51
|
Troutman AD, Arroyo E, Lim K, Moorthi RN, Avin KG. Skeletal Muscle Complications in Chronic Kidney Disease. Curr Osteoporos Rep 2022; 20:410-421. [PMID: 36149594 PMCID: PMC10064704 DOI: 10.1007/s11914-022-00751-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW To provide an overview of the recent literature investigating the pathophysiology of skeletal muscle changes, interventions for skeletal muscle, and effects of exercise in chronic kidney disease (CKD). RECENT FINDINGS There are multiple CKD-related changes that negatively impact muscle size and function. However, the variability in the assessment of muscle size, in particular, hinders the ability to truly understand the impact it may have in CKD. Exercise interventions to improve muscle size and function demonstrate inconsistent responses that warrant further investigation to optimize exercise prescription. Despite progress in the field, there are many gaps in the knowledge of the pathophysiology of sarcopenia of CKD. Identifying these gaps will help in the design of interventions that can be tested to target muscle loss and its consequences such as impaired mobility, falls, and poor quality of life in patients with CKD.
Collapse
Affiliation(s)
- Ashley D Troutman
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University Purdue University, CF-326, 1140 W. Michigan St., Indianapolis, IN, 46202, USA
| | - Eliott Arroyo
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kenneth Lim
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ranjani N Moorthi
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Keith G Avin
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University Purdue University, CF-326, 1140 W. Michigan St., Indianapolis, IN, 46202, USA.
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
52
|
PGC-1α in the myofibers regulates the balance between myogenic and adipogenic progenitors affecting muscle regeneration. iScience 2022; 25:105480. [DOI: 10.1016/j.isci.2022.105480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/30/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
|
53
|
Amitani H, Chiba S, Amitani M, Michihara S, Takemoto R, Han L, Fujita N, Takahashi R, Inui A. Impact of Ninjin’yoeito on frailty and short life in klotho-hypomorphic (kl/kl) mice. Front Pharmacol 2022; 13:973897. [DOI: 10.3389/fphar.2022.973897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
With the recent aging of society, the prevention of frailty has become an important issue because people desire both a long and healthy lifespan. Klotho-hypomorphic (kl/kl) mice are known to show phenotypes of premature aging. Ninjin’yoeito (NYT) is a traditional Japanese Kampo medicine used to treat patients with vulnerable constitution, fatigue or physical exhaustion caused by aging and illness. Recent studies have reported the potential efficacy of NYT against frailty. We therefore evaluated the effect of NYT on the gait function, activity, the histopathological status of organs and survival using kl/kl mice as a model of aging-related frailty. Two sets of 28-day-old male kl/kl mice were assigned to the vehicle (non-treated; NT), 3% or 5% NYT dietary groups. One set of groups (NT, n = 18; 3% NYT, n = 11; 5% NYT, n = 11) was subjected to the analysis of free walking, rotarod, and spontaneous activity tests at approximately 58 days old. Thereafter, we measured triceps surae muscles weight and myofiber cross-sectional area (CSA), and quantified its telomere content. In addition, we evaluated bone strength and performed histopathological examinations of organs. Survival was measured in the second set of groups (NT, 3% NYT and 5% NYT group, n = 8 each). In the walking test, several indicators such as gait velocity were improved in the NYT 3% group. Similar results were obtained for the latency to fall in the rotarod test and spontaneous motor activity. Triceps muscle mass, CSA and its telomere content were significantly improved in the NYT 3% group. Bone density, pulmonary alveolus destruction and testicular atrophy were also significantly improved in the NYT 3% group. Survival rate and body weight were both significantly improved in the NYT3% group compared with those in the NT group. Continuous administration of NYT from the early stage of aging improved not only gait performance, but also the survival in the aging-related frailty model. This effect may be associated with the improvements in aging-related organ changes such as muscle atrophy. Intervention with NYT against the progression of frailty may contribute to a longer, healthier life span among the elderly individuals.
Collapse
|
54
|
Corrêa HDL, Raab ATO, Araújo TM, Deus LA, Reis AL, Honorato FS, Rodrigues-Silva PL, Neves RVP, Brunetta HS, Mori MADS, Franco OL, Rosa TDS. A systematic review and meta-analysis demonstrating Klotho as an emerging exerkine. Sci Rep 2022; 12:17587. [PMID: 36266389 PMCID: PMC9585050 DOI: 10.1038/s41598-022-22123-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/10/2022] [Indexed: 01/13/2023] Open
Abstract
Klotho is an anti-aging protein with several therapeutic roles in the pathophysiology of different organs, such as the skeletal muscle and kidneys. Available evidence suggests that exercise increases Klotho levels, regardless of the condition or intervention, shedding some light on this anti-aging protein as an emergent and promising exerkine. Development of a systematic review and meta-analysis in order to verify the role of different exercise training protocols on the levels of circulating soluble Klotho (S-Klotho) protein. A systematic search of the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE through PubMed, EMBASE, CINAHL, CT.gov, and PEDro. Randomized and quasi-randomized controlled trials that investigated effects of exercise training on S-Klotho levels. We included 12 reports in the analysis, comprising 621 participants with age ranging from 30 to 65 years old. Klotho concentration increased significantly after chronic exercise training (minimum of 12 weeks) (Hedge' g [95%CI] 1.3 [0.69-1.90]; P < 0.0001). Moreover, exercise training increases S-Klotho values regardless of the health condition of the individual or the exercise intervention, with the exception of combined aerobic + resistance training. Furthermore, protocol duration and volume seem to influence S-Klotho concentration, since the effect of the meta-analysis changes when subgrouping these variables. Altogether, circulating S-Klotho protein is altered after chronic exercise training and it might be considered an exerkine. However, this effect may be influenced by different training configurations, including protocol duration, volume, and intensity.
Collapse
Affiliation(s)
- Hugo de Luca Corrêa
- Graduate Program of Physical Education, Catholic University of Brasilia (UCB), EPTC, QS07, LT1 S/N, Bloco G Sala 119, Águas Claras, Taguatinga, Brasília, Distrito Federal, CEP 72030-170, Brazil.
| | | | - Thamires Marra Araújo
- Faculty of Bio-Medicine, Catholic University of Brasilia, Brasília, Distrito Federal, Brazil
| | - Lysleine Alves Deus
- Graduate Program of Physical Education, Catholic University of Brasilia (UCB), EPTC, QS07, LT1 S/N, Bloco G Sala 119, Águas Claras, Taguatinga, Brasília, Distrito Federal, CEP 72030-170, Brazil
| | - Andrea Lucena Reis
- Graduate Program of Physical Education, Catholic University of Brasilia (UCB), EPTC, QS07, LT1 S/N, Bloco G Sala 119, Águas Claras, Taguatinga, Brasília, Distrito Federal, CEP 72030-170, Brazil
| | - Fernando Sousa Honorato
- Graduate Program of Physical Education, Catholic University of Brasilia (UCB), EPTC, QS07, LT1 S/N, Bloco G Sala 119, Águas Claras, Taguatinga, Brasília, Distrito Federal, CEP 72030-170, Brazil
| | | | - Rodrigo Vanerson Passos Neves
- Graduate Program of Physical Education, Catholic University of Brasilia (UCB), EPTC, QS07, LT1 S/N, Bloco G Sala 119, Águas Claras, Taguatinga, Brasília, Distrito Federal, CEP 72030-170, Brazil
| | | | - Marcelo Alves da Silva Mori
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster, University of Campinas, Campinas, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Thiago Dos Santos Rosa
- Graduate Program of Physical Education, Catholic University of Brasilia (UCB), EPTC, QS07, LT1 S/N, Bloco G Sala 119, Águas Claras, Taguatinga, Brasília, Distrito Federal, CEP 72030-170, Brazil.
| |
Collapse
|
55
|
Guo Z, Wang Y, Wen X, Xu X, Yan L. β-Klotho Promotes the Development of Intrauterine Adhesions via the PI3K/AKT Signaling Pathway. Int J Mol Sci 2022; 23:ijms231911294. [PMID: 36232594 PMCID: PMC9569898 DOI: 10.3390/ijms231911294] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Intrauterine adhesion (IUA) refers to injury to the basal layer of the endometrium, which can be caused by various factors. It is often accompanied by clinical symptoms such as abnormal menstruation, infertility, recurrent abortion, and periodic abdominal pain. In recent years, a number of studies have reported the effects of β-Klotho (KLB) on the occurrence and development of human tumors and fibrotic diseases, but its relationship with endometrial fibroblasts and endometrial fibrosis has not been elucidated. In this study, we compared the expression of KLB in endometrial stromal cells (ESCs) from patients with IUA and normal controls. We constructed animal and cell models of IUA and conducted expression verification and functional experiments on KLB. We found that the expression of KLB was significantly increased in the ESCs of IUA patients and rat models compared with the controls. The overexpression of KLB could promote the proliferation and fibrosis of ESCs. In addition, the overexpression of KLB activated the PI3K/AKT signaling pathway in ESCs. Our study shows that KLB protein is highly expressed in the ESCs of patients with IUA and can enhance stromal cell proliferation and cell fibrosis by activating the PI3K/AKT pathway, thus promoting the development of IUA.
Collapse
Affiliation(s)
- Zizhen Guo
- Center for Reproductive Medicine, Shandong University, Jinan 250000, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250000, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan 250000, China
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
- Reproductive and Genetic Center of Integrative Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Yuqing Wang
- Center for Reproductive Medicine, Shandong University, Jinan 250000, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250000, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan 250000, China
| | - Xiaoyang Wen
- Center for Reproductive Medicine, Shandong University, Jinan 250000, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250000, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan 250000, China
| | - Xinxin Xu
- Center for Reproductive Medicine, Shandong University, Jinan 250000, China
| | - Lei Yan
- Center for Reproductive Medicine, Shandong University, Jinan 250000, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250000, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan 250000, China
- Correspondence:
| |
Collapse
|
56
|
Hong X, Isern J, Campanario S, Perdiguero E, Ramírez-Pardo I, Segalés J, Hernansanz-Agustín P, Curtabbi A, Deryagin O, Pollán A, González-Reyes JA, Villalba JM, Sandri M, Serrano AL, Enríquez JA, Muñoz-Cánoves P. Mitochondrial dynamics maintain muscle stem cell regenerative competence throughout adult life by regulating metabolism and mitophagy. Cell Stem Cell 2022; 29:1298-1314.e10. [PMID: 35998641 DOI: 10.1016/j.stem.2022.07.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 06/09/2022] [Accepted: 07/22/2022] [Indexed: 11/03/2022]
Abstract
Skeletal muscle regeneration depends on the correct expansion of resident quiescent stem cells (satellite cells), a process that becomes less efficient with aging. Here, we show that mitochondrial dynamics are essential for the successful regenerative capacity of satellite cells. The loss of mitochondrial fission in satellite cells-due to aging or genetic impairment-deregulates the mitochondrial electron transport chain (ETC), leading to inefficient oxidative phosphorylation (OXPHOS) metabolism and mitophagy and increased oxidative stress. This state results in muscle regenerative failure, which is caused by the reduced proliferation and functional loss of satellite cells. Regenerative functions can be restored in fission-impaired or aged satellite cells by the re-establishment of mitochondrial dynamics (by activating fission or preventing fusion), OXPHOS, or mitophagy. Thus, mitochondrial shape and physical networking controls stem cell regenerative functions by regulating metabolism and proteostasis. As mitochondrial fission occurs less frequently in the satellite cells in older humans, our findings have implications for regeneration therapies in sarcopenia.
Collapse
Affiliation(s)
- Xiaotong Hong
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Joan Isern
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Silvia Campanario
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBERNED, 08003 Barcelona, Spain
| | - Eusebio Perdiguero
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBERNED, 08003 Barcelona, Spain
| | - Ignacio Ramírez-Pardo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBERNED, 08003 Barcelona, Spain
| | - Jessica Segalés
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBERNED, 08003 Barcelona, Spain
| | | | - Andrea Curtabbi
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Oleg Deryagin
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBERNED, 08003 Barcelona, Spain
| | - Angela Pollán
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - José A González-Reyes
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, 14014 Córdoba, Spain
| | - José M Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, 14014 Córdoba, Spain
| | - Marco Sandri
- Venetian Institute of Molecular Medicine, 35129 Padova, Italy; Department of Biomedical Sciences, University of Padova, 35100 Padova, Italy
| | - Antonio L Serrano
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBERNED, 08003 Barcelona, Spain
| | - José A Enríquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; CIBERFES, Madrid, Spain.
| | - Pura Muñoz-Cánoves
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBERNED, 08003 Barcelona, Spain; ICREA, 08003 Barcelona, Spain; Altos Labs, San Diego, CA, USA.
| |
Collapse
|
57
|
Huo F, Liu Q, Liu H. Contribution of muscle satellite cells to sarcopenia. Front Physiol 2022; 13:892749. [PMID: 36035464 PMCID: PMC9411786 DOI: 10.3389/fphys.2022.892749] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Sarcopenia, a disorder characterized by age-related muscle loss and reduced muscle strength, is associated with decreased individual independence and quality of life, as well as a high risk of death. Skeletal muscle houses a normally mitotically quiescent population of adult stem cells called muscle satellite cells (MuSCs) that are responsible for muscle maintenance, growth, repair, and regeneration throughout the life cycle. Patients with sarcopenia are often exhibit dysregulation of MuSCs homeostasis. In this review, we focus on the etiology, assessment, and treatment of sarcopenia. We also discuss phenotypic and regulatory mechanisms of MuSC quiescence, activation, and aging states, as well as the controversy between MuSC depletion and sarcopenia. Finally, we give a multi-dimensional treatment strategy for sarcopenia based on improving MuSC function.
Collapse
Affiliation(s)
- Fengjiao Huo
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hailiang Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China
- *Correspondence: Hailiang Liu,
| |
Collapse
|
58
|
Taivassalo T, Hepple RT. Integrating Mechanisms of Exacerbated Atrophy and Other Adverse Skeletal Muscle Impact in COPD. Front Physiol 2022; 13:861617. [PMID: 35721564 PMCID: PMC9203961 DOI: 10.3389/fphys.2022.861617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
The normal decline in skeletal muscle mass that occurs with aging is exacerbated in patients with chronic obstructive pulmonary disease (COPD) and contributes to poor health outcomes, including a greater risk of death. There has been controversy about the causes of this exacerbated muscle atrophy, with considerable debate about the degree to which it reflects the very sedentary nature of COPD patients vs. being precipitated by various aspects of the COPD pathophysiology and its most frequent proximate cause, long-term smoking. Consistent with the latter view, recent evidence suggests that exacerbated aging muscle loss with COPD is likely initiated by decades of smoking-induced stress on the neuromuscular junction that predisposes patients to premature failure of muscle reinnervation capacity, accompanied by various alterations in mitochondrial function. Superimposed upon this are various aspects of COPD pathophysiology, such as hypercapnia, hypoxia, and inflammation, that can also contribute to muscle atrophy. This review will summarize the available knowledge concerning the mechanisms contributing to exacerbated aging muscle affect in COPD, consider the potential role of comorbidities using the specific example of chronic kidney disease, and identify emerging molecular mechanisms of muscle impairment, including mitochondrial permeability transition as a mechanism of muscle atrophy, and chronic activation of the aryl hydrocarbon receptor in driving COPD muscle pathophysiology.
Collapse
Affiliation(s)
- Tanja Taivassalo
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
| | - Russell T. Hepple
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States
- *Correspondence: Russell T. Hepple,
| |
Collapse
|
59
|
Recombinant Klotho Protein Ameliorates Myocardial Ischemia/Reperfusion Injury by Attenuating Sterile Inflammation. Biomedicines 2022; 10:biomedicines10040894. [PMID: 35453645 PMCID: PMC9032004 DOI: 10.3390/biomedicines10040894] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
Currently, no effective therapy and potential target have been elucidated for preventing myocardial ischemia and reperfusion injury (I/R). We hypothesized that the administration of recombinant klotho (rKL) protein could attenuate the sterile inflammation in peri-infarct regions by inhibiting the extracellular release of high mobility group box-1 (HMGB1). This hypothesis was examined using a rat coronary artery ligation model. Rats were divided into sham, sham+ rKL, I/R, and I/R+ rKL groups (n = 5/group). Administration of rKL protein reduced infarct volume and attenuated extracellular release of HMGB1 from peri-infarct tissue after myocardial I/R injury. The administration of rKL protein inhibited the expression of pro-inflammatory cytokines in the peri-infarct regions and significantly attenuated apoptosis and production of intracellular reactive oxygen species by myocardial I/R injury. Klotho treatment significantly reduced the increase in the levels of circulating HMGB1 in blood at 4 h after myocardial ischemia. rKL regulated the levels of inflammation-related proteins. This is the first study to suggest that exogenous administration of rKL exerts myocardial protection effects after I/R injury and provides new mechanistic insights into rKL that can provide the theoretical basis for clinical application of new adjunctive modality for critical care of acute myocardial infarction.
Collapse
|
60
|
Chen YY, Chen WL. The relationship between polycyclic aromatic hydrocarbons exposure and serum klotho among adult population. BMC Geriatr 2022; 22:198. [PMID: 35287592 PMCID: PMC8919518 DOI: 10.1186/s12877-022-02924-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/09/2022] [Indexed: 01/17/2023] Open
Abstract
Background Klotho is an important factor involving aging process. Recently, polycyclic aromatic hydrocarbons (PAHs) exposure was reported to have adverse impact on DNA methylation associated with aging. The aim of the current study was to determine the relationship between serum klotho and PAHs exposure in an adult population. Methods A total of 2597 participants obtained from NHANES 2015–2016 were included in this cross-sectional study. Serum klotho levels were analyzed by enzyme-linked immunosorbent assay (ELISA). PAHs exposure was estimated by urinary sample using liquid chromatography-tandem mass spectrometry. The relationship between serum klotho and exposure to PAHS was analyzed by a multivariable linear regression model. Results 2-napthol and 3-fluorene were significantly associated with decreased klotho. After fully adjusting pertinent variables, PAH exposure was significantly associated with decreased klotho, particularly in men. Conclusion In the present study we highlighted the significant association between PAHs exposure and serum klotho levels. The importance of environmental effect on aging process and age-related disorders should be paid more attention and clinical intervention is necessary.
Collapse
Affiliation(s)
- Yuan-Yuei Chen
- Department of Pathology, Tri-Service General Hospital, and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Department of Pathology, Tri-Service General Hospital Songshan Branch, and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Wei-Liang Chen
- Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China. .,Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, Republic of China.
| |
Collapse
|
61
|
Mammoto A, Matus K, Mammoto T. Extracellular Matrix in Aging Aorta. Front Cell Dev Biol 2022; 10:822561. [PMID: 35265616 PMCID: PMC8898904 DOI: 10.3389/fcell.2022.822561] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
The aging population is booming all over the world and arterial aging causes various age-associated pathologies such as cardiovascular diseases (CVDs). The aorta is the largest elastic artery, and transforms pulsatile flow generated by the left ventricle into steady flow to maintain circulation in distal tissues and organs. Age-associated structural and functional changes in the aortic wall such as dilation, tortuousness, stiffening and losing elasticity hamper stable peripheral circulation, lead to tissue and organ dysfunctions in aged people. The extracellular matrix (ECM) is a three-dimensional network of macromolecules produced by resident cells. The composition and organization of key ECM components determine the structure-function relationships of the aorta and therefore maintaining their homeostasis is critical for a healthy performance. Age-associated remodeling of the ECM structural components, including fragmentation of elastic fibers and excessive deposition and crosslinking of collagens, is a hallmark of aging and leads to functional stiffening of the aorta. In this mini review, we discuss age-associated alterations of the ECM in the aortic wall and shed light on how understanding the mechanisms of aortic aging can lead to the development of efficient strategy for aortic pathologies and CVDs.
Collapse
Affiliation(s)
- Akiko Mammoto
- Department of Pediatrics, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology and Anatomy, Milwaukee, WI, United States
- *Correspondence: Akiko Mammoto, ; Tadanori Mammoto,
| | - Kienna Matus
- Department of Pediatrics, Milwaukee, WI, United States
| | - Tadanori Mammoto
- Department of Pediatrics, Milwaukee, WI, United States
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
- *Correspondence: Akiko Mammoto, ; Tadanori Mammoto,
| |
Collapse
|
62
|
McKee CM, Chapski DJ, Wehling-Henricks M, Rosa-Garrido M, Kuro-O M, Vondriska TM, Tidball JG. The anti-aging protein Klotho affects early postnatal myogenesis by downregulating Jmjd3 and the canonical Wnt pathway. FASEB J 2022; 36:e22192. [PMID: 35174906 PMCID: PMC9007106 DOI: 10.1096/fj.202101298r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/15/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022]
Abstract
Modulating the number of muscle stems cells, called satellite cells, during early postnatal development produces long-term effects on muscle growth. We tested the hypothesis that high expression levels of the anti-aging protein Klotho in early postnatal myogenesis increase satellite cell numbers by influencing the epigenetic regulation of genes that regulate myogenesis. Our findings show that elevated klotho expression caused a transient increase in satellite cell numbers and slowed muscle fiber growth, followed by a period of accelerated muscle growth that leads to larger fibers. Klotho also transcriptionally downregulated the H3K27 demethylase Jmjd3, leading to increased H3K27 methylation and decreased expression of genes in the canonical Wnt pathway, which was associated with a delay in muscle differentiation. In addition, Klotho stimulation and Jmjd3 downregulation produced similar but not additive reductions in the expression of Wnt4, Wnt9a, and Wnt10a in myogenic cells, indicating that inhibition occurred through a common pathway. Together, our results identify a novel pathway through which Klotho influences myogenesis by reducing the expression of Jmjd3, leading to reductions in the expression of Wnt genes and inhibition of canonical Wnt signaling.
Collapse
Affiliation(s)
- Cynthia M McKee
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, California, USA
| | - Douglas J Chapski
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Michelle Wehling-Henricks
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Manuel Rosa-Garrido
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, USA
| | - Makoto Kuro-O
- Division of Anti-Aging Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Thomas M Vondriska
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Departments of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Departments of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - James G Tidball
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, California, USA.,Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| |
Collapse
|
63
|
Du C, Wang X, Wu Y, Liao W, Xiong J, Zhu Y, Liu C, Han W, Wang Y, Han S, Chen S, Xu Y, Wang S, Wang F, Yang K, Zhao J, Wang J. Renal Klotho and inorganic phosphate are extrinsic factors that antagonistically regulate hematopoietic stem cell maintenance. Cell Rep 2022; 38:110392. [PMID: 35172146 DOI: 10.1016/j.celrep.2022.110392] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/19/2021] [Accepted: 01/25/2022] [Indexed: 01/19/2023] Open
Abstract
The composition and origin of extrinsic cues required for hematopoietic stem cell (HSC) maintenance are incompletely understood. Here we identify renal Klotho and inorganic phosphate (Pi) as extrinsic factors that antagonistically regulate HSC maintenance in the bone marrow (BM). Disruption of the Klotho-Pi axis by renal Klotho deficiency or Pi excess causes Pi overload in the BM niche and Pi retention in HSCs, leading to alteration of HSC maintenance. Mechanistically, Pi retention is mediated by soluble carrier family 20 member 1 (SLC20A1) and sensed by diphosphoinositol pentakisphosphate kinase 2 (PPIP5K2) to enhance Akt activation, which then upregulates SLC20A1 to aggravate Pi retention and augments GATA2 activity to drive the expansion and megakaryocyte/myeloid-biased differentiation of HSCs. However, kidney-secreted soluble Klotho directly maintains HSC pool size and differentiation by restraining SLC20A1-mediated Pi absorption of HSCs. These findings uncover a regulatory role of the Klotho-Pi axis orchestrated by the kidneys in BM HSC maintenance.
Collapse
Affiliation(s)
- Changhong Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xinmiao Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yiding Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Weinian Liao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jiachuan Xiong
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Yingguo Zhu
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Chaonan Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Wenhao Han
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Yue Wang
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Songling Han
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shilei Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yang Xu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Song Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Fengchao Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ke Yang
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China.
| | - Jinghong Zhao
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China.
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
64
|
Abstract
Klotho gene was originally recognized as a putative aging-suppressor and its prominent age-regulating effects are mostly attributed to the modulation of mineral homeostasis in the kidney. However, recent studies link alterations in hippocampal Klotho expression with cognitive impairment and neurodegenerative diseases. This suggests that hippocampal neurons require Klotho for health and proper functionality. Klotho protects against neuronal dysfunction and regulates several intracellular signaling pathways including oxidative stress response, inflammation, DNA damage, autophagy, endoplasmic reticulum stress response, and multiple types of cell death. Specifically, this chapter covers the current knowledge as to how Klotho protein affects the hippocampal neuronal cells, with special attention paid to underlying molecular mechanisms, and thus influences hippocampal development, hippocampal-dependent cognition, behavior, and motor skills as well as mediates neurodegenerative processes.
Collapse
Affiliation(s)
- Jennifer Mytych
- Department of Biotechnology, Institute of Biology and Biotechnology, Collegium Scientarium Naturalium, University of Rzeszow, Werynia, Poland.
| |
Collapse
|
65
|
Arroyo E, Troutman AD, Moorthi RN, Avin KG, Coggan AR, Lim K. Klotho: An Emerging Factor With Ergogenic Potential. FRONTIERS IN REHABILITATION SCIENCES 2022; 2:807123. [PMID: 36188832 PMCID: PMC9397700 DOI: 10.3389/fresc.2021.807123] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022]
Abstract
Sarcopenia and impaired cardiorespiratory fitness are commonly observed in older individuals and patients with chronic kidney disease (CKD). Declines in skeletal muscle function and aerobic capacity can progress into impaired physical function and inability to perform activities of daily living. Physical function is highly associated with important clinical outcomes such as hospitalization, functional independence, quality of life, and mortality. While lifestyle modifications such as exercise and dietary interventions have been shown to prevent and reverse declines in physical function, the utility of these treatment strategies is limited by poor widespread adoption and adherence due to a wide variety of both perceived and actual barriers to exercise. Therefore, identifying novel treatment targets to manage physical function decline is critically important. Klotho, a remarkable protein with powerful anti-aging properties has recently been investigated for its role in musculoskeletal health and physical function. Klotho is involved in several key processes that regulate skeletal muscle function, such as muscle regeneration, mitochondrial biogenesis, endothelial function, oxidative stress, and inflammation. This is particularly important for older adults and patients with CKD, which are known states of Klotho deficiency. Emerging data support the existence of Klotho-related benefits to exercise and for potential Klotho-based therapeutic interventions for the treatment of sarcopenia and its progression to physical disability. However, significant gaps in our understanding of Klotho must first be overcome before we can consider its potential ergogenic benefits. These advances will be critical to establish the optimal approach to future Klotho-based interventional trials and to determine if Klotho can regulate physical dysfunction.
Collapse
Affiliation(s)
- Eliott Arroyo
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ashley D. Troutman
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University Purdue University, Indianapolis, IN, United States
| | - Ranjani N. Moorthi
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Keith G. Avin
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University Purdue University, Indianapolis, IN, United States
| | - Andrew R. Coggan
- Department of Kinesiology, School of Health and Human Sciences, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States
| | - Kenneth Lim
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
66
|
Association between Soluble α-Klotho Protein and Metabolic Syndrome in the Adult Population. Biomolecules 2022; 12:biom12010070. [PMID: 35053218 PMCID: PMC8773684 DOI: 10.3390/biom12010070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 01/08/2023] Open
Abstract
Klotho protein is an anti-aging protein and plays multiple roles in ion-regulation, anti-oxidative stress, and energy metabolism through various pathways. Metabolic syndrome is a combination of multiple conditions that compose of multiple risk factors of cardiovascular disease and type 2 diabetes. Gene regulation and protein expression are discovered associated with metabolic syndrome. We aimed to figure out the correlation between Klotho protein and metabolic syndrome in generally healthy adults. A cross-sectional study of 9976 respondents ≥ 18 years old from the US National Health and Nutrition Examination Survey (2007-2012) by utilizing their soluble Klotho protein concentrations. Multivariate linear regression models were used to analyze the effect of soluble Klotho protein on the prevalence of metabolic syndrome. Soluble Klotho protein concentration was inversely correlated with the presence of metabolic syndromes (p = 0.013) and numbers of components that met the definition of metabolic syndrome (p < 0.05). The concentration of Soluble Klotho protein was negatively associated with abdominal obesity and high triglyceride (TG) in the adjusted model (p < 0.05). Soluble Klotho protein is correlated with changing metabolic syndrome components in adults, especially central obesity and high TG levels. Despite conventional function as co-factor with fibroblast growth factor-23 (FGF23) that regulates phosphate and vitamin D homeostasis, FGF23-independent soluble Klotho protein may act on multiple signal pathways in different organs and tissue in roles of anti-aging and protection from metabolic syndrome.
Collapse
|
67
|
Videla LA, Marimán A, Ramos B, José Silva M, Del Campo A. Standpoints in mitochondrial dysfunction: Underlying mechanisms in search of therapeutic strategies. Mitochondrion 2022; 63:9-22. [PMID: 34990812 DOI: 10.1016/j.mito.2021.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023]
Abstract
Mitochondrial dysfunction has been defined as a reduced efficiency of mitochondria to produce ATP given by a loss of mitochondrial membrane potential, alterations in the electron transport chain (ETC) function, with increase in reactive oxygen species (ROS) generation and decrease in oxygen consumption. During the last decades, mitochondrial dysfunction has been the focus of many researchers as a convergent point for the pathophysiology of several diseases. Numerous investigations have demonstrated that mitochondrial dysfunction is detrimental to cells, tissues and organisms, nevertheless, dysfunctional mitochondria can signal in a particular way in response to stress, a characteristic that may be useful to search for new therapeutic strategies with a common feature. The aim of this review addresses mitochondrial dysfunction and stress signaling as a promising target for future drug development.
Collapse
Affiliation(s)
- Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile.
| | - Andrea Marimán
- Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
| | - Bastián Ramos
- Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
| | - María José Silva
- Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
| | - Andrea Del Campo
- Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile.
| |
Collapse
|
68
|
Hong X, Campanario S, Ramírez-Pardo I, Grima-Terrén M, Isern J, Muñoz-Cánoves P. Stem cell aging in the skeletal muscle: The importance of communication. Ageing Res Rev 2022; 73:101528. [PMID: 34818593 DOI: 10.1016/j.arr.2021.101528] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/01/2021] [Accepted: 11/15/2021] [Indexed: 01/04/2023]
Abstract
Adult stem cells sustain tissue homeostasis and regeneration; their functional decline is often linked to aging, which is characterized by the progressive loss of physiological functions across multiple tissues and organs. The resident stem cells in skeletal muscle, termed satellite cells, are normally quiescent but activate upon injury to reconstitute the damaged tissue. In this review, we discuss the current understanding of the molecular processes that contribute to the functional failure of satellite cells during aging. This failure is due not only to intrinsic changes but also to extrinsic factors, most of which are still undefined but originate from the muscle tissue microenvironment of the satellite cells (the niche), or from the systemic environment. We also highlight the emerging applications of the powerful single-cell sequencing technologies in the study of skeletal muscle aging, particularly in the heterogeneity of the satellite cell population and the molecular interaction of satellite cells and other cell types in the niche. An improved understanding of how satellite cells communicate with their environment, and how this communication is perturbed with aging, will be helpful for defining countermeasures against loss of muscle regenerative capacity in sarcopenia.
Collapse
Affiliation(s)
- Xiaotong Hong
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), E-08003 Barcelona, Spain
| | - Silvia Campanario
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), E-08003 Barcelona, Spain
| | - Ignacio Ramírez-Pardo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), E-08003 Barcelona, Spain
| | - Mercedes Grima-Terrén
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), E-08003 Barcelona, Spain
| | - Joan Isern
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), E-08003 Barcelona, Spain
| | - Pura Muñoz-Cánoves
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), E-08003 Barcelona, Spain; ICREA, E-08010 Barcelona, Spain.
| |
Collapse
|
69
|
Chen GQ, Duan Y, Wang JF, Lian Y, Yin XL. Serum α-Klotho associated with oral health among a nationally representative sample of US adults. Front Endocrinol (Lausanne) 2022; 13:970575. [PMID: 36204099 PMCID: PMC9530453 DOI: 10.3389/fendo.2022.970575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Low klotho is associated with aging-related traits. However, no study has assessed the association between klotho and oral health in a large sample of population. This study aimed to explore the association between serum α-klotho and oral health in US Adults. METHODS Data were from the National Health and Nutrition Examination Survey. Oral health parameters included periodontitis, self-rated oral health, and tooth loss. Logistic regression and restricted cubic spline models were adopted to evaluate the associations. RESULTS A total of 6187 participants were included in the study. The median of the α-klotho level was 815.2 pg/mL. Serum α-Klotho was significantly lower in participants with poor oral health (all P <0.01). Compared with the highest tertile, the lowest tertile of α-klotho was associated with moderate/severe periodontitis, poor-rated oral health, and tooth loss, with OR (95% CI) being 1.21 (1.01, 1.48), 1.26 (1.01, 1.56) and 1.38 (1.05, 1.84), respectively. An increment of per 1 standard deviation in the α-klotho concentration was associated with lower odds of moderate/severe periodontitis (OR: 0.93; 95% CI: 0.87, 0.99). Linear dose-response relationships were found between α-klotho and the odds of moderate/severe periodontitis (P for non-linearity=0.88) and poor-rated oral health (P for non-linearity=0.66). An L-shaped dose-response relationship was found between levels of α-klotho and the odds of tooth loss (P for non-linearity=0.04). CONCLUSIONS Serum α-klotho was associated with oral health. Further studies are necessary to clarify the potential mechanisms and demonstrate the predictive ability of klotho in oral diseases.
Collapse
Affiliation(s)
- Guo-Qiang Chen
- Department of Health Management & Engineering Laboratory for Health Management, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Medical Record Management and Statistics, Shandong Provincial Qianfoshan Hospital & The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Yao Duan
- Department of Medical Record Management and Statistics, Shandong Provincial Qianfoshan Hospital & The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jin-Feng Wang
- Department of Nursing, Center for Mental Health of Jinan City, Jinan, China
| | - Ying Lian
- Department of Medical Record Management and Statistics, Shandong Provincial Qianfoshan Hospital & The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Xiu-Li Yin
- Department of Gastroenterology, Shandong Rongjun General Hospital, Jinan, China
- *Correspondence: Xiu-Li Yin,
| |
Collapse
|
70
|
Olejnik A, Banaszkiewicz M, Krzywonos-Zawadzka A, Bil-Lula I. The Klotho protein supports redox balance and metabolic functions of cardiomyocytes during ischemia/reperfusion injury. Cardiol J 2021; 29:836-849. [PMID: 34967938 PMCID: PMC9550321 DOI: 10.5603/cj.a2021.0174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 11/22/2021] [Accepted: 12/05/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Acute heart ischemia followed by reperfusion leads to overproduction of reactive oxygen/ /nitrogen species (ROS/RNS), disrupted expression of nitric oxide synthase (NOS) and unbalanced glucose metabolism. Klotho is a membrane-bound or soluble protein that exerts protective activity in many organs. While Klotho is produced mainly in the kidneys and brain, it has been recently proven that Klotho is expressed in the cardiomyocytes as well. This study aimed to show the influence of the Klotho protein on oxidative/nitrosative stress and metabolic function of the cardiomyocytes subjected to ischemia/reperfusion (I/R) injury. METHODS Human cardiac myocytes underwent in vitro chemical I/R (with sodium cyanide and 2-deoxyglucose), in the presence or absence of the recombinant human Klotho protein. The present study included an investigation of cell injury markers, level of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX), level of oxidative/nitrosative stress and metabolic processes of the cardiomyocytes. RESULTS Administration of Klotho protein resulted in mitigation of injury, decreased level of NOX2 and NOX4, reduced generation of ROS/RNS and hydrogen peroxide (H2O2), decreased expression of inducible NOS and limited production of nitrates/nitrites in cells under I/R. Glucose uptake and lactate production in the cardiomyocytes subjected to I/R were normalized after Klotho supplementation. CONCLUSIONS The Klotho protein participates in the regulation of redox balance and supports metabolic homeostasis of the cardiomyocytes and hence, contributes to protection against I/R injury.
Collapse
Affiliation(s)
- Agnieszka Olejnik
- Division of Clinical Chemistry and Laboratory Haematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
| | - Marta Banaszkiewicz
- Division of Clinical Chemistry and Laboratory Haematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Anna Krzywonos-Zawadzka
- Division of Clinical Chemistry and Laboratory Haematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Iwona Bil-Lula
- Division of Clinical Chemistry and Laboratory Haematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
71
|
Docherty CK, Strembitska A, Baker CP, Schmidt FF, Reay K, Mercer JR. Inducing Energetic Switching Using Klotho Improves Vascular Smooth Muscle Cell Phenotype. Int J Mol Sci 2021; 23:ijms23010217. [PMID: 35008643 PMCID: PMC8745077 DOI: 10.3390/ijms23010217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 01/18/2023] Open
Abstract
The cardiovascular disease of atherosclerosis is characterised by aged vascular smooth muscle cells and compromised cell survival. Analysis of human and murine plaques highlights markers of DNA damage such as p53, Ataxia telangiectasia mutated (ATM), and defects in mitochondrial oxidative metabolism as significant observations. The antiageing protein Klotho could prolong VSMC survival in the atherosclerotic plaque and delay the consequences of plaque rupture by improving VSMC phenotype to delay heart attacks and stroke. Comparing wild-type VSMCs from an ApoE model of atherosclerosis with a flox'd Pink1 knockout of inducible mitochondrial dysfunction we show WT Pink1 is essential for normal cell viability, while Klotho mediates energetic switching which may preserve cell survival. METHODS Wild-type ApoE VSMCs were screened to identify potential drug candidates that could improve longevity without inducing cytotoxicity. The central regulator of cell metabolism AMP Kinase was used as a readout of energy homeostasis. Functional energetic switching between oxidative and glycolytic metabolism was assessed using XF24 technology. Live cell imaging was then used as a functional readout for the WT drug response, compared with Pink1 (phosphatase-and-tensin-homolog (PTEN)-induced kinase-1) knockout cells. RESULTS Candidate drugs were assessed to induce pACC, pAMPK, and pLKB1 before selecting Klotho for its improved ability to perform energetic switching. Klotho mediated an inverse dose-dependent effect and was able to switch between oxidative and glycolytic metabolism. Klotho mediated improved glycolytic energetics in wild-type cells which were not present in Pink1 knockout cells that model mitochondrial dysfunction. Klotho improved WT cell survival and migration, increasing proliferation and decreasing necrosis independent of effects on apoptosis. CONCLUSIONS Klotho plays an important role in VSMC energetics which requires Pink1 to mediate energetic switching between oxidative and glycolytic metabolism. Klotho improved VSMC phenotype and, if targeted to the plaque early in the disease, could be a useful strategy to delay the effects of plaque ageing and improve VSMC survival.
Collapse
|
72
|
Yun CE, So HK, Vuong TA, Na MW, Anh S, Lee HK, Kim KH, Kang JS, Bae GU, Lee SJ. Aronia Upregulates Myogenic Differentiation and Augments Muscle Mass and Function Through Muscle Metabolism. Front Nutr 2021; 8:753643. [PMID: 34888337 PMCID: PMC8650690 DOI: 10.3389/fnut.2021.753643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Black chokeberry or aronia (the fruit of Aronia melanocarpa) has been reported to having pharmacological activities against metabolic syndrome, such as hypertension, obesity, diabetes, and pro-inflammatory conditions. However, the effects of aronia on myogenic differentiation and muscle homoeostasis are uncharacterized. In this study, we investigated the effects of aronia (black chokeberry) on myogenic differentiation and muscle metabolic functions in young mice. Aronia extract (AR) promotes myogenic differentiation and elevates the formation of multinucleated myotubes through Akt activation. AR protects dexamethasone (DEX)-induced myotube atrophy through inhibition of muscle-specific ubiquitin ligases mediated by Akt activation. The treatment with AR increases muscle mass and strength in mice without cardiac hypertrophy. AR treatment enhances both oxidative and glycolytic myofibers and muscle metabolism with elevated mitochondrial genes and glucose metabolism-related genes. Furthermore, AR-fed muscle fibers display increased levels of total OxPHOS and myoglobin proteins. Taken together, AR enhances myogenic differentiation and improves muscle mass and function, suggesting that AR has a promising potential as a nutraceutical remedy to intervene in muscle weakness and atrophy.
Collapse
Affiliation(s)
- Chae-Eun Yun
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Hyun-Kyung So
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea.,Research Institute of Aging Related Disease, AniMusCure Inc., Suwon, South Korea
| | - Tuan Anh Vuong
- Research Institute of Aging Related Disease, AniMusCure Inc., Suwon, South Korea
| | - Myung Woo Na
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Subin Anh
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Hyo-Keun Lee
- Gyeonwoo Korean Medical Center, Seoul, South Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Gyu-Un Bae
- Drug Information Research Institute, College of Pharmacy, Sookmyung Women's University, Seoul, South Korea
| | - Sang-Jin Lee
- Research Institute of Aging Related Disease, AniMusCure Inc., Suwon, South Korea
| |
Collapse
|
73
|
Ancel S, Feige JN. Young extracellular vesicles rejuvenate aged muscle. NATURE AGING 2021; 1:1078-1080. [PMID: 37117521 DOI: 10.1038/s43587-021-00153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Sara Ancel
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jerome N Feige
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland.
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
74
|
Sahu A, Clemens ZJ, Shinde SN, Sivakumar S, Pius A, Bhatia A, Picciolini S, Carlomagno C, Gualerzi A, Bedoni M, Van Houten B, Lovalekar M, Fitz NF, Lefterov I, Barchowsky A, Koldamova R, Ambrosio F. Regulation of aged skeletal muscle regeneration by circulating extracellular vesicles. NATURE AGING 2021; 1:1148-1161. [PMID: 35665306 PMCID: PMC9165723 DOI: 10.1038/s43587-021-00143-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 10/27/2021] [Indexed: 12/21/2022]
Abstract
Heterochronic blood exchange (HBE) has demonstrated that circulating factors restore youthful features to aged tissues. However, the systemic mediators of those rejuvenating effects remain poorly defined. We show here that the beneficial effect of young blood on aged muscle regeneration was diminished when serum was depleted of extracellular vesicles (EVs). Whereas EVs from young animals rejuvenate aged cell bioenergetics and skeletal muscle regeneration, aging shifts EV subpopulation heterogeneity and compromises downstream benefits on recipient cells. Machine learning classifiers revealed that aging shifts the nucleic acid, but not protein, fingerprint of circulating EVs. Alterations in sub-population heterogeneity were accompanied by declines in transcript levels of the pro-longevity protein, α-Klotho, and injection of EVs improved muscle regeneration in a Klotho mRNA-dependent manner. These studies demonstrate that EVs play a key role in the rejuvenating effects of HBE and that Klotho transcripts within EVs phenocopy the effects of young serum on aged skeletal muscle.
Collapse
Affiliation(s)
- Amrita Sahu
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
| | - Zachary J. Clemens
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
| | - Sunita N. Shinde
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA
| | - Sruthi Sivakumar
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Abish Pius
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA
- Department of Computational & Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh PA
| | - Ankit Bhatia
- Robotics Institute, Carnegie Mellon University, Pittsburgh, PA
| | - Silvia Picciolini
- Laboratory of Nanomedicine and Clinical Biophotonics (LABION), IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Cristiano Carlomagno
- Laboratory of Nanomedicine and Clinical Biophotonics (LABION), IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Alice Gualerzi
- Laboratory of Nanomedicine and Clinical Biophotonics (LABION), IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Marzia Bedoni
- Laboratory of Nanomedicine and Clinical Biophotonics (LABION), IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Bennett Van Houten
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA
| | - Mita Lovalekar
- Department of Sports Medicine and Nutrition, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh PA
| | - Nicholas F. Fitz
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
| | - Iliya Lefterov
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA
| | - Radosveta Koldamova
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
| | - Fabrisia Ambrosio
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
75
|
Blum JE, Gheller BJ, Benvie A, Field MS, Panizza E, Vacanti NM, Berry D, Thalacker-Mercer A. Pyruvate Kinase M2 Supports Muscle Progenitor Cell Proliferation but Is Dispensable for Skeletal Muscle Regeneration after Injury. J Nutr 2021; 151:3313-3328. [PMID: 34383048 PMCID: PMC8562082 DOI: 10.1093/jn/nxab251] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/21/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Skeletal muscle progenitor cells (MPCs) repair damaged muscle postinjury. Pyruvate kinase M2 (PKM2) is a glycolytic enzyme (canonical activity) that can also interact with other proteins (noncanonical activity) to modify diverse cellular processes. Recent evidence links PKM2 to MPC proliferation. OBJECTIVES This study aimed to understand cellular roles for PKM2 in MPCs and the necessity of PKM2 in MPCs for muscle regeneration postinjury. METHODS Cultured, proliferating MPCs (C2C12 cells) were treated with a short hairpin RNA targeting PKM2 or small molecules that selectively affect canonical and noncanonical PKM2 activity (shikonin and TEPP-46). Cell number was measured, and RNA-sequencing and metabolic assays were used in follow-up experiments. Immunoprecipitation coupled to proteomics was used to identify binding partners of PKM2. Lastly, an MPC-specific PKM2 knockout mouse was generated and challenged with a muscle injury to determine the impact of PKM2 on regeneration. RESULTS When the noncanonical activity of PKM2 was blocked or impaired, there was an increase in reactive oxygen species concentrations (1.6-2.0-fold, P < 0.01). Blocking noncanonical PKM2 activity also increased lactate excretion (1.2-1.6-fold, P < 0.05) and suppressed mitochondrial oxygen consumption (1.3-1.6-fold, P < 0.01). Glutamate dehydrogenase 1 (GLUD1) was identified as a PKM2 binding partner and blocking noncanonical PKM2 activity increased GLUD activity (1.5-1.6-fold, P < 0.05). Mice with an MPC-specific PKM2 deletion did not demonstrate impaired muscle regeneration. CONCLUSIONS The results suggest that the noncanonical activity of PKM2 is important for MPC proliferation in vitro and demonstrate GLUD1 as a PKM2 binding partner. Because no impairments in muscle regeneration were detected in a mouse model, the endogenous environment may compensate for loss of PKM2.
Collapse
Affiliation(s)
- Jamie E Blum
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Brandon J Gheller
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Abby Benvie
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Elena Panizza
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | | | - Daniel Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Anna Thalacker-Mercer
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
76
|
Control of satellite cell function in muscle regeneration and its disruption in ageing. Nat Rev Mol Cell Biol 2021; 23:204-226. [PMID: 34663964 DOI: 10.1038/s41580-021-00421-2] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 12/19/2022]
Abstract
Skeletal muscle contains a designated population of adult stem cells, called satellite cells, which are generally quiescent. In homeostasis, satellite cells proliferate only sporadically and usually by asymmetric cell division to replace myofibres damaged by daily activity and maintain the stem cell pool. However, satellite cells can also be robustly activated upon tissue injury, after which they undergo symmetric divisions to generate new stem cells and numerous proliferating myoblasts that later differentiate to muscle cells (myocytes) to rebuild the muscle fibre, thereby supporting skeletal muscle regeneration. Recent discoveries show that satellite cells have a great degree of population heterogeneity, and that their cell fate choices during the regeneration process are dictated by both intrinsic and extrinsic mechanisms. Extrinsic cues come largely from communication with the numerous distinct stromal cell types in their niche, creating a dynamically interactive microenvironment. This Review discusses the role and regulation of satellite cells in skeletal muscle homeostasis and regeneration. In particular, we highlight the cell-intrinsic control of quiescence versus activation, the importance of satellite cell-niche communication, and deregulation of these mechanisms associated with ageing. The increasing understanding of how satellite cells are regulated will help to advance muscle regeneration and rejuvenation therapies.
Collapse
|
77
|
Phelps M, Yablonka-Reuveni Z. Female Outperformance in Voluntary Running Persists in Dystrophin-Null and Klotho-Overexpressing Mice. J Neuromuscul Dis 2021; 8:S271-S281. [PMID: 34275905 DOI: 10.3233/jnd-210703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Duchenne muscular dystrophy is a degenerative muscle disease that results from impairment of the dystrophin gene. The disease causes progressive loss in muscle mass and function. OBJECTIVE The anti-aging protein, α-klotho, has been implicated in the regulation of muscle regeneration. We previously discovered that mice harboring reduced α-klotho levels exhibited a decline in muscle strength and running endurance. METHOD To investigate the ability of α-klotho to improve overall endurance in a dystrophin null murine model, we examined the voluntary wheel running performance of dystrophin-null, mdx4cv mice overexpressing an α-klotho transgene. RESULTS As expected, compared to wild type, both male and female dystrophic mice exhibited reduced running ability that was characterized by shorter running duration and longer periods of rest between cycles of activity. While our results did not detect an improvement in running performance with α-klotho overexpression, we identified distinct differences in the running patterns between females and males from all mouse strains analyzed (i.e., mdx4cv, mdx4cv overexpressing α-klotho, α-klotho overexpressing, α-klotho hypomorph, and wild type). For all strains, male mice displayed significantly reduced voluntary running ability compared to females. Further analysis of the mdx4cv strains demonstrated that male mice ran for shorter lengths of time and took longer breaks. However, we did not identify gender-associated differences in the actual speed at which mdx4cv mice ran. CONCLUSION Our data suggest key differences in the running capabilities of female and male mice, which are of particular relevance to studies of dystrophin-null mice.
Collapse
Affiliation(s)
- Michael Phelps
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Zipora Yablonka-Reuveni
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
78
|
Chen Z, Xiong L, Jin H, Yu J, Li X, Fu H, Wen L, Qi H, Tong C, Saffery R, Kilby MD, Baker PN. Advanced maternal age causes premature placental senescence and malformation via dysregulated α-Klotho expression in trophoblasts. Aging Cell 2021; 20:e13417. [PMID: 34105233 PMCID: PMC8282245 DOI: 10.1111/acel.13417] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/20/2022] Open
Abstract
Advanced maternal age (AMA) pregnancy is associated with higher risks of adverse perinatal outcomes, which may result from premature senescence of the placenta. α-Klotho is a well-known antiaging protein; however, its expression and effect on the placenta in AMA pregnancies have not yet been fully elucidated. The expression patterns of α-Klotho in mouse and human placentas from AMA pregnancies were determined by Western blotting and immunohistochemistry (IHC) staining. α-Klotho expression in JAR cells was manipulated to investigate its role in trophoblastic senescence, and transwell assays were performed to assess trophoblast invasion. The downstream genes regulated by α-Klotho in JAR cells were first screened by mRNA sequencing in α-Klotho-knockdown and control JAR cells and then validated. α-Klotho-deficient mice were generated by injecting klotho-interfering adenovirus (Ad-Klotho) via the tail vein on GD8.5. Ablation of α-Klotho resulted in not only a senescent phenotype and loss of invasiveness in JAR cells but also a reduction in the transcription of cell adhesion molecule (CAM) genes. Overexpression of α-Klotho significantly improved invasion but did not alter the expression of senescence biomarkers. α-Klotho-deficient mice exhibited placental malformation and, consequently, lower placental and fetal weights. In conclusion, AMA results in reduced α-Klotho expression in placental trophoblasts, therefore leading to premature senescence and loss of invasion (possibly through the downregulation of CAMs), both of which ultimately result in placental malformation and adverse perinatal outcomes.
Collapse
Affiliation(s)
- Zhi Chen
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Liling Xiong
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Huili Jin
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Jiaxiao Yu
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Xin Li
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Huijia Fu
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Li Wen
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Hongbo Qi
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Chao Tong
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Richard Saffery
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
- Cancer, Disease and Developmental epigenetics, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVICAustralia
| | - Mark D. Kilby
- Centre for Women's and Newborn HealthInstitute of Metabolism and Systems ResearchUniversity of BirminghamBirminghamUK
| | - Philip N. Baker
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
- College of Life SciencesUniversity of LeicesterLeicesterUK
| |
Collapse
|
79
|
Ravid JD, Kamel MH, Chitalia VC. Uraemic solutes as therapeutic targets in CKD-associated cardiovascular disease. Nat Rev Nephrol 2021; 17:402-416. [PMID: 33758363 DOI: 10.1038/s41581-021-00408-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 02/01/2023]
Abstract
Chronic kidney disease (CKD) is characterized by the retention of a myriad of solutes termed uraemic (or uremic) toxins, which inflict damage to several organs, including the cardiovascular system. Uraemic toxins can induce hallmarks of cardiovascular disease (CVD), such as atherothrombosis, heart failure, dysrhythmias, vessel calcification and dysregulated angiogenesis. CVD is an important driver of mortality in patients with CKD; however, reliance on conventional approaches to managing CVD risk is insufficient in these patients, underscoring a need to target risk factors that are specific to CKD. Mounting evidence suggests that targeting uraemic toxins and/or pathways induced by uraemic toxins, including tryptophan metabolites and trimethylamine N-oxide (TMAO), can lower the risk of CVD in patients with CKD. Although tangible therapies resulting from our growing knowledge of uraemic toxicity are yet to materialize, a number of pharmacological and non-pharmacological approaches have the potential to abrogate the effects of uraemic toxins, for example, by decreasing the production of uraemic toxins, by modifying metabolic pathways induced by uraemic toxins such as those controlled by aryl hydrocarbon receptor signalling and by augmenting the clearance of uraemic toxins.
Collapse
Affiliation(s)
- Jonathan D Ravid
- School of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Mohamed Hassan Kamel
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Vipul C Chitalia
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA. .,Boston Veterans Affairs Healthcare System, Boston, MA, USA. .,Global Co-creation Lab, Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
80
|
Hartmann A, Hartmann C, Secci R, Hermann A, Fuellen G, Walter M. Ranking Biomarkers of Aging by Citation Profiling and Effort Scoring. Front Genet 2021; 12:686320. [PMID: 34093670 PMCID: PMC8176216 DOI: 10.3389/fgene.2021.686320] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/23/2021] [Indexed: 01/10/2023] Open
Abstract
Aging affects most living organisms and includes the processes that reduce health and survival. The chronological and the biological age of individuals can differ remarkably, and there is a lack of reliable biomarkers to monitor the consequences of aging. In this review we give an overview of commonly mentioned and frequently used potential aging-related biomarkers. We were interested in biomarkers of aging in general and in biomarkers related to cellular senescence in particular. To answer the question whether a biological feature is relevant as a potential biomarker of aging or senescence in the scientific community we used the PICO strategy known from evidence-based medicine. We introduced two scoring systems, aimed at reflecting biomarker relevance and measurement effort, which can be used to support study designs in both clinical and research settings.
Collapse
Affiliation(s)
- Alexander Hartmann
- Institute of Clinical Chemistry and Laboratory Medicine, Rostock University Medical Center, Rostock, Germany
| | - Christiane Hartmann
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, Rostock University Medical Center, Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany
| | - Riccardo Secci
- Institute for Biostatistics and Informatics in Medicine and Aging Research, Rostock University Medical Center, Rostock, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, Rostock University Medical Center, Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Aging Research, Rostock University Medical Center, Rostock, Germany
| | - Michael Walter
- Institute of Clinical Chemistry and Laboratory Medicine, Rostock University Medical Center, Rostock, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité –Berlin Institute of Health, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
81
|
Chen T, Chen J, Zhao X, Zhou J, Sheng Q, Zhu L, Lv Z. βKlotho, a direct target of miR-206, contributes to the growth of hepatoblastoma through augmenting PI3K/Akt/mTOR signaling. Am J Cancer Res 2021; 11:1982-2004. [PMID: 34094665 PMCID: PMC8167675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023] Open
Abstract
Hepatoblastoma (HB) is the most frequent pediatric liver malignancy. However, the treatment outcome for patients with advanced-stage HB remains unsatisfactory. Accumulating evidence indicates that βKlotho (KLB) acts as an oncogene or a tumor-suppressor gene in a context-dependent manner. Despite this, the expression profile and effects of KLB on the growth of HB are still elusive. This study aimed to explore the effect of miR-206/KLB axis on HB growth. The expression of KLB was explored in HB cells (HepG2 and HuH6) and tissues using quantitative polymerase chain reaction (qPCR), Western blot analysis, and immunohistochemistry. Besides, miR-206 expression was determined in HB cells and tissues using qPCR and fluorescence in situ hybridization. The prognostic value of KLB or miR-206 in our patients with HB was investigated using the Kaplan-Meier method. The biological effects of KLB or miR-206 on HB cells were identified in vitro. The proliferative effects of KLB on HuH6 cells were also investigated in vivo. Moreover, the mechanical signaling of KLB in HB was determined through bioinformatics analysis followed by experimental validation. The results showed a significant upregulation of KLB in HB tissues and cells. Elevated level of KLB was found to be significantly correlated with the aggressive phenotype and poor overall survival for children with HB. The in vitro function assay demonstrated that KLB knockdown promoted apoptosis and suppressed the proliferation, migration, and invasion of HB cells. Besides, KLB knockdown inhibited the proliferation of HuH6 cells in vivo, while KLB overexpression had the opposite effect. Furthermore, KLB was proved to be the direct target of miR-206. Low level of miR-206 served as an independent risk factor for poor prognosis in children with HB. The overexpression of miR-206 negatively regulated the aggressive biological behaviors of HB cells, which was partially rescued by KLB overexpression. Mechanically, the miR-206/KLB axis played a vital role in HB growth through augmenting the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling. In conclusion, the data demonstrated that the miR-206/KLB axis might serve as an important biomarker/therapeutic target for HB.
Collapse
Affiliation(s)
- Tong Chen
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University Shanghai 200040, P. R. China
| | - Jianglong Chen
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University Shanghai 200040, P. R. China
| | - Xiuhao Zhao
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University Shanghai 200040, P. R. China
| | - Jing Zhou
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University Shanghai 200040, P. R. China
| | - Qingfeng Sheng
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University Shanghai 200040, P. R. China
| | - Linlin Zhu
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University Shanghai 200040, P. R. China
| | - Zhibao Lv
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University Shanghai 200040, P. R. China
| |
Collapse
|
82
|
Griñán-Ferré C, Bellver-Sanchis A, Izquierdo V, Corpas R, Roig-Soriano J, Chillón M, Andres-Lacueva C, Somogyvári M, Sőti C, Sanfeliu C, Pallàs M. The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer's disease pathology: From antioxidant to epigenetic therapy. Ageing Res Rev 2021; 67:101271. [PMID: 33571701 DOI: 10.1016/j.arr.2021.101271] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
While the elderly segment of the population continues growing in importance, neurodegenerative diseases increase exponentially. Lifestyle factors such as nutrition, exercise, and education, among others, influence ageing progression, throughout life. Notably, the Central Nervous System (CNS) can benefit from nutritional strategies and dietary interventions that prevent signs of senescence, such as cognitive decline or neurodegenerative diseases such as Alzheimer's disease and Parkinson's Disease. The dietary polyphenol Resveratrol (RV) possesses antioxidant and cytoprotective effects, producing neuroprotection in several organisms. The oxidative stress (OS) occurs because of Reactive oxygen species (ROS) accumulation that has been proposed to explain the cause of the ageing. One of the most harmful effects of ROS in the cell is DNA damage. Nevertheless, there is also evidence demonstrating that OS can produce other molecular changes such as mitochondrial dysfunction, inflammation, apoptosis, and epigenetic modifications, among others. Interestingly, the dietary polyphenol RV is a potent antioxidant and possesses pleiotropic actions, exerting its activity through various molecular pathways. In addition, recent evidence has shown that RV mediates epigenetic changes involved in ageing and the function of the CNS that persists across generations. Furthermore, it has been demonstrated that RV interacts with gut microbiota, showing modifications in bacterial composition associated with beneficial effects. In this review, we give a comprehensive overview of the main mechanisms of action of RV in different experimental models, including clinical trials and discuss how the interconnection of these molecular events could explain the neuroprotective effects induced by RV.
Collapse
Affiliation(s)
- Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028, Barcelona, Spain.
| | - Aina Bellver-Sanchis
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Vanessa Izquierdo
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Rubén Corpas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, Barcelona, Spain
| | - Joan Roig-Soriano
- Department of Biochemistry and Molecular Biology, Universitat Autònoma Barcelona, Institut de Neurociènces (INc), Universitat Autònoma Barcelona, Bellaterra, Spain
| | - Miguel Chillón
- Department of Biochemistry and Molecular Biology, Universitat Autònoma Barcelona, Institut de Neurociènces (INc), Universitat Autònoma Barcelona, Bellaterra, Spain; Vall d'Hebron Institut de Recerca (VHIR), Research Group on Gene Therapy at Nervous System, Passeig de la Vall d'Hebron, Barcelona, Spain; Unitat producció de Vectors (UPV), Universitat Autònoma Barcelona, Bellaterra, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Xarta, INSA, Faculty of Pharmacy and Food Sciences, Campus Torribera, University of Barcelona, Spain; CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salut Carlos III, Barcelona, Spain
| | - Milán Somogyvári
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Csaba Sőti
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Coral Sanfeliu
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, Barcelona, Spain
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028, Barcelona, Spain
| |
Collapse
|
83
|
Kawarazaki W, Fujita T. Kidney and epigenetic mechanisms of salt-sensitive hypertension. Nat Rev Nephrol 2021; 17:350-363. [PMID: 33627838 DOI: 10.1038/s41581-021-00399-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
Dietary salt intake increases blood pressure (BP) but the salt sensitivity of BP differs between individuals. The interplay of ageing, genetics and environmental factors, including malnutrition and stress, contributes to BP salt sensitivity. In adults, obesity is often associated with salt-sensitive hypertension. The children of women who experience malnutrition during pregnancy are at increased risk of developing obesity, diabetes and salt-sensitive hypertension as adults. Similarly, the offspring of mice that are fed a low-protein diet during pregnancy develop salt-sensitive hypertension in association with aberrant DNA methylation of the gene encoding type 1A angiotensin II receptor (AT1AR) in the hypothalamus, leading to upregulation of hypothalamic AT1AR and renal sympathetic overactivity. Ageing is also associated with salt-sensitive hypertension. In aged mice, promoter methylation leads to reduced kidney production of the anti-ageing factor Klotho and a decrease in circulating soluble Klotho. In the setting of Klotho deficiency, salt-induced activation of the vascular Wnt5a-RhoA pathway leads to ageing-associated salt-sensitive hypertension, potentially as a result of reduced renal blood flow and increased peripheral resistance. Thus, kidney mechanisms and aberrant DNA methylation of certain genes are involved in the development of salt-sensitive hypertension during fetal development and old age. Three distinct paradigms of epigenetic memory operate on different timescales in prenatal malnutrition, obesity and ageing.
Collapse
Affiliation(s)
- Wakako Kawarazaki
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Toshiro Fujita
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan. .,School of Medicine, Shinshu University, Matsumoto, Japan. .,Research Center for Social Systems, Shinshu University, Matsumoto, Japan.
| |
Collapse
|
84
|
Clemens Z, Sivakumar S, Pius A, Sahu A, Shinde S, Mamiya H, Luketich N, Cui J, Dixit P, Hoeck JD, Kreuz S, Franti M, Barchowsky A, Ambrosio F. The biphasic and age-dependent impact of klotho on hallmarks of aging and skeletal muscle function. eLife 2021; 10:e61138. [PMID: 33876724 PMCID: PMC8118657 DOI: 10.7554/elife.61138] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Aging is accompanied by disrupted information flow, resulting from accumulation of molecular mistakes. These mistakes ultimately give rise to debilitating disorders including skeletal muscle wasting, or sarcopenia. To derive a global metric of growing 'disorderliness' of aging muscle, we employed a statistical physics approach to estimate the state parameter, entropy, as a function of genes associated with hallmarks of aging. Escalating network entropy reached an inflection point at old age, while structural and functional alterations progressed into oldest-old age. To probe the potential for restoration of molecular 'order' and reversal of the sarcopenic phenotype, we systemically overexpressed the longevity protein, Klotho, via AAV. Klotho overexpression modulated genes representing all hallmarks of aging in old and oldest-old mice, but pathway enrichment revealed directions of changes were, for many genes, age-dependent. Functional improvements were also age-dependent. Klotho improved strength in old mice, but failed to induce benefits beyond the entropic tipping point.
Collapse
Affiliation(s)
- Zachary Clemens
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
- Department of Environmental and Occupational Health, University of PittsburghPittsburghUnited States
| | - Sruthi Sivakumar
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
- Department of Bioengineering, University of PittsburghPittsburghUnited States
| | - Abish Pius
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
- Department of Computational & Systems Biology, School of Medicine, University of PittsburghPittsburghUnited States
| | - Amrita Sahu
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
| | - Sunita Shinde
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
| | - Hikaru Mamiya
- Department of Bioengineering, University of PittsburghPittsburghUnited States
| | - Nathaniel Luketich
- Department of Bioengineering, University of PittsburghPittsburghUnited States
| | - Jian Cui
- Department of Computational & Systems Biology, School of Medicine, University of PittsburghPittsburghUnited States
| | - Purushottam Dixit
- Department of Physics, University of FloridaGainesvilleUnited States
| | - Joerg D Hoeck
- Department of Research Beyond Borders, Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals, IncRheinGermany
| | - Sebastian Kreuz
- Department of Research Beyond Borders, Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals, IncRheinGermany
| | - Michael Franti
- Department of Research Beyond Borders, Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals, IncRheinGermany
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, University of PittsburghPittsburghUnited States
| | - Fabrisia Ambrosio
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
- Department of Environmental and Occupational Health, University of PittsburghPittsburghUnited States
- Department of Bioengineering, University of PittsburghPittsburghUnited States
- McGowan Institute for Regenerative Medicine, University of PittsburghPittsburghUnited States
| |
Collapse
|
85
|
Gautam S, Kumar U, Kumar M, Rana D, Dada R. Yoga improves mitochondrial health and reduces severity of autoimmune inflammatory arthritis: A randomized controlled trial. Mitochondrion 2021; 58:147-159. [PMID: 33741520 DOI: 10.1016/j.mito.2021.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/05/2021] [Accepted: 03/11/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Oxidative stress (OS) and mitochondrial alterations have been implicated in the pathogenesis of rheumatoid arthritis (RA). Various environmental triggers like air pollutants, smoking, unhealthy social habits and sedentary lifestyle induce OS, which may compromise mitochondrial integrity. This trial was designed to explore the effect of 8-weeks yoga practice on mitochondrial health and disease severity in an active RA group compared with a usual-care control group. METHODS A total of 70 subjects were randomized into two groups: yoga group and non-yoga group. Mitochondrial health was assessed by calculation of mitochondrial DNA copy number (mtDNA-CN), OS markers, mitochondrial activity, mitochondrial membrane potential (ΔΨm), circadian rhythm markers and transcripts associated with mitochondrial integrity: AMPK, TIMP-1, KLOTHO, SIRT-1, and TFAM. Parameters of disease activity and disability quotient were also assessed by disease activity score - erythrocyte sedimentation rate (DAS28-ESR) and health assessment questionnaire-disability index (HAQ-DI), respectively. RESULTS In yoga group, there was a significant upregulation of mtDNA-CN, mitochondrial activity markers, ΔΨm, and transcripts that maintain mitochondrial integrity after 8-weeks of yoga. There was optimization of OS markers, and circadian rhythm markers post 8-weeks practice of yoga. Yoga group participants showed significant improvements in DAS28-ESR (p < 0.05) and HAQ-DI (p < 0.05) over the non-yoga group. CONCLUSION Adoption of yoga by RA patients holds the key to enhance mitochondrial health, improve circadian rhythm markers, OS marker regulation, upregulation of transcripts that maintain mitochondrial integrity, reduce disease activity and its associated consequences on health outcome and hence can be beneficial as an adjunct therapy.
Collapse
Affiliation(s)
- Surabhi Gautam
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Uma Kumar
- Department of Rheumatology, All India Institute of Medical Sciences, New Delhi, India
| | - Manoj Kumar
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Deeksha Rana
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Rima Dada
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
86
|
von Maltzahn J. Regulation of muscle stem cell function. VITAMINS AND HORMONES 2021; 116:295-311. [PMID: 33752822 DOI: 10.1016/bs.vh.2021.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Regeneration of skeletal muscle is a finely tuned process which is depending on muscle stem cells, a population of stem cells in skeletal muscle which is also termed satellite cells. Muscle stem cells are a prerequisite for regeneration of skeletal muscle. Of note, the muscle stem cell population is heterogeneous and subpopulations can be identified depending on gene expression or phenotypic traits. However, all muscle stem cells express the transcription factor Pax7 and their functionality is tightly controlled by intrinsic signaling pathways and extrinsic signals. The latter ones include signals form the stem cell niche as well as circulating factors such as growth factors and hormones. Among them are Wnt proteins, growth factors like IGF-1 or FGF-2 and hormones such as thyroid hormones and the anti-aging hormone Klotho. A highly orchestrated interplay between those factors and muscle stem cells is important for their full functionality and ultimately regeneration of skeletal muscle as outlined here.
Collapse
|
87
|
Kakar RS, Pastor JV, Moe OW, Ambrosio F, Castaldi D, Sanders LH. Peripheral Klotho and Parkinson's Disease. Mov Disord 2021; 36:1274-1276. [PMID: 33629770 DOI: 10.1002/mds.28530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/25/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Rumit S Kakar
- Old Dominion University Norfolk, Norfolk, Virginia, USA
| | - Johanne V Pastor
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Orson W Moe
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | - Laurie H Sanders
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
88
|
Could α-Klotho Unlock the Key Between Depression and Dementia in the Elderly: from Animal to Human Studies. Mol Neurobiol 2021; 58:2874-2885. [PMID: 33527303 DOI: 10.1007/s12035-021-02313-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
α-Klotho is known for its aging-related functions and is associated with neurodegenerative diseases, accelerated aging, premature morbidity, and mortality. Recent literature suggests that α-Klotho is also involved in the regulation of mental functions, such as cognition and psychosis. While most of studies of α-Klotho are focusing on its anti-aging functions and protective role in dementia, increasing evidence showed many shared symptoms between depression and dementia, while depression has been proposed as the preclinical stage of dementia such as Alzheimer's disease (AD). To see whether and how α-Klotho can be a key biological link between depression and dementia, in this review, we first gathered the evidence on biological distribution and function of α-Klotho in psychiatric functions from animal studies to human clinical investigations with a focus on the regulation of cognition and mood. Then, we discussed and highlighted the potential common underlying mechanisms of α-Klotho between psychiatric diseases and cognitive impairment. Finally, we hypothesized that α-Klotho might serve as a neurobiological link between depression and dementia through the regulation of oxidative stress and inflammation.
Collapse
|
89
|
Miao J, Huang J, Luo C, Ye H, Ling X, Wu Q, Shen W, Zhou L. Klotho retards renal fibrosis through targeting mitochondrial dysfunction and cellular senescence in renal tubular cells. Physiol Rep 2021; 9:e14696. [PMID: 33463897 PMCID: PMC7814487 DOI: 10.14814/phy2.14696] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/28/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) has a high prevalence worldwide and is an intricate issue to whole medical society. Renal fibrosis is the common pathological feature for various kinds of CKD. As an anti-aging protein, Klotho is predominantly expressed in renal tubular epithelial cells. Reports show Klotho could retard age-related renal fibrosis. Mitochondrial dysfunction plays an important role in cellular senescence. However, the role of Klotho in mitochondrial dysfunction in CKD has not yet been determined. In this study, we treated unilateral ischemia-reperfusion (UIRI) mice and cultured human renal tubular epithelial cells (HKC-8) with Klotho. We assessed renal fibrosis, cellular senescence, and Wnt/β-catenin signaling. We also focused on mitochondrial function assessment. In UIRI mice, ectopic expression of Klotho greatly retarded fibrotic lesions and the activation of Wnt/β-catenin signaling. Interestingly, Klotho significantly preserved mitochondrial mass, inhibited mitochondrial reactive oxygen species (ROS) production and restored the expression of mitochondrial respiration chain complex subunits. Consequently, Klotho restrained cellular senescence. In HKC-8 cells, Klotho significantly inhibited Wnt1- and Wnt9a-induced mitochondrial injury, cellular senescence, and fibrotic lesions. These results suggest Klotho has a protective role in renal function through targeted protection on mitochondria. This further broads the understanding of the beneficial efficacies of Klotho in CKD.
Collapse
Affiliation(s)
- Jinhua Miao
- State Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseDivision of NephrologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jiewu Huang
- State Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseDivision of NephrologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Congwei Luo
- State Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseDivision of NephrologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Huiyun Ye
- State Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseDivision of NephrologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xian Ling
- State Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseDivision of NephrologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Qinyu Wu
- State Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseDivision of NephrologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Weiwei Shen
- State Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseDivision of NephrologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Lili Zhou
- State Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseDivision of NephrologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| |
Collapse
|
90
|
Tidball JG, Flores I, Welc SS, Wehling-Henricks M, Ochi E. Aging of the immune system and impaired muscle regeneration: A failure of immunomodulation of adult myogenesis. Exp Gerontol 2020; 145:111200. [PMID: 33359378 DOI: 10.1016/j.exger.2020.111200] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/17/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022]
Abstract
Skeletal muscle regeneration that follows acute injury is strongly influenced by interactions with immune cells that invade and proliferate in the damaged tissue. Discoveries over the past 20 years have identified many of the key mechanisms through which myeloid cells, especially macrophages, regulate muscle regeneration. In addition, lymphoid cells that include CD8+ T-cells and regulatory T-cells also significantly affect the course of muscle regeneration. During aging, the regenerative capacity of skeletal muscle declines, which can contribute to progressive loss of muscle mass and function. Those age-related reductions in muscle regeneration are accompanied by systemic, age-related changes in the immune system, that affect many of the myeloid and lymphoid cell populations that can influence muscle regeneration. In this review, we present recent discoveries that indicate that aging of the immune system contributes to the diminished regenerative capacity of aging muscle. Intrinsic, age-related changes in immune cells modify their expression of factors that affect the function of a population of muscle stem cells, called satellite cells, that are necessary for normal muscle regeneration. For example, age-related reductions in the expression of growth differentiation factor-3 (GDF3) or CXCL10 by macrophages negatively affect adult myogenesis, by disrupting regulatory interactions between macrophages and satellite cells. Those changes contribute to a reduction in the numbers and myogenic capacity of satellite cells in old muscle, which reduces their ability to restore damaged muscle. In addition, aging produces changes in the expression of molecules that regulate the inflammatory response to injured muscle, which also contributes to age-related defects in muscle regeneration. For example, age-related increases in the production of osteopontin by macrophages disrupts the normal inflammatory response to muscle injury, resulting in regenerative defects. These nascent findings represent the beginning of a newly-developing field of investigation into mechanisms through which aging of the immune system affects muscle regeneration.
Collapse
Affiliation(s)
- James G Tidball
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, CA, United States of America; Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, United States of America; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, United States of America.
| | - Ivan Flores
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, CA, United States of America
| | - Steven S Welc
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America
| | - Michelle Wehling-Henricks
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, United States of America
| | - Eisuke Ochi
- Hosei University, Faculty of Bioscience and Applied Chemistry, 3-7-2, Kajino, Koganei, Tokyo 184-8584, Japan
| |
Collapse
|
91
|
Colella P, Sellier P, Gomez MJ, Biferi MG, Tanniou G, Guerchet N, Cohen-Tannoudji M, Moya-Nilges M, van Wittenberghe L, Daniele N, Gjata B, Krijnse-Locker J, Collaud F, Simon-Sola M, Charles S, Cagin U, Mingozzi F. Gene therapy with secreted acid alpha-glucosidase rescues Pompe disease in a novel mouse model with early-onset spinal cord and respiratory defects. EBioMedicine 2020; 61:103052. [PMID: 33039711 PMCID: PMC7553357 DOI: 10.1016/j.ebiom.2020.103052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/02/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Background Pompe disease (PD) is a neuromuscular disorder caused by deficiency of acidalpha-glucosidase (GAA), leading to motor and respiratory dysfunctions. Available Gaa knock-out (KO) mouse models do not accurately mimic PD, particularly its highly impaired respiratory phenotype. Methods Here we developed a new mouse model of PD crossing Gaa KOB6;129 with DBA2/J mice. We subsequently treated Gaa KODBA2/J mice with adeno-associated virus (AAV) vectors expressing a secretable form of GAA (secGAA). Findings Male Gaa KODBA2/J mice present most of the key features of the human disease, including early lethality, severe respiratory impairment, cardiac hypertrophy and muscle weakness. Transcriptome analyses of Gaa KODBA2/J, compared to the parental Gaa KOB6;129 mice, revealed a profoundly impaired gene signature in the spinal cord and a similarly deregulated gene expression in skeletal muscle. Muscle and spinal cord transcriptome changes, biochemical defects, respiratory and muscle function in the Gaa KODBA2/J model were significantly improved upon gene therapy with AAV vectors expressing secGAA. Interpretation These data show that the genetic background impacts on the severity of respiratory function and neuroglial spinal cord defects in the Gaa KO mouse model of PD. Our findings have implications for PD prognosis and treatment, show novel molecular pathophysiology mechanisms of the disease and provide a unique model to study PD respiratory defects, which majorly affect patients. Funding This work was supported by Genethon, the French Muscular Dystrophy Association (AFM), the European Commission (grant nos. 667751, 617432, and 797144), and Spark Therapeutics.
Collapse
Affiliation(s)
- Pasqualina Colella
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France.
| | - Pauline Sellier
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France
| | | | - Maria G Biferi
- University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| | - Guillaume Tanniou
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France
| | - Nicolas Guerchet
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France
| | | | | | | | - Natalie Daniele
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France
| | - Bernard Gjata
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France
| | | | - Fanny Collaud
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France
| | - Marcelo Simon-Sola
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France
| | - Severine Charles
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France
| | - Umut Cagin
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France
| | - Federico Mingozzi
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France; University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France; Spark Therapeutics, Philadelphia, PA, USA.
| |
Collapse
|
92
|
Spehar K, Pan A, Beerman I. Restoring aged stem cell functionality: Current progress and future directions. Stem Cells 2020; 38:1060-1077. [PMID: 32473067 PMCID: PMC7483369 DOI: 10.1002/stem.3234] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/07/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022]
Abstract
Stem cell dysfunction is a hallmark of aging, associated with the decline of physical and cognitive abilities of humans and other mammals [Cell 2013;153:1194]. Therefore, it has become an active area of research within the aging and stem cell fields, and various techniques have been employed to mitigate the decline of stem cell function both in vitro and in vivo. While some techniques developed in model organisms are not directly translatable to humans, others show promise in becoming clinically relevant to delay or even mitigate negative phenotypes associated with aging. This review focuses on diet, treatment, and small molecule interventions that provide evidence of functional improvement in at least one type of aged adult stem cell.
Collapse
Affiliation(s)
- Kevin Spehar
- Epigenetics and Stem Cell Aging Unit, Translational Gerontology Branch, National Institute on Aging, NIH, BRC, Baltimore, Maryland
| | - Andrew Pan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Isabel Beerman
- Epigenetics and Stem Cell Aging Unit, Translational Gerontology Branch, National Institute on Aging, NIH, BRC, Baltimore, Maryland
| |
Collapse
|
93
|
Ermogenous C, Green C, Jackson T, Ferguson M, Lord JM. Treating age-related multimorbidity: the drug discovery challenge. Drug Discov Today 2020; 25:1403-1415. [DOI: 10.1016/j.drudis.2020.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/19/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022]
|
94
|
Henze H, Jung MJ, Ahrens HE, Steiner S, von Maltzahn J. Skeletal muscle aging – Stem cells in the spotlight. Mech Ageing Dev 2020; 189:111283. [DOI: 10.1016/j.mad.2020.111283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/04/2020] [Accepted: 06/01/2020] [Indexed: 01/09/2023]
|
95
|
Cheikhi A, Anguiano T, Lasak J, Qian B, Sahu A, Mimiya H, Cohen CC, Wipf P, Ambrosio F, Barchowsky A. Arsenic Stimulates Myoblast Mitochondrial Epidermal Growth Factor Receptor to Impair Myogenesis. Toxicol Sci 2020; 176:162-174. [PMID: 32159786 PMCID: PMC7357174 DOI: 10.1093/toxsci/kfaa031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Arsenic exposure impairs muscle metabolism, maintenance, progenitor cell differentiation, and regeneration following acute injury. Low to moderate arsenic exposures target muscle fiber and progenitor cell mitochondria to epigenetically decrease muscle quality and regeneration. However, the mechanisms for how low levels of arsenic signal for prolonged mitochondrial dysfunction are not known. In this study, arsenic attenuated murine C2C12 myoblasts differentiation and resulted in abnormal undifferentiated myoblast proliferation. Arsenic prolonged ligand-independent phosphorylation of mitochondrially localized epidermal growth factor receptor (EGFR), a major driver of proliferation. Treating cells with a selective EGFR kinase inhibitor, AG-1478, prevented arsenic inhibition of myoblast differentiation. AG-1478 decreased arsenic-induced colocalization of pY845EGFR with mitochondrial cytochrome C oxidase subunit II, as well as arsenic-enhanced mitochondrial membrane potential, reactive oxygen species generation, and cell cycling. All of the arsenic effects on mitochondrial signaling and cell fate were mitigated or reversed by addition of mitochondrially targeted agents that restored mitochondrial integrity and function. Thus, arsenic-driven pathogenesis in skeletal muscle requires sustained mitochondrial EGFR activation that promotes progenitor cell cycling and proliferation at the detriment of proper differentiation. Collectively, these findings suggest that the arsenic-activated mitochondrial EGFR pathway drives pathogenic signaling for impaired myoblast metabolism and function.
Collapse
Affiliation(s)
- Amin Cheikhi
- Division of Geriatric Medicine, Department of Medicine
- Department of Environmental and Occupational Health
- Department of Physical Medicine and Rehabilitation
| | | | - Jane Lasak
- Department of Physical Medicine and Rehabilitation
| | - Baoli Qian
- Department of Environmental and Occupational Health
| | - Amrita Sahu
- Department of Physical Medicine and Rehabilitation
| | | | | | | | - Fabrisia Ambrosio
- Department of Environmental and Occupational Health
- Department of Physical Medicine and Rehabilitation
- McGowan Institute for Regenerative Medicine
- Department of Bioengineering
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health
- Department of Bioengineering
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
96
|
Targeting reactive oxygen species (ROS) to combat the age-related loss of muscle mass and function. Biogerontology 2020; 21:475-484. [PMID: 32447556 PMCID: PMC7347670 DOI: 10.1007/s10522-020-09883-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
The loss of muscle mass and function with age, termed sarcopenia, is an inevitable process, which has a significant impact on quality of life. During ageing we observe a progressive loss of total muscle fibres and a reduction in cross-sectional area of the remaining fibres, resulting in a significant reduction in force output. The mechanisms which underpin sarcopenia are complex and poorly understood, ranging from inflammation, dysregulation of protein metabolism and denervation. However, there is significant evidence to demonstrate that modified ROS generation, redox dis-homeostasis and mitochondrial dysfunction may have an important role to play. Based on this, significant interest and research has interrogated potential ROS-targeted therapies, ranging from nutritional-based interventions such as vitamin E/C, polyphenols (resveratrol) and targeted pharmacological compounds, using molecules such as SS-31 and MitoQ. In this review we evaluate these approaches to target aberrant age-related ROS generation and the impact on muscle mass and function.
Collapse
|
97
|
Mocayar Marón FJ, Ferder L, Reiter RJ, Manucha W. Daily and seasonal mitochondrial protection: Unraveling common possible mechanisms involving vitamin D and melatonin. J Steroid Biochem Mol Biol 2020; 199:105595. [PMID: 31954766 DOI: 10.1016/j.jsbmb.2020.105595] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022]
Abstract
From an evolutionary point of view, vitamin D and melatonin appeared very early and share functions related to defense mechanisms. In the current clinical setting, vitamin D is exclusively associated with phosphocalcic metabolism. Meanwhile, melatonin has chronobiological effects and influences the sleep-wake cycle. Scientific evidence, however, has identified new actions of both molecules in different physiological and pathological settings. The biosynthetic pathways of vitamin D and melatonin are inversely related relative to sun exposure. A deficiency of these molecules has been associated with the pathogenesis of cardiovascular diseases, including arterial hypertension, neurodegenerative diseases, sleep disorders, kidney diseases, cancer, psychiatric disorders, bone diseases, metabolic syndrome, and diabetes, among others. During aging, the intake and cutaneous synthesis of vitamin D, as well as the endogenous synthesis of melatonin are remarkably depleted, therefore, producing a state characterized by an increase of oxidative stress, inflammation, and mitochondrial dysfunction. Both molecules are involved in the homeostatic functioning of the mitochondria. Given the presence of specific receptors in the organelle, the antagonism of the renin-angiotensin-aldosterone system (RAAS), the decrease of reactive species of oxygen (ROS), in conjunction with modifications in autophagy and apoptosis, anti-inflammatory properties inter alia, mitochondria emerge as the final common target for melatonin and vitamin D. The primary purpose of this review is to elucidate the common molecular mechanisms by which vitamin D and melatonin might share a synergistic effect in the protection of proper mitochondrial functioning.
Collapse
Affiliation(s)
- Feres José Mocayar Marón
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Argentina; Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Mendoza, Argentina
| | - León Ferder
- Department of Pediatrics, Nephrology Division, Miller School of Medicine, University of Miami, FL, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science at San Antonio, San Antonio, TX, USA
| | - Walter Manucha
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Argentina; Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Mendoza, Argentina.
| |
Collapse
|
98
|
Cheikhi A, Barchowsky A, Sahu A, Shinde SN, Pius A, Clemens ZJ, Li H, Kennedy CA, Hoeck JD, Franti M, Ambrosio F. Klotho: An Elephant in Aging Research. J Gerontol A Biol Sci Med Sci 2020; 74:1031-1042. [PMID: 30843026 DOI: 10.1093/gerona/glz061] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Indexed: 12/12/2022] Open
Abstract
The year 2017 marked the 20th anniversary of the first publication describing Klotho. This single protein was and is remarkable in that its absence in mice conferred an accelerated aging, or progeroid, phenotype with a dramatically shortened life span. On the other hand, genetic overexpression extended both health span and life span by an impressive 30%. Not only has Klotho deficiency been linked to a number of debilitating age-related illnesses but many subsequent reports have lent credence to the idea that Klotho can compress the period of morbidity and extend the life span of both model organisms and humans. This suggests that Klotho functions as an integrator of organ systems, making it both a promising tool for advancing our understanding of the biology of aging and an intriguing target for interventional studies. In this review, we highlight advances in our understanding of Klotho as well as key challenges that have somewhat limited our view, and thus translational potential, of this potent protein.
Collapse
Affiliation(s)
- Amin Cheikhi
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh.,Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, University of Pittsburgh.,Department of Pharmacology and Chemical Biology, University of Pittsburgh
| | - Amrita Sahu
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh.,Department of Environmental and Occupational Health, University of Pittsburgh
| | - Sunita N Shinde
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh
| | - Abish Pius
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh
| | - Zachary J Clemens
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh
| | - Hua Li
- Department of Biotherapeutics Discovery, Research Division, Boehringer Ingelheim Pharmaceuticals, Inc. Ridgefield, Connecticut
| | - Charles A Kennedy
- Department of Research Beyond Borders, Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals, Inc. Ridgefield, Connecticut
| | - Joerg D Hoeck
- Department of Research Beyond Borders, Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals, Inc. Ridgefield, Connecticut
| | - Michael Franti
- Department of Research Beyond Borders, Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals, Inc. Ridgefield, Connecticut
| | - Fabrisia Ambrosio
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh.,Department of Environmental and Occupational Health, University of Pittsburgh.,Department of Bioengineering, University of Pittsburgh, Pennsylvania.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pennsylvania
| |
Collapse
|
99
|
Sousa-Victor P, Neves J, Muñoz-Cánoves P. Muscle stem cell aging: identifying ways to induce tissue rejuvenation. Mech Ageing Dev 2020; 188:111246. [PMID: 32311419 DOI: 10.1016/j.mad.2020.111246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/26/2020] [Accepted: 04/05/2020] [Indexed: 11/16/2022]
Abstract
Aging is characterized by the functional and regenerative decline of tissues and organs. This regenerative decline is a consequence of the numerical and functional loss of adult stem cells, which are the corner stone of tissue homeostasis and repair. A palpable example of this decline is provided by skeletal muscle, a specialized tissue composed of postmitotic myofibers that contract to generate force. Skeletal muscle stem cells (satellite cells) are long-lived and support muscle regeneration throughout life, but at advanced age they fail for largely undefined reasons. Here, we discuss recent advances in the understanding of how satellite cells integrate diverse intrinsic and extrinsic processes to ensure optimal homeostatic function and how this integration is perturbed during aging, causing regenerative failure. With this increased understanding, it is now feasible to design and test interventions that delay satellite cell aging. We discuss the exciting new therapeutic potential of integrating and combining distinct anti-aging strategies for regenerative medicine.
Collapse
Affiliation(s)
- Pedro Sousa-Victor
- Instituto de Medicina Molecular (iMM), Faculdade de Medicina, Universidade de Lisboa, Lisbon, 1649-028, Portugal.
| | - Joana Neves
- Instituto de Medicina Molecular (iMM), Faculdade de Medicina, Universidade de Lisboa, Lisbon, 1649-028, Portugal.
| | - Pura Muñoz-Cánoves
- Department of Experimental & Health Sciences, University Pompeu Fabra (UPF), CIBERNED, ICREA, 08003, Barcelona, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28019, Madrid, Spain.
| |
Collapse
|
100
|
Moos WH, Faller DV, Glavas IP, Harpp DN, Kanara I, Mavrakis AN, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Sampani K, Steliou K, Vavvas DG, Zamboni RJ, Kodukula K, Chen X. Klotho Pathways, Myelination Disorders, Neurodegenerative Diseases, and Epigenetic Drugs. Biores Open Access 2020; 9:94-105. [PMID: 32257625 PMCID: PMC7133426 DOI: 10.1089/biores.2020.0004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this review we outline a rationale for identifying neuroprotectants aimed at inducing endogenous Klotho activity and expression, which is epigenetic action, by definition. Such an approach should promote remyelination and/or stimulate myelin repair by acting on mitochondrial function, thereby heralding a life-saving path forward for patients suffering from neuroinflammatory diseases. Disorders of myelin in the nervous system damage the transmission of signals, resulting in loss of vision, motion, sensation, and other functions depending on the affected nerves, currently with no effective treatment. Klotho genes and their single-pass transmembrane Klotho proteins are powerful governors of the threads of life and death, true to the origin of their name, Fates, in Greek mythology. Among its many important functions, Klotho is an obligatory co-receptor that binds, activates, and/or potentiates critical fibroblast growth factor activity. Since the discovery of Klotho a little over two decades ago, it has become ever more apparent that when Klotho pathways go awry, oxidative stress and mitochondrial dysfunction take over, and age-related chronic disorders are likely to follow. The physiological consequences can be wide ranging, potentially wreaking havoc on the brain, eye, kidney, muscle, and more. Central nervous system disorders, neurodegenerative in nature, and especially those affecting the myelin sheath, represent worthy targets for advancing therapies that act upon Klotho pathways. Current drugs for these diseases, even therapeutics that are disease modifying rather than treating only the symptoms, leave much room for improvement. It is thus no wonder that this topic has caught the attention of biomedical researchers around the world.
Collapse
Affiliation(s)
- Walter H. Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, San Francisco, California
- ShangPharma Innovation, Inc., South San Francisco, California
| | - Douglas V. Faller
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
| | - Ioannis P. Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, New York
| | - David N. Harpp
- Department of Chemistry, McGill University, Montreal, Canada
| | | | - Anastasios N. Mavrakis
- Department of Medicine, Tufts University School of Medicine, St. Elizabeth's Medical Center, Boston, Massachusetts
| | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, Massachusetts
| | - Mark Pernokas
- Advanced Dental Associates of New England, Woburn, Massachusetts
| | - Carl A. Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Whitney R. Powers
- Department of Health Sciences, Boston University, Boston, Massachusetts
- Department of Anatomy, Boston University School of Medicine, Boston, Massachusetts
| | - Konstantina Sampani
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
- PhenoMatriX, Inc., Natick, Massachusetts
| | - Demetrios G. Vavvas
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | | | | | - Xiaohong Chen
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| |
Collapse
|