533S emerged in 2014 and rose to dominance in 2019. PPQ resistance marker Pfcrt F145I was also detected in 2019. Continued surveillance of treatment efficacy and drug resistance markers is warranted.
Collapse
Affiliation(s)
- Khine Nwe Win
- grid.10223.320000 0004 1937 0490Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Khajohnpong Manopwisedjaroen
- grid.10223.320000 0004 1937 0490Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Kanit Phumchuea
- grid.10223.320000 0004 1937 0490Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Chayanut Suansomjit
- grid.10223.320000 0004 1937 0490Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Kesinee Chotivanich
- grid.10223.320000 0004 1937 0490Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Saranath Lawpoolsri
- grid.10223.320000 0004 1937 0490Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Liwang Cui
- grid.170693.a0000 0001 2353 285XDepartment of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612 USA
| | - Jetsumon Sattabongkot
- grid.10223.320000 0004 1937 0490Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Wang Nguitragool
- grid.10223.320000 0004 1937 0490Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand ,grid.10223.320000 0004 1937 0490Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Rd, Ratchathewi, Bangkok, 10400 Thailand
| |
Collapse
|
65
|
Lowe M, Cardenas A, Valentin JP, Zhu Z, Abendroth J, Castro JL, Class R, Delaunois A, Fleurance R, Gerets H, Gryshkova V, King L, Lorimer DD, MacCoss M, Rowley JH, Rosseels ML, Royer L, Taylor RD, Wong M, Zaccheo O, Chavan VP, Ghule GA, Tapkir BK, Burrows JN, Duffey M, Rottmann M, Wittlin S, Angulo-Barturen I, Jiménez-Díaz MB, Striepen J, Fairhurst KJ, Yeo T, Fidock DA, Cowman AF, Favuzza P, Crespo-Fernandez B, Gamo FJ, Goldberg DE, Soldati-Favre D, Laleu B, de Haro T. Discovery and Characterization of Potent, Efficacious, Orally Available Antimalarial Plasmepsin X Inhibitors and Preclinical Safety Assessment of UCB7362. J Med Chem 2022; 65:14121-14143. [PMID: 36216349 PMCID: PMC9620073 DOI: 10.1021/acs.jmedchem.2c01336] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Indexed: 01/18/2023]
Abstract
Plasmepsin X (PMX) is an essential aspartyl protease controlling malaria parasite egress and invasion of erythrocytes, development of functional liver merozoites (prophylactic activity), and blocking transmission to mosquitoes, making it a potential multistage drug target. We report the optimization of an aspartyl protease binding scaffold and the discovery of potent, orally active PMX inhibitors with in vivo antimalarial efficacy. Incorporation of safety evaluation early in the characterization of PMX inhibitors precluded compounds with a long human half-life (t1/2) to be developed. Optimization focused on improving the off-target safety profile led to the identification of UCB7362 that had an improved in vitro and in vivo safety profile but a shorter predicted human t1/2. UCB7362 is estimated to achieve 9 log 10 unit reduction in asexual blood-stage parasites with once-daily dosing of 50 mg for 7 days. This work demonstrates the potential to deliver PMX inhibitors with in vivo efficacy to treat malaria.
Collapse
Affiliation(s)
| | | | | | - Zhaoning Zhu
- UCB, 216 Bath Road, Slough SL1 3WE, United
Kingdom
| | - Jan Abendroth
- UCB, 7869 NE Day Road West, Bainbridge Island, Washington 98110, United States
| | | | - Reiner Class
- UCB, Chem.
du Foriest 1, 1420 Braine-l’Alleud, Belgium
| | | | | | - Helga Gerets
- UCB, Chem.
du Foriest 1, 1420 Braine-l’Alleud, Belgium
| | | | - Lloyd King
- UCB, 216 Bath Road, Slough SL1 3WE, United
Kingdom
| | - Donald D. Lorimer
- UCB, 7869 NE Day Road West, Bainbridge Island, Washington 98110, United States
| | - Malcolm MacCoss
- Bohicket
Pharma Consulting LLC, 2556 Seabrook Island Road, Seabrook Island, South Carolina 29455, United States
| | | | | | - Leandro Royer
- UCB, Chem.
du Foriest 1, 1420 Braine-l’Alleud, Belgium
| | | | - Melanie Wong
- UCB, 216 Bath Road, Slough SL1 3WE, United
Kingdom
| | | | - Vishal P. Chavan
- Sai
Life Sciences Limited, Plot DS-7, IKP Knowledge Park, Genome Valley, Turkapally, Hyderabad 500078, Telangana, India
| | - Gokul A. Ghule
- Sai
Life Sciences Limited, Plot DS-7, IKP Knowledge Park, Genome Valley, Turkapally, Hyderabad 500078, Telangana, India
| | - Bapusaheb K. Tapkir
- Sai
Life Sciences Limited, Plot DS-7, IKP Knowledge Park, Genome Valley, Turkapally, Hyderabad 500078, Telangana, India
| | - Jeremy N. Burrows
- Medicines
for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Maëlle Duffey
- Medicines
for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Matthias Rottmann
- Swiss
Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
- University
of Basel, 4002 Basel, Switzerland
| | - Sergio Wittlin
- Swiss
Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
- University
of Basel, 4002 Basel, Switzerland
| | - Iñigo Angulo-Barturen
- The
Art of Discovery, SL
Biscay Science and Technology Park, Astondo Bidea, BIC Bizkaia Building,
no. 612, Derio 48160, Bizkaia, Basque Country, Spain
| | - María Belén Jiménez-Díaz
- The
Art of Discovery, SL
Biscay Science and Technology Park, Astondo Bidea, BIC Bizkaia Building,
no. 612, Derio 48160, Bizkaia, Basque Country, Spain
| | - Josefine Striepen
- Department
of Microbiology & Immunology, Columbia
University Irving Medical Center, New York, New York 10032, United States
| | - Kate J. Fairhurst
- Department
of Microbiology & Immunology, Columbia
University Irving Medical Center, New York, New York 10032, United States
| | - Tomas Yeo
- Department
of Microbiology & Immunology, Columbia
University Irving Medical Center, New York, New York 10032, United States
| | - David A. Fidock
- Department
of Microbiology & Immunology, Columbia
University Irving Medical Center, New York, New York 10032, United States
- Center
for Malaria Therapeutics and Antimicrobial Resistance, Division of
Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Alan F. Cowman
- The Walter
and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Paola Favuzza
- The Walter
and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | | | | | - Daniel E. Goldberg
- Division
of Infectious Diseases, Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8051, St. Louis, Missouri 63110, United States
| | - Dominique Soldati-Favre
- Department
of Microbiology and Molecular Medicine, Faculty of Medicine, CMU, 1 rue Michel-Servet, CH-1211 Genève 4, Switzerland
| | - Benoît Laleu
- Medicines
for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | | |
Collapse
|
66
|
Chaves JB, Portugal Tavares de Moraes B, Regina Ferrarini S, Noé da Fonseca F, Silva AR, Gonçalves-de-Albuquerque CF. Potential of nanoformulations in malaria treatment. Front Pharmacol 2022; 13:999300. [PMID: 36386185 PMCID: PMC9645116 DOI: 10.3389/fphar.2022.999300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
Malaria is caused by the protozoan Plasmodium sp and affects millions of people worldwide. Its clinical form ranges from asymptomatic to potentially fatal and severe. Current treatments include single drugs such as chloroquine, lumefantrine, primaquine, or in combination with artemisinin or its derivatives. Resistance to antimalarial drugs has increased; therefore, there is an urgent need to diversify therapeutic approaches. The disease cycle is influenced by biological, social, and anthropological factors. This longevity and complexity contributes to the records of drug resistance, where further studies and proposals for new therapeutic formulations are needed for successful treatment of malaria. Nanotechnology is promising for drug development. Preclinical formulations with antimalarial agents have shown positive results, but only a few have progressed to clinical phase. Therefore, studies focusing on the development and evaluation of antimalarial formulations should be encouraged because of their enormous therapeutic potential.
Collapse
Affiliation(s)
- Janaina Braga Chaves
- Immunopharmacology Laboratory, Department of Biochemistry, Federal University of the State of Rio de Janeiro—UNIRIO, Rio de Janeiro, Brazil
| | - Bianca Portugal Tavares de Moraes
- Immunopharmacology Laboratory, Department of Biochemistry, Federal University of the State of Rio de Janeiro—UNIRIO, Rio de Janeiro, Brazil
| | - Stela Regina Ferrarini
- Pharmaceutical Nanotechnology Laboratory, Federal University of Mato Grosso of Sinop Campus—UFMT, Cuiabá, Brazil
| | - Francisco Noé da Fonseca
- Empresa Brasileira de Pesquisa Agropecuária, Parque Estação Biológica—PqEB, EMBRAPA, Brasília, Brazil
| | - Adriana Ribeiro Silva
- Immunopharmacology Laboratory, Oswaldo Cruz Foundation, FIOCRUZ—UNIRIO, Rio de Janeiro, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Immunopharmacology Laboratory, Department of Biochemistry, Federal University of the State of Rio de Janeiro—UNIRIO, Rio de Janeiro, Brazil
- Immunopharmacology Laboratory, Oswaldo Cruz Foundation, FIOCRUZ—UNIRIO, Rio de Janeiro, Brazil
| |
Collapse
|
67
|
Decreased susceptibility of Plasmodium falciparum to both dihydroartemisinin and lumefantrine in northern Uganda. Nat Commun 2022; 13:6353. [PMID: 36289202 PMCID: PMC9605985 DOI: 10.1038/s41467-022-33873-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/06/2022] [Indexed: 12/25/2022] Open
Abstract
Artemisinin partial resistance may facilitate selection of Plasmodium falciparum resistant to combination therapy partner drugs. We evaluated 99 P. falciparum isolates collected in 2021 from northern Uganda, where resistance-associated PfK13 C469Y and A675V mutations have emerged, and eastern Uganda, where these mutations are uncommon. With the ex vivo ring survival assay, isolates with the 469Y mutation (median survival 7.3% for mutant, 2.5% mixed, and 1.4% wild type) and/or mutations in Pfcoronin or falcipain-2a, had significantly greater survival; all isolates with survival >5% had mutations in at least one of these proteins. With ex vivo growth inhibition assays, susceptibility to lumefantrine (median IC50 14.6 vs. 6.9 nM, p < 0.0001) and dihydroartemisinin (2.3 vs. 1.5 nM, p = 0.003) was decreased in northern vs. eastern Uganda; 14/49 northern vs. 0/38 eastern isolates had lumefantrine IC50 > 20 nM (p = 0.0002). Targeted sequencing of 819 isolates from 2015-21 identified multiple polymorphisms associated with altered drug susceptibility, notably PfK13 469Y with decreased susceptibility to lumefantrine (p = 6 × 10-8) and PfCRT mutations with chloroquine resistance (p = 1 × 10-20). Our results raise concern regarding activity of artemether-lumefantrine, the first-line antimalarial in Uganda.
Collapse
|
68
|
Zhao W, Li X, Yang Q, Zhou L, Duan M, Pan M, Qin Y, Li X, Wang X, Zeng W, Zhao H, Sun K, Zhu W, Afrane Y, Amoah LE, Abuaku B, Duah-Quashie NO, Huang Y, Cui L, Yang Z. In vitro susceptibility profile of Plasmodium falciparum clinical isolates from Ghana to antimalarial drugs and polymorphisms in resistance markers. Front Cell Infect Microbiol 2022; 12:1015957. [PMID: 36310880 PMCID: PMC9614232 DOI: 10.3389/fcimb.2022.1015957] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022] Open
Abstract
Drug resistance in Plasmodium falciparum compromises the effectiveness of antimalarial therapy. This study aimed to evaluate the extent of drug resistance in parasites obtained from international travelers returning from Ghana to guide the management of malaria cases. Eighty-two clinical parasite isolates were obtained from patients returning from Ghana in 2016-2018, of which 29 were adapted to continuous in vitro culture. Their geometric mean IC50 values to a panel of 11 antimalarial drugs, assessed using the standard SYBR Green-I drug sensitivity assay, were 2.1, 3.8, 1.0, 2.7, 17.2, 4.6, 8.3, 8.3, 19.6, 55.1, and 11,555 nM for artemether, artesunate, dihydroartemisinin, lumefantrine, mefloquine, piperaquine, naphthoquine, pyronaridine, chloroquine, quinine, and pyrimethamine, respectively. Except for chloroquine and pyrimethamine, the IC50 values for other tested drugs were below the resistance threshold. The mean ring-stage survival assay value was 0.8%, with four isolates exceeding 1%. The mean piperaquine survival assay value was 2.1%, all below 10%. Mutations associated with chloroquine resistance (pfcrt K76T and pfmdr1 N86Y) were scarce, consistent with the discontinuation of chloroquine a decade ago. Instead, the pfmdr1 86N-184F-1246D haplotype was predominant, suggesting selection by the extensive use of artemether-lumefantrine. No mutations in the pfk13 propeller domain were detected. The pfdhfr/pfdhps quadruple mutant IRNGK associated with resistance to sulfadoxine-pyrimethamine reached an 82% prevalence. In addition, five isolates had pfgch1 gene amplification but, intriguingly, increased susceptibilities to pyrimethamine. This study showed that parasites originating from Ghana were susceptible to artemisinins and the partner drugs of artemisinin-based combination therapies. Genotyping drug resistance genes identified the signature of selection by artemether-lumefantrine. Parasites showed substantial levels of resistance to the antifolate drugs. Continuous resistance surveillance is necessary to guide timely changes in drug policy.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Xinxin Li
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Qi Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Longcan Zhou
- Department of Infectious Diseases, Shanglin County People’s Hospital, Guangxi, China
| | - Mengxi Duan
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Maohua Pan
- Department of Infectious Diseases, Shanglin County People’s Hospital, Guangxi, China
| | - Yucheng Qin
- Department of Infectious Diseases, Shanglin County People’s Hospital, Guangxi, China
| | - Xiaosong Li
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Xun Wang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Weilin Zeng
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Hui Zhao
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Kemin Sun
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Wenya Zhu
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Yaw Afrane
- Department of Medical Microbiology, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Linda Eva Amoah
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Benjamin Abuaku
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Nancy Odurowah Duah-Quashie
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Yaming Huang
- Department of Protozoan Diseases, Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| |
Collapse
|
69
|
Cui L, Sattabongkot J, Aung PL, Brashear A, Cao Y, Kaewkungwal J, Khamsiriwatchara A, Kyaw MP, Lawpoolsri S, Menezes L, Miao J, Nguitragool W, Parker D, Phuanukoonnon S, Roobsoong W, Siddiqui F, Soe MT, Sriwichai P, Yang Z, Zhao Y, Zhong D. Multidisciplinary Investigations of Sustained Malaria Transmission in the Greater Mekong Subregion. Am J Trop Med Hyg 2022; 107:138-151. [PMID: 36228909 DOI: 10.4269/ajtmh.21-1267] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/28/2022] [Indexed: 11/07/2022] Open
Abstract
In the course of malaria elimination in the Greater Mekong Subregion (GMS), malaria epidemiology has experienced drastic spatiotemporal changes with residual transmission concentrated along international borders and the rising predominance of Plasmodium vivax. The emergence of Plasmodium falciparum parasites resistant to artemisinin and partner drugs renders artemisinin-based combination therapies less effective while the potential spread of multidrug-resistant parasites elicits concern. Vector behavioral changes and insecticide resistance have reduced the effectiveness of core vector control measures. In recognition of these problems, the Southeast Asian International Center of Excellence for Malaria Research (ICEMR) has been conducting multidisciplinary research to determine how human migration, antimalarial drug resistance, vector behavior, and insecticide resistance sustain malaria transmission at international borders. These efforts allow us to comprehensively understand the ecology of border malaria transmission and develop population genomics tools to identify and track parasite introduction. In addition to employing in vivo, in vitro, and molecular approaches to monitor the emergence and spread of drug-resistant parasites, we also use genomic and genetic methods to reveal novel mechanisms of antimalarial drug resistance of parasites. We also use omics and population genetics approaches to study insecticide resistance in malaria vectors and identify changes in mosquito community structure, vectorial potential, and seasonal dynamics. Collectively, the scientific findings from the ICEMR research activities offer a systematic view of the factors sustaining residual malaria transmission and identify potential solutions to these problems to accelerate malaria elimination in the GMS.
Collapse
Affiliation(s)
- Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | | | | | - Awtum Brashear
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Yaming Cao
- Department of Immunology, China Medical University, Shenyang, China
| | | | | | | | | | - Lynette Menezes
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Wang Nguitragool
- Mahidol Vivax Research Unit, Mahidol University, Bangkok, Thailand
| | - Daniel Parker
- Department of Epidemiology, University of California at Irvine, Irvine, California
| | | | | | - Faiza Siddiqui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Myat Thu Soe
- Myanmar Health Network Organization, Yangon, Myanmar
| | - Patchara Sriwichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Yan Zhao
- Department of Immunology, China Medical University, Shenyang, China
| | - Daibin Zhong
- Program in Public Health, University of California at Irvine, Irvine, California
| |
Collapse
|
70
|
Okombo J, Mok S, Qahash T, Yeo T, Bath J, Orchard LM, Owens E, Koo I, Albert I, Llinás M, Fidock DA. Piperaquine-resistant PfCRT mutations differentially impact drug transport, hemoglobin catabolism and parasite physiology in Plasmodium falciparum asexual blood stages. PLoS Pathog 2022; 18:e1010926. [PMID: 36306287 PMCID: PMC9645663 DOI: 10.1371/journal.ppat.1010926] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/09/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
The emergence of Plasmodium falciparum parasite resistance to dihydroartemisinin + piperaquine (PPQ) in Southeast Asia threatens plans to increase the global use of this first-line antimalarial combination. High-level PPQ resistance appears to be mediated primarily by novel mutations in the P. falciparum chloroquine resistance transporter (PfCRT), which enhance parasite survival at high PPQ concentrations in vitro and increase the risk of dihydroartemisinin + PPQ treatment failure in patients. Using isogenic Dd2 parasites expressing contemporary pfcrt alleles with differential in vitro PPQ susceptibilities, we herein characterize the molecular and physiological adaptations that define PPQ resistance in vitro. Using drug uptake and cellular heme fractionation assays we report that the F145I, M343L, and G353V PfCRT mutations differentially impact PPQ and chloroquine efflux. These mutations also modulate proteolytic degradation of host hemoglobin and the chemical inactivation of reactive heme species. Peptidomic analyses reveal significantly higher accumulation of putative hemoglobin-derived peptides in the PPQ-resistant mutant PfCRT isoforms compared to parental PPQ-sensitive Dd2. Joint transcriptomic and metabolomic profiling of late trophozoites from PPQ-resistant or -sensitive isogenic lines reveals differential expression of genes involved in protein translation and cellular metabolism. PPQ-resistant parasites also show increased susceptibility to an inhibitor of the P. falciparum M17 aminopeptidase that operates on short globin-derived peptides. These results reveal unique physiological changes caused by the gain of PPQ resistance and highlight the potential therapeutic value of targeting peptide metabolism in P. falciparum.
Collapse
Affiliation(s)
- John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Tarrick Qahash
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Jade Bath
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Lindsey M. Orchard
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Edward Owens
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Istvan Albert
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Manuel Llinás
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| |
Collapse
|
71
|
Ward KE, Fidock DA, Bridgford JL. Plasmodium falciparum resistance to artemisinin-based combination therapies. Curr Opin Microbiol 2022; 69:102193. [PMID: 36007459 PMCID: PMC9847095 DOI: 10.1016/j.mib.2022.102193] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/12/2022] [Accepted: 07/25/2022] [Indexed: 01/21/2023]
Abstract
Multidrug-resistant Plasmodium falciparum parasites are a major threat to public health in intertropical regions. Understanding the mechanistic basis, origins, and spread of resistance can inform strategies to mitigate its impact and reduce the global burden of malaria. The recent emergence in Africa of partial resistance to artemisinins, the core component of first-line combination therapies, is particularly concerning. Here, we review recent advances in elucidating the mechanistic basis of artemisinin resistance, driven primarily by point mutations in P. falciparum Kelch13, a key regulator of hemoglobin endocytosis and parasite response to artemisinin-induced stress. We also review resistance to partner drugs, including piperaquine and mefloquine, highlighting a key role for plasmepsins 2/3 and the drug and solute transporters P. falciparum chloroquine-resistance transporter and P. falciparum multidrug-resistance protein-1.
Collapse
Affiliation(s)
- Kurt E Ward
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Jessica L Bridgford
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
72
|
Hoshizaki J, Jagoe H, Lee MCS. Efficient generation of mNeonGreen Plasmodium falciparum reporter lines enables quantitative fitness analysis. Front Cell Infect Microbiol 2022; 12:981432. [PMID: 36189342 PMCID: PMC9523114 DOI: 10.3389/fcimb.2022.981432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
CRISPR editing has enabled the rapid creation of fluorescent Plasmodium transgenic lines, facilitating a deeper understanding of parasite biology. The impact of genetic perturbations such as gene disruption or the introduction of drug resistance alleles on parasite fitness is typically quantified in competitive growth assays between the query line and a wild type reference. Although fluorescent reporter lines offer a facile and frequently used method to measure relative growth, this approach is limited by the strain background of the existing reporter, which may not match the growth characteristics of the query strains, particularly if these are slower-growing field isolates. Here, we demonstrate an efficient CRISPR-based approach to generate fluorescently labelled parasite lines using mNeonGreen derived from the LanYFP protein in Branchiostoma lanceolatum, which is one of the brightest monomeric green fluorescent proteins identified. Using a positive-selection approach by insertion of an in-frame blasticidin S deaminase marker, we generated a Dd2 reporter line expressing mNeonGreen under the control of the pfpare (P. falciparum Prodrug Activation and Resistance Esterase) locus. We selected the pfpare locus as an integration site because it is highly conserved across P. falciparum strains, expressed throughout the intraerythrocytic cycle, not essential, and offers the potential for negative selection to further enrich for integrants. The mNeonGreen@pare line demonstrates strong fluorescence with a negligible fitness defect. In addition, the construct developed can serve as a tool to fluorescently tag other P. falciparum strains for in vitro experimentation.
Collapse
|
73
|
Watson OJ, Gao B, Nguyen TD, Tran TNA, Penny MA, Smith DL, Okell L, Aguas R, Boni MF. Pre-existing partner-drug resistance to artemisinin combination therapies facilitates the emergence and spread of artemisinin resistance: a consensus modelling study. THE LANCET. MICROBE 2022; 3:e701-e710. [PMID: 35931099 PMCID: PMC9436785 DOI: 10.1016/s2666-5247(22)00155-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Artemisinin-resistant genotypes of Plasmodium falciparum have now emerged a minimum of six times on three continents despite recommendations that all artemisinins be deployed as artemisinin combination therapies (ACTs). Widespread resistance to the non-artemisinin partner drugs in ACTs has the potential to limit the clinical and resistance benefits provided by combination therapy. We aimed to model and evaluate the long-term effects of high levels of partner-drug resistance on the early emergence of artemisinin-resistant genotypes. METHODS Using a consensus modelling approach, we used three individual-based mathematical models of Plasmodium falciparum transmission to evaluate the effects of pre-existing partner-drug resistance and ACT deployment on the evolution of artemisinin resistance. Each model simulates 100 000 individuals in a particular transmission setting (malaria prevalence of 1%, 5%, 10%, or 20%) with a daily time step that updates individuals' infection status, treatment status, immunity, genotype-specific parasite densities, and clinical state. We modelled varying access to antimalarial drugs if febrile (coverage of 20%, 40%, or 60%) with one primary ACT used as first-line therapy: dihydroartemisinin-piperaquine (DHA-PPQ), artesunate-amodiaquine (ASAQ), or artemether-lumefantrine (AL). The primary outcome was time until 0·25 580Y allele frequency for artemisinin resistance (the establishment time). FINDINGS Higher frequencies of pre-existing partner-drug resistant genotypes lead to earlier establishment of artemisinin resistance. Across all models, a 10-fold increase in the frequency of partner-drug resistance genotypes on average corresponded to loss of artemisinin efficacy 2-12 years earlier. Most reductions in time to artemisinin resistance establishment were observed after an increase in frequency of the partner-drug resistance genotype from 0·0 to 0·10. INTERPRETATION Partner-drug resistance in ACTs facilitates the early emergence of artemisinin resistance and is a major public health concern. Higher-grade partner-drug resistance has the largest effect, with piperaquine resistance accelerating the early emergence of artemisinin-resistant alleles the most. Continued investment in molecular surveillance of partner-drug resistant genotypes to guide choice of first-line ACT is paramount. FUNDING Schmidt Science Fellowship in partnership with the Rhodes Trust; Bill & Melinda Gates Foundation; Wellcome Trust.
Collapse
Affiliation(s)
- Oliver J Watson
- Medical Research Council Centre for Global Infectious Disease Analysis, Faculty of Medicine, Imperial College London, London, UK
| | - Bo Gao
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tran Dang Nguyen
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Thu Nguyen-Anh Tran
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | | | - David L Smith
- Department of Health Metrics Sciences, University of Washington, Seattle, WA, USA
| | - Lucy Okell
- Medical Research Council Centre for Global Infectious Disease Analysis, Faculty of Medicine, Imperial College London, London, UK
| | - Ricardo Aguas
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Maciej F Boni
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
74
|
Kubota R, Ishino T, Iwanaga S, Shinzawa N. Evaluation of the Effect of Gene Duplication by Genome Editing on Drug Resistance in Plasmodium falciparum. Front Cell Infect Microbiol 2022; 12:915656. [PMID: 35865822 PMCID: PMC9294729 DOI: 10.3389/fcimb.2022.915656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022] Open
Abstract
The emergence and spread of drug-resistant Plasmodium falciparum have compromised antimalarial efficacy and threatened the global malaria elimination campaign using artemisinin combination therapies. The impacts of amino acid substitutions in antimalarial drug resistance-associated genes on drug susceptibility have been investigated; however, the effects of amplification of those genes remain unexplored due to the lack of robust genetic approaches. Here, we generated transgenic P. falciparum parasites with an additional copy of a drug resistance-associated gene using the highly efficient CRISPR/Cas9 system and investigated their drug response. Insertion of a drug resistance-associated gene expression cassette in the genome resulted in a roughly twofold increase of mRNA levels of the target gene mdr1, which encodes multidrug resistance protein 1. The gene duplication event contributed to resistance to mefloquine, lumefantrine, and dihydroartemisinin, while the duplication of a genomic region encoding plasmepsin 2 and plasmepsin 3 did not affect resistance to antimalarial drugs, including piperaquine. We further demonstrated that mdr1 mRNA expression levels are strongly associated with mefloquine resistance in several field-derived P. falciparum lines with various genetic backgrounds. This study provides compelling evidence that mdr1 could serve as a molecular marker for the surveillance of mefloquine-resistant parasites. Long DNA integration into parasite genomes using the CRISPR/Cas9 system provides a useful tool for the evaluation of the effect of copy number variation on drug response.
Collapse
Affiliation(s)
- Rie Kubota
- Department of Parasitology and Tropical Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoko Ishino
- Department of Parasitology and Tropical Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shiroh Iwanaga
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Naoaki Shinzawa
- Department of Parasitology and Tropical Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- *Correspondence: Naoaki Shinzawa,
| |
Collapse
|
75
|
Moss S, Mańko E, Krishna S, Campino S, Clark TG, Last A. How has mass drug administration with dihydroartemisinin-piperaquine impacted molecular markers of drug resistance? A systematic review. Malar J 2022; 21:186. [PMID: 35690758 PMCID: PMC9188255 DOI: 10.1186/s12936-022-04181-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/10/2022] [Indexed: 11/10/2022] Open
Abstract
The World Health Organization (WHO) recommends surveillance of molecular markers of resistance to anti-malarial drugs. This is particularly important in the case of mass drug administration (MDA), which is endorsed by the WHO in some settings to combat malaria. Dihydroartemisinin-piperaquine (DHA-PPQ) is an artemisinin-based combination therapy which has been used in MDA. This review analyses the impact of MDA with DHA-PPQ on the evolution of molecular markers of drug resistance. The review is split into two parts. Section I reviews the current evidence for different molecular markers of resistance to DHA-PPQ. This includes an overview of the prevalence of these molecular markers in Plasmodium falciparum Whole Genome Sequence data from the MalariaGEN Pf3k project. Section II is a systematic literature review of the impact that MDA with DHA-PPQ has had on the evolution of molecular markers of resistance. This systematic review followed PRISMA guidelines. This review found that despite being a recognised surveillance tool by the WHO, the surveillance of molecular markers of resistance following MDA with DHA-PPQ was not commonly performed. Of the total 96 papers screened for eligibility in this review, only 20 analysed molecular markers of drug resistance. The molecular markers published were also not standardized. Overall, this warrants greater reporting of molecular marker prevalence following MDA implementation. This should include putative pfcrt mutations which have been found to convey resistance to DHA-PPQ in vitro.
Collapse
Affiliation(s)
- Sophie Moss
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | - Emilia Mańko
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Sanjeev Krishna
- Institute of Infection and Immunity, St George's University of London, London, UK
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Anna Last
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
76
|
Peto TJ, Tripura R, Callery JJ, Lek D, Nghia HDT, Nguon C, Thuong NTH, van der Pluijm RW, Dung NTP, Sokha M, Van Luong V, Long LT, Sovann Y, Duanguppama J, Waithira N, Hoglund RM, Chotsiri P, Chau NH, Ruecker A, Amaratunga C, Dhorda M, Miotto O, Maude RJ, Rekol H, Chotivanich K, Tarning J, von Seidlein L, Imwong M, Mukaka M, Day NPJ, Hien TT, White NJ, Dondorp AM. Triple therapy with artemether-lumefantrine plus amodiaquine versus artemether-lumefantrine alone for artemisinin-resistant, uncomplicated falciparum malaria: an open-label, randomised, multicentre trial. THE LANCET. INFECTIOUS DISEASES 2022; 22:867-878. [PMID: 35276064 PMCID: PMC9132777 DOI: 10.1016/s1473-3099(21)00692-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/14/2021] [Accepted: 10/27/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Late treatment failures after artemisinin-based combination therapies (ACTs) for falciparum malaria have increased in the Greater Mekong subregion in southeast Asia. Addition of amodiaquine to artemether-lumefantrine could provide an efficacious treatment for multidrug-resistant infections. METHODS We conducted an open-label, randomised trial at five hospitals or health centres in three locations (western Cambodia, eastern Cambodia, and Vietnam). Eligible participants were male and female patients aged 2-65 years with uncomplicated Plasmodium falciparum malaria. Patients were randomly allocated (1:1 in blocks of eight to 12) to either artemether-lumefantrine alone (dosed according to WHO guidelines) or artemether-lumefantrine plus amodiaquine (10 mg base per kg/day), both given orally as six doses over 3 days. All received a single dose of primaquine (0·25 mg/kg) 24 h after the start of study treatment to limit transmission of the parasite. Parasites were genotyped, identifying artemisinin resistance. The primary outcome was Kaplan-Meier 42-day PCR-corrected efficacy against recrudescence of the original parasite, assessed by intent-to-treat. Safety was a secondary outcome. This completed trial is registered at ClinicalTrials.gov (NCT03355664). FINDINGS Between March 18, 2018, and Jan 30, 2020, 310 patients received randomly allocated treatment; 154 received artemether-lumefantrine alone and 156 received artemether-lumefantrine plus amodiaquine. Parasites from 305 of these patients were genotyped. 42-day PCR-corrected treatment efficacy was noted in 151 (97%, 95% CI 92-99) of 156 patients with artemether-lumefantrine plus amodiaquine versus 146 (95%, 89-97) of 154 patients with artemether-lumefantrine alone; hazard ratio (HR) for recrudescence 0·6 (95% CI 0·2-1·9, p=0·38). Of the 13 recrudescences, 12 were in 174 (57%) of 305 infections with pfkelch13 mutations indicating artemisinin resistance, for which 42-day efficacy was noted in 89 (96%) of 93 infections with artemether-lumefantrine plus amodiaquine versus 73 (90%) of 81 infections with artemether-lumefantrine alone; HR for recrudescence 0·44 (95% CI 0·14-1·40, p=0·17). Artemether-lumefantrine plus amodiaquine was generally well tolerated, but the number of mild (grade 1-2) adverse events, mainly gastrointestinal, was greater in this group compared with artemether-lumefantrine alone (vomiting, 12 [8%] with artemether-lumefantrine plus amodiaquine vs three [2%] with artemether-lumefantrine alone, p=0·03; and nausea, 11 [7%] with artemether-lumefantrine plus amodiaquine vs three [2%] with artemether-lumefantrine alone, p=0·05). Early vomiting within 1 h of treatment, requiring retreatment, occurred in no patients of 154 with artemether-lumefantrine alone versus five (3%) of 156 with artemether-lumefantrine plus amodiaquine, p=0·06. Bradycardia (≤54 beats/min) of any grade was noted in 59 (38%) of 154 patients with artemether-lumefantrine alone and 95 (61%) of 156 with artemether-lumefantrine plus amodiaquine, p=0·0001. INTERPRETATION Artemether-lumefantrine plus amodiaquine provides an alternative to artemether-lumefantrine alone as first-line treatment for multidrug-resistant P falciparum malaria in the Greater Mekong subregion, and could prolong the therapeutic lifetime of artemether-lumefantrine in malaria-endemic populations. FUNDING Bill & Melinda Gates Foundation, Wellcome Trust.
Collapse
Affiliation(s)
- Thomas J Peto
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Rupam Tripura
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - James J Callery
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Dysoley Lek
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia; School of Public Health, National Institute of Public Health, Phnom Penh, Cambodia
| | - Ho Dang Trung Nghia
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam; Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Chea Nguon
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Nguyen Thi Huyen Thuong
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Rob W van der Pluijm
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Nguyen Thi Phuong Dung
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Meas Sokha
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Vo Van Luong
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Le Thanh Long
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Yok Sovann
- Pailin Provincial Health Department, Pailin, Cambodia
| | | | - Naomi Waithira
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Richard M Hoglund
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Palang Chotsiri
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nguyen Hoang Chau
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Andrea Ruecker
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Chanaki Amaratunga
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Mehul Dhorda
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; WorldWide Antimalarial Resistance Network, Asia-Pacific Regional Centre, Bangkok, Thailand
| | - Olivo Miotto
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Wellcome Trust Sanger Institute, Hinxton, UK
| | - Richard J Maude
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Harvard T H Chan School of Public Health, Harvard University, Boston, MA, USA; The Open University, Milton Keynes, UK
| | - Huy Rekol
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Kesinee Chotivanich
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Clinical Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Lorenz von Seidlein
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Mallika Imwong
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Nicholas P J Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Tran Tinh Hien
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
77
|
Murithi JM, Deni I, Pasaje CFA, Okombo J, Bridgford JL, Gnädig NF, Edwards RL, Yeo T, Mok S, Burkhard AY, Coburn-Flynn O, Istvan ES, Sakata-Kato T, Gomez-Lorenzo MG, Cowell AN, Wicht KJ, Le Manach C, Kalantarov GF, Dey S, Duffey M, Laleu B, Lukens AK, Ottilie S, Vanaerschot M, Trakht IN, Gamo FJ, Wirth DF, Goldberg DE, Odom John AR, Chibale K, Winzeler EA, Niles JC, Fidock DA. The Plasmodium falciparum ABC transporter ABCI3 confers parasite strain-dependent pleiotropic antimalarial drug resistance. Cell Chem Biol 2022; 29:824-839.e6. [PMID: 34233174 PMCID: PMC8727639 DOI: 10.1016/j.chembiol.2021.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 01/21/2023]
Abstract
Widespread Plasmodium falciparum resistance to first-line antimalarials underscores the vital need to develop compounds with novel modes of action and identify new druggable targets. Here, we profile five compounds that potently inhibit P. falciparum asexual blood stages. Resistance selection studies with three carboxamide-containing compounds, confirmed by gene editing and conditional knockdowns, identify point mutations in the parasite transporter ABCI3 as the primary mediator of resistance. Selection studies with imidazopyridine or quinoline-carboxamide compounds also yield changes in ABCI3, this time through gene amplification. Imidazopyridine mode of action is attributed to inhibition of heme detoxification, as evidenced by cellular accumulation and heme fractionation assays. For the copy-number variation-selecting imidazopyridine and quinoline-carboxamide compounds, we find that resistance, manifesting as a biphasic concentration-response curve, can independently be mediated by mutations in the chloroquine resistance transporter PfCRT. These studies reveal the interconnectedness of P. falciparum transporters in overcoming drug pressure in different parasite strains.
Collapse
Affiliation(s)
- James M. Murithi
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ioanna Deni
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jessica L. Bridgford
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nina F. Gnädig
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rachel L. Edwards
- Division of Infectious Diseases, Allergy and Immunology, Center for Vaccine Development, St. Louis University, St. Louis, MO 63104, USA
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Anna Y. Burkhard
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Olivia Coburn-Flynn
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Eva S. Istvan
- Department of Medicine, Division of Infectious Diseases, and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tomoyo Sakata-Kato
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA,Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | | | - Annie N. Cowell
- School of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Kathryn J. Wicht
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA,Drug Discovery and Development Center (H3D) and South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Claire Le Manach
- Drug Discovery and Development Center (H3D) and South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Gavreel F. Kalantarov
- Division of Experimental Therapeutics, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sumanta Dey
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maëlle Duffey
- Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | - Benoît Laleu
- Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | - Amanda K. Lukens
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA,Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Sabine Ottilie
- School of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Manu Vanaerschot
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ilya N. Trakht
- Division of Experimental Therapeutics, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Francisco-Javier Gamo
- Global Health Pharma Research Unit, GlaxoSmithKline, 28760 Tres Cantos, Madrid, Spain
| | - Dyann F. Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA,Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Daniel E. Goldberg
- Department of Medicine, Division of Infectious Diseases, and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Kelly Chibale
- Drug Discovery and Development Center (H3D) and South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Elizabeth A. Winzeler
- School of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Jacquin C. Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA,Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA,Corresponding author
| |
Collapse
|
78
|
Nair S, Li X, Arya GA, McDew-White M, Ferrari M, Anderson T. Nutrient Limitation Magnifies Fitness Costs of Antimalarial Drug Resistance Mutations. Antimicrob Agents Chemother 2022; 66:e0152921. [PMID: 35465723 PMCID: PMC9112896 DOI: 10.1128/aac.01529-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
Drug resistance mutations tend to disrupt key physiological processes and frequently carry fitness costs, which are a central determinant of the rate of spread of these mutations in natural populations. Head-to-head competition assays provide a standard approach to measuring fitness for malaria parasites. These assays typically use a standardized culture medium containing RPMI 1640, which has a 1.4- to 5.5-fold higher concentration of amino acids than human blood. In this rich medium, we predict that fitness costs will be underestimated because resource competition is weak. We tested this prediction using an artemisinin-sensitive parasite edited to contain kelch-C580Y or R561H mutations conferring resistance to artemisinin or synonymous control mutations. We examined the impact of these single amino acid mutations on fitness, using replicated head-to-head competition experiments conducted in media containing (i) normal RPMI, (ii) modified RPMI with reduced amino acid concentration, (iii) RPMI containing only isoleucine, or (iv) 3-fold diluted RPMI. We found a significant 1.3- to 1.4-fold increase in fitness costs measured in modified and isoleucine-only media relative to normal media, while fitness costs were 2.5-fold higher in diluted media. We conclude that fitness costs are strongly affected by media composition and will be significantly underestimated in normal RPMI. Several components differed between media, including pABA and sodium bicarbonate concentrations, so we cannot directly determine which is responsible. Elevated fitness costs in nature will limit spread of artemisinin (ART) resistance but will also promote evolution of compensatory mutations that restore fitness and can be exploited to maximize selection in laboratory experiments.
Collapse
Affiliation(s)
- Shalini Nair
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Xue Li
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Grace A. Arya
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Marina McDew-White
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Marco Ferrari
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Tim Anderson
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
79
|
Mechanistic basis for multidrug resistance and collateral drug sensitivity conferred to the malaria parasite by polymorphisms in PfMDR1 and PfCRT. PLoS Biol 2022; 20:e3001616. [PMID: 35507548 PMCID: PMC9067703 DOI: 10.1371/journal.pbio.3001616] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/31/2022] [Indexed: 01/16/2023] Open
Abstract
Polymorphisms in the Plasmodium falciparum multidrug resistance protein 1 (pfmdr1) gene and the Plasmodium falciparum chloroquine resistance transporter (pfcrt) gene alter the malaria parasite’s susceptibility to most of the current antimalarial drugs. However, the precise mechanisms by which PfMDR1 contributes to multidrug resistance have not yet been fully elucidated, nor is it understood why polymorphisms in pfmdr1 and pfcrt that cause chloroquine resistance simultaneously increase the parasite’s susceptibility to lumefantrine and mefloquine—a phenomenon known as collateral drug sensitivity. Here, we present a robust expression system for PfMDR1 in Xenopus oocytes that enables direct and high-resolution biochemical characterizations of the protein. We show that wild-type PfMDR1 transports diverse pharmacons, including lumefantrine, mefloquine, dihydroartemisinin, piperaquine, amodiaquine, methylene blue, and chloroquine (but not the antiviral drug amantadine). Field-derived mutant isoforms of PfMDR1 differ from the wild-type protein, and each other, in their capacities to transport these drugs, indicating that PfMDR1-induced changes in the distribution of drugs between the parasite’s digestive vacuole (DV) and the cytosol are a key driver of both antimalarial resistance and the variability between multidrug resistance phenotypes. Of note, the PfMDR1 isoforms prevalent in chloroquine-resistant isolates exhibit reduced capacities for chloroquine, lumefantrine, and mefloquine transport. We observe the opposite relationship between chloroquine resistance-conferring mutations in PfCRT and drug transport activity. Using our established assays for characterizing PfCRT in the Xenopus oocyte system and in live parasite assays, we demonstrate that these PfCRT isoforms transport all 3 drugs, whereas wild-type PfCRT does not. We present a mechanistic model for collateral drug sensitivity in which mutant isoforms of PfMDR1 and PfCRT cause chloroquine, lumefantrine, and mefloquine to remain in the cytosol instead of sequestering within the DV. This change in drug distribution increases the access of lumefantrine and mefloquine to their primary targets (thought to be located outside of the DV), while simultaneously decreasing chloroquine’s access to its target within the DV. The mechanistic insights presented here provide a basis for developing approaches that extend the useful life span of antimalarials by exploiting the opposing selection forces they exert upon PfCRT and PfMDR1.
Collapse
|
80
|
Boonyalai N, Kirativanich K, Thamnurak C, Praditpol C, Vesely BA, Wojnarski M, Griesenbeck JS, Waters NC. A single point mutation in the Plasmodium falciparum 3'-5' exonuclease does not alter piperaquine susceptibility. Malar J 2022; 21:130. [PMID: 35459163 PMCID: PMC9034581 DOI: 10.1186/s12936-022-04148-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/31/2022] [Indexed: 12/03/2022] Open
Abstract
Background The rise in Plasmodium falciparum resistance to dihydroartemisinin–piperaquine (DHA–PPQ) treatment has been documented in the Greater Mekong Subregion with associations with mutations in the P. falciparum chloroquine resistance transporter (pfcrt) and plasmepsin 2 (pfpm2) genes. However, it is unclear whether other genes also play a role with PPQ resistance, such as the E415G mutation in the exonuclease (pfexo) gene. The aim of this study was to investigate the role of this mutation in PPQ resistance by generating transgenic parasites expressing the pfexo-E415G mutant allele. Methods Transgenic parasite clones carrying the E415G mutation in PfEXO of the B5 isolate were derived by CRISPR-Cas9 gene editing and verified using PCR and gene sequencing. Polymorphisms of pfkelch-13, pfcrt, and pfexo were examined by PCR while the copy number variations of pfpm2 were examined by both relative quantitative real-time PCR and the duplication breakpoint assay. Drug sensitivity against a panel of antimalarials, the ring-stage survival assay (RSA), the PPQ survival assay (PSA), and bimodal dose-response curves were used to evaluate antimalarial susceptibility. Results The transgenic line, B5-rexo-E415G-B8, was successfully generated. The PPQ-IC90, %PPQ survival, and the bimodal dose-response clearly showed that E415G mutation in PfEXO of B5 isolate remained fully susceptible to PPQ. Furthermore, growth assays demonstrated that the engineered parasites grew slightly faster than the unmodified parental isolates whereas P. falciparum isolates harbouring pfkelch-13, pfcrt, and pfexo mutations with multiple copies of pfpm2 grew much more slowly. Conclusions Insertion of the E415G mutation in PfEXO did not lead to increased PPQ-IC90 and %PPQ survival, suggesting that this mutation alone may not be associated with PPQ resistance, but could still be an important marker if used in conjunction with other markers for monitoring PPQ-resistant parasites. The results also highlight the importance of monitoring and evaluating suspected genetic mutations with regard to parasite fitness and resistance. Supplementary information The online version contains supplementary material available at 10.1186/s12936-022-04148-z.
Collapse
Affiliation(s)
- Nonlawat Boonyalai
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.
| | - Kirakarn Kirativanich
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Chatchadaporn Thamnurak
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Chantida Praditpol
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Brian A Vesely
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Mariusz Wojnarski
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - John S Griesenbeck
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Norman C Waters
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| |
Collapse
|
81
|
Ye R, Zhang Y, Zhang D. Evaluations of candidate markers of dihydroartemisinin-piperaquine resistance in Plasmodium falciparum isolates from the China-Myanmar, Thailand-Myanmar, and Thailand-Cambodia borders. Parasit Vectors 2022; 15:130. [PMID: 35413937 PMCID: PMC9004172 DOI: 10.1186/s13071-022-05239-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background The fast-declining clinical efficacy of dihydroartemisinin-piperaquine (DHA-PPQ) in Cambodia is a warning of the underlying westward dissemination of piperaquine resistance in the Greater Mekong Subregion (GMS). Mutations in the Plasmodium falciparum Kelch 13-propeller (PfK13) and the P. falciparum chloroquine resistance transporter (PfCRT), as well as plasmepsin 2/3 gene amplification, have been discovered as molecular markers for predicting DHA-PPQ treatment failure. Determining whether these genetic variations of P. falciparum are linked to DHA-PPQ resistance is critical, especially along the China–Myanmar (CM) border, where PPQ has been utilized for decades. Methods A total of 173 P. falciparum samples of dried blood spots (DBS) were collected along the CM border between 2007 and 2010, the Thailand–Cambodia (TC) border between 2009 and 2013, and the Thailand–Myanmar (TM) border between 2012 and 2014. PCR and sequencing were used to identified PfCRT mutations, while qPCR was used to determine the copy number of plasmepsin 2/3. The prevalence of DHA-PPQ resistance in three locations was investigated using data paired with K13 mutations. Results Three fragments of the pfcrt gene were amplified for all 173 samples, and seven SNPs were identified (M74I, N75E/D, K76T, H97L, I218F, A220S, I356L). No new PfCRT mutations conferring resistance to PPQ (T93S, H97Y, F145I, M343L, and G353V) were discovered, except for one mutant I218F identified in the TM border (2.27%, 1/44). Additionally, mutant H97L was found in the TC, TM, and CM borders at 3.57% (1/28), 6.82% (3/44), and 1% (1/101), respectively. A substantial K13 C580Y variant prevalence was found in the TC and TM border, accounting for 64.29% (18/28) and 43.18% (19/44), respectively, while only 1% (1/101) was found in the CM border. The K13 F446I variant was only identified and found to reach a high level (28.71%, 29/101) in the CM border. Furthermore, 10.71% (3/28) of TC isolates and 2.27% (1/44) of TM isolates carried more than one copy of plasmepsin 2/3 and K13 C580Y variant, while no plasmepsin 2/3 amplification was identified in the CM isolates. Conclusions Compared with the P. falciparum samples collected from the TC and TM borders, fewer parasites carried plasmepsin 2/3 amplification and novel PfCRT variants, while more parasites carried predominant K13 mutations at position F446I, in the CM border. Clear evidence of DHA-PPQ resistance associated with candidate markers was not found in this border region suggesting a further evaluation of these markers and continuous surveillance is warranted. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05239-1.
Collapse
Affiliation(s)
- Run Ye
- Department of Tropical Diseases, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Yilong Zhang
- Department of Tropical Diseases, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, People's Republic of China.
| | - Dongmei Zhang
- Department of Tropical Diseases, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
82
|
Kunasol C, Dondorp AM, Batty EM, Nakhonsri V, Sinjanakhom P, Day NPJ, Imwong M. Comparative analysis of targeted next-generation sequencing for Plasmodium falciparum drug resistance markers. Sci Rep 2022; 12:5563. [PMID: 35365711 PMCID: PMC8974807 DOI: 10.1038/s41598-022-09474-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/11/2022] [Indexed: 11/09/2022] Open
Abstract
Well-defined molecular resistance markers are available for a range of antimalarial drugs, and molecular surveillance is increasingly important for monitoring antimalarial drug resistance. Different genotyping platforms are available, but these have not been compared in detail. We compared Targeted Amplicon Deep sequencing (TADs) using Ion Torrent PGM with Illumina MiSeq for the typing of antimalarial drug resistance genes. We developed and validated protocols to type the molecular resistance markers pfcrt, pfdhfr, pfdhps, pfmdr1, pfkelch, and pfcytochrome b, in Plasmodium falciparum for the Ion Torrent PGM and Illumina MiSeq sequencing platforms. With P. falciparum 3D7 and K1 as reference strains, whole blood samples (N = 20) and blood spots from Rapid Diagnostic Test (RDT) samples (N = 5) from patients with uncomplicated falciparum malaria from Ubon Ratchathani were assessed on both platforms and compared for coverage (average reads per amplicon), sequencing accuracy, variant accuracy, false positive rate, false negative rate, and alternative allele detection, with conventional Sanger sequencing as the reference method for SNP calling. Both whole blood and RDT samples could be successfully sequenced using the Ion Torrent PGM and Illumina MiSeq platforms. Coverage of reads per amplicon was higher with Illumina MiSeq (28,886 reads) than with Ion Torrent PGM (1754 reads). In laboratory generated artificial mixed infections, the two platforms could detect the minor allele down to 1% density at 500X coverage. SNPs calls from both platforms were in complete agreement with conventional Sanger sequencing. The methods can be multiplexed with up to 96 samples per run, which reduces cost by 86% compared to conventional Sanger sequencing. Both platforms, using the developed TAD protocols, provide an accurate method for molecular surveillance of drug resistance markers in P. falciparum, but Illumina MiSeq provides higher coverage than Ion Torrent PGM.
Collapse
Affiliation(s)
- Chanon Kunasol
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Rd., Bangkok, 10400, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Elizabeth M Batty
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Vorthunju Nakhonsri
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), 144 Innovation Cluster 2 Building (INC) Tower A, Thailand Science Park, Khlong Nueng, Khlong Luang District, Pathum Thani, Thailand
| | - Puritat Sinjanakhom
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Rd., Bangkok, 10400, Thailand
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Rd., Bangkok, 10400, Thailand.
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
83
|
Small-Saunders JL, Hagenah LM, Wicht KJ, Dhingra SK, Deni I, Kim J, Vendome J, Gil-Iturbe E, Roepe PD, Mehta M, Mancia F, Quick M, Eppstein MJ, Fidock DA. Evidence for the early emergence of piperaquine-resistant Plasmodium falciparum malaria and modeling strategies to mitigate resistance. PLoS Pathog 2022; 18:e1010278. [PMID: 35130315 PMCID: PMC8853508 DOI: 10.1371/journal.ppat.1010278] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/17/2022] [Accepted: 01/13/2022] [Indexed: 11/19/2022] Open
Abstract
Multidrug-resistant Plasmodium falciparum parasites have emerged in Cambodia and neighboring countries in Southeast Asia, compromising the efficacy of first-line antimalarial combinations. Dihydroartemisinin + piperaquine (PPQ) treatment failure rates have risen to as high as 50% in some areas in this region. For PPQ, resistance is driven primarily by a series of mutant alleles of the P. falciparum chloroquine resistance transporter (PfCRT). PPQ resistance was reported in China three decades earlier, but the molecular driver remained unknown. Herein, we identify a PPQ-resistant pfcrt allele (China C) from Yunnan Province, China, whose genotypic lineage is distinct from the PPQ-resistant pfcrt alleles currently observed in Cambodia. Combining gene editing and competitive growth assays, we report that PfCRT China C confers moderate PPQ resistance while re-sensitizing parasites to chloroquine (CQ) and incurring a fitness cost that manifests as a reduced rate of parasite growth. PPQ transport assays using purified PfCRT isoforms, combined with molecular dynamics simulations, highlight differences in drug transport kinetics and in this transporter’s central cavity conformation between China C and the current Southeast Asian PPQ-resistant isoforms. We also report a novel computational model that incorporates empirically determined fitness landscapes at varying drug concentrations, combined with antimalarial susceptibility profiles, mutation rates, and drug pharmacokinetics. Our simulations with PPQ-resistant or -sensitive parasite lines predict that a three-day regimen of PPQ combined with CQ can effectively clear infections and prevent the evolution of PfCRT variants. This work suggests that including CQ in combination therapies could be effective in suppressing the evolution of PfCRT-mediated multidrug resistance in regions where PPQ has lost efficacy. The recent emergence of Plasmodium falciparum parasite resistance to the antimalarial drug piperaquine (PPQ) has contributed to frequent treatment failures across Southeast Asia, originating in Cambodia. Here, we show that earlier reports of PPQ resistance in Yunnan Province, China could be explained by the unique China C variant of the P. falciparum chloroquine resistance transporter PfCRT. Gene-edited parasites show a loss of fitness and parasite resensitization to the chemically related former first-line antimalarial chloroquine, while acquiring PPQ resistance via drug efflux. Molecular features of drug resistance were examined using biochemical assays to measure mutant PfCRT-mediated drug transport and molecular dynamics simulations with the recently solved PfCRT structure to assess changes in the central drug-binding cavity. We also describe a new computational model that incorporates parasite mutation rates, fitness costs, antimalarial susceptibilities, and drug pharmacological profiles to predict how infections with parasite strains expressing distinct PfCRT variants can evolve and be selected in response to different drug pressures and regimens. Simulations predict that a three-day regimen of PPQ plus chloroquine would be fully effective at preventing recrudescence of drug-resistant infections.
Collapse
Affiliation(s)
- Jennifer L Small-Saunders
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Laura M Hagenah
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Kathryn J Wicht
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Satish K Dhingra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Ioanna Deni
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Jonathan Kim
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York United States of America
| | - Jeremie Vendome
- Schrödinger, Inc., New York, New York, United States of America
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Paul D Roepe
- Department of Chemistry, Georgetown University, Washington, DC, United States of America
- Department of Biochemistry and Cellular and Molecular Biology, Georgetown University, Washington, DC, United States of America
| | - Monica Mehta
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York United States of America
| | - Matthias Quick
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, United States of America
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, United States of America
- Center for Molecular Recognition, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Margaret J Eppstein
- Vermont Complex Systems Center, University of Vermont, Burlington, Vermont, United States of America
- Department of Computer Science, University of Vermont, Burlington, Vermont, United States of America
- Translational Global Infectious Diseases Research Center, University of Vermont, Burlington, Vermont, United States of America
| | - David A Fidock
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| |
Collapse
|
84
|
Edgar RCS, Counihan NA, McGowan S, de Koning-Ward TF. Methods Used to Investigate the Plasmodium falciparum Digestive Vacuole. Front Cell Infect Microbiol 2022; 11:829823. [PMID: 35096663 PMCID: PMC8794586 DOI: 10.3389/fcimb.2021.829823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum malaria remains a global health problem as parasites continue to develop resistance to all antimalarials in use. Infection causes clinical symptoms during the intra-erythrocytic stage of the lifecycle where the parasite infects and replicates within red blood cells (RBC). During this stage, P. falciparum digests the main constituent of the RBC, hemoglobin, in a specialized acidic compartment termed the digestive vacuole (DV), a process essential for survival. Many therapeutics in use target one or multiple aspects of the DV, with chloroquine and its derivatives, as well as artemisinin, having mechanisms of action within this organelle. In order to better understand how current therapeutics and those under development target DV processes, techniques used to investigate the DV are paramount. This review outlines the involvement of the DV in therapeutics currently in use and focuses on the range of techniques that are currently utilized to study this organelle including microscopy, biochemical analysis, genetic approaches and metabolomic studies. Importantly, continued development and application of these techniques will aid in our understanding of the DV and in the development of new therapeutics or therapeutic partners for the future.
Collapse
Affiliation(s)
- Rebecca C. S. Edgar
- School of Medicine, Deakin University, Geelong, VIC, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Natalie A. Counihan
- School of Medicine, Deakin University, Geelong, VIC, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Sheena McGowan
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
- Centre to Impact AMR, Monash University, Monash University, Clayton, VIC, Australia
| | - Tania F. de Koning-Ward
- School of Medicine, Deakin University, Geelong, VIC, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
85
|
Hai Y, Cai ZM, Li PJ, Wei MY, Wang CY, Gu YC, Shao CL. Trends of antimalarial marine natural products: progresses, challenges and opportunities. Nat Prod Rep 2022; 39:969-990. [DOI: 10.1039/d1np00075f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review provides an overview of the antimalarial marine natural products, focusing on their chemistry, malaria-related targets and mechanisms, and highlighting their potential for drug development.
Collapse
Affiliation(s)
- Yang Hai
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Zi-Mu Cai
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Peng-Jie Li
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| |
Collapse
|
86
|
Marfurt J, Wirjanata G, Prayoga P, Chalfein F, Leonardo L, Sebayang BF, Apriyanti D, Sihombing MAEM, Trianty L, Suwanarusk R, Brockman A, Piera KA, Luo I, Rumaseb A, MacHunter B, Auburn S, Anstey NM, Kenangalem E, Noviyanti R, Russell B, Poespoprodjo JR, Price RN. Longitudinal ex vivo and molecular trends of chloroquine and piperaquine activity against Plasmodium falciparum and P. vivax before and after introduction of artemisinin-based combination therapy in Papua, Indonesia. Int J Parasitol Drugs Drug Resist 2021; 17:46-56. [PMID: 34193398 PMCID: PMC8358472 DOI: 10.1016/j.ijpddr.2021.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 01/13/2023]
Abstract
Drug resistant Plasmodium parasites are a major threat to malaria control and elimination. After reports of high levels of multidrug resistant P. falciparum and P. vivax in Indonesia, in 2005, the national first-line treatment policy for uncomplicated malaria was changed in March 2006, to dihydroartemisinin-piperaquine against all species. This study assessed the temporal trends in ex vivo drug susceptibility to chloroquine (CQ) and piperaquine (PIP) for both P. falciparum and P. vivax clinical isolates collected between 2004 and 2018, by using schizont maturation assays, and genotyped a subset of isolates for known and putative molecular markers of CQ and PIP resistance by using Sanger and next generation whole genome sequencing. The median CQ IC50 values varied significantly between years in both Plasmodium species, but there was no significant trend over time. In contrast, there was a significant trend for increasing PIP IC50s in both Plasmodium species from 2010 onwards. Whereas the South American CQ resistant 7G8 pfcrt SVMNT isoform has been fixed since 2005 in the study area, the pfmdr1 86Y allele frequencies decreased and became fixed at the wild-type allele in 2015. In P. vivax isolates, putative markers of CQ resistance (no pvcrt-o AAG (K10) insertion and pvmdr1 Y967F and F1076L) were fixed at the mutant alleles since 2005. None of the putative PIP resistance markers were detected in P. falciparum. The ex vivo drug susceptibility and molecular analysis of CQ and PIP efficacy for P. falciparum and P. vivax after 12 years of intense drug pressure with DHP suggests that whilst the degree of CQ resistance appears to have been sustained, there has been a slight decline in PIP susceptibility, although this does not appear to have reached clinically significant levels. The observed decreasing trend in ex vivo PIP susceptibility highlights the importance of ongoing surveillance.
Collapse
Affiliation(s)
- Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia.
| | - Grennady Wirjanata
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Pak Prayoga
- Papuan Health and Community Development Foundation (PHCDF), Jl. Caritas No. 1, 99961, Timika, Papua, Indonesia
| | - Ferryanto Chalfein
- Papuan Health and Community Development Foundation (PHCDF), Jl. Caritas No. 1, 99961, Timika, Papua, Indonesia
| | - Leo Leonardo
- Papuan Health and Community Development Foundation (PHCDF), Jl. Caritas No. 1, 99961, Timika, Papua, Indonesia
| | - Boni F Sebayang
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, 10430, Jakarta, Indonesia
| | - Dwi Apriyanti
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, 10430, Jakarta, Indonesia
| | - Maic A E M Sihombing
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, 10430, Jakarta, Indonesia
| | - Leily Trianty
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, 10430, Jakarta, Indonesia
| | - Rossarin Suwanarusk
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Alan Brockman
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Kim A Piera
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Irene Luo
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Angela Rumaseb
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Barbara MacHunter
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Enny Kenangalem
- Papuan Health and Community Development Foundation (PHCDF), Jl. Caritas No. 1, 99961, Timika, Papua, Indonesia; District Health Authority, Timika, Papua, Indonesia
| | - Rintis Noviyanti
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, 10430, Jakarta, Indonesia
| | - Bruce Russell
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Jeanne R Poespoprodjo
- Papuan Health and Community Development Foundation (PHCDF), Jl. Caritas No. 1, 99961, Timika, Papua, Indonesia; Paediatric Research Office, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| |
Collapse
|
87
|
Pyronaridine-Artesunate (Pyramax) for Treatment of Artemisinin- and Piperaquine-Resistant Plasmodium falciparum in the Central Highlands of Vietnam. Antimicrob Agents Chemother 2021; 65:e0027621. [PMID: 34570647 DOI: 10.1128/aac.00276-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The rise in Plasmodium falciparum resistance to dihydroartemisinin-piperaquine in Vietnam justifies the need to evaluate alternative artemisinin-based combination therapies. Between July 2018 and October 2019, a single-arm trial of pyronaridine-artesunate (Pyramax, PA) was conducted in Dak Nong province, Vietnam. PA (3-day course) was administered to adults and children infected with P. falciparum. PA was well tolerated by the participants. The proportion of patients with Day 42 PCR-corrected adequate clinical and parasitological response was 95.2% (95% confidence interval [CI], 82.3 to 98.8, n = 40/42) for treating falciparum malaria. The median parasite clearance half-life was 6.7 h (range, 2.6 to 11.9) and the median parasite clearance time was 72 h (range, 12 to 132) with 44.9% (22/49) of patients having positive blood films at 72 h. The two patients that recrudesced had comparable Day 7 blood pyronaridine concentrations (39.5 and 39.0 ng/ml) to the 40 patients who did not recrudesce (median 43.4 ng/ml, 95% CI, 35.1 to 54.9). Ring-stage and piperaquine survival assays revealed that of the 29 P. falciparum isolates collected from the patients before PA treatment, 22 (75.9%) had reduced susceptibility to artemisinins and 17 (58.6%) were resistant to piperaquine. Genotyping confirmed that 92.0% (46/50) of falciparum patients were infected with parasites bearing the Pfkelch13 C580Y mutation associated with artemisinin resistance. Of these, 56.0% (28/50) of the isolates also had multiple copies of the plasmepsin 2/3 genes responsible for piperaquine resistance. Overall, PA was effective in treating P. falciparum in the Central Highlands of Vietnam. (This study has been registered at AustralianClinicalTrials.gov.au under trial ID ACTRN12618001429246.).
Collapse
|
88
|
Comparative Analysis of Plasmodium falciparum Genotyping via SNP Detection, Microsatellite Profiling, and Whole-Genome Sequencing. Antimicrob Agents Chemother 2021; 66:e0116321. [PMID: 34694871 PMCID: PMC8765236 DOI: 10.1128/aac.01163-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Research efforts to combat antimalarial drug resistance rely on quick, robust, and sensitive methods to genetically characterize Plasmodium falciparum parasites. We developed a single-nucleotide polymorphism (SNP)-based genotyping method that can assess 33 drug resistance-conferring SNPs in dhfr, dhps, pfmdr1, pfcrt, and k13 in nine PCRs, performed directly from P. falciparum cultures or infected blood. We also optimized multiplexed fragment analysis and gel electrophoresis-based microsatellite typing methods using a set of five markers that can distinguish 12 laboratory strains of diverse geographical and temporal origin. We demonstrate how these methods can be applied to screen for the multidrug-resistant KEL1/PLA1/PfPailin (KelPP) lineage that has been sweeping across the Greater Mekong Subregion, verify parasite in vitro SNP-editing, identify novel recombinant genetic cross progeny, or cluster strains to infer their geographical origins. Results were compared with Illumina-based whole-genome sequence analysis that provides the most detailed sequence information but is cost-prohibitive. These adaptable, simple, and inexpensive methods can be easily implemented into routine genotyping of P. falciparum parasites in both laboratory and field settings.
Collapse
|
89
|
Mairet-Khedim M, Nsango S, Ngou C, Menard S, Roesch C, Khim N, Srun S, Iriart X, Lanot T, Otam L, Abega F, Ayong L, Morlais I, Gandia P, Witkowski B, Berry A. Efficacy of dihydroartemisinin/piperaquine in patients with non-complicated Plasmodium falciparum malaria in Yaoundé, Cameroon. J Antimicrob Chemother 2021; 76:3037-3044. [PMID: 34453535 DOI: 10.1093/jac/dkab281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Dihydroartemisinin/piperaquine is increasingly used for the treatment of uncomplicated Plasmodium falciparum malaria in Africa. The efficacy of this combination in Cameroon is poorly documented, while resistance to dihydroartemisinin/piperaquine readily spreads in Southeast Asia. OBJECTIVES This study evaluated the clinical efficacy of dihydroartemisinin/piperaquine in Cameroon, as well as the molecular profile and phenotypic susceptibility of collected isolates to dihydroartemisinin and piperaquine. PATIENTS AND METHODS Dihydroartemisinin/piperaquine efficacy in 42 days was followed-up for 138 patients presenting non-complicated falciparum malaria. Piperaquine concentration was determined at day 7 for 124 patients. kelch13 gene polymorphisms (n = 150) and plasmepsin2 gene amplification (n = 148) were determined as molecular markers of resistance to dihydroartemisinin and piperaquine, respectively. Parasite susceptibility to dihydroartemisinin and piperaquine was determined using validated in vitro survival assays. RESULTS The efficacy of dihydroartemisinin/piperaquine treatment was 100% after PCR correction. The reinfections were not associated with a variation of piperaquine concentration at day 7. Ninety-six percent (144/150) of the samples presented a WT allele of the kelch13 gene. Two percent (3/150) presented the non-synonymous mutation A578S, which is not associated with resistance to dihydroartemisinin. No duplication of the plasmepsin2 gene was observed (0/148). All the samples tested in vitro by survival assays (n = 87) were susceptible to dihydroartemisinin and piperaquine. CONCLUSIONS Dihydroartemisinin/piperaquine has demonstrated excellent therapeutic efficacy with no evidence of emerging artemisinin or piperaquine resistance in Yaoundé, Cameroon. This observation suggests that dihydroartemisinin/piperaquine could be a sustainable therapeutic solution for P. falciparum malaria if implemented in areas previously free of artemisinin- and piperaquine-resistant parasites, unlike Southeast Asia.
Collapse
Affiliation(s)
- Mélissa Mairet-Khedim
- Malaria Translational Research Unit, Pasteur International Unit, Pasteur International Network, Phnom Penh, Cambodia and Paris, France.,Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université Toulouse, CNRS UMR5051, INSERM UMR1291, UPS, Toulouse, France.,Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, 25 rue du Docteur Roux, 75724 Paris 15, France
| | - Sandrine Nsango
- Department of Biological Sciences, Faculté de Médecine et des Sciences Pharmaceutiques, Université de Douala, Douala, Cameroon.,Malaria Research Unit, Centre Pasteur du Cameroon, Yaoundé, Cameroon
| | - Christelle Ngou
- Malaria Research Unit, Centre Pasteur du Cameroon, Yaoundé, Cameroon.,MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France
| | - Sandie Menard
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université Toulouse, CNRS UMR5051, INSERM UMR1291, UPS, Toulouse, France
| | - Camille Roesch
- Malaria Translational Research Unit, Pasteur International Unit, Pasteur International Network, Phnom Penh, Cambodia and Paris, France.,Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Nimol Khim
- Malaria Translational Research Unit, Pasteur International Unit, Pasteur International Network, Phnom Penh, Cambodia and Paris, France.,Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sreynet Srun
- Malaria Translational Research Unit, Pasteur International Unit, Pasteur International Network, Phnom Penh, Cambodia and Paris, France.,Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Xavier Iriart
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université Toulouse, CNRS UMR5051, INSERM UMR1291, UPS, Toulouse, France.,Service de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Toulouse, Hôpital Purpan, Toulouse F-31300, France
| | - Thomas Lanot
- Laboratoire de Pharmacocinétique et Toxicologie, Centre Hospitalier Universitaire de Toulouse, Hôpital Purpan, Toulouse F-31300, France
| | - Laure Otam
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université Toulouse, CNRS UMR5051, INSERM UMR1291, UPS, Toulouse, France.,Département des Sciences Biomédicales, Faculté des Sciences, Université de Ngaoundéré, Ngaoundéré, Cameroon
| | | | - Lawrence Ayong
- Malaria Research Unit, Centre Pasteur du Cameroon, Yaoundé, Cameroon
| | | | - Peggy Gandia
- Laboratoire de Pharmacocinétique et Toxicologie, Centre Hospitalier Universitaire de Toulouse, Hôpital Purpan, Toulouse F-31300, France.,INTHERES, Université de Toulouse, INRA, ENVT, BP 87614, 31076 Toulouse Cedex 3, France
| | - Benoit Witkowski
- Malaria Translational Research Unit, Pasteur International Unit, Pasteur International Network, Phnom Penh, Cambodia and Paris, France.,Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Antoine Berry
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université Toulouse, CNRS UMR5051, INSERM UMR1291, UPS, Toulouse, France.,Service de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Toulouse, Hôpital Purpan, Toulouse F-31300, France
| |
Collapse
|
90
|
Erhunse N, Sahal D. Protecting future antimalarials from the trap of resistance: Lessons from artemisinin-based combination therapy (ACT) failures. J Pharm Anal 2021; 11:541-554. [PMID: 34765267 PMCID: PMC8572664 DOI: 10.1016/j.jpha.2020.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/19/2020] [Accepted: 07/19/2020] [Indexed: 11/01/2022] Open
Abstract
Having faced increased clinical treatment failures with dihydroartemisinin-piperaquine (DHA-PPQ), Cambodia swapped the first line artemisinin-based combination therapy (ACT) from DHA-PPQ to artesunate-mefloquine given that parasites resistant to piperaquine are susceptible to mefloquine. However, triple mutants have now emerged, suggesting that drug rotations may not be adequate to keep resistance at bay. There is, therefore, an urgent need for alternative treatment strategies to tackle resistance and prevent its spread. A proper understanding of all contributors to artemisinin resistance may help us identify novel strategies to keep artemisinins effective until new drugs become available for their replacement. This review highlights the role of the key players in artemisinin resistance, the current strategies to deal with it and suggests ways of protecting future antimalarial drugs from bowing to resistance as their predecessors did.
Collapse
Affiliation(s)
- Nekpen Erhunse
- Malaria Drug Discovery Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
- Department of Biochemistry, Faculty of Life Sciences, University of Benin, Benin City, Edo-State, Nigeria
| | - Dinkar Sahal
- Malaria Drug Discovery Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| |
Collapse
|
91
|
Design of proteasome inhibitors with oral efficacy in vivo against Plasmodium falciparum and selectivity over the human proteasome. Proc Natl Acad Sci U S A 2021; 118:2107213118. [PMID: 34548400 PMCID: PMC8488693 DOI: 10.1073/pnas.2107213118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 11/18/2022] Open
Abstract
Here, we describe inhibitors of the Plasmodium proteasome, an enzymatic complex that malaria parasites rely on to degrade proteins. Starting from inhibitors developed to treat cancer, derivatives were designed and synthesized with the aim of increasing potency against the Plasmodium proteasome and decreasing activity against the human enzyme. Biochemical and cellular assays identified compounds that exhibit selectivity and potency, both in vitro and in vivo, at different stages of the parasite’s lifecycle. Cryo-electron microscopy revealed that the inhibitors bind in a hydrophobic pocket that is structurally different in the human proteasome—underpinning their selectivity. The work will help develop antimalarial therapeutics, which are desperately needed to treat a disease that kills nearly half a million people annually. The Plasmodium falciparum proteasome is a potential antimalarial drug target. We have identified a series of amino-amide boronates that are potent and specific inhibitors of the P. falciparum 20S proteasome (Pf20S) β5 active site and that exhibit fast-acting antimalarial activity. They selectively inhibit the growth of P. falciparum compared with a human cell line and exhibit high potency against field isolates of P. falciparum and Plasmodium vivax. They have a low propensity for development of resistance and possess liver stage and transmission-blocking activity. Exemplar compounds, MPI-5 and MPI-13, show potent activity against P. falciparum infections in a SCID mouse model with an oral dosing regimen that is well tolerated. We show that MPI-5 binds more strongly to Pf20S than to human constitutive 20S (Hs20Sc). Comparison of the cryo-electron microscopy (EM) structures of Pf20S and Hs20Sc in complex with MPI-5 and Pf20S in complex with the clinically used anti-cancer agent, bortezomib, reveal differences in binding modes that help to explain the selectivity. Together, this work provides insights into the 20S proteasome in P. falciparum, underpinning the design of potent and selective antimalarial proteasome inhibitors.
Collapse
|
92
|
Evolution of multidrug resistance in Plasmodium falciparum: a longitudinal study of genetic resistance markers in the Greater Mekong Subregion. Antimicrob Agents Chemother 2021; 65:e0112121. [PMID: 34516247 PMCID: PMC8597770 DOI: 10.1128/aac.01121-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Increasing resistance in Plasmodium falciparum to artemisinins and their artemisinin combination therapy (ACT) partner drugs jeopardizes effective antimalarial treatment. Resistance is worst in the Greater Mekong subregion. Monitoring genetic markers of resistance can help to guide antimalarial therapy. Markers of resistance to artemisinins (PfKelch mutations), mefloquine (amplification of P. falciparum multidrug resistance-1 [PfMDR1]), and piperaquine (PfPlasmepsin2/3 amplification and specific P. falciparum chloroquine resistance transporter [PfCRT] mutations) were assessed in 6,722 P. falciparum samples from Vietnam, Lao People’s Democratic Republic (PDR), Cambodia, Thailand, and Myanmar between 2007 and 2019. Against a high background prevalence of PfKelch mutations, PfMDR1 and PfPlasmepsin2/3 amplification closely followed regional drug pressures over time. PfPlasmepsin2/3 amplification preceded piperaquine resistance-associated PfCRT mutations in Cambodia and reached a peak prevalence of 23/28 (82%) in 2015. This declined to 57/156 (38%) after first-line treatment was changed from dihydroartemisinin-piperaquine to artesunate-mefloquine (ASMQ) between 2014 and 2017. The frequency of PfMDR1 amplification increased from 0/293 (0%) between 2012 and 2017 to 12/156 (8%) in 2019. Amplification of PfMDR1 and PfPlasmepsin2/3 in the same parasites was extremely rare (4/6,722 [0.06%]) and was dispersed over time. The mechanisms conferring mefloquine and piperaquine resistance may be counterbalancing. This supports the development of ASMQ plus piperaquine as a triple artemisinin combination therapy.
Collapse
|
93
|
Jacob CG, Thuy-Nhien N, Mayxay M, Maude RJ, Quang HH, Hongvanthong B, Vanisaveth V, Ngo Duc T, Rekol H, van der Pluijm R, von Seidlein L, Fairhurst R, Nosten F, Hossain MA, Park N, Goodwin S, Ringwald P, Chindavongsa K, Newton P, Ashley E, Phalivong S, Maude R, Leang R, Huch C, Dong LT, Nguyen KT, Nhat TM, Hien TT, Nguyen H, Zdrojewski N, Canavati S, Sayeed AA, Uddin D, Buckee C, Fanello CI, Onyamboko M, Peto T, Tripura R, Amaratunga C, Myint Thu A, Delmas G, Landier J, Parker DM, Chau NH, Lek D, Suon S, Callery J, Jittamala P, Hanboonkunupakarn B, Pukrittayakamee S, Phyo AP, Smithuis F, Lin K, Thant M, Hlaing TM, Satpathi P, Satpathi S, Behera PK, Tripura A, Baidya S, Valecha N, Anvikar AR, Ul Islam A, Faiz A, Kunasol C, Drury E, Kekre M, Ali M, Love K, Rajatileka S, Jeffreys AE, Rowlands K, Hubbart CS, Dhorda M, Vongpromek R, Kotanan N, Wongnak P, Almagro Garcia J, Pearson RD, Ariani CV, Chookajorn T, Malangone C, Nguyen T, Stalker J, Jeffery B, Keatley J, Johnson KJ, Muddyman D, Chan XHS, Sillitoe J, Amato R, Simpson V, Gonçalves S, Rockett K, Day NP, Dondorp AM, Kwiatkowski DP, Miotto O. Genetic surveillance in the Greater Mekong subregion and South Asia to support malaria control and elimination. eLife 2021; 10:e62997. [PMID: 34372970 PMCID: PMC8354633 DOI: 10.7554/elife.62997] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 06/30/2021] [Indexed: 02/04/2023] Open
Abstract
Background National Malaria Control Programmes (NMCPs) currently make limited use of parasite genetic data. We have developed GenRe-Mekong, a platform for genetic surveillance of malaria in the Greater Mekong Subregion (GMS) that enables NMCPs to implement large-scale surveillance projects by integrating simple sample collection procedures in routine public health procedures. Methods Samples from symptomatic patients are processed by SpotMalaria, a high-throughput system that produces a comprehensive set of genotypes comprising several drug resistance markers, species markers and a genomic barcode. GenRe-Mekong delivers Genetic Report Cards, a compendium of genotypes and phenotype predictions used to map prevalence of resistance to multiple drugs. Results GenRe-Mekong has worked with NMCPs and research projects in eight countries, processing 9623 samples from clinical cases. Monitoring resistance markers has been valuable for tracking the rapid spread of parasites resistant to the dihydroartemisinin-piperaquine combination therapy. In Vietnam and Laos, GenRe-Mekong data have provided novel knowledge about the spread of these resistant strains into previously unaffected provinces, informing decision-making by NMCPs. Conclusions GenRe-Mekong provides detailed knowledge about drug resistance at a local level, and facilitates data sharing at a regional level, enabling cross-border resistance monitoring and providing the public health community with valuable insights. The project provides a rich open data resource to benefit the entire malaria community. Funding The GenRe-Mekong project is funded by the Bill and Melinda Gates Foundation (OPP11188166, OPP1204268). Genotyping and sequencing were funded by the Wellcome Trust (098051, 206194, 203141, 090770, 204911, 106698/B/14/Z) and Medical Research Council (G0600718). A proportion of samples were collected with the support of the UK Department for International Development (201900, M006212), and Intramural Research Program of the National Institute of Allergy and Infectious Diseases.
Collapse
Affiliation(s)
| | | | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Research Unit (LOMWRU), Microbiology Laboratory, Mahosot HospitalVientianeLao People's Democratic Republic
- Institute of Research and Education Development (IRED), University of Health Sciences, Ministry of HealthVientianeLao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
| | - Richard J Maude
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
- Harvard TH Chan School of Public Health, Harvard UniversityBostonUnited States
| | - Huynh Hong Quang
- Institute of Malariology, Parasitology and Entomology (IMPE-QN)Quy NhonViet Nam
| | - Bouasy Hongvanthong
- Centre of Malariology, Parasitology, and EntomologyVientianeLao People's Democratic Republic
| | - Viengxay Vanisaveth
- Centre of Malariology, Parasitology, and EntomologyVientianeLao People's Democratic Republic
| | - Thang Ngo Duc
- National Institute of Malariology, Parasitology and Entomology (NIMPE)HanoiViet Nam
| | - Huy Rekol
- National Center for Parasitology, Entomology, and Malaria ControlPhnom PenhCambodia
| | - Rob van der Pluijm
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | - Lorenz von Seidlein
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | - Rick Fairhurst
- National Institute of Allergy and Infectious Diseases, National Institutes of HealthRockvilleUnited States
| | - François Nosten
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Shoklo Malaria Research UnitMae SotThailand
| | | | - Naomi Park
- Wellcome Sanger InstituteHinxtonUnited Kingdom
| | | | | | | | - Paul Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Research Unit (LOMWRU), Microbiology Laboratory, Mahosot HospitalVientianeLao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | - Elizabeth Ashley
- Lao-Oxford-Mahosot Hospital-Wellcome Research Unit (LOMWRU), Microbiology Laboratory, Mahosot HospitalVientianeLao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
| | - Sonexay Phalivong
- Lao-Oxford-Mahosot Hospital-Wellcome Research Unit (LOMWRU), Microbiology Laboratory, Mahosot HospitalVientianeLao People's Democratic Republic
| | - Rapeephan Maude
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
- Faculty of Medicine, Ramathibodi Hospital, Mahidol UniversityBangkokThailand
| | - Rithea Leang
- National Center for Parasitology, Entomology, and Malaria ControlPhnom PenhCambodia
| | - Cheah Huch
- National Center for Parasitology, Entomology, and Malaria ControlPhnom PenhCambodia
| | - Le Thanh Dong
- Institute of Malariology, Parasitology and Entomology (IMPEHCM)Ho Chi Minh CityViet Nam
| | - Kim-Tuyen Nguyen
- Oxford University Clinical Research UnitHo Chi Minh CityViet Nam
| | - Tran Minh Nhat
- Oxford University Clinical Research UnitHo Chi Minh CityViet Nam
| | - Tran Tinh Hien
- Oxford University Clinical Research UnitHo Chi Minh CityViet Nam
| | | | | | | | | | - Didar Uddin
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | - Caroline Buckee
- Harvard TH Chan School of Public Health, Harvard UniversityBostonUnited States
| | - Caterina I Fanello
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | - Marie Onyamboko
- Kinshasa School of Public Health, University of KinshasaKinshasaDemocratic Republic of the Congo
| | - Thomas Peto
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | - Rupam Tripura
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | - Chanaki Amaratunga
- National Institute of Allergy and Infectious Diseases, National Institutes of HealthRockvilleUnited States
| | - Aung Myint Thu
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Shoklo Malaria Research UnitMae SotThailand
| | - Gilles Delmas
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Shoklo Malaria Research UnitMae SotThailand
| | - Jordi Landier
- Shoklo Malaria Research UnitMae SotThailand
- Aix-Marseille Université, INSERM, IRD, SESSTIM, Aix Marseille Institute of Public Health, ISSPAMMarseilleFrance
| | - Daniel M Parker
- Shoklo Malaria Research UnitMae SotThailand
- Susan and Henry Samueli College of Health Sciences, University of California, IrvineIrvineUnited States
| | | | - Dysoley Lek
- National Center for Parasitology, Entomology, and Malaria ControlPhnom PenhCambodia
| | - Seila Suon
- National Center for Parasitology, Entomology, and Malaria ControlPhnom PenhCambodia
| | - James Callery
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | | | | | - Sasithon Pukrittayakamee
- Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- The Royal Society of ThailandBangkokThailand
| | - Aung Pyae Phyo
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Myanmar-Oxford Clinical Research UnitYangonMyanmar
| | - Frank Smithuis
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Myanmar-Oxford Clinical Research UnitYangonMyanmar
| | - Khin Lin
- Department of Medical ResearchPyin Oo LwinMyanmar
| | - Myo Thant
- Defence Services Medical Research CentreYangonMyanmar
| | | | | | | | | | | | | | - Neena Valecha
- National Institute of Malaria Research, Indian Council of Medical ResearchNew DelhiIndia
| | - Anupkumar R Anvikar
- National Institute of Malaria Research, Indian Council of Medical ResearchNew DelhiIndia
| | | | - Abul Faiz
- Malaria Research Group and Dev Care FoundationDhakaBangladesh
| | - Chanon Kunasol
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | | | - Mihir Kekre
- Wellcome Sanger InstituteHinxtonUnited Kingdom
| | - Mozam Ali
- Wellcome Sanger InstituteHinxtonUnited Kingdom
| | - Katie Love
- Wellcome Sanger InstituteHinxtonUnited Kingdom
| | | | - Anna E Jeffreys
- Wellcome Trust Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Kate Rowlands
- Wellcome Trust Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Christina S Hubbart
- Wellcome Trust Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Mehul Dhorda
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
- Worldwide Antimalarial Resistance Network (WWARN), Asia Regional CentreBangkokThailand
| | - Ranitha Vongpromek
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
- Worldwide Antimalarial Resistance Network (WWARN), Asia Regional CentreBangkokThailand
| | - Namfon Kotanan
- Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - Phrutsamon Wongnak
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | - Jacob Almagro Garcia
- MRC Centre for Genomics and Global Health, Big Data Institute, Oxford UniversityOxfordUnited Kingdom
| | - Richard D Pearson
- Wellcome Sanger InstituteHinxtonUnited Kingdom
- MRC Centre for Genomics and Global Health, Big Data Institute, Oxford UniversityOxfordUnited Kingdom
| | | | | | | | - T Nguyen
- Wellcome Sanger InstituteHinxtonUnited Kingdom
| | - Jim Stalker
- Wellcome Sanger InstituteHinxtonUnited Kingdom
| | - Ben Jeffery
- MRC Centre for Genomics and Global Health, Big Data Institute, Oxford UniversityOxfordUnited Kingdom
| | | | - Kimberly J Johnson
- Wellcome Sanger InstituteHinxtonUnited Kingdom
- MRC Centre for Genomics and Global Health, Big Data Institute, Oxford UniversityOxfordUnited Kingdom
| | | | - Xin Hui S Chan
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | | | | | - Victoria Simpson
- Wellcome Sanger InstituteHinxtonUnited Kingdom
- MRC Centre for Genomics and Global Health, Big Data Institute, Oxford UniversityOxfordUnited Kingdom
| | | | - Kirk Rockett
- Wellcome Sanger InstituteHinxtonUnited Kingdom
- Wellcome Trust Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Nicholas P Day
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | - Arjen M Dondorp
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | - Dominic P Kwiatkowski
- Wellcome Sanger InstituteHinxtonUnited Kingdom
- MRC Centre for Genomics and Global Health, Big Data Institute, Oxford UniversityOxfordUnited Kingdom
| | - Olivo Miotto
- Wellcome Sanger InstituteHinxtonUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
- MRC Centre for Genomics and Global Health, Big Data Institute, Oxford UniversityOxfordUnited Kingdom
| |
Collapse
|
94
|
Mairet-Khedim M, Leang R, Marmai C, Khim N, Kim S, Ke S, Kauy C, Kloeung N, Eam R, Chy S, Izac B, Mey Bouth D, Dorina Bustos M, Ringwald P, Ariey F, Witkowski B. Clinical and In Vitro Resistance of Plasmodium falciparum to Artesunate-Amodiaquine in Cambodia. Clin Infect Dis 2021; 73:406-413. [PMID: 32459308 PMCID: PMC8326543 DOI: 10.1093/cid/ciaa628] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Artesunate-amodiaquine is a potential therapy for uncomplicated malaria in Cambodia. METHODS Between September 2016 and January 2017, artesunate-amodiaquine efficacy and safety were evaluated in a prospective, open-label, single-arm observational study at health centers in Mondulkiri, Pursat, and Siem Reap Provinces, Cambodia. Adults and children with microscopically confirmed Plasmodium falciparum malaria received oral artesunate-amodiaquine once daily for 3 days plus single-dose primaquine, with follow-up on days 7, 14, 21, and 28. The primary outcome was day-28 polymerase chain reaction (PCR)-adjusted adequate clinical and parasitological response (ACPR). An amodiaquine parasite survival assay (AQSA) was developed and applied to whole genome sequencing results to evaluate potential amodiaquine resistance molecular markers. RESULTS In 63 patients, day-28 PCR-adjusted ACPR was 81.0% (95% confidence interval [CI], 68.9-88.7). Day 3 parasite positivity rate was 44.4% (28/63; 95% CI, 31.9-57.5). All 63 isolates had the K13(C580Y) marker for artemisinin resistance; 79.4% (50/63) had Pfpm2 amplification. The AQSA resistance phenotype (≥45% parasite survival) was expressed in 36.5% (23/63) of isolates and was significantly associated with treatment failure (P = .0020). Pfmdr1 mutant haplotypes were N86/184F/D1246, and Pfcrt was CVIET or CVIDT at positions 72-76. Additional Pfcrt mutations were not associated with amodiaquine resistance, but the G353V mutant allele was associated with ACPR compared to Pfmdr1 haplotypes harboring F1068L or S784L/R945P mutations (P = .030 and P = .0004, respectively). CONCLUSIONS For uncomplicated falciparum malaria in Cambodia, artesunate-amodiaquine had inadequate efficacy owing to amodiaquine-resistant P. falciparum. Amodiaquine resistance was not associated with previously identified molecular markers.
Collapse
Affiliation(s)
- Melissa Mairet-Khedim
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia.,Malaria Translational Research Unit, Institut Pasteur, Paris, France.,Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, Toulouse, France
| | - Rithea Leang
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Camille Marmai
- INSERM 1016, Institut Cochin, Université of Paris, Paris, France.,Service de Parasitologie-Mycologie, Hôpital Cochin, Paris, France
| | - Nimol Khim
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia.,Malaria Translational Research Unit, Institut Pasteur, Paris, France
| | - Saorin Kim
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia.,Malaria Translational Research Unit, Institut Pasteur, Paris, France
| | - Sopheakvatey Ke
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia.,Malaria Translational Research Unit, Institut Pasteur, Paris, France
| | - Chhayleang Kauy
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia.,Malaria Translational Research Unit, Institut Pasteur, Paris, France
| | - Nimol Kloeung
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia.,Malaria Translational Research Unit, Institut Pasteur, Paris, France
| | - Rotha Eam
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia.,Malaria Translational Research Unit, Institut Pasteur, Paris, France
| | - Sophy Chy
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia.,Malaria Translational Research Unit, Institut Pasteur, Paris, France
| | - Brigitte Izac
- INSERM 1016, Institut Cochin, Université of Paris, Paris, France.,Service de Parasitologie-Mycologie, Hôpital Cochin, Paris, France
| | | | | | | | - Frederic Ariey
- INSERM 1016, Institut Cochin, Université of Paris, Paris, France.,Service de Parasitologie-Mycologie, Hôpital Cochin, Paris, France
| | - Benoit Witkowski
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia.,Malaria Translational Research Unit, Institut Pasteur, Paris, France
| |
Collapse
|
95
|
Rasmussen C, Alonso P, Ringwald P. Current and emerging strategies to combat antimalarial resistance. Expert Rev Anti Infect Ther 2021; 20:353-372. [PMID: 34348573 DOI: 10.1080/14787210.2021.1962291] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Since the spread of chloroquine resistance in Plasmodium falciparum in the 1960s, recommendations have been made on how to respond to antimalarial resistance. Only with the advent of artemisinin partial resistance were large scale efforts made in the Greater Mekong Subregion to carry out recommendations in a coordinated and well-funded manner. Independent emergence of parasites partially resistant to artemisinins has now been reported in Rwanda. AREAS COVERED We reviewed past recommendations and activities to respond to resistance as well as the research ongoing into new ways to stop or delay the spread of resistant parasites. EXPERT OPINION Inadequate information limits the options and support for a strong, coordinated response to artemisinin partial resistance in Africa, making better phenotypic and genotypic surveillance a priority. A response to resistance needs to address factors that may have hastened the emergence and could speed the spread, including overuse of drugs and lack of access to quality treatment. New ways to use the existing treatments in the response to resistance such as multiple first-lines are currently impeded by the limited number of drugs available.
Collapse
Affiliation(s)
| | - Pedro Alonso
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Pascal Ringwald
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| |
Collapse
|
96
|
Siddiqui FA, Liang X, Cui L. Plasmodium falciparum resistance to ACTs: Emergence, mechanisms, and outlook. Int J Parasitol Drugs Drug Resist 2021; 16:102-118. [PMID: 34090067 PMCID: PMC8188179 DOI: 10.1016/j.ijpddr.2021.05.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/06/2021] [Accepted: 05/21/2021] [Indexed: 01/18/2023]
Abstract
Emergence and spread of resistance in Plasmodium falciparum to the frontline treatment artemisinin-based combination therapies (ACTs) in the epicenter of multidrug resistance of Southeast Asia threaten global malaria control and elimination. Artemisinin (ART) resistance (or tolerance) is defined clinically as delayed parasite clearance after treatment with an ART drug. The resistance phenotype is restricted to the early ring stage and can be measured in vitro using a ring-stage survival assay. ART resistance is associated with mutations in the propeller domain of the Kelch family protein K13. As a pro-drug, ART is activated primarily by heme, which is mainly derived from hemoglobin digestion in the food vacuole. Activated ARTs can react promiscuously with a wide range of cellular targets, disrupting cellular protein homeostasis. Consistent with this mode of action for ARTs, the molecular mechanisms of K13-mediated ART resistance involve reduced hemoglobin uptake/digestion and increased cellular stress response. Mutations in other genes such as AP-2μ (adaptor protein-2 μ subunit), UBP-1 (ubiquitin-binding protein-1), and Falcipain 2a that interfere with hemoglobin uptake and digestion also increase resistance to ARTs. ART resistance has facilitated the development of resistance to the partner drugs, resulting in rapidly declining ACT efficacies. The molecular markers for resistance to the partner drugs are mostly associated with point mutations in the two food vacuole membrane transporters PfCRT and PfMDR1, and amplification of pfmdr1 and the two aspartic protease genes plasmepsin 2 and 3. It has been observed that mutations in these genes can have opposing effects on sensitivities to different partner drugs, which serve as the principle for designing triple ACTs and drug rotation. Although clinical ACT resistance is restricted to Southeast Asia, surveillance for drug resistance using in vivo clinical efficacy, in vitro assays, and molecular approaches is required to prevent or slow down the spread of resistant parasites.
Collapse
Affiliation(s)
- Faiza Amber Siddiqui
- Department of Internal Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Xiaoying Liang
- Department of Internal Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Liwang Cui
- Department of Internal Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
97
|
Wicht KJ, Mok S, Fidock DA. Molecular Mechanisms of Drug Resistance in Plasmodium falciparum Malaria. Annu Rev Microbiol 2021; 74:431-454. [PMID: 32905757 DOI: 10.1146/annurev-micro-020518-115546] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Understanding and controlling the spread of antimalarial resistance, particularly to artemisinin and its partner drugs, is a top priority. Plasmodium falciparum parasites resistant to chloroquine, amodiaquine, or piperaquine harbor mutations in the P. falciparum chloroquine resistance transporter (PfCRT), a transporter resident on the digestive vacuole membrane that in its variant forms can transport these weak-base 4-aminoquinoline drugs out of this acidic organelle, thus preventing these drugs from binding heme and inhibiting its detoxification. The structure of PfCRT, solved by cryogenic electron microscopy, shows mutations surrounding an electronegative central drug-binding cavity where they presumably interact with drugs and natural substrates to control transport. P. falciparum susceptibility to heme-binding antimalarials is also modulated by overexpression or mutations in the digestive vacuole membrane-bound ABC transporter PfMDR1 (P. falciparum multidrug resistance 1 transporter). Artemisinin resistance is primarily mediated by mutations in P. falciparum Kelch13 protein (K13), a protein involved in multiple intracellular processes including endocytosis of hemoglobin, which is required for parasite growth and artemisinin activation. Combating drug-resistant malaria urgently requires the development of new antimalarial drugs with novel modes of action.
Collapse
Affiliation(s)
- Kathryn J Wicht
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, USA; , ,
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, USA; , ,
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, USA; , , .,Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| |
Collapse
|
98
|
Stokes BH, Dhingra SK, Rubiano K, Mok S, Straimer J, Gnädig NF, Deni I, Schindler KA, Bath JR, Ward KE, Striepen J, Yeo T, Ross LS, Legrand E, Ariey F, Cunningham CH, Souleymane IM, Gansané A, Nzoumbou-Boko R, Ndayikunda C, Kabanywanyi AM, Uwimana A, Smith SJ, Kolley O, Ndounga M, Warsame M, Leang R, Nosten F, Anderson TJ, Rosenthal PJ, Ménard D, Fidock DA. Plasmodium falciparum K13 mutations in Africa and Asia impact artemisinin resistance and parasite fitness. eLife 2021; 10:66277. [PMID: 34279219 PMCID: PMC8321553 DOI: 10.7554/elife.66277] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 07/17/2021] [Indexed: 12/22/2022] Open
Abstract
The emergence of mutant K13-mediated artemisinin (ART) resistance in Plasmodium falciparum malaria parasites has led to widespread treatment failures across Southeast Asia. In Africa, K13-propeller genotyping confirms the emergence of the R561H mutation in Rwanda and highlights the continuing dominance of wild-type K13 elsewhere. Using gene editing, we show that R561H, along with C580Y and M579I, confer elevated in vitro ART resistance in some African strains, contrasting with minimal changes in ART susceptibility in others. C580Y and M579I cause substantial fitness costs, which may slow their dissemination in high-transmission settings, in contrast with R561H that in African 3D7 parasites is fitness neutral. In Cambodia, K13 genotyping highlights the increasing spatio-temporal dominance of C580Y. Editing multiple K13 mutations into a panel of Southeast Asian strains reveals that only the R561H variant yields ART resistance comparable to C580Y. In Asian Dd2 parasites C580Y shows no fitness cost, in contrast with most other K13 mutations tested, including R561H. Editing of point mutations in ferredoxin or mdr2, earlier associated with resistance, has no impact on ART susceptibility or parasite fitness. These data underline the complex interplay between K13 mutations, parasite survival, growth and genetic background in contributing to the spread of ART resistance.
Collapse
Affiliation(s)
- Barbara H Stokes
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Satish K Dhingra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Kelly Rubiano
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Judith Straimer
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Nina F Gnädig
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Ioanna Deni
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Kyra A Schindler
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Jade R Bath
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Kurt E Ward
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States.,Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Josefine Striepen
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Leila S Ross
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Eric Legrand
- Malaria Genetics and Resistance Unit, Institut Pasteur, INSERM U1201, CNRS ERL9195, Paris, France
| | - Frédéric Ariey
- Institut Cochin, INSERM U1016, Université Paris Descartes, Paris, France
| | - Clark H Cunningham
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Issa M Souleymane
- Programme National de Lutte Contre le Paludisme au Tchad, Ndjamena, Chad
| | - Adama Gansané
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Romaric Nzoumbou-Boko
- Laboratoire de Parasitologie, Institut Pasteur de Bangui, Bangui, Central African Republic
| | | | | | - Aline Uwimana
- Malaria and Other Parasitic Diseases Division, Rwanda Biomedical Centre, Kigali, Rwanda
| | - Samuel J Smith
- National Malaria Control Program, Freetown, Sierra Leone
| | | | - Mathieu Ndounga
- Programme National de Lutte Contre le Paludisme, Brazzaville, Democratic Republic of the Congo
| | - Marian Warsame
- School of Public Health and Community Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Rithea Leang
- National Center for Parasitology, Entomology & Malaria Control, Phnom Penh, Cambodia
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - Didier Ménard
- Malaria Genetics and Resistance Unit, Institut Pasteur, INSERM U1201, CNRS ERL9195, Paris, France
| | - David A Fidock
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, United States
| |
Collapse
|
99
|
MalariaGEN, Ahouidi A, Ali M, Almagro-Garcia J, Amambua-Ngwa A, Amaratunga C, Amato R, Amenga-Etego L, Andagalu B, Anderson TJC, Andrianaranjaka V, Apinjoh T, Ariani C, Ashley EA, Auburn S, Awandare GA, Ba H, Baraka V, Barry AE, Bejon P, Bertin GI, Boni MF, Borrmann S, Bousema T, Branch O, Bull PC, Busby GBJ, Chookajorn T, Chotivanich K, Claessens A, Conway D, Craig A, D'Alessandro U, Dama S, Day NPJ, Denis B, Diakite M, Djimdé A, Dolecek C, Dondorp AM, Drakeley C, Drury E, Duffy P, Echeverry DF, Egwang TG, Erko B, Fairhurst RM, Faiz A, Fanello CA, Fukuda MM, Gamboa D, Ghansah A, Golassa L, Goncalves S, Hamilton WL, Harrison GLA, Hart L, Henrichs C, Hien TT, Hill CA, Hodgson A, Hubbart C, Imwong M, Ishengoma DS, Jackson SA, Jacob CG, Jeffery B, Jeffreys AE, Johnson KJ, Jyothi D, Kamaliddin C, Kamau E, Kekre M, Kluczynski K, Kochakarn T, Konaté A, Kwiatkowski DP, Kyaw MP, Lim P, Lon C, Loua KM, Maïga-Ascofaré O, Malangone C, Manske M, Marfurt J, Marsh K, Mayxay M, Miles A, Miotto O, Mobegi V, Mokuolu OA, Montgomery J, Mueller I, Newton PN, Nguyen T, Nguyen TN, Noedl H, Nosten F, Noviyanti R, Nzila A, et alMalariaGEN, Ahouidi A, Ali M, Almagro-Garcia J, Amambua-Ngwa A, Amaratunga C, Amato R, Amenga-Etego L, Andagalu B, Anderson TJC, Andrianaranjaka V, Apinjoh T, Ariani C, Ashley EA, Auburn S, Awandare GA, Ba H, Baraka V, Barry AE, Bejon P, Bertin GI, Boni MF, Borrmann S, Bousema T, Branch O, Bull PC, Busby GBJ, Chookajorn T, Chotivanich K, Claessens A, Conway D, Craig A, D'Alessandro U, Dama S, Day NPJ, Denis B, Diakite M, Djimdé A, Dolecek C, Dondorp AM, Drakeley C, Drury E, Duffy P, Echeverry DF, Egwang TG, Erko B, Fairhurst RM, Faiz A, Fanello CA, Fukuda MM, Gamboa D, Ghansah A, Golassa L, Goncalves S, Hamilton WL, Harrison GLA, Hart L, Henrichs C, Hien TT, Hill CA, Hodgson A, Hubbart C, Imwong M, Ishengoma DS, Jackson SA, Jacob CG, Jeffery B, Jeffreys AE, Johnson KJ, Jyothi D, Kamaliddin C, Kamau E, Kekre M, Kluczynski K, Kochakarn T, Konaté A, Kwiatkowski DP, Kyaw MP, Lim P, Lon C, Loua KM, Maïga-Ascofaré O, Malangone C, Manske M, Marfurt J, Marsh K, Mayxay M, Miles A, Miotto O, Mobegi V, Mokuolu OA, Montgomery J, Mueller I, Newton PN, Nguyen T, Nguyen TN, Noedl H, Nosten F, Noviyanti R, Nzila A, Ochola-Oyier LI, Ocholla H, Oduro A, Omedo I, Onyamboko MA, Ouedraogo JB, Oyebola K, Pearson RD, Peshu N, Phyo AP, Plowe CV, Price RN, Pukrittayakamee S, Randrianarivelojosia M, Rayner JC, Ringwald P, Rockett KA, Rowlands K, Ruiz L, Saunders D, Shayo A, Siba P, Simpson VJ, Stalker J, Su XZ, Sutherland C, Takala-Harrison S, Tavul L, Thathy V, Tshefu A, Verra F, Vinetz J, Wellems TE, Wendler J, White NJ, Wright I, Yavo W, Ye H. An open dataset of Plasmodium falciparum genome variation in 7,000 worldwide samples. Wellcome Open Res 2021; 6:42. [PMID: 33824913 PMCID: PMC8008441 DOI: 10.12688/wellcomeopenres.16168.1] [Show More Authors] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 02/02/2023] Open
Abstract
MalariaGEN is a data-sharing network that enables groups around the world to work together on the genomic epidemiology of malaria. Here we describe a new release of curated genome variation data on 7,000 Plasmodium falciparum samples from MalariaGEN partner studies in 28 malaria-endemic countries. High-quality genotype calls on 3 million single nucleotide polymorphisms (SNPs) and short indels were produced using a standardised analysis pipeline. Copy number variants associated with drug resistance and structural variants that cause failure of rapid diagnostic tests were also analysed. Almost all samples showed genetic evidence of resistance to at least one antimalarial drug, and some samples from Southeast Asia carried markers of resistance to six commonly-used drugs. Genes expressed during the mosquito stage of the parasite life-cycle are prominent among loci that show strong geographic differentiation. By continuing to enlarge this open data resource we aim to facilitate research into the evolutionary processes affecting malaria control and to accelerate development of the surveillance toolkit required for malaria elimination.
Collapse
Affiliation(s)
| | | | - Mozam Ali
- Wellcome Sanger Institute, Hinxton, UK
| | - Jacob Almagro-Garcia
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Alfred Amambua-Ngwa
- Wellcome Sanger Institute, Hinxton, UK,Medical Research Council Unit The Gambia, at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Chanaki Amaratunga
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | - Roberto Amato
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Lucas Amenga-Etego
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana,West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Ben Andagalu
- United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute/Walter Reed Project, Kisumu, Kenya
| | | | | | | | | | - Elizabeth A Ashley
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Sarah Auburn
- Menzies School of Health Research, Darwin, Australia,Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana,University of Ghana, Legon, Ghana
| | - Hampate Ba
- Institut National de Recherche en Santé Publique, Nouakchott, Mauritania
| | - Vito Baraka
- National Institute for Medical Research (NIMR), Dar es Salaam, Tanzania,Department of Epidemiology, International Health Unit, University of Antwerp, Antwerp, Belgium
| | - Alyssa E. Barry
- Deakin University, Geelong, Australia,Burnet Institute, Melbourne, Australia,Walter and Eliza Hall Institute, Melbourne, Australia
| | - Philip Bejon
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Maciej F. Boni
- Nuffield Department of Medicine, University of Oxford, Oxford, UK,Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
| | - Steffen Borrmann
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Teun Bousema
- London School of Hygiene and Tropical Medicine, London, UK,Radboud University Medical Center, Nijmegen, The Netherlands
| | - Oralee Branch
- NYU School of Medicine Langone Medical Center, New York, USA
| | - Peter C. Bull
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya,Department of Pathology, University of Cambridge, Cambridge, UK
| | - George B. J. Busby
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | | | | | - Antoine Claessens
- Medical Research Council Unit The Gambia, at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia,LPHI, MIVEGEC, INSERM, CNRS, IRD, University of Montpellier, Montpellier, France
| | - David Conway
- London School of Hygiene and Tropical Medicine, London, UK
| | - Alister Craig
- Liverpool School of Tropical Medicine, Liverpool, UK,Malawi-Liverpool-Wellcome Trust Clinical Research, Blantyre, Malawi
| | - Umberto D'Alessandro
- Medical Research Council Unit The Gambia, at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Souleymane Dama
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Nicholas PJ Day
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Brigitte Denis
- Malawi-Liverpool-Wellcome Trust Clinical Research, Blantyre, Malawi
| | - Mahamadou Diakite
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Abdoulaye Djimdé
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | | | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Chris Drakeley
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Patrick Duffy
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | - Diego F. Echeverry
- Centro Internacional de Entrenamiento e Investigaciones Médicas - CIDEIM, Cali, Colombia,Universidad Icesi, Cali, Colombia
| | | | - Berhanu Erko
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | | | | | - Mark M. Fukuda
- Department of Immunology and Medicine, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Anita Ghansah
- Nogouchi Memorial Institute for Medical Research, Legon-Accra, Ghana
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - William L. Hamilton
- Wellcome Sanger Institute, Hinxton, UK,Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Lee Hart
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Christa Henrichs
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Tran Tinh Hien
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | | | | | - Christina Hubbart
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Deus S. Ishengoma
- National Institute for Medical Research (NIMR), Dar es Salaam, Tanzania,East African Consortium for Clinical Research (EACCR), Dar es Salaam, Tanzania
| | - Scott A. Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | | | - Ben Jeffery
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Anna E. Jeffreys
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kimberly J. Johnson
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | | | | | - Edwin Kamau
- Walter Reed Army Institute of Research, U.S. Military HIV Research Program, Silver Spring, MD, USA
| | | | - Krzysztof Kluczynski
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Theerarat Kochakarn
- Wellcome Sanger Institute, Hinxton, UK,Mahidol University, Bangkok, Thailand
| | | | - Dominic P. Kwiatkowski
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK,Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Myat Phone Kyaw
- The Myanmar Oxford Clinical Research Unit, University of Oxford, Yangon, Myanmar,University of Public Health, Yangon, Myanmar
| | - Pharath Lim
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA,Medical Care Development International, Maryland, USA
| | - Chanthap Lon
- Department of Immunology and Medicine, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | | | - Oumou Maïga-Ascofaré
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany,Research in Tropical Medicine, Kwame Nkrumah University of Sciences and Technology, Kumasi, Ghana
| | | | | | - Jutta Marfurt
- Menzies School of Health Research, Darwin, Australia
| | - Kevin Marsh
- Nuffield Department of Medicine, University of Oxford, Oxford, UK,African Academy of Sciences, Nairobi, Kenya
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Vientiane, Lao People's Democratic Republic,Institute of Research and Education Development (IRED), University of Health Sciences, Ministry of Health, Vientiane, Lao People's Democratic Republic
| | - Alistair Miles
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Olivo Miotto
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Victor Mobegi
- School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Olugbenga A. Mokuolu
- Department of Paediatrics and Child Health, University of Ilorin, Ilorin, Nigeria
| | - Jacqui Montgomery
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia
| | - Ivo Mueller
- Walter and Eliza Hall Institute, Melbourne, Australia,Barcelona Centre for International Health Research, Barcelona, Spain
| | - Paul N. Newton
- Wellcome Trust-Mahosot Hospital-Oxford Tropical Medicine Research Collaboration, Vientiane, Lao People's Democratic Republic
| | | | - Thuy-Nhien Nguyen
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
| | - Harald Noedl
- MARIB - Malaria Research Initiative Bandarban, Bandarban, Bangladesh
| | - Francois Nosten
- Nuffield Department of Medicine, University of Oxford, Oxford, UK,Shoklo Malaria Research Unit, Bangkok, Thailand
| | | | - Alexis Nzila
- King Fahid University of Petroleum and Minerals (KFUMP), Dharhran, Saudi Arabia
| | | | - Harold Ocholla
- KEMRI - Centres for Disease Control and Prevention (CDC) Research Program, Kisumu, Kenya,Centre for Bioinformatics and Biotechnology, University of Nairobi, Nairobi, Kenya
| | - Abraham Oduro
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
| | - Irene Omedo
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Marie A. Onyamboko
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Congo, Democratic Republic
| | | | - Kolapo Oyebola
- Nigerian Institute of Medical Research, Lagos, Nigeria,Parasitology and Bioinformatics Unit, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Richard D. Pearson
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Norbert Peshu
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Aung Pyae Phyo
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand,Shoklo Malaria Research Unit, Bangkok, Thailand
| | - Chris V. Plowe
- School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Ric N. Price
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand,Menzies School of Health Research, Darwin, Australia,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | | | - Milijaona Randrianarivelojosia
- Institut Pasteur de Madagascar, Antananarivo, Madagascar,Universités d'Antananarivo et de Mahajanga, Antananarivo, Madagascar
| | | | | | - Kirk A. Rockett
- Wellcome Sanger Institute, Hinxton, UK,Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Lastenia Ruiz
- Universidad Nacional de la Amazonia Peruana, Iquitos, Peru
| | - David Saunders
- Department of Immunology and Medicine, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Alex Shayo
- Nelson Mandela Institute of Science and Technology, Arusha, Tanzania
| | - Peter Siba
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Victoria J. Simpson
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | | | - Xin-zhuan Su
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | | | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Livingstone Tavul
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Vandana Thathy
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya,Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | | | | | - Joseph Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru,Yale School of Medicine, New Haven, CT, USA
| | - Thomas E. Wellems
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | - Jason Wendler
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Ian Wright
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - William Yavo
- University Félix Houphouët-Boigny, Abidjan, Cote d'Ivoire,Malaria Research and Control Center of the National Institute of Public Health, Abidjan, Cote d'Ivoire
| | - Htut Ye
- Department of Medical Research, Yangon, Myanmar
| |
Collapse
|
100
|
MalariaGEN, Ahouidi A, Ali M, Almagro-Garcia J, Amambua-Ngwa A, Amaratunga C, Amato R, Amenga-Etego L, Andagalu B, Anderson TJC, Andrianaranjaka V, Apinjoh T, Ariani C, Ashley EA, Auburn S, Awandare GA, Ba H, Baraka V, Barry AE, Bejon P, Bertin GI, Boni MF, Borrmann S, Bousema T, Branch O, Bull PC, Busby GBJ, Chookajorn T, Chotivanich K, Claessens A, Conway D, Craig A, D'Alessandro U, Dama S, Day NPJ, Denis B, Diakite M, Djimdé A, Dolecek C, Dondorp AM, Drakeley C, Drury E, Duffy P, Echeverry DF, Egwang TG, Erko B, Fairhurst RM, Faiz A, Fanello CA, Fukuda MM, Gamboa D, Ghansah A, Golassa L, Goncalves S, Hamilton WL, Harrison GLA, Hart L, Henrichs C, Hien TT, Hill CA, Hodgson A, Hubbart C, Imwong M, Ishengoma DS, Jackson SA, Jacob CG, Jeffery B, Jeffreys AE, Johnson KJ, Jyothi D, Kamaliddin C, Kamau E, Kekre M, Kluczynski K, Kochakarn T, Konaté A, Kwiatkowski DP, Kyaw MP, Lim P, Lon C, Loua KM, Maïga-Ascofaré O, Malangone C, Manske M, Marfurt J, Marsh K, Mayxay M, Miles A, Miotto O, Mobegi V, Mokuolu OA, Montgomery J, Mueller I, Newton PN, Nguyen T, Nguyen TN, Noedl H, Nosten F, Noviyanti R, Nzila A, et alMalariaGEN, Ahouidi A, Ali M, Almagro-Garcia J, Amambua-Ngwa A, Amaratunga C, Amato R, Amenga-Etego L, Andagalu B, Anderson TJC, Andrianaranjaka V, Apinjoh T, Ariani C, Ashley EA, Auburn S, Awandare GA, Ba H, Baraka V, Barry AE, Bejon P, Bertin GI, Boni MF, Borrmann S, Bousema T, Branch O, Bull PC, Busby GBJ, Chookajorn T, Chotivanich K, Claessens A, Conway D, Craig A, D'Alessandro U, Dama S, Day NPJ, Denis B, Diakite M, Djimdé A, Dolecek C, Dondorp AM, Drakeley C, Drury E, Duffy P, Echeverry DF, Egwang TG, Erko B, Fairhurst RM, Faiz A, Fanello CA, Fukuda MM, Gamboa D, Ghansah A, Golassa L, Goncalves S, Hamilton WL, Harrison GLA, Hart L, Henrichs C, Hien TT, Hill CA, Hodgson A, Hubbart C, Imwong M, Ishengoma DS, Jackson SA, Jacob CG, Jeffery B, Jeffreys AE, Johnson KJ, Jyothi D, Kamaliddin C, Kamau E, Kekre M, Kluczynski K, Kochakarn T, Konaté A, Kwiatkowski DP, Kyaw MP, Lim P, Lon C, Loua KM, Maïga-Ascofaré O, Malangone C, Manske M, Marfurt J, Marsh K, Mayxay M, Miles A, Miotto O, Mobegi V, Mokuolu OA, Montgomery J, Mueller I, Newton PN, Nguyen T, Nguyen TN, Noedl H, Nosten F, Noviyanti R, Nzila A, Ochola-Oyier LI, Ocholla H, Oduro A, Omedo I, Onyamboko MA, Ouedraogo JB, Oyebola K, Pearson RD, Peshu N, Phyo AP, Plowe CV, Price RN, Pukrittayakamee S, Randrianarivelojosia M, Rayner JC, Ringwald P, Rockett KA, Rowlands K, Ruiz L, Saunders D, Shayo A, Siba P, Simpson VJ, Stalker J, Su XZ, Sutherland C, Takala-Harrison S, Tavul L, Thathy V, Tshefu A, Verra F, Vinetz J, Wellems TE, Wendler J, White NJ, Wright I, Yavo W, Ye H. An open dataset of Plasmodium falciparum genome variation in 7,000 worldwide samples. Wellcome Open Res 2021; 6:42. [PMID: 33824913 PMCID: PMC8008441.2 DOI: 10.12688/wellcomeopenres.16168.2] [Show More Authors] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2021] [Indexed: 02/02/2023] Open
Abstract
MalariaGEN is a data-sharing network that enables groups around the world to work together on the genomic epidemiology of malaria. Here we describe a new release of curated genome variation data on 7,000 Plasmodium falciparum samples from MalariaGEN partner studies in 28 malaria-endemic countries. High-quality genotype calls on 3 million single nucleotide polymorphisms (SNPs) and short indels were produced using a standardised analysis pipeline. Copy number variants associated with drug resistance and structural variants that cause failure of rapid diagnostic tests were also analysed. Almost all samples showed genetic evidence of resistance to at least one antimalarial drug, and some samples from Southeast Asia carried markers of resistance to six commonly-used drugs. Genes expressed during the mosquito stage of the parasite life-cycle are prominent among loci that show strong geographic differentiation. By continuing to enlarge this open data resource we aim to facilitate research into the evolutionary processes affecting malaria control and to accelerate development of the surveillance toolkit required for malaria elimination.
Collapse
Affiliation(s)
| | | | - Mozam Ali
- Wellcome Sanger Institute, Hinxton, UK
| | - Jacob Almagro-Garcia
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Alfred Amambua-Ngwa
- Wellcome Sanger Institute, Hinxton, UK,Medical Research Council Unit The Gambia, at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Chanaki Amaratunga
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | - Roberto Amato
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Lucas Amenga-Etego
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana,West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Ben Andagalu
- United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute/Walter Reed Project, Kisumu, Kenya
| | | | | | | | | | - Elizabeth A Ashley
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Sarah Auburn
- Menzies School of Health Research, Darwin, Australia,Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana,University of Ghana, Legon, Ghana
| | - Hampate Ba
- Institut National de Recherche en Santé Publique, Nouakchott, Mauritania
| | - Vito Baraka
- National Institute for Medical Research (NIMR), Dar es Salaam, Tanzania,Department of Epidemiology, International Health Unit, University of Antwerp, Antwerp, Belgium
| | - Alyssa E. Barry
- Deakin University, Geelong, Australia,Burnet Institute, Melbourne, Australia,Walter and Eliza Hall Institute, Melbourne, Australia
| | - Philip Bejon
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Maciej F. Boni
- Nuffield Department of Medicine, University of Oxford, Oxford, UK,Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
| | - Steffen Borrmann
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Teun Bousema
- London School of Hygiene and Tropical Medicine, London, UK,Radboud University Medical Center, Nijmegen, The Netherlands
| | - Oralee Branch
- NYU School of Medicine Langone Medical Center, New York, USA
| | - Peter C. Bull
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya,Department of Pathology, University of Cambridge, Cambridge, UK
| | - George B. J. Busby
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | | | | | - Antoine Claessens
- Medical Research Council Unit The Gambia, at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia,LPHI, MIVEGEC, INSERM, CNRS, IRD, University of Montpellier, Montpellier, France
| | - David Conway
- London School of Hygiene and Tropical Medicine, London, UK
| | - Alister Craig
- Liverpool School of Tropical Medicine, Liverpool, UK,Malawi-Liverpool-Wellcome Trust Clinical Research, Blantyre, Malawi
| | - Umberto D'Alessandro
- Medical Research Council Unit The Gambia, at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Souleymane Dama
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Nicholas PJ Day
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Brigitte Denis
- Malawi-Liverpool-Wellcome Trust Clinical Research, Blantyre, Malawi
| | - Mahamadou Diakite
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Abdoulaye Djimdé
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | | | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Chris Drakeley
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Patrick Duffy
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | - Diego F. Echeverry
- Centro Internacional de Entrenamiento e Investigaciones Médicas - CIDEIM, Cali, Colombia,Universidad Icesi, Cali, Colombia
| | | | - Berhanu Erko
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | | | | | - Mark M. Fukuda
- Department of Immunology and Medicine, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Anita Ghansah
- Nogouchi Memorial Institute for Medical Research, Legon-Accra, Ghana
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - William L. Hamilton
- Wellcome Sanger Institute, Hinxton, UK,Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Lee Hart
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Christa Henrichs
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Tran Tinh Hien
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | | | | | - Christina Hubbart
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Deus S. Ishengoma
- National Institute for Medical Research (NIMR), Dar es Salaam, Tanzania,East African Consortium for Clinical Research (EACCR), Dar es Salaam, Tanzania
| | - Scott A. Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | | | - Ben Jeffery
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Anna E. Jeffreys
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kimberly J. Johnson
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | | | | | - Edwin Kamau
- Walter Reed Army Institute of Research, U.S. Military HIV Research Program, Silver Spring, MD, USA
| | | | - Krzysztof Kluczynski
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Theerarat Kochakarn
- Wellcome Sanger Institute, Hinxton, UK,Mahidol University, Bangkok, Thailand
| | | | - Dominic P. Kwiatkowski
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK,Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Myat Phone Kyaw
- The Myanmar Oxford Clinical Research Unit, University of Oxford, Yangon, Myanmar,University of Public Health, Yangon, Myanmar
| | - Pharath Lim
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA,Medical Care Development International, Maryland, USA
| | - Chanthap Lon
- Department of Immunology and Medicine, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | | | - Oumou Maïga-Ascofaré
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany,Research in Tropical Medicine, Kwame Nkrumah University of Sciences and Technology, Kumasi, Ghana
| | | | | | - Jutta Marfurt
- Menzies School of Health Research, Darwin, Australia
| | - Kevin Marsh
- Nuffield Department of Medicine, University of Oxford, Oxford, UK,African Academy of Sciences, Nairobi, Kenya
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Vientiane, Lao People's Democratic Republic,Institute of Research and Education Development (IRED), University of Health Sciences, Ministry of Health, Vientiane, Lao People's Democratic Republic
| | - Alistair Miles
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Olivo Miotto
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Victor Mobegi
- School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Olugbenga A. Mokuolu
- Department of Paediatrics and Child Health, University of Ilorin, Ilorin, Nigeria
| | - Jacqui Montgomery
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia
| | - Ivo Mueller
- Walter and Eliza Hall Institute, Melbourne, Australia,Barcelona Centre for International Health Research, Barcelona, Spain
| | - Paul N. Newton
- Wellcome Trust-Mahosot Hospital-Oxford Tropical Medicine Research Collaboration, Vientiane, Lao People's Democratic Republic
| | | | - Thuy-Nhien Nguyen
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
| | - Harald Noedl
- MARIB - Malaria Research Initiative Bandarban, Bandarban, Bangladesh
| | - Francois Nosten
- Nuffield Department of Medicine, University of Oxford, Oxford, UK,Shoklo Malaria Research Unit, Bangkok, Thailand
| | | | - Alexis Nzila
- King Fahid University of Petroleum and Minerals (KFUMP), Dharhran, Saudi Arabia
| | | | - Harold Ocholla
- KEMRI - Centres for Disease Control and Prevention (CDC) Research Program, Kisumu, Kenya,Centre for Bioinformatics and Biotechnology, University of Nairobi, Nairobi, Kenya
| | - Abraham Oduro
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
| | - Irene Omedo
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Marie A. Onyamboko
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Congo, Democratic Republic
| | | | - Kolapo Oyebola
- Nigerian Institute of Medical Research, Lagos, Nigeria,Parasitology and Bioinformatics Unit, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Richard D. Pearson
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Norbert Peshu
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Aung Pyae Phyo
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand,Shoklo Malaria Research Unit, Bangkok, Thailand
| | - Chris V. Plowe
- School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Ric N. Price
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand,Menzies School of Health Research, Darwin, Australia,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | | | - Milijaona Randrianarivelojosia
- Institut Pasteur de Madagascar, Antananarivo, Madagascar,Universités d'Antananarivo et de Mahajanga, Antananarivo, Madagascar
| | | | | | - Kirk A. Rockett
- Wellcome Sanger Institute, Hinxton, UK,Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Lastenia Ruiz
- Universidad Nacional de la Amazonia Peruana, Iquitos, Peru
| | - David Saunders
- Department of Immunology and Medicine, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Alex Shayo
- Nelson Mandela Institute of Science and Technology, Arusha, Tanzania
| | - Peter Siba
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Victoria J. Simpson
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | | | - Xin-zhuan Su
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | | | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Livingstone Tavul
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Vandana Thathy
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya,Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | | | | | - Joseph Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru,Yale School of Medicine, New Haven, CT, USA
| | - Thomas E. Wellems
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | - Jason Wendler
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Ian Wright
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - William Yavo
- University Félix Houphouët-Boigny, Abidjan, Cote d'Ivoire,Malaria Research and Control Center of the National Institute of Public Health, Abidjan, Cote d'Ivoire
| | - Htut Ye
- Department of Medical Research, Yangon, Myanmar
| |
Collapse
|