51
|
Zhang X, Katsakhyan L, LiVolsi VA, Roth JJ, Rassekh CH, Bagley SJ, Nasrallah MP. TP53 Mutation and Extraneural Metastasis of Glioblastoma: Insights From an Institutional Experience and Comprehensive Literature Review. Am J Surg Pathol 2021; 45:1516-1526. [PMID: 34366423 DOI: 10.1097/pas.0000000000001762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Extraneural metastases of glioblastoma (GBM), although rare, are becoming an increasingly recognized occurrence. Currently, the biological mechanism underlying this rare occurrence is not understood. To explore the potential genomic drivers of extraneural metastasis in GBM, we present the molecular features of 4 extraneural metastatic GBMs, along with a comprehensive review and analysis of previously reported cases that had available molecular characterization. In addition to our 4 cases, 42 patients from 35 publications are reviewed. To compare the molecular profiles between GBM cases with extraneural metastasis and the general GBM population, genomic data from GBM samples in The Cancer Genome Atlas (TCGA) database were also analyzed. We found that 64.5% (20/31) of the cases with extraneural metastasis that were tested for TP53 changes had at least 1 TP53 pathogenic variant detected in either 1 or both primary and metastatic tumors. In contrast, TP53 mutation was significantly less frequent in the unselected GBM from TCGA (22.6%, 56/248) (P=0.000). In addition, O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation was more common in unselected TCGA GBM cases (48.6%, 170/350) than in cases with extraneural metastasis (31.8%, 7/22), although not statistically significant. Although isocitrate dehydrogenase (IDH) mutation is a rare occurrence in high-grade astrocytomas, IDH-mutant grade 4 astrocytomas are at least as likely to metastasize as IDH wild-type GBMs; 3 metastatic cases definitively harbored an IDH1 (p.R132H) mutation in our analysis. Our findings not only provide potential biomarkers for earlier screening of extraneural metastasis, but could also suggest clues to understanding biological mechanisms underlying GBM metastasis, and for the development of therapeutic modalities.
Collapse
Affiliation(s)
| | | | | | | | | | - Stephen J Bagley
- Hematology Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
52
|
Chang CH, Pauklin S. Extracellular vesicles in pancreatic cancer progression and therapies. Cell Death Dis 2021; 12:973. [PMID: 34671031 PMCID: PMC8528925 DOI: 10.1038/s41419-021-04258-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/08/2021] [Accepted: 09/21/2021] [Indexed: 01/18/2023]
Abstract
Pancreatic cancer (PC) is one of the leading causes of cancer-related death worldwide due to delayed diagnosis and limited treatments. More than 90% of all pancreatic cancers are pancreatic ductal adenocarcinoma (PDAC). Extensive communication between tumour cells and other cell types in the tumour microenvironment have been identified which regulate cancer hallmarks during pancreatic tumorigenesis via secretory factors and extracellular vesicles (EVs). The EV-capsuled factors not only facilitate tumour growth locally, but also enter circulation and reach distant organs to construct a pre-metastatic niche. In this review, we delineate the key factors in pancreatic ductal adenocarcinoma derived EVs that mediate different tumour processes. Also, we highlight the factors that are related to the crosstalk with cancer stem cells/cancer-initiating cells (CSC/CIC), the subpopulation of cancer cells that can efficiently metastasize and resist currently used chemotherapies. Lastly, we discuss the potential of EV-capsuled factors in early diagnosis and antitumour therapeutic strategies.
Collapse
Affiliation(s)
- Chao-Hui Chang
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Windmill Road, OX3 7LD, Oxford, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Windmill Road, OX3 7LD, Oxford, UK.
| |
Collapse
|
53
|
Dong Q, Liu X, Cheng K, Sheng J, Kong J, Liu T. Pre-metastatic Niche Formation in Different Organs Induced by Tumor Extracellular Vesicles. Front Cell Dev Biol 2021; 9:733627. [PMID: 34616739 PMCID: PMC8489591 DOI: 10.3389/fcell.2021.733627] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022] Open
Abstract
Primary tumors selectively modify the microenvironment of distant organs such as the lung, liver, brain, bone marrow, and lymph nodes to facilitate metastasis. This supportive metastatic microenvironment in distant organs was termed the pre-metastatic niche (PMN) that is characterized by increased vascular permeability, extracellular matrix remodeling, bone marrow-derived cells recruitment, angiogenesis, and immunosuppression. Extracellular vesicles (EVs) are a group of cell-derived membranous structures that carry various functional molecules. EVs play a critical role in PMN formation by delivering their cargos to recipient cells in target organs. We provide an overview of the characteristics of the PMN in different organs promoted by cancer EVs and the underlying mechanisms in this review.
Collapse
Affiliation(s)
- Qi Dong
- Department of Basic Science of Stomatology, Shanghai Stomatological Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China.,Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China
| | - Xue Liu
- Department of Basic Science of Stomatology, Shanghai Stomatological Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Ke Cheng
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China
| | - Jiahao Sheng
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China
| | - Jing Kong
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China
| | - Tingjiao Liu
- Department of Basic Science of Stomatology, Shanghai Stomatological Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| |
Collapse
|
54
|
He C, Wang L, Li L, Zhu G. Extracellular vesicle-orchestrated crosstalk between cancer-associated fibroblasts and tumors. Transl Oncol 2021; 14:101231. [PMID: 34601397 PMCID: PMC8493591 DOI: 10.1016/j.tranon.2021.101231] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/04/2021] [Accepted: 09/25/2021] [Indexed: 02/08/2023] Open
Abstract
EVs mediate the interaction between tumor and stromal cells in the TME. Tumors mediate CAF-like activation of stromal cells through EVs. CAF-derived EVs promote tumor proliferation, metastasis and therapeutic resistance.
Communication networks in the tumor microenvironment (TME) play a crucial role in tumor progression. Cancer-associated fibroblasts (CAFs) are among the most abundant stromal cells in the TME. Bidirectional signal transduction between cancer cells and CAFs within the TME is important for cancer development and treatment responsiveness. Extracellular vesicles (EVs) carrying proteins, miRNAs, and other biomolecules are secreted into the extracellular matrix (ECM), which has been demonstrated to be an important communication medium between tumors and CAFs. Tumors regulate the activation of CAFs by secreting EVs. Conversely, CAFs can also affect tumor proliferation, metastasis, and therapeutic resistance through EVs. Here, we will classify EV cargoes and discuss the role of EV-mediated interactions between CAFs and tumors, reviewing current knowledge in combination with our confirmed results.
Collapse
Affiliation(s)
- Chuanshi He
- Department of Stomatology, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Linlin Wang
- Department of Stomatology, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Li
- Department of Stomatology, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Guiquan Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
55
|
Inoue T, Hayashi Y, Tsujii Y, Yoshii S, Sakatani A, Kimura K, Uema R, Kato M, Saiki H, Shinzaki S, Iijima H, Takehara T. Suppression of autophagy promotes fibroblast activation in p53-deficient colorectal cancer cells. Sci Rep 2021; 11:19524. [PMID: 34593902 PMCID: PMC8484348 DOI: 10.1038/s41598-021-98865-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022] Open
Abstract
Deficiency of p53 in cancer cells activates the transformation of normal tissue fibroblasts into carcinoma-associated fibroblasts; this promotes tumor progression through a variety of mechanisms in the tumor microenvironment. The role of autophagy in carcinoma-associated fibroblasts in tumor progression has not been elucidated. We aimed to clarify the significance of autophagy in fibroblasts, focusing on the TP53 status in co-cultured human colorectal cancer cell lines (TP53-wild-type colon cancer, HCT116; TP53-mutant colon cancer, HT29; fibroblast, CCD-18Co) in vitro. Autophagy in fibroblasts was significantly suppressed in association with ACTA2, CXCL12, TGFβ1, VEGFA, FGF2, and PDGFRA mRNA levels, when co-cultured with p53-deficient HCT116sh p53 cells. Exosomes isolated from the culture media of HCT116sh p53 cells significantly suppressed autophagy in fibroblasts via inhibition of ATG2B. Exosomes derived from TP53-mutant HT29 cells also suppressed autophagy in fibroblasts. miR-4534, extracted from the exosomes of HCT116sh p53 cells, suppressed ATG2B in fibroblasts. In conclusion, a loss of p53 function in colon cancer cells promotes the activation of surrounding fibroblasts through the suppression of autophagy. Exosomal miRNAs derived from cancer cells may play a pivotal role in the suppression of autophagy.
Collapse
Affiliation(s)
- Takanori Inoue
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshito Hayashi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshiki Tsujii
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shunsuke Yoshii
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akihiko Sakatani
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Keiichi Kimura
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryotaro Uema
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Minoru Kato
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hirotsugu Saiki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shinichiro Shinzaki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hideki Iijima
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan.
| |
Collapse
|
56
|
Linxweiler J, Kolbinger A, Himbert D, Zeuschner P, Saar M, Stöckle M, Junker K. Organ-Specific Uptake of Extracellular Vesicles Secreted by Urological Cancer Cells. Cancers (Basel) 2021; 13:cancers13194937. [PMID: 34638418 PMCID: PMC8508228 DOI: 10.3390/cancers13194937] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Extracellular vesicles (EVs) play an important role in the communication of cancer cells with their local microenvironment and distant organ systems, in order to promote a supportive tumor microenvironment, as well as to prepare premetastatic niches. In this study, we aimed to analyze if the EVs secreted by urological cancer cells are taken up by specific organ systems, depending on their origin. After the intravenous injection of fluorescence-labeled EVs from benign and malignant prostate, kidney, and bladder cells in immunodeficient mice, their organs were harvested and analyzed for the presence of fluorescent EVs. We could show that (i) EVs are taken up not entirely organ-specifically but in different amounts, depending on their origin; (ii) EVs from malignant cells are taken up more efficiently than EVs from benign cells; and (iii) EVs are taken up very fast. These observations hint to an organotropism in EV uptake, which needs to be further investigated. Abstract Extracellular vesicles (EVs) secreted by cancer cells have been shown to take a pivotal part in the process of local and systemic tumor progression by promoting the formation of a supportive local tumor microenvironment and preparing premetastatic niches in distant organ systems. In this study, we analyzed the organ-specific uptake of EVs secreted by urological cancer cells using an innovative in-vivo approach. EVs from benign and malignant prostate, kidney, and bladder cells were isolated using ultracentrifugation, fluorescence-labeled and injected intravenously in immunodeficient mice. After 12 or 24 h, the animals were sacrificed, their organs were harvested and analyzed for the presence of EVs by high-resolution fluorescence microscopy. Across all entities, EVs were taken up fast (12 h > 24 h), and EVs from malignant cells were taken up more efficiently than EVs from benign cells. Though not entirely organ-specific, EVs were incorporated in different amounts, depending on the entity (prostate: lung > liver > brain; kidney: brain > lung > liver; bladder: lung > liver > brain). EV uptake in other organs than lung, liver, brain, and spleen was not observed. Our results suggest a role of EVs in the formation of premetastatic niches and an organotropism in EV uptake, which have to be examined in more detail in further studies.
Collapse
|
57
|
Deasy SK, Erez N. A glitch in the matrix: organ-specific matrisomes in metastatic niches. Trends Cell Biol 2021; 32:110-123. [PMID: 34479765 DOI: 10.1016/j.tcb.2021.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
Modification of the extracellular matrix (ECM) is a critical aspect of developing a metastasis-supportive organ niche. Recent work investigating ECM changes that facilitate metastasis has revealed ways in which different metastatic organ niches are similar as well as the distinct characteristics that make them unique. In this review, we present recent findings regarding how ECM modifications support metastasis in four frequent metastatic sites: the lung, liver, bone, and brain. We discuss ways in which these modifications are shared between metastatic organs as well as features specific to each location. We also discuss areas of technical innovation that could be advantageous to future research and areas of inquiry that merit further investigation.
Collapse
Affiliation(s)
- Sarah K Deasy
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Neta Erez
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
58
|
Zhang C, Liu J, Xu D, Zhang T, Hu W, Feng Z. Gain-of-function mutant p53 in cancer progression and therapy. J Mol Cell Biol 2021; 12:674-687. [PMID: 32722796 PMCID: PMC7749743 DOI: 10.1093/jmcb/mjaa040] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/28/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022] Open
Abstract
p53 is a key tumor suppressor, and loss of p53 function is frequently a prerequisite for cancer development. The p53 gene is the most frequently mutated gene in human cancers; p53 mutations occur in >50% of all human cancers and in almost every type of human cancers. Most of p53 mutations in cancers are missense mutations, which produce the full-length mutant p53 (mutp53) protein with only one amino acid difference from wild-type p53 protein. In addition to loss of the tumor-suppressive function of wild-type p53, many mutp53 proteins acquire new oncogenic activities independently of wild-type p53 to promote cancer progression, termed gain-of-function (GOF). Mutp53 protein often accumulates to very high levels in cancer cells, which is critical for its GOF. Given the high mutation frequency of the p53 gene and the GOF activities of mutp53 in cancer, therapies targeting mutp53 have attracted great interest. Further understanding the mechanisms underlying mutp53 protein accumulation and GOF will help develop effective therapies treating human cancers containing mutp53. In this review, we summarize the recent advances in the studies on mutp53 regulation and GOF as well as therapies targeting mutp53 in human cancers.
Collapse
Affiliation(s)
- Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Dandan Xu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Tianliang Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| |
Collapse
|
59
|
Murphy KJ, Chambers CR, Herrmann D, Timpson P, Pereira BA. Dynamic Stromal Alterations Influence Tumor-Stroma Crosstalk to Promote Pancreatic Cancer and Treatment Resistance. Cancers (Basel) 2021; 13:3481. [PMID: 34298706 PMCID: PMC8305001 DOI: 10.3390/cancers13143481] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/03/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Many cancer studies now recognize that disease initiation, progression, and response to treatment are strongly influenced by the microenvironmental niche. Widespread desmoplasia, or fibrosis, is fundamental to pancreatic cancer development, growth, metastasis, and treatment resistance. This fibrotic landscape is largely regulated by cancer-associated fibroblasts (CAFs), which deposit and remodel extracellular matrix (ECM) in the tumor microenvironment (TME). This review will explore the prognostic and functional value of the stromal compartment in predicting outcomes and clinical prognosis in pancreatic ductal adenocarcinoma (PDAC). We will also discuss the major dynamic stromal alterations that occur in the pancreatic TME during tumor development and progression, and how the stromal ECM can influence cancer cell phenotype, metabolism, and immune response from a biochemical and biomechanical viewpoint. Lastly, we will provide an outlook on the latest clinical advances in the field of anti-fibrotic co-targeting in combination with chemotherapy or immunotherapy in PDAC, providing insight into the current challenges in treating this highly aggressive, fibrotic malignancy.
Collapse
Affiliation(s)
- Kendelle J. Murphy
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (K.J.M.); (C.R.C.); (D.H.)
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Cecilia R. Chambers
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (K.J.M.); (C.R.C.); (D.H.)
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - David Herrmann
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (K.J.M.); (C.R.C.); (D.H.)
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Paul Timpson
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (K.J.M.); (C.R.C.); (D.H.)
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Brooke A. Pereira
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (K.J.M.); (C.R.C.); (D.H.)
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| |
Collapse
|
60
|
Gu P, Sun M, Li L, Yang Y, Jiang Z, Ge Y, Wang W, Mu W, Wang H. Breast Tumor-Derived Exosomal MicroRNA-200b-3p Promotes Specific Organ Metastasis Through Regulating CCL2 Expression in Lung Epithelial Cells. Front Cell Dev Biol 2021; 9:657158. [PMID: 34249913 PMCID: PMC8264457 DOI: 10.3389/fcell.2021.657158] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/25/2021] [Indexed: 01/20/2023] Open
Abstract
Malignant metastasis is the most important cause of death in breast cancer (BC) patients, while the lung is a major inflammation and metastatic target organ. Exosomes are nano-sized vesicles that could be uptaken by resident cells to generate the pre-metastatic niche before tumor cells preferentially motility. In the present study, we demonstrated that high expression of C-C motif chemokine ligand 2 (CCL2) in lung could recruit the myeloid-derived suppressor cells (MDSCs) and contribute to the establishment of microenvironment. CCL2 provided recruitment of immune cells under carcinomas conditions and inflammatory responses. We also developed the novel mice model for specific over-expressing CCL2 in the lung, and verified that the BC organotropic metastasis was not because of the enhanced tumor cell proliferation, but the regulatory expression of CCL2 in the target organ. To better explore the crosstalk of exosomal molecules and CCL2 in host tissue, we constructed the "education" lung by exosomes intravenous injection and determined the prominent exosome-uptake by alveolar epithelial type II cells in vivo. Furthermore, we identified the exosomal microRNA-200b-3p could bind to PTEN, which may involved in the regulation of AKT/NF-κB/CCL2 cascades. Therefore, our study suggest that CCL2 expression in the lung was regulated by BC-derived exosomal microRNA, which primed the pre-metastastatic niche and may be a prognostic marker for the development of BC lung metastasis.
Collapse
Affiliation(s)
- Pengfei Gu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mayu Sun
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai, China
| | - Lei Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Yang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai, China
| | - Zheshun Jiang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Ge
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenbo Wang
- Department of Oncology, Shanghai Tenths People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Mu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai, China
| |
Collapse
|
61
|
Sándor GO, Soós AÁ, Lörincz P, Rojkó L, Harkó T, Bogyó L, Tölgyes T, Bursics A, Buzás EI, Moldvay J, Wiener Z. Wnt Activity and Cell Proliferation Are Coupled to Extracellular Vesicle Release in Multiple Organoid Models. Front Cell Dev Biol 2021; 9:670825. [PMID: 34249925 PMCID: PMC8264557 DOI: 10.3389/fcell.2021.670825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/27/2021] [Indexed: 12/22/2022] Open
Abstract
Extracellular vesicles (EV) are considered as a potential tool for early disease diagnosis; however, factors modifying EV release remain partially unknown. By using patient-derived organoids that capture the cellular heterogeneity of epithelial tissues, here we studied the connection between the Wnt-producing microniche and EV secretion in multiple tissues. Although nearly all cells in pancreatic ductal (PD) and pancreatic ductal adenocarcinoma (PDAC) samples expressed porcupine (PORCN), an enzyme critical for Wnt secretion, only a subpopulation of lung bronchiolar (NL) and lung adenocarcinoma (LUAD) organoid cells produced active Wnt. The microniche for proliferating cells was shaped not only by PORCN + cells in NL and LUAD organoids but also by fibroblast-derived EVs. This effect could be blocked by using Wnt secretion inhibitors. Whereas inhibiting Wnt secretion in PD NL or LUAD organoids critically changed both cell proliferation and EV release, these were uncoupled from each other in PDAC. Sorting for CD133 identified a cell population in the LUAD microniche that produced organoids with a high percentage of PORCN + and proliferating cells and an elevated EV secretion, which may explain that CD133 marks LUAD cells with malignant behavior. Collectively, we show here that high cell proliferation rate, induced by Wnt pathway activation, is coupled to a higher EV release, a critical finding that may be considered when developing EV-based diagnostic tools.
Collapse
Affiliation(s)
| | - András Áron Soós
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Péter Lörincz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University of Sciences, Budapest, Hungary.,Premium Postdoctoral Research Program, Hungarian Academy of Sciences, Budapest, Hungary
| | - Lívia Rojkó
- 1st Department of Pulmonology, National Korányi Institute of Pulmonology, Budapest, Hungary
| | - Tünde Harkó
- Department of Pathology, National Korányi Institute of Pulmonology, Budapest, Hungary
| | - Levente Bogyó
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.,Department of Thoracic Surgery, National Korányi Institute of Pulmonology, Budapest, Hungary
| | - Tamás Tölgyes
- Department of General Surgery and Surgical Oncology, Uzsoki Hospital, Budapest, Hungary
| | - Attila Bursics
- Department of General Surgery and Surgical Oncology, Uzsoki Hospital, Budapest, Hungary
| | - Edit I Buzás
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary.,ELKH-SE Immune-Proteogenomics Extracellular Vesicle Research Group, Semmelweis University, Budapest, Hungary.,HCEMM-SE Extracellular Vesicle Research Group, Budapest, Hungary
| | - Judit Moldvay
- 1st Department of Pulmonology, National Korányi Institute of Pulmonology, Budapest, Hungary.,SE-NAP Brain Metastasis Research Group, 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Zoltán Wiener
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
62
|
Hussain Z, Nigri J, Tomasini R. The Cellular and Biological Impact of Extracellular Vesicles in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13123040. [PMID: 34207163 PMCID: PMC8235245 DOI: 10.3390/cancers13123040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The increased incidence and global failure of ongoing therapies project pancreatic cancer as the second deadliest cancer worldwide. While our knowledge of pancreatic cancer cells’ abilities and specificities has drastically improved based on multi-scaled omics, one must consider that much more remains to be uncovered on the role and impact of stromal cells and the established network of communication with tumor cells. This review article discusses how tumor cells communicate with the various cells composing the stroma and its implication in tumor cells’ abilities, PDA (pancreatic ductal adenocarcinoma) carcinogenesis and therapeutic response. We will focus on extracellular vesicles-mediated crosstalk and how this multifaceted dialogue impacts both cellular compartments and its subsequent impact on PDA biology. Abstract Deciphering the interactions between tumor and stromal cells is a growing field of research to improve pancreatic cancer-associated therapies and patients’ care. Indeed, while accounting for 50 to 90% of the tumor mass, many pieces of evidence reported that beyond their structural role, the non-tumoral cells composing the intra-tumoral microenvironment influence tumor cells’ proliferation, metabolism, cell death and resistance to therapies, among others. Simultaneously, tumor cells can influence non-tumoral neighboring or distant cells in order to shape a tumor-supportive and immunosuppressive environment as well as influencing the formation of metastatic niches. Among intercellular modes of communication, extracellular vesicles can simultaneously transfer the largest variety of signals and were recently reported as key effectors of cell–cell communication in pancreatic cancer, from its development to its evolution as well as its ability to resist available treatments. This review focuses on extracellular vesicles-mediated communication between different cellular components of pancreatic tumors, from the modulation of cellular activities and abilities to their biological and physiological relevance. Taking into consideration the intra-tumoral microenvironment and its extracellular-mediated crosstalk as main drivers of pancreatic cancer development should open up new therapeutic windows.
Collapse
|
63
|
Bhatta B, Luz I, Krueger C, Teo FX, Lane DP, Sabapathy K, Cooks T. Cancer Cells Shuttle Extracellular Vesicles Containing Oncogenic Mutant p53 Proteins to the Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13122985. [PMID: 34203762 PMCID: PMC8232660 DOI: 10.3390/cancers13122985] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary In addition to the classical cell-to-cell communication patterns, extracellular vesicles (EVs) are instrumental in conveying molecular messages across cell types and have the potential to mediate changes at a tissue level. Since it is now appreciated that carcinomas are fundamentally reliant on two-way communication with activated cells in the tumor microenvironment, elucidating the roles of EVs exchange and of the cargo that is transferred is essential to obtain a thorough understanding of tumor progression. This study reveals that mutant p53 proteins—the result of the most frequent mutated gene in human cancer—are packed into EVs and delivered to neighboring cells with the potential to reprogram immune cells and subsequently establish a positive feedback loop that will enhance tumor progression. This non-cell autonomous role of mutant p53 is evidence of an extra layer of communication that is orchestrated by smaller vesicles that transfer oncogenic elements between cellular entities. Building on the foundation of our work on mutant p53, future studies may aim to characterize the potential activation of additional oncogenes, thus opening new paths of research at the interface of extracellular vesicles, cancer, and evolution. Abstract Extracellular vesicles (EVs) shed by cancer cells play a major role in mediating the transfer of molecular information by reprogramming the tumor microenvironment (TME). TP53 (encoding the p53 protein) is the most mutated gene across many cancer types. Mutations in TP53 not only result in the loss of its tumor-suppressive properties but also results in the acquisition of novel gain-of-functions (GOF) that promote the growth of cancer cells. Here, we demonstrate that GOF mutant p53 proteins can be transferred via EVs to neighboring cancer cells and to macrophages, thus modulating them to release tumor supportive cytokines. Our data from pancreatic, lung, and colon carcinoma cell lines demonstrate that the mutant p53 protein can be selectively sorted into EVs. More specifically, mutant p53 proteins in EVs can be taken up by neighboring cells and mutant p53 expression is found in non-tumor cells in both human cancers and in non-human tissues in human xenografts. Our findings shed light on the intricate methods in which specific GOF p53 mutants can promote oncogenic mechanisms by reprogramming and then recruiting non-cancerous elements for tumor progression.
Collapse
Affiliation(s)
- Bibek Bhatta
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (B.B.); (I.L.)
| | - Ishai Luz
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (B.B.); (I.L.)
| | - Christian Krueger
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 169610, Singapore; (C.K.); (F.X.T.); (K.S.)
| | - Fanny Xueting Teo
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 169610, Singapore; (C.K.); (F.X.T.); (K.S.)
| | - David P. Lane
- p53 Laboratory (p53Lab), Agency for Science, Technology, and Research (A*STAR), Singapore 138648, Singapore;
| | - Kanaga Sabapathy
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 169610, Singapore; (C.K.); (F.X.T.); (K.S.)
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Tomer Cooks
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (B.B.); (I.L.)
- Correspondence:
| |
Collapse
|
64
|
Gorchs L, Kaipe H. Interactions between Cancer-Associated Fibroblasts and T Cells in the Pancreatic Tumor Microenvironment and the Role of Chemokines. Cancers (Basel) 2021; 13:2995. [PMID: 34203869 PMCID: PMC8232575 DOI: 10.3390/cancers13122995] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 01/18/2023] Open
Abstract
Less than 10% of patients diagnosed with pancreatic ductal adenocarcinoma (PDAC) survive 5 years or more, making it one of the most fatal cancers. Accumulation of T cells in pancreatic tumors is associated with better prognosis, but immunotherapies to enhance the anti-tumor activity of infiltrating T cells are failing in this devastating disease. Pancreatic tumors are characterized by a desmoplastic stroma, which mainly consists of activated cancer-associated fibroblasts (CAFs). Pancreatic CAFs have emerged as important regulators of the tumor microenvironment by contributing to immune evasion through the release of chemokines, cytokines, and growth factors, which alters T-cell migration, differentiation and cytotoxic activity. However, recent discoveries have also revealed that subsets of CAFs with diverse functions can either restrain or promote tumor progression. Here, we discuss our current knowledge about the interactions between CAFs and T cells in PDAC and summarize different therapy strategies targeting the CAF-T cell axis with focus on CAF-derived soluble immunosuppressive factors and chemokines. Identifying the functions of different CAF subsets and understanding their roles in T-cell trafficking within the tumor may be fundamental for the development of an effective combinational treatment for PDAC.
Collapse
Affiliation(s)
- Laia Gorchs
- Department of Laboratory Medicine, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Helen Kaipe
- Department of Laboratory Medicine, Karolinska Institutet, 14152 Stockholm, Sweden
- Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, 14152 Stockholm, Sweden
| |
Collapse
|
65
|
Rai A, Greening DW, Xu R, Suwakulsiri W, Simpson RJ. Exosomes Derived from the Human Primary Colorectal Cancer Cell Line SW480 Orchestrate Fibroblast-Led Cancer Invasion. Proteomics 2021; 20:e2000016. [PMID: 32438511 DOI: 10.1002/pmic.202000016] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/14/2020] [Indexed: 12/11/2022]
Abstract
In localized tumors, basement membrane (BM) prevents invasive outgrowth of tumor cells into surrounding tissues. When carcinomas become invasive, cancer cells either degrade BM or reprogram stromal fibroblasts to breach BM barrier and lead invasion of cancer cells into surrounding tissues in a process called fibroblast-led invasion. However, tumor-derived factors orchestrating fibroblast-led invasion remain poorly understood. Here it is shown that although early-stage primary colorectal adenocarcinoma (SW480) cells are themselves unable to invade Matrigel matrix, they secrete exosomes that reprogram normal fibroblasts to acquire de novo capacity to invade matrix and lead invasion of SW480 cells. Strikingly, cancer cells follow leading fibroblasts as collective epithelial-clusters, thereby circumventing need for epithelial to mesenchymal transition, a key event associated with invasion. Moreover, acquisition of pro-invasive phenotype by fibroblasts treated with SW480-derived exosomes relied on exosome-mediated MAPK pathway activation. Mass spectrometry-based protein profiling reveals that cancer exosomes upregulate fibroblasts proteins implicated in focal adhesion (ITGA2/A6/AV, ITGB1/B4/B5, EGFR, CRK), regulators of actin cytoskeleton (RAC1, ARF1, ARPC3, CYFIP1, NCKAP1, ICAM1, ERM complex), and signalling pathways (MAPK, Rap1, RAC1, Ras) important in pro-invasive remodeling of extracellular matrix. Blocking tumor exosome-mediated signaling to fibroblasts therefore represents an attractive therapeutic strategy in restraining tumors by perturbing stroma-driven invasive outgrowth.
Collapse
Affiliation(s)
- Alin Rai
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia.,Baker Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia
| | - David W Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia.,Baker Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia
| | - Rong Xu
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Wittaya Suwakulsiri
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Richard J Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| |
Collapse
|
66
|
Romano R, Picca A, Eusebi LHU, Marzetti E, Calvani R, Moro L, Bucci C, Guerra F. Extracellular Vesicles and Pancreatic Cancer: Insights on the Roles of miRNA, lncRNA, and Protein Cargos in Cancer Progression. Cells 2021; 10:1361. [PMID: 34205944 PMCID: PMC8226820 DOI: 10.3390/cells10061361] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 01/18/2023] Open
Abstract
Pancreatic cancer (PC) is among the most devastating digestive tract cancers worldwide. This cancer is characterized by poor diagnostic detection, lack of therapy, and difficulty in predicting tumorigenesis progression. Although mutations of key oncogenes and oncosuppressor involved in tumor growth and in immunosurveillance escape are known, the underlying mechanisms that orchestrate PC initiation and progression are poorly understood or still under debate. In recent years, the attention of many researchers has been concentrated on the role of extracellular vesicles and of a particular subset of extracellular vesicles, known as exosomes. Literature data report that these nanovesicles are able to deliver their cargos to recipient cells playing key roles in the pathogenesis and progression of many pancreatic precancerous conditions. In this review, we have summarized and discussed principal cargos of extracellular vesicles characterized in PC, such as miRNAs, lncRNAs, and several proteins, to offer a systematic overview of their function in PC progression. The study of extracellular vesicles is allowing to understand that investigation of their secretion and analysis of their content might represent a new and potential diagnostic and prognostic tools for PC.
Collapse
Affiliation(s)
- Roberta Romano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| | - Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (E.M.); (R.C.)
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institute and Stockholm University, 171 77 Stockholm, Sweden
| | - Leonardo Henry Umberto Eusebi
- Gastroenterology and Endoscopy Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Gastroenterology and Endoscopy Unit, Sant’Orsola University Hospital, 40138 Bologna, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (E.M.); (R.C.)
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (E.M.); (R.C.)
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institute and Stockholm University, 171 77 Stockholm, Sweden
| | - Loredana Moro
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA; or
- Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, 70126 Bari, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| |
Collapse
|
67
|
Park DJ, Seo YJ. Engineering of Extracellular Vesicles Based on Payload Changes for Tissue Regeneration. Tissue Eng Regen Med 2021; 18:485-497. [PMID: 34050888 DOI: 10.1007/s13770-021-00349-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
In the field of tissue regeneration and tissue engineering, many years ago, various nano to macroscopic-sized materials have been used to reduce inflammation and restore damaged tissue. Whether it is safe to study the regeneration of all tissues based on the biological mechanisms of an organism composed of cells is still debated, and studies using extracellular vesicles derived from cells have become popular in the past decade. It has been reported that exosomes with a size of 100 nm or less, which plays an important role in cell-cell communication, contain various factors, such as proliferation, anti-inflammatory, and growth factors. In addition, the payload of exosomes varies depending on the parent cell and the recipient cell, and a technology to differentiate the selective payload must treat specific diseases. In this review, we examined the current trends in research using exosomes derived from cells or tissues and analyzed various research reports on factors that can affect tissue regeneration.
Collapse
Affiliation(s)
- Dong Jun Park
- Department of Surgery, University of California San Diego, 212 Dickinson Street, MC 8236, San Diego, CA, 92103, USA.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do, 26426, South Korea.,Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do, 26426, South Korea
| | - Young Joon Seo
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do, 26426, South Korea. .,Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do, 26426, South Korea. .,School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA, Australia.
| |
Collapse
|
68
|
Bhatta B, Cooks T. Reshaping the tumor microenvironment: extracellular vesicles as messengers of cancer cells. Carcinogenesis 2021; 41:1461-1470. [PMID: 33047121 DOI: 10.1093/carcin/bgaa107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment (TME) comprises an assortment of immune and non-immune cells. The interactions between the cancer cells and their surrounding TME are known to be a cardinal factor in all stages of cancer progression, from initiation to metastasis. Tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs) are considered two of the most abundant TME members associated with poor prognosis in various cancer types. Intercellular communication between the cancer cells and TME cells might occur via direct cell-cell contact or achieved through secreted factors such as cytokines, growth factors and extracellular vesicles (EVs). EVs are released by almost every cell type and by cancer cells in particular. EVs are loaded with unique molecular cargos that might include DNA, proteins, RNA and lipids, commonly reflecting the physiological traits of their donor cells. Once released, EVs are capable of initiating short- and long-distance communication in an autocrine, paracrine and endocrine fashion. The molecular cargos within the EVs are able to impart phenotypic changes at the receiving end thus allowing EV-releasing cancer cells to deliver messages to TME cells and tighten their grasp over the cancerous tissue. In this concise review, we aim to document the bidirectional EV-based communication between cancer cell, TAMs and CAFs, tilting the balance in favor of cancer progression and metastasis.
Collapse
Affiliation(s)
- Bibek Bhatta
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tomer Cooks
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
69
|
Abstract
Integrin-mediated adhesion of cells to the extracellular matrix (ECM) is crucial for the physiological development and functioning of tissues but is pathologically disrupted in cancer. Indeed, abnormal regulation of integrin receptors and ECM ligands allows cancer cells to break down tissue borders, breach into blood and lymphatic vessels, and survive traveling in suspension through body fluids or residing in metabolically or pharmacologically hostile environments. Different molecular and cellular mechanisms responsible for the modulation of integrin adhesive function or mechanochemical signaling are altered and participate in cancer. Cancer development and progression are also bolstered by dysfunctionalities of integrin-mediated ECM adhesion occurring both in tumor cells and in elements of the surrounding tumor microenvironment, such as vascular cells, cancer-associated fibroblasts, and immune cells. Mounting evidence suggests that integrin inhibitors may be effectively exploited to overcome resistance to standard-of-care anti-cancer therapies.
Collapse
Affiliation(s)
- Donatella Valdembri
- Candiolo Cancer Institute - Fondazione del Piemonte per l’Oncologia (FPO) - IRCCS, Candiolo (TO), Italy
- Department of Oncology, University of Torino School of Medicine, Candiolo (TO), Italy
| | - Guido Serini
- Candiolo Cancer Institute - Fondazione del Piemonte per l’Oncologia (FPO) - IRCCS, Candiolo (TO), Italy
- Department of Oncology, University of Torino School of Medicine, Candiolo (TO), Italy
| |
Collapse
|
70
|
Zhang S, Wang C, Ma B, Xu M, Xu S, Liu J, Tian Y, Fu Y, Luo Y. Mutant p53 Drives Cancer Metastasis via RCP-Mediated Hsp90α Secretion. Cell Rep 2021; 32:107879. [PMID: 32640214 DOI: 10.1016/j.celrep.2020.107879] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/10/2020] [Accepted: 06/17/2020] [Indexed: 01/26/2023] Open
Abstract
Mutant p53 (mutp53) loses its tumor suppressor properties but gains oncogenic functions of driving malignancy. However, it remains largely unknown how mutp53 drives cancer metastasis. Here, we show that wild-type p53 (WTp53) suppresses the secretion of heat shock protein 90-alpha (Hsp90α), whereas mutp53 enhances Hsp90α vesicular trafficking and exosome-mediated secretion. Long-term delivery of an antibody that blocks extracellular Hsp90α (eHsp90α) function extends the survival of p53-/- mice and attenuates the invasiveness of p53 mutant tumors. Furthermore, mass spectrometry and functional analysis identified a critical role for Rab coupling protein (RCP) in mutp53-induced Hsp90α secretion. RCP knockdown decreases eHsp90α levels and inhibits malignant progression. Notably, recombinant Hsp90α re-introduction markedly rescues the impaired migration and invasion abilities caused by RCP depletion. Taken together, these findings elucidate the molecular mechanisms by which mutp53 executes oncogenic activities via its downstream RCP-mediated Hsp90α secretion and a strategy to treat human cancers expressing mutp53 proteins.
Collapse
Affiliation(s)
- Shaosen Zhang
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Caihong Wang
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Boyuan Ma
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Min Xu
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Siran Xu
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Jie Liu
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Yang Tian
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Yan Fu
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Yongzhang Luo
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
71
|
Ludwig BS, Kessler H, Kossatz S, Reuning U. RGD-Binding Integrins Revisited: How Recently Discovered Functions and Novel Synthetic Ligands (Re-)Shape an Ever-Evolving Field. Cancers (Basel) 2021; 13:1711. [PMID: 33916607 PMCID: PMC8038522 DOI: 10.3390/cancers13071711] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Integrins have been extensively investigated as therapeutic targets over the last decades, which has been inspired by their multiple functions in cancer progression, metastasis, and angiogenesis as well as a continuously expanding number of other diseases, e.g., sepsis, fibrosis, and viral infections, possibly also Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). Although integrin-targeted (cancer) therapy trials did not meet the high expectations yet, integrins are still valid and promising targets due to their elevated expression and surface accessibility on diseased cells. Thus, for the future successful clinical translation of integrin-targeted compounds, revisited and innovative treatment strategies have to be explored based on accumulated knowledge of integrin biology. For this, refined approaches are demanded aiming at alternative and improved preclinical models, optimized selectivity and pharmacological properties of integrin ligands, as well as more sophisticated treatment protocols considering dose fine-tuning of compounds. Moreover, integrin ligands exert high accuracy in disease monitoring as diagnostic molecular imaging tools, enabling patient selection for individualized integrin-targeted therapy. The present review comprehensively analyzes the state-of-the-art knowledge on the roles of RGD-binding integrin subtypes in cancer and non-cancerous diseases and outlines the latest achievements in the design and development of synthetic ligands and their application in biomedical, translational, and molecular imaging approaches. Indeed, substantial progress has already been made, including advanced ligand designs, numerous elaborated pre-clinical and first-in-human studies, while the discovery of novel applications for integrin ligands remains to be explored.
Collapse
Affiliation(s)
- Beatrice S. Ludwig
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, 81675 Munich, Germany;
| | - Horst Kessler
- Department of Chemistry, Institute for Advanced Study, Technical University Munich, 85748 Garching, Germany;
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, 81675 Munich, Germany;
- Department of Chemistry, Institute for Advanced Study, Technical University Munich, 85748 Garching, Germany;
| | - Ute Reuning
- Clinical Research Unit, Department of Obstetrics and Gynecology, University Hospital Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
| |
Collapse
|
72
|
Ruiz-Espigares J, Nieto D, Moroni L, Jiménez G, Marchal JA. Evolution of Metastasis Study Models toward Metastasis-On-A-Chip: The Ultimate Model? SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006009. [PMID: 33705602 DOI: 10.1002/smll.202006009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/05/2020] [Indexed: 06/12/2023]
Abstract
For decades, several attempts have been made to obtain a mimetic model for the study of metastasis, the reason of most of deaths caused by cancer, in order to solve the unknown phenomena surrounding this disease. To better understand this cellular dissemination process, more realistic models are needed that are capable of faithfully recreating the entire and essential tumor microenvironment (TME). Thus, new tools known as tumor-on-a-chip and metastasis-on-a-chip have been recently proposed. These tools incorporate microfluidic systems and small culture chambers where TME can be faithfully modeled thanks to 3D bioprinting. In this work, a literature review has been developed about the different phases of metastasis, the remaining unknowns and the use of new models to study this disease. The aim is to provide a global vision of the current panorama and the great potential that these systems have for in vitro translational research on the molecular basis of the pathology. In addition, these models will allow progress toward a personalized medicine, generating chips from patient samples that mimic the original tumor and the metastatic process to perform a precise pharmacological screening by establishing the most appropriate treatment protocol.
Collapse
Affiliation(s)
- Jesús Ruiz-Espigares
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18016, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, 18016, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18016, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, E-18071, Spain
| | - Daniel Nieto
- Photonics4life Research Group, Applied Physics Department, Faculty of Physics, University of Santiago de Compostela, Santiago de Compostela, 15705, Spain
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229ER, The Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229ER, The Netherlands
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18016, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, 18016, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18016, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, E-18071, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18016, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, 18016, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18016, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, E-18071, Spain
| |
Collapse
|
73
|
Abstract
In this review, Pilley et al. examine the impact of different p53 mutations and focus on how heterogeneity of p53 status can affect relationships between cells within a tumor. p53 is an important tumor suppressor, and the complexities of p53 function in regulating cancer cell behaviour are well established. Many cancers lose or express mutant forms of p53, with evidence that the type of alteration affecting p53 may differentially impact cancer development and progression. It is also clear that in addition to cell-autonomous functions, p53 status also affects the way cancer cells interact with each other. In this review, we briefly examine the impact of different p53 mutations and focus on how heterogeneity of p53 status can affect relationships between cells within a tumor.
Collapse
Affiliation(s)
- Steven Pilley
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Tristan A Rodriguez
- National Heart and Lung Institute, Imperial College, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | | |
Collapse
|
74
|
Gao Y, Qin Y, Wan C, Sun Y, Meng J, Huang J, Hu Y, Jin H, Yang K. Small Extracellular Vesicles: A Novel Avenue for Cancer Management. Front Oncol 2021; 11:638357. [PMID: 33791224 PMCID: PMC8005721 DOI: 10.3389/fonc.2021.638357] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles are small membrane particles derived from various cell types. EVs are broadly classified as ectosomes or small extracellular vesicles, depending on their biogenesis and cargoes. Numerous studies have shown that EVs regulate multiple physiological and pathophysiological processes. The roles of small extracellular vesicles in cancer growth and metastasis remain to be fully elucidated. As endogenous products, small extracellular vesicles are an ideal drug delivery platform for anticancer agents. However, several aspects of small extracellular vesicle biology remain unclear, hindering the clinical implementation of small extracellular vesicles as biomarkers or anticancer agents. In this review, we summarize the utility of cancer-related small extracellular vesicles as biomarkers to detect early-stage cancers and predict treatment outcomes. We also review findings from preclinical and clinical studies of small extracellular vesicle-based cancer therapies and summarize interventional clinical trials registered in the United States Food and Drug Administration and the Chinese Clinical Trials Registry. Finally, we discuss the main challenges limiting the clinical implementation of small extracellular vesicles and recommend possible approaches to address these challenges.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
75
|
Wang H, Pan J, Barsky L, Jacob JC, Zheng Y, Gao C, Wang S, Zhu W, Sun H, Lu L, Jia H, Zhao Y, Bruns C, Vago R, Dong Q, Qin L. Characteristics of pre-metastatic niche: the landscape of molecular and cellular pathways. MOLECULAR BIOMEDICINE 2021; 2:3. [PMID: 35006432 PMCID: PMC8607426 DOI: 10.1186/s43556-020-00022-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023] Open
Abstract
Metastasis is a major contributor to cancer-associated deaths. It involves complex interactions between primary tumorigenic sites and future metastatic sites. Accumulation studies have revealed that tumour metastasis is not a disorderly spontaneous incident but the climax of a series of sequential and dynamic events including the development of a pre-metastatic niche (PMN) suitable for a subpopulation of tumour cells to colonize and develop into metastases. A deep understanding of the formation, characteristics and function of the PMN is required for developing new therapeutic strategies to treat tumour patients. It is rapidly becoming evident that therapies targeting PMN may be successful in averting tumour metastasis at an early stage. This review highlights the key components and main characteristics of the PMN and describes potential therapeutic strategies, providing a promising foundation for future studies.
Collapse
Affiliation(s)
- Hao Wang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Junjie Pan
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Livnat Barsky
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Yan Zheng
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Chao Gao
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Shun Wang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Wenwei Zhu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Haoting Sun
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Lu Lu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Huliang Jia
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Yue Zhao
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Cologne, Germany
| | - Christiane Bruns
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Cologne, Germany
| | - Razi Vago
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
| |
Collapse
|
76
|
Li MY, Liu LZ, Dong M. Progress on pivotal role and application of exosome in lung cancer carcinogenesis, diagnosis, therapy and prognosis. Mol Cancer 2021; 20:22. [PMID: 33504342 PMCID: PMC7839206 DOI: 10.1186/s12943-021-01312-y] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/12/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is often diagnosed at an advanced stage and has a poor prognosis. Conventional treatments are not effective for metastatic lung cancer therapy. Although some of molecular targets have been identified with favorable response, those targets cannot be exploited due to the lack of suitable drug carriers. Lung cancer cell-derived exosomes (LCCDEs) receive recent interest in its role in carcinogenesis, diagnosis, therapy, and prognosis of lung cancer due to its biological functions and natural ability to carry donor cell biomolecules. LCCDEs can promote cell proliferation and metastasis, affect angiogenesis, modulate antitumor immune responses during lung cancer carcinogenesis, regulate drug resistance in lung cancer therapy, and be now considered an important component in liquid biopsy assessments for detecting lung cancer. Therapeutic deliverable exosomes are emerging as promising drug delivery agents specifically to tumor high precision medicine because of their natural intercellular communication role, excellent biocompatibility, low immunogenicity, low toxicity, long blood circulation ability, biodegradable characteristics, and their ability to cross various biological barriers. Several studies are currently underway to develop novel diagnostic and prognostic modalities using LCCDEs, and to develop methods of exploiting exosomes for use as efficient drug delivery vehicles. Current status of lung cancer and extensive applicability of LCCDEs are illustrated in this review. The promising data and technologies indicate that the approach on LCCDEs implies the potential application of LCCDEs to clinical management of lung cancer patients.
Collapse
Affiliation(s)
- Ming-Yue Li
- Biomedical Equipment Department, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Building 3, No.188, KaiYuan Road, Huangpu District, Guangzhou, Guangdong, China
| | - Li-Zhong Liu
- Department of Physiology, School of Medicine, Shenzhen University Health Science Center, Shenzhen University, A7-304, Shenzhen University Xili Campus, Nanshan District, Shenzhen, 518055, China.
| | - Ming Dong
- Biomedical Equipment Department, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Building 3, No.188, KaiYuan Road, Huangpu District, Guangzhou, Guangdong, China.
| |
Collapse
|
77
|
Ritchie S, Reed DA, Pereira BA, Timpson P. The cancer cell secretome drives cooperative manipulation of the tumour microenvironment to accelerate tumourigenesis. Fac Rev 2021; 10:4. [PMID: 33659922 PMCID: PMC7894270 DOI: 10.12703/r/10-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cellular secretions are a fundamental aspect of cell-cell and cell-matrix interactions in vivo. In malignancy, cancer cells have an aberrant secretome compared to their non-malignant counterparts, termed the "cancer cell secretome". The cancer cell secretome can influence every stage of the tumourigenic cascade. At the primary site, cancer cells can secrete a multitude of factors that facilitate invasion into surrounding tissue, allowing interaction with the local tumour microenvironment (TME), driving tumour development and progression. In more advanced disease, the cancer cell secretome can be involved in extravasation and metastasis, including metastatic organotropism, pre-metastatic niche (PMN) preparation, and metastatic outgrowth. In this review, we will explore the latest advances in the field of cancer cell secretions, including its dynamic and complex role in activating the TME and potentiating invasion and metastasis, with comments on how these secretions may also promote therapy resistance.
Collapse
Affiliation(s)
- Shona Ritchie
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Daniel A Reed
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Brooke A Pereira
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Paul Timpson
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| |
Collapse
|
78
|
Capaci V, Mantovani F, Del Sal G. Amplifying Tumor-Stroma Communication: An Emerging Oncogenic Function of Mutant p53. Front Oncol 2021; 10:614230. [PMID: 33505920 PMCID: PMC7831039 DOI: 10.3389/fonc.2020.614230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022] Open
Abstract
TP53 mutations are widespread in human cancers. An expanding body of evidence highlights that, in addition to their manifold cell-intrinsic activities boosting tumor progression, missense p53 mutants enhance the ability of tumor cells to communicate amongst themselves and with the tumor stroma, by affecting both the quality and the quantity of the cancer secretome. In this review, we summarize recent literature demonstrating that mutant p53 enhances the production of growth and angiogenic factors, inflammatory cytokines and chemokines, modulates biochemical and biomechanical properties of the extracellular matrix, reprograms the cell trafficking machinery to enhance secretion and promote recycling of membrane proteins, and affects exosome composition. All these activities contribute to the release of a promalignant secretome with both local and systemic effects, that is key to the ability of mutant p53 to fuel tumor growth and enable metastatic competence. A precise knowledge of the molecular mechanisms underlying the interplay between mutant p53 and the microenvironment is expected to unveil non-invasive biomarkers and actionable targets to blunt tumor aggressiveness.
Collapse
Affiliation(s)
- Valeria Capaci
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
- Cancer Cell Signalling Unit, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Fiamma Mantovani
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
- Cancer Cell Signalling Unit, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Giannino Del Sal
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
- Cancer Cell Signalling Unit, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy
| |
Collapse
|
79
|
Biffi G, Tuveson DA. Diversity and Biology of Cancer-Associated Fibroblasts. Physiol Rev 2021; 101:147-176. [PMID: 32466724 PMCID: PMC7864232 DOI: 10.1152/physrev.00048.2019] [Citation(s) in RCA: 733] [Impact Index Per Article: 183.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023] Open
Abstract
Efforts to develop anti-cancer therapies have largely focused on targeting the epithelial compartment, despite the presence of non-neoplastic stromal components that substantially contribute to the progression of the tumor. Indeed, cancer cell survival, growth, migration, and even dormancy are influenced by the surrounding tumor microenvironment (TME). Within the TME, cancer-associated fibroblasts (CAFs) have been shown to play several roles in the development of a tumor. They secrete growth factors, inflammatory ligands, and extracellular matrix proteins that promote cancer cell proliferation, therapy resistance, and immune exclusion. However, recent work indicates that CAFs may also restrain tumor progression in some circumstances. In this review, we summarize the body of work on CAFs, with a particular focus on the most recent discoveries about fibroblast heterogeneity, plasticity, and functions. We also highlight the commonalities of fibroblasts present across different cancer types, and in normal and inflammatory states. Finally, we present the latest advances regarding therapeutic strategies targeting CAFs that are undergoing preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Giulia Biffi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York; and Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York; and Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
80
|
Khan I, Steeg PS. Endocytosis: a pivotal pathway for regulating metastasis. Br J Cancer 2021; 124:66-75. [PMID: 33262521 PMCID: PMC7782782 DOI: 10.1038/s41416-020-01179-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
A potentially important aspect in the regulation of tumour metastasis is endocytosis. This process consists of internalisation of cell-surface receptors via pinocytosis, phagocytosis or receptor-mediated endocytosis, the latter of which includes clathrin-, caveolae- and non-clathrin or caveolae-mediated mechanisms. Endocytosis then progresses through several intracellular compartments for sorting and routing of cargo, ending in lysosomal degradation, recycling back to the cell surface or secretion. Multiple endocytic proteins are dysregulated in cancer and regulate tumour metastasis, particularly migration and invasion. Importantly, four metastasis suppressor genes function in part by regulating endocytosis, namely, the NME, KAI, MTSS1 and KISS1 pathways. Data on metastasis suppressors identify a new point of dysregulation operative in tumour metastasis, alterations in signalling through endocytosis. This review will focus on the multicomponent process of endocytosis affecting different steps of metastasis and how metastatic-suppressor genes use endocytosis to suppress metastasis.
Collapse
Affiliation(s)
- Imran Khan
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - Patricia S Steeg
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| |
Collapse
|
81
|
Lakoduk AM, Lee CF, Chen PH. Gain-of-"endocytic' function in mutant p53 cancer cells. Int J Biochem Cell Biol 2020; 131:105905. [PMID: 33359084 DOI: 10.1016/j.biocel.2020.105905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 11/24/2022]
Abstract
Beyond its well-known canonical function as a tumor suppressor, p53 is also involved in numerous cellular processes through altered transcription under both normal and pathological conditions. The functional diversity of p53 outputs is complex and dependent on cell context. However, the underlying mechanisms responsible for this diversity remain largely unclear. The emerging evidence of p53 mutations involved in regulating endocytic trafficking and signaling, in tandem to promote malignancy (invasion, exosome biogenesis and immune evasion), sheds light on possible mechanisms behind the p53-driven complexity. The interrelated nature of endocytic trafficking and receptor signaling that form dynamic and adaptable feedback loops - either positive or negative - functions to modulate multiple cellular outputs. Biasing the tunable endocytic trafficking and receptor signaling network by mutant p53 expands the purview of p53, allowing its contribution to diverse and aggressive phenotypes. In this review, we explore recent studies in which the novel role of mutant p53 in altering endocytic trafficking to bias receptor signaling and drive transforming phenotypes is revealed. Understanding the complex crosstalk of mutant p53, endocytic trafficking and receptor signaling will allow the development of therapies to selectively target p53-altered endocytic processes.
Collapse
Affiliation(s)
- Ashley M Lakoduk
- Department of Biological Sciences, The University of Texas at Dallas, Dallas, TX, 75080, United States
| | - Cheng-Fan Lee
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Ping-Hung Chen
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.
| |
Collapse
|
82
|
Pavlakis E, Neumann M, Stiewe T. Extracellular Vesicles: Messengers of p53 in Tumor-Stroma Communication and Cancer Metastasis. Int J Mol Sci 2020; 21:ijms21249648. [PMID: 33348923 PMCID: PMC7766631 DOI: 10.3390/ijms21249648] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor progression to a metastatic and ultimately lethal stage relies on a tumor-supporting microenvironment that is generated by reciprocal communication between tumor and stromal host cells. The tumor–stroma crosstalk is instructed by the genetic alterations of the tumor cells—the most frequent being mutations in the gene Tumor protein p53 (TP53) that are clinically correlated with metastasis, drug resistance and poor patient survival. The crucial mediators of tumor–stroma communication are tumor-derived extracellular vesicles (EVs), in particular exosomes, which operate both locally within the primary tumor and in distant organs, at pre-metastatic niches as the future sites of metastasis. Here, we review how wild-type and mutant p53 proteins control the secretion, size, and especially the RNA and protein cargo of tumor-derived EVs. We highlight how EVs extend the cell-autonomous tumor suppressive activity of wild-type p53 into the tumor microenvironment (TME), and how mutant p53 proteins switch EVs into oncogenic messengers that reprogram tumor–host communication within the entire organism so as to promote metastatic tumor cell dissemination.
Collapse
Affiliation(s)
- Evangelos Pavlakis
- Institute of Molecular Oncology, Philipps University, 35034 Marburg, Germany; (E.P.); (M.N.)
| | - Michelle Neumann
- Institute of Molecular Oncology, Philipps University, 35034 Marburg, Germany; (E.P.); (M.N.)
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Philipps University, 35034 Marburg, Germany; (E.P.); (M.N.)
- Universities of Giessen and Marburg Lung Center (UGMLC), German Center of Lung Research (DZL), Philipps University, 35034 Marburg, Germany
- Correspondence:
| |
Collapse
|
83
|
Möller A, Lobb RJ. The evolving translational potential of small extracellular vesicles in cancer. Nat Rev Cancer 2020; 20:697-709. [PMID: 32958932 DOI: 10.1038/s41568-020-00299-w] [Citation(s) in RCA: 339] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Cancer-derived extracellular vesicles (EVs) are regarded as having promising potential to be used as therapeutics and disease biomarkers. Mechanistically, EVs have been shown to function in most, if not all, steps of cancer progression. Cancer EVs, including small EVs (sEVs), contain unique biomolecular cargo, consisting of protein, nucleic acid and lipids. Through progress in the identification of this specific cargo, cancer biomarkers have been identified and developed, opening up novel and interesting opportunities for cancer diagnosis and prognosis. Intriguingly, we still lack a comprehensive understanding of the cancer-specific pathways that govern EV biogenesis in cancer cells. Filling this knowledge gap will rapidly improve cancer EV biomarkers, as it will also allow discrimination of the procancer and anticancer actions of those EVs. Even more promising is uncovering therapeutically targetable, tumour-specific EV pathways and content, which will generate novel classes of cancer therapies. This Review highlights the progress the cancer sEV field has made in the areas of biomarker discovery and validation as well as sEV-based therapeutics, highlights the challenges we are facing and identifies gaps in our knowledge, which currently prevent us from developing the full potential of sEVs in cancer diagnostic and therapy.
Collapse
Affiliation(s)
- Andreas Möller
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
| | - Richard J Lobb
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
| |
Collapse
|
84
|
Ambattu LA, Ramesan S, Dekiwadia C, Hanssen E, Li H, Yeo LY. High frequency acoustic cell stimulation promotes exosome generation regulated by a calcium-dependent mechanism. Commun Biol 2020; 3:553. [PMID: 33020585 PMCID: PMC7536404 DOI: 10.1038/s42003-020-01277-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes are promising disease diagnostic markers and drug delivery vehicles, although their use in practice is limited by insufficient homogeneous quantities that can be produced. We reveal that exposing cells to high frequency acoustic irradiation stimulates their generation without detriment to cell viability by exploiting their innate membrane repair mechanism, wherein the enhanced recruitment of calcium ions from the extracellular milieu into the cells triggers an ESCRT pathway known to orchestrate exosomal production. Given the high post-irradiation cell viabilities (≈95%), we are able to recycle the cells through iterative irradiation and post-excitation incubation steps, which facilitate high throughput production of a homogeneous population of exosomes-a particular challenge for translating exosome therapy into clinical practice. In particular, we show that approximately eight- to ten-fold enrichment in the number of exosomes produced can be achieved with just 7 cycles over 280 mins, equivalent to a yield of around 1.7-2.1-fold/h.
Collapse
Affiliation(s)
- Lizebona August Ambattu
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Shwathy Ramesan
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility, RMIT University, Melbourne, VIC, 3000, Australia
| | - Eric Hanssen
- Advanced Microscopy Facility, Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Haiyan Li
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Leslie Y Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
85
|
Su CY, Li JQ, Zhang LL, Wang H, Wang FH, Tao YW, Wang YQ, Guo QR, Li JJ, Liu Y, Yan YY, Zhang JY. The Biological Functions and Clinical Applications of Integrins in Cancers. Front Pharmacol 2020; 11:579068. [PMID: 33041823 PMCID: PMC7522798 DOI: 10.3389/fphar.2020.579068] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Integrins are the adhesion molecules and receptors of extracellular matrix (ECM). They mediate the interactions between cells-cells and cells-ECM. The crosstalk between cancer cells and their microenvironment triggers a variety of critical signaling cues and promotes the malignant phenotype of cancer. As a type of transmembrane protein, integrin-mediated cell adhesion is essential in regulating various biological functions of cancer cells. Recent evidence has shown that integrins present on tumor cells or tumor-associated stromal cells are involved in ECM remodeling, and as mechanotransducers sensing changes in the biophysical properties of the ECM, which contribute to cancer metastasis, stemness and drug resistance. In this review, we outline the mechanism of integrin-mediated effects on biological changes of cancers and highlight the current status of clinical treatments by targeting integrins.
Collapse
Affiliation(s)
- Chao-yue Su
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jing-quan Li
- The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Ling-ling Zhang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Hui Wang
- Guangzhou Institute of Pediatrics/Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Feng-hua Wang
- Guangzhou Institute of Pediatrics/Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yi-wen Tao
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yu-qing Wang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qiao-ru Guo
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jia-jun Li
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yun Liu
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yan-yan Yan
- Institute of Immunology and School of Medicine, Shanxi Datong University, Datong, China
| | - Jian-ye Zhang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
- The First Affiliated Hospital, Hainan Medical University, Haikou, China
| |
Collapse
|
86
|
O’Sullivan MJ, Lindsay AJ. The Endosomal Recycling Pathway-At the Crossroads of the Cell. Int J Mol Sci 2020; 21:ijms21176074. [PMID: 32842549 PMCID: PMC7503921 DOI: 10.3390/ijms21176074] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
The endosomal recycling pathway lies at the heart of the membrane trafficking machinery in the cell. It plays a central role in determining the composition of the plasma membrane and is thus critical for normal cellular homeostasis. However, defective endosomal recycling has been linked to a wide range of diseases, including cancer and some of the most common neurological disorders. It is also frequently subverted by many diverse human pathogens in order to successfully infect cells. Despite its importance, endosomal recycling remains relatively understudied in comparison to the endocytic and secretory transport pathways. A greater understanding of the molecular mechanisms that support transport through the endosomal recycling pathway will provide deeper insights into the pathophysiology of disease and will likely identify new approaches for their detection and treatment. This review will provide an overview of the normal physiological role of the endosomal recycling pathway, describe the consequences when it malfunctions, and discuss potential strategies for modulating its activity.
Collapse
|
87
|
Moeng S, Son SW, Lee JS, Lee HY, Kim TH, Choi SY, Kuh HJ, Park JK. Extracellular Vesicles (EVs) and Pancreatic Cancer: From the Role of EVs to the Interference with EV-Mediated Reciprocal Communication. Biomedicines 2020; 8:biomedicines8080267. [PMID: 32756339 PMCID: PMC7459718 DOI: 10.3390/biomedicines8080267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/25/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is malignant and the seventh leading cause of cancer-related deaths worldwide. However, chemotherapy and radiotherapy are—at most—moderately effective, indicating the need for new and different kinds of therapies to manage this disease. It has been proposed that the biologic properties of pancreatic cancer cells are finely tuned by the dynamic microenvironment, which includes extracellular matrix, cancer-associated cells, and diverse immune cells. Accumulating evidence has demonstrated that extracellular vesicles (EVs) play an essential role in communication between heterogeneous subpopulations of cells by transmitting multiplex biomolecules. EV-mediated cell–cell communication ultimately contributes to several aspects of pancreatic cancer, such as growth, angiogenesis, metastasis and therapeutic resistance. In this review, we discuss the role of extracellular vesicles and their cargo molecules in pancreatic cancer. We also present the feasibility of the inhibition of extracellular biosynthesis and their itinerary (release and uptake) for a new attractive therapeutic strategy against pancreatic cancer.
Collapse
Affiliation(s)
- Sokviseth Moeng
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.M.); (S.W.S.); (J.S.L.); (H.Y.L.); (T.H.K.); (S.Y.C.)
| | - Seung Wan Son
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.M.); (S.W.S.); (J.S.L.); (H.Y.L.); (T.H.K.); (S.Y.C.)
| | - Jong Sun Lee
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.M.); (S.W.S.); (J.S.L.); (H.Y.L.); (T.H.K.); (S.Y.C.)
| | - Han Yeoung Lee
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.M.); (S.W.S.); (J.S.L.); (H.Y.L.); (T.H.K.); (S.Y.C.)
| | - Tae Hee Kim
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.M.); (S.W.S.); (J.S.L.); (H.Y.L.); (T.H.K.); (S.Y.C.)
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.M.); (S.W.S.); (J.S.L.); (H.Y.L.); (T.H.K.); (S.Y.C.)
| | - Hyo Jeong Kuh
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Jong Kook Park
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.M.); (S.W.S.); (J.S.L.); (H.Y.L.); (T.H.K.); (S.Y.C.)
- Correspondence: ; Tel.: +82-33-248-2114
| |
Collapse
|
88
|
Sperb N, Tsesmelis M, Wirth T. Crosstalk between Tumor and Stromal Cells in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2020; 21:E5486. [PMID: 32752017 PMCID: PMC7432853 DOI: 10.3390/ijms21155486] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a lethal cancer. The poor prognosis calls for a more detailed understanding of disease biology in order to pave the way for the development of effective therapies. Typically, the pancreatic tumor is composed of a minority of malignant cells within an excessive tumor microenvironment (TME) consisting of extracellular matrix (ECM), fibroblasts, immune cells, and endothelial cells. Research conducted in recent years has particularly focused on cancer-associated fibroblasts (CAFs) which represent the most prominent cellular component of the desmoplastic stroma. Here, we review the complex crosstalk between CAFs, tumor cells, and other components of the TME, and illustrate how these interactions drive disease progression. We also discuss the emerging field of CAF heterogeneity, their tumor-supportive versus tumor-suppressive capacity, and the consequences for designing stroma-targeted therapies in the future.
Collapse
Affiliation(s)
| | | | - Thomas Wirth
- Institute of Physiological Chemistry, University of Ulm, 89081 Ulm, Germany; (N.S.); (M.T.)
| |
Collapse
|
89
|
Kim JY, Cho KH, Jeong BY, Park CG, Lee HY. Zeb1 for RCP-induced oral cancer cell invasion and its suppression by resveratrol. Exp Mol Med 2020; 52:1152-1163. [PMID: 32728068 PMCID: PMC8080807 DOI: 10.1038/s12276-020-0474-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/29/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
Rab coupling protein (RCP) is upregulated in head and neck squamous cell carcinoma (HNSCC) and is correlated with the progression and survival of patients. However, the role of RCP in one of the aggressive types of HNSCC, oral squamous cell carcinoma (OSCC), remains elusive. In the present study, we identified the important role of Zeb1 in RCP-induced OSCC epithelial-to-mesenchymal transition (EMT) and invasion. RCP induces Zeb1 expression, and silencing Zeb1 expression significantly inhibits RCP-induced OSCC invasion. In addition, Zeb1 upregulates MT1-MMP expression to promote OSCC EMT and invasion. Furthermore, we observed that the β1 integrin/EGFR/β-catenin signaling cascade mediates RCP-induced Zeb1 expression to promote OSCC invasion. Notably, we provide evidence that resveratrol (REV) strongly inhibits RCP-induced Zeb1 expression through blocking β1 integrin endosome recycling and EGFR activation, leading to suppression of RCP-induced OSCC invasion, demonstrating the important role of RCP in OSCC invasion and its reversion by REV. Collectively, the present study provides evidence for the first time that RCP aggravates OSCC invasion through increasing Zeb1 expression and subsequently upregulating MT1-MMP expression and that this process is reversed by REV, providing novel biomarkers and indicating the therapeutic potential of REV in OSCC. Resveratrol, a naturally occurring compound present in grape skins, peanuts, and blueberries, reduces the ability of oral squamous cell carcinoma (OSCC) cells to spread to other parts of the body. Over half a million new cases of OSCC are diagnosed each year, and spread beyond the mouth is the most common cause of death. Hoi Young Lee at Konyang University, Daejon, Republic of Korea, and co-workers investigated whether a protein called RCP, which increases the invasiveness of many but not all types of cancer, is implicated in aggressive spread of OSCC. They found that RCP does increase the invasiveness of OSCC. Resveratrol is known to suppress the spread of many cancers, and strongly curtailed the spread of OSCC by blocking RCP activity. These results shed light on OSCC invasiveness, and offer a potential new treatment.
Collapse
Affiliation(s)
- Jin Young Kim
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Kyung Hwa Cho
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Bo Young Jeong
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Chang Gyo Park
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Hoi Young Lee
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Republic of Korea.
| |
Collapse
|
90
|
Liu CS, Schmezer P, Popanda O. Diacylglycerol Kinase Alpha in Radiation-Induced Fibrosis: Potential as a Predictive Marker or Therapeutic Target. Front Oncol 2020; 10:737. [PMID: 32477950 PMCID: PMC7235333 DOI: 10.3389/fonc.2020.00737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy is an efficient tool in cancer treatment, but it brings along the risk of side effects such as fibrosis in the irradiated healthy tissue thus limiting tumor control and impairing quality of life of cancer survivors. Knowledge on radiation-related fibrosis risk and therapeutic options is still limited and requires further research. Recent studies demonstrated that epigenetic regulation of diacylglycerol kinase alpha (DGKA) is associated with radiation-induced fibrosis. However, the specific mechanisms are still unknown. In this review, we scrutinized the role of DGKA in the radiation response and in further cellular functions to show the potential of DGKA as a predictive marker or a novel target in fibrosis treatment. DGKA was reported to participate in immune response, lipid signaling, exosome production, and migration as well as cell proliferation, all processes which are suggested to be critical steps in fibrogenesis. Most of these functions are based on the conversion of diacylglycerol (DAG) to phosphatidic acid (PA) at plasma membranes, but DGKA might have also other, yet not well-known functions in the nucleus. Current evidence summarized here underlines that DGKA activation may play a central role in fibrosis formation post-irradiation and shows a potential of direct DGKA inhibitors or epigenetic modulators to attenuate pro-fibrotic reactions, thus providing novel therapeutic choices.
Collapse
Affiliation(s)
- Chun-Shan Liu
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Schmezer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Odilia Popanda
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
91
|
Tang Y, Zhang P, Wang Y, Wang J, Su M, Wang Y, Zhou L, Zhou J, Xiong W, Zeng Z, Zhou Y, Nie S, Liao Q. The Biogenesis, Biology, and Clinical Significance of Exosomal PD-L1 in Cancer. Front Immunol 2020; 11:604. [PMID: 32322256 PMCID: PMC7158891 DOI: 10.3389/fimmu.2020.00604] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/16/2020] [Indexed: 01/06/2023] Open
Abstract
The exosome serves as a trafficking vehicle for transport of programmed death-ligand 1 (PD-L1) into receptor cells. In tumor microenvironment, distant tumor cells can remotely attack activated T cells by exosomal PD-L1. Here, we summerize the biogenesis and transport process of exosomal PD-L1. Then, we focus on the cancer biology of exosomal PD-L1 in immunosuppression and the mechanism by which it inhibits T cells. Finally, we highlight the prospects of exosomal PD-L1 as a tumor biomarker and its significance in immunotherapy. In addition, we discuss the new challenges faced in researching and utilizing exosomal PD-L1. This review may shed light on the exosomal PD-L1 from the bench to the clinic. Exosomes serve as trafficking vehicles for transport of programmed death-ligand 1 (PD-L1) into receptor cells. In tumor microenvironment, distant tumor cells can remotely attack activated T cells through exosomal PD-L1. Here, we have summarized the biogenesis and transport of exosomal PD-L1. Next, we focused on the cancer biology of exosomal PD-L1 in immunosuppression and the mechanism by which it inhibits T cells. Finally, we highlighted the prospects of exosomal PD-L1 as a tumor biomarker and its significance in immunotherapy. In addition, we have discussed the new challenges faced in studying and utilizing exosomal PD-L1. This review may shed light on the translation of exosomal PD-L1 from bench to clinic.
Collapse
Affiliation(s)
- Yanyan Tang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Department of Colorectal Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Central Laboratory, The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Ping Zhang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,College of Computer and Information Engineering, Hunan University of Technology and Business, Changsha, China
| | - Yumin Wang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Jinpeng Wang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Urban Vocational College of Sichuan, Chengdu, China
| | - Min Su
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Central Laboratory, The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Ying Wang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Central Laboratory, The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Lianqing Zhou
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jumei Zhou
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Department of Radiotherapy, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Xiong
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Zhaoyang Zeng
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yujuan Zhou
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shaolin Nie
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Department of Colorectal Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qianjin Liao
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Central Laboratory, The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China
| |
Collapse
|
92
|
Pavlakis E, Stiewe T. p53's Extended Reach: The Mutant p53 Secretome. Biomolecules 2020; 10:biom10020307. [PMID: 32075247 PMCID: PMC7072272 DOI: 10.3390/biom10020307] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 02/08/2023] Open
Abstract
p53 suppresses tumorigenesis by activating a plethora of effector pathways. While most of these operate primarily inside of cells to limit proliferation and survival of incipient cancer cells, many extend to the extracellular space. In particular, p53 controls expression and secretion of numerous extracellular factors that are either soluble or contained within extracellular vesicles such as exosomes. As part of the cellular secretome, they execute key roles in cell-cell communication and extracellular matrix remodeling. Mutations in the p53-encoding TP53 gene are the most frequent genetic alterations in cancer cells, and therefore, have profound impact on the composition of the tumor cell secretome. In this review, we discuss how the loss or dominant-negative inhibition of wild-type p53 in concert with a gain of neomorphic properties observed for many mutant p53 proteins, shapes a tumor cell secretome that creates a supportive microenvironment at the primary tumor site and primes niches in distant organs for future metastatic colonization.
Collapse
|
93
|
Wortzel I, Dror S, Kenific CM, Lyden D. Exosome-Mediated Metastasis: Communication from a Distance. Dev Cell 2020; 49:347-360. [PMID: 31063754 DOI: 10.1016/j.devcel.2019.04.011] [Citation(s) in RCA: 879] [Impact Index Per Article: 175.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 02/08/2023]
Abstract
Metastasis, a critical phase of tumor progression, remains a primary challenge in treating cancer and a major cause of cancer mortality. Cell-cell communication via extracellular vesicles (exosomes and microvesicles) between primary tumor cells and the microenvironment of distant organs is crucial for pre-metastatic niche (PMN) formation and metastasis. Here, we review work on the contribution of exosome cargo to cancer progression, the role of exosomes in PMN establishment, and the function of exosomes in organotropic metastasis. We also describe the clinical utility of exosomes.
Collapse
Affiliation(s)
- Inbal Wortzel
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Shani Dror
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Candia M Kenific
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
94
|
Potential oncogenic roles of mutant-p53-derived exosomes in the tumor-host interaction of head and neck cancers. Cancer Immunol Immunother 2020; 69:285-292. [PMID: 31897662 DOI: 10.1007/s00262-019-02450-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/02/2019] [Indexed: 02/08/2023]
Abstract
The wide-ranging collection of malignancies arising at the upper aerodigestive tract is categorized as head and neck cancer (HNC), the sixth most prevalent cancer worldwide. Infection with human papillomavirus (HPV) or exposure to carcinogens is the leading causes of HPV+ and HPV- HNCs development, respectively. HPV+ and HPV- HNCs are different in clinical and molecular aspects. Specifically, HPV- HNCs tightly associate with missense mutants of the TP53 gene (encoding for the p53 protein), suggesting a central role for mutant p53 gain-of-function (GOF) in driving tumorigenesis. In contrast, in HPV + HNC, the sequence of TP53 typically remains intact, while the protein is degraded. In tumor cells, the status of the TP53 gene affects the cargo of secreted exosomes. In this review, we describe the accumulated knowledge regarding the involvement of exosomes and p53 on cellular interactions between HPV+ and HPV- HNC cells, and the surrounding tumor microenvironment (TME). Moreover, we envision how TP53 status may determine exosomes cargo in HNC, and, consequently, modify the TME. The potential roles of exosomes described herein are based on both our studies and the studies of others on mutant p53-derived exosomes. Specifically, we showed how exosomes are shed by cancer cells harboring mutant p53 communicate with tumor-associated macrophages in the colon as well as with cancer-associated fibroblasts in the lung, creating immunosuppressive conditions and promoting invasiveness. Altogether, exosomes in HNC in the context of TP53 status are understudied and extensive research is required to shed light on the biology of HPV+ and HPV- HNC.
Collapse
|
95
|
Tang Q, Su Z, Gu W, Rustgi AK. Mutant p53 on the Path to Metastasis. Trends Cancer 2019; 6:62-73. [PMID: 31952783 DOI: 10.1016/j.trecan.2019.11.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 12/12/2022]
Abstract
Metastasis contributes to the vast majority of cancer-related mortality. Regulatory mechanisms of the multistep invasion-metastasis cascade are being unraveled. TP53 is the most frequently mutated gene across human cancers. Accumulating evidence has shown that mutations of TP53 not only lead to loss of function or dominant negative effects, but also promotes a gain of function. Specifically, gain of function mutant p53 promotes cancer cell motility, invasion, and metastasis. Here, we summarize the mechanisms and functions of mutant p53 that foster metastasis in different types of cancers. We also discuss the prognostic value of mutant p53 and current status of therapeutic strategies targeting mutant p53. Future studies will shed light on discovering novel mechanisms of mutant p53-driven cancer metastasis and developing innovative therapeutics to improve clinical outcomes in patients harboring p53 mutations.
Collapse
Affiliation(s)
- Qiaosi Tang
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Zhenyi Su
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Wei Gu
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
96
|
Mutant p53 induces SIRT3/MnSOD axis to moderate ROS production in melanoma cells. Arch Biochem Biophys 2019; 679:108219. [PMID: 31812668 DOI: 10.1016/j.abb.2019.108219] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 11/12/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022]
Abstract
The TP53 tumor suppressor gene is the most frequently altered gene in tumors and mutant p53 isoforms can acquire oncogenic properties referred to as gain-of-function (GOF). In this study, we used wild-type (A375) and mutant p53 (MeWo) melanoma cell lines to assess the regulation of the mitochondrial antioxidant manganese superoxide dismutase (MnSOD) by mutant p53. The effects of mutant p53 were evaluated by qPCR, immunoblotting, enzyme activity assay, cell proliferation assay, reactive oxygen species (ROS) assay after cellular transfection. We demonstrate that mutant p53 induces MnSOD expression, which is recovered by the ROS scavenger N-acetyl-l-cysteine. This suggests MnSOD induction as a defense mechanism of melanoma cells to counterbalance the pro-oxidant conditions induced by mutant p53. We also demonstrate that mutant p53 induces the expression of Sirtuin3 (SIRT3), a major mitochondrial NAD+-dependent deacetylase, stimulating MnSOD deacetylation and enzymatic activity. Indeed, the restoration of SIRT3 reverses MnSOD activity decrease by mutant p53 knock-down. Finally, MnSOD knock-down further enhances mutant p53-mediated ROS increase, counteracting mutp53-dependent cell hyperproliferation. This indicates that SIRT3 and MnSOD act to maintain ROS levels controlled to promote cell proliferation and survival, providing new therapeutic opportunities to be further considered for clinical studies in cancer patients bearing mutant TP53 gene.
Collapse
|
97
|
Pereira BA, Vennin C, Papanicolaou M, Chambers CR, Herrmann D, Morton JP, Cox TR, Timpson P. CAF Subpopulations: A New Reservoir of Stromal Targets in Pancreatic Cancer. Trends Cancer 2019; 5:724-741. [PMID: 31735290 DOI: 10.1016/j.trecan.2019.09.010] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/16/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are one of the most significant components in the tumour microenvironment (TME), where they can perform several protumourigenic functions. Several studies have recently reported that CAFs are more heterogenous and plastic than was previously thought. As such, there has been a shift in the field to study CAF subpopulations and the emergent functions of these subsets in tumourigenesis. In this review, we explore how different aspects of CAF heterogeneity are defined and how these manifest in multiple cancers, with a focus on pancreatic ductal adenocarcinoma (PDAC). We also discuss therapeutic approaches to selectively target protumourigenic CAF functions, while avoiding normal fibroblasts, providing insight into the future of stromal targeting for the treatment of PDAC and other solid tumours.
Collapse
Affiliation(s)
- Brooke A Pereira
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Claire Vennin
- Division of Molecular Pathology, Netherlands Cancer Institute (NKI), 1066 CX Amsterdam, The Netherlands
| | - Michael Papanicolaou
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; School of Life Sciences, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Cecilia R Chambers
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - David Herrmann
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Jennifer P Morton
- Cancer Department, Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Thomas R Cox
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia.
| | - Paul Timpson
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia.
| |
Collapse
|
98
|
Computer-aided drug repurposing for cancer therapy: Approaches and opportunities to challenge anticancer targets. Semin Cancer Biol 2019; 68:59-74. [PMID: 31562957 DOI: 10.1016/j.semcancer.2019.09.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022]
Abstract
Despite huge efforts made in academic and pharmaceutical worldwide research, current anticancer therapies achieve effective treatment in a limited number of neoplasia cases only. Oncology terms such as big killers - to identify tumours with yet a high mortality rate - or undruggable cancer targets, and chemoresistance, represent the current therapeutic debacle of cancer treatments. In addition, metastases, tumour microenvironments, tumour heterogeneity, metabolic adaptations, and immunotherapy resistance are essential features controlling tumour response to therapies, but still, lack effective therapeutics or modulators. In this scenario, where the pharmaceutical productivity and drug efficacy in oncology seem to have reached a plateau, the so-called drug repurposing - i.e. the use of old drugs, already in clinical use, for a different therapeutic indication - is an appealing strategy to improve cancer therapy. Opportunities for drug repurposing are often based on occasional observations or on time-consuming pre-clinical drug screenings that are often not hypothesis-driven. In contrast, in-silico drug repurposing is an emerging, hypothesis-driven approach that takes advantage of the use of big-data. Indeed, the extensive use of -omics technologies, improved data storage, data meaning, machine learning algorithms, and computational modeling all offer unprecedented knowledge of the biological mechanisms of cancers and drugs' modes of action, providing extensive availability for both disease-related data and drugs-related data. This offers the opportunity to generate, with time and cost-effective approaches, computational drug networks to predict, in-silico, the efficacy of approved drugs against relevant cancer targets, as well as to select better responder patients or disease' biomarkers. Here, we will review selected disease-related data together with computational tools to be exploited for the in-silico repurposing of drugs against validated targets in cancer therapies, focusing on the oncogenic signaling pathways activation in cancer. We will discuss how in-silico drug repurposing has the promise to shortly improve our arsenal of anticancer drugs and, likely, overcome certain limitations of modern cancer therapies against old and new therapeutic targets in oncology.
Collapse
|
99
|
Patton MC, Zubair H, Khan MA, Singh S, Singh AP. Hypoxia alters the release and size distribution of extracellular vesicles in pancreatic cancer cells to support their adaptive survival. J Cell Biochem 2019; 121:828-839. [PMID: 31407387 DOI: 10.1002/jcb.29328] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022]
Abstract
Pancreatic tumors are highly desmoplastic and poorly-vascularized, and therefore must develop adaptive mechanisms to sustain their survival under hypoxic condition. Extracellular vesicles (EV) play vital roles in pancreatic tumor pathobiology by facilitating intercellular communication. Here we studied the effect of hypoxia on the release of EVs and examined their role in adaptive survival of pancreatic cancer (PC) cells. Hypoxia promoted the release of EV in PC cell lines, MiaPaCa and AsPC1, wherein former exhibited a far greater induction. Moreover, a time-dependent, measurable and significant increase was recorded for small EV (SEV) in both the cell lines with only minimal induction observed for medium (MEV) and large EVs (LEV). Similarly, noticeable changes in size distribution of SEV were also recorded with a shift toward smaller average size under extreme hypoxia. Thrombospondin (apoptotic bodies marker) was exclusively detected on LEVs, while Arf6 (microvesicles marker) was mostly present on MEV with some expression in LEV as well. However, CD9 and CD63 (exosome markers) were expressed in both SEV and MEVs with a decreased expression recorded under hypoxia. Among all subfractions, SEV was the most bioactive in promoting the survival of hypoxic PC cells and hypoxia-inducible factor-1α stabilization was involved in heightened EV release under hypoxia and for their potency to promote hypoxic cell survival. Altogether, our findings provide a novel mechanism for the adaptive hypoxic survival of PC cells and should serve as the basis for future investigations on broader functional implications of EV.
Collapse
Affiliation(s)
- Mary C Patton
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Haseeb Zubair
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Mohammad Aslam Khan
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Seema Singh
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Ajay P Singh
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| |
Collapse
|
100
|
Vennin C, Mélénec P, Rouet R, Nobis M, Cazet AS, Murphy KJ, Herrmann D, Reed DA, Lucas MC, Warren SC, Elgundi Z, Pinese M, Kalna G, Roden D, Samuel M, Zaratzian A, Grey ST, Da Silva A, Leung W, Mathivanan S, Wang Y, Braithwaite AW, Christ D, Benda A, Parkin A, Phillips PA, Whitelock JM, Gill AJ, Sansom OJ, Croucher DR, Parker BL, Pajic M, Morton JP, Cox TR, Timpson P. CAF hierarchy driven by pancreatic cancer cell p53-status creates a pro-metastatic and chemoresistant environment via perlecan. Nat Commun 2019; 10:3637. [PMID: 31406163 PMCID: PMC6691013 DOI: 10.1038/s41467-019-10968-6] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 06/11/2019] [Indexed: 12/15/2022] Open
Abstract
Heterogeneous subtypes of cancer-associated fibroblasts (CAFs) coexist within pancreatic cancer tissues and can both promote and restrain disease progression. Here, we interrogate how cancer cells harboring distinct alterations in p53 manipulate CAFs. We reveal the existence of a p53-driven hierarchy, where cancer cells with a gain-of-function (GOF) mutant p53 educate a dominant population of CAFs that establish a pro-metastatic environment for GOF and null p53 cancer cells alike. We also demonstrate that CAFs educated by null p53 cancer cells may be reprogrammed by either GOF mutant p53 cells or their CAFs. We identify perlecan as a key component of this pro-metastatic environment. Using intravital imaging, we observe that these dominant CAFs delay cancer cell response to chemotherapy. Lastly, we reveal that depleting perlecan in the stroma combined with chemotherapy prolongs mouse survival, supporting it as a potential target for anti-stromal therapies in pancreatic cancer.
Collapse
Affiliation(s)
- Claire Vennin
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
- Molecular Pathology department, the Netherlands Cancer Institute, Amsterdam, 1066CX, the Netherlands
| | - Pauline Mélénec
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Romain Rouet
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Max Nobis
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Aurélie S Cazet
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Kendelle J Murphy
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - David Herrmann
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Daniel A Reed
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Morghan C Lucas
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Sean C Warren
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Zehra Elgundi
- Graduate school of Biomedical Engineering, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Mark Pinese
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Gabriella Kalna
- Cancer Research UK Beatson Institute, Glasgow Scotland, G61 BD, UK
| | - Daniel Roden
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Monisha Samuel
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Anaiis Zaratzian
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
| | - Shane T Grey
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Andrew Da Silva
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
| | - Wilfred Leung
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Suresh Mathivanan
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, CA, 92121, USA
| | - Anthony W Braithwaite
- Children's Medical Research Institute, University of Sydney, Sydney, NSW, 2006, Australia
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
- Maurice Wilkins Centre, University of Otago, Dunedin, 9054, New Zealand
| | - Daniel Christ
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Ales Benda
- Biomedical imaging facility, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Ashleigh Parkin
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Phoebe A Phillips
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - John M Whitelock
- Graduate school of Biomedical Engineering, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Anthony J Gill
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, Sydney, NSW, 2065, Australia
- Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, St Leonards, NSW, 2065, Australia
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow Scotland, G61 BD, UK
| | - David R Croucher
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | - Benjamin L Parker
- Schools of Life and Environmental Sciences, the Charles Perkin Centre, the University of Sydney, Sydney, NSW, 2006, Australia
| | - Marina Pajic
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia
| | | | - Thomas R Cox
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia.
| | - Paul Timpson
- The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, 2010, Australia.
| |
Collapse
|