51
|
Bae JH, Hong M, Jeong HJ, Kim H, Lee SJ, Ryu D, Bae GU, Cho SC, Lee YS, Krauss RS, Kang JS. Satellite cell-specific ablation of Cdon impairs integrin activation, FGF signalling, and muscle regeneration. J Cachexia Sarcopenia Muscle 2020; 11:1089-1103. [PMID: 32103583 PMCID: PMC7432598 DOI: 10.1002/jcsm.12563] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/04/2019] [Accepted: 02/09/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Perturbation in cell adhesion and growth factor signalling in satellite cells results in decreased muscle regenerative capacity. Cdon (also called Cdo) is a component of cell adhesion complexes implicated in myogenic differentiation, but its role in muscle regeneration remains to be determined. METHODS We generated inducible satellite cell-specific Cdon ablation in mice by utilizing a conditional Cdon allele and Pax7 CreERT2 . To induce Cdon ablation, mice were intraperitoneally injected with tamoxifen (tmx). Using cardiotoxin-induced muscle injury, the effect of Cdon depletion on satellite cell function was examined by histochemistry, immunostaining, and 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay. Isolated myofibers or myoblasts were utilized to determine stem cell function and senescence. To determine pathways related to Cdon deletion, injured muscles were subjected to RNA sequencing analysis. RESULTS Satellite cell-specific Cdon ablation causes impaired muscle regeneration with fibrosis, likely attributable to decreased proliferation, and senescence, of satellite cells. Cultured Cdon-depleted myofibers exhibited 32 ± 9.6% of EdU-positive satellite cells compared with 58 ± 4.4% satellite cells in control myofibers (P < 0.05). About 32.5 ± 3.7% Cdon-ablated myoblasts were positive for senescence-associated β-galactosidase (SA-β-gal) while only 3.6 ± 0.5% of control satellite cells were positive (P < 0.001). Transcriptome analysis of muscles at post-injury Day 4 revealed alterations in genes related to mitogen-activated protein kinase signalling (P < 8.29 e-5 ) and extracellular matrix (P < 2.65 e-24 ). Consistent with this, Cdon-depleted tibialis anterior muscles had reduced phosphorylated extracellular signal-regulated kinase (p-ERK) protein levels and expression of ERK targets, such as Fos (0.23-fold) and Egr1 (0.31-fold), relative to mock-treated control muscles (P < 0.001). Cdon-depleted myoblasts exhibited impaired ERK activation in response to basic fibroblast growth factor. Cdon ablation resulted in decreased and/or mislocalized integrin β1 activation in satellite cells (weak or mislocalized integrin1 in tmx = 38.7 ± 1.9%, mock = 21.5 ± 6%, P < 0.05), previously linked with reduced fibroblast growth factor (FGF) responsiveness in aged satellite cells. In mechanistic studies, Cdon interacted with and regulated cell surface localization of FGFR1 and FGFR4, likely contributing to FGF responsiveness of satellite cells. Satellite cells from a progeria model, Zmpste24-/- myofibers, showed decreased Cdon levels (Cdon-positive cells in Zmpste24-/- = 63.3 ± 11%, wild type = 90 ± 7.7%, P < 0.05) and integrin β1 activation (weak or mislocalized integrin β1 in Zmpste24-/- = 64 ± 6.9%, wild type = 17.4 ± 5.9%, P < 0.01). CONCLUSIONS Cdon deficiency in satellite cells causes impaired proliferation of satellite cells and muscle regeneration via aberrant integrin and FGFR signalling.
Collapse
Affiliation(s)
- Ju-Hyeon Bae
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Mingi Hong
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hyeon-Ju Jeong
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Hyebeen Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Sang-Jin Lee
- Research Institute of Pharmaceutical Science, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Gyu-Un Bae
- Research Institute of Pharmaceutical Science, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Sung Chun Cho
- Well Aging Research Center, DGIST, Daegu, Republic of Korea
| | - Young-Sam Lee
- Well Aging Research Center, DGIST, Daegu, Republic of Korea.,Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| |
Collapse
|
52
|
Wang H, Wang X, Xu L, Cao H. Identification of transcription factors MYC and C/EBPβ mediated regulatory networks in heart failure based on gene expression omnibus datasets. BMC Cardiovasc Disord 2020; 20:250. [PMID: 32460775 PMCID: PMC7251862 DOI: 10.1186/s12872-020-01527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/13/2020] [Indexed: 11/29/2022] Open
Abstract
Background Heart failure is one of leading cause of death worldwide. However, the transcriptional profiling of heart failure is unclear. Moreover, the signaling pathways and transcription factors involving the heart failure development also are largely unknown. Using published Gene Expression Omnibus (GEO) datasets, in the present study, we aim to comprehensively analyze the differentially expressed genes in failing heart tissues, and identified the critical signaling pathways and transcription factors involving heart failure development. Methods The transcriptional profiling of heart failure was identified from previously published gene expression datasets deposited in GSE5406, GSE16499 and GSE68316. The enriched signaling pathways and transcription factors were analyzed using Database for Annotation, Visualization and Integrated Discovery (DAVID) website and gene set enrichment analysis (GSEA) assay. The transcriptional networks were created by Cytoscape. Results Compared with the normal heart tissues, 90 genes were particularly differentially expressed in failing heart tissues, and those genes were associated with multiple metabolism signaling pathways and insulin signaling pathway. Metabolism and insulin signaling pathway were both inactivated in failing heart tissues. Transcription factors MYC and C/EBPβ were both negatively associated with the expression profiling of failing heart tissues in GSEA assay. Moreover, compared with normal heart tissues, MYC and C/EBPβ were down regulated in failing heart tissues. Furthermore, MYC and C/EBPβ mediated downstream target genes were also decreased in failing heart tissues. MYC and C/EBPβ were positively correlated with each other. At last, we constructed MYC and C/EBPβ mediated regulatory networks in failing heart tissues, and identified the MYC and C/EBPβ target genes which had been reported involving the heart failure developmental progress. Conclusions Our results suggested that metabolism pathways and insulin signaling pathway, transcription factors MYC and C/EBPβ played critical roles in heart failure developmental progress.
Collapse
Affiliation(s)
- Haiwei Wang
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, FuZhou, 350001, FuJian, China
| | - Xinrui Wang
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, FuZhou, 350001, FuJian, China
| | - Liangpu Xu
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, FuZhou, 350001, FuJian, China
| | - Hua Cao
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, FuZhou, 350001, FuJian, China.
| |
Collapse
|
53
|
Raveendran VV, Al-Haffar K, Kunhi M, Belhaj K, Al-Habeeb W, Al-Buraiki J, Eyjolsson A, Poizat C. Protein arginine methyltransferase 6 mediates cardiac hypertrophy by differential regulation of histone H3 arginine methylation. Heliyon 2020; 6:e03864. [PMID: 32420474 PMCID: PMC7218648 DOI: 10.1016/j.heliyon.2020.e03864] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/02/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
Heart failure remains a major cause of hospitalization and death worldwide. Heart failure can be caused by abnormalities in the epigenome resulting from dysregulation of histone-modifying enzymes. While chromatin enzymes catalyzing lysine acetylation and methylation of histones have been the topic of many investigations, the role of arginine methyltransferases has been overlooked. In an effort to understand regulatory mechanisms implicated in cardiac hypertrophy and heart failure, we assessed the expression of protein arginine methyltransferases (PRMTs) in the left ventricle of failing human hearts and control hearts. Our results show a significant up-regulation of protein arginine methyltransferase 6 (PRMT6) in failing human hearts compared to control hearts, which also occurs in the early phase of cardiac hypertrophy in mouse hearts subjected to pressure overload hypertrophy induced by trans-aortic constriction (TAC), and in neonatal rat ventricular myocytes (NRVM) stimulated with the hypertrophic agonist phenylephrine (PE). These changes are associated with a significant increase in arginine 2 asymmetric methylation of histone H3 (H3R2Me2a) and reduced lysine 4 tri-methylation of H3 (H3K4Me3) observed both in NRVM and in vivo. Importantly, forced expression of PRMT6 in NRVM enhances the expression of the hypertrophic marker, atrial natriuretic peptide (ANP). Conversely, specific silencing of PRMT6 reduces ANP protein expression and cell size, indicating that PRMT6 is critical for the PE-mediated hypertrophic response. Silencing of PRMT6 reduces H3R2Me2a, a mark normally associated with transcriptional repression. Furthermore, evaluation of cardiac contractility and global ion channel activity in live NRVM shows a striking reduction of spontaneous beating rates and prolongation of extra-cellular field potentials in cells expressing low-level PRMT6. Altogether, our results indicate that PRMT6 is a critical regulator of cardiac hypertrophy, implicating H3R2Me2a as an important histone modification. This study identifies PRMT6 as a new epigenetic regulator and suggests a new point of control in chromatin to inhibit pathological cardiac remodeling.
Collapse
Affiliation(s)
- Vineesh Vimala Raveendran
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Kamar Al-Haffar
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Muhammed Kunhi
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Karim Belhaj
- College of Medicine, Al Faisal University, PO Box 50927, Riyadh 11211, Saudi Arabia
| | | | | | - Atli Eyjolsson
- Heart Centre, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Coralie Poizat
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Masonic Medical Research Institute, Utica, NY 13501, USA
| |
Collapse
|
54
|
ZNF746/PARIS overexpression induces cellular senescence through FoxO1/p21 axis activation in myoblasts. Cell Death Dis 2020; 11:359. [PMID: 32398756 PMCID: PMC7217926 DOI: 10.1038/s41419-020-2552-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/06/2020] [Accepted: 03/09/2020] [Indexed: 01/11/2023]
Abstract
Various stresses, including oxidative stress, impair the proliferative capacity of muscle stem cells leading to declined muscle regeneration related to aging or muscle diseases. ZNF746 (PARIS) is originally identified as a substrate of E3 ligase Parkin and its accumulation is associated with Parkinson’s disease. In this study, we investigated the role of PARIS in myoblast function. PARIS is expressed in myoblasts and decreased during differentiation. PARIS overexpression decreased both proliferation and differentiation of myoblasts without inducing cell death, whereas PARIS depletion enhanced myoblast differentiation. Interestingly, high levels of PARIS in myoblasts or fibroblasts induced cellular senescence with alterations in gene expression associated with p53 signaling, inflammation, and response to oxidative stress. PARIS overexpression in myoblasts starkly enhanced oxidative stress and the treatment of an antioxidant Trolox attenuated the impaired proliferation caused by PARIS overexpression. FoxO1 and p53 proteins are elevated in PARIS-overexpressing cells leading to p21 induction and the depletion of FoxO1 or p53 reduced p21 levels induced by PARIS overexpression. Furthermore, both PARIS and FoxO1 were recruited to p21 promoter region and Trolox treatment attenuated FoxO1 recruitment. Taken together, PARIS upregulation causes oxidative stress-related FoxO1 and p53 activation leading to p21 induction and cellular senescence of myoblasts.
Collapse
|
55
|
Li J, Wang S, Zhang J, Liu Y, Zheng X, Ding F, Sun X, Zhao M, Hao L. The CaMKII phosphorylation site Thr1604 in the Ca V1.2 channel is involved in pathological myocardial hypertrophy in rats. Channels (Austin) 2020; 14:151-162. [PMID: 32290730 PMCID: PMC7188351 DOI: 10.1080/19336950.2020.1750189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Residue Thr1604 in the CaV1.2 channel is a Ca2+/calmodulin dependent protein kinase II (CaMKII) phosphorylation site, and its phosphorylation status maintains the basic activity of the channel. However, the role of CaV1.2 phosphorylation at Thr1604 in myocardial hypertrophy is incompletely understood. Isoproterenol (ISO) was used to induce cardiomyocyte hypertrophy, and autocamtide-2-related inhibitory peptide (AIP) was added as a treatment. Rats in a myocardial hypertrophy development model were subcutaneously injected with ISO for two or three weeks. The heart and left ventricle weights, each of which were normalized to the body weight and cross-sectional area of the myocardial cells, were used to describe the degree of hypertrophy. Protein expression levels were detected by western blotting. CaMKII-induced CaV1.2 (Thr1604) phosphorylation (p-CaV1.2) was assayed by coimmunoprecipitation. The results showed that CaMKII, HDAC, MEF2 C, and atrial natriuretic peptide (ANP) expression was increased in the ISO group and downregulated by AIP treatment in vitro. There was no difference in the expression of these proteins between the ISO 2-week group and the ISO 3-week group in vivo. CaV1.2 channel expression did not change, but p-CaV1.2 expression was increased after ISO stimulation and decreased by AIP. In the rat model, p-CaV1.2 levels and CaMKII activity were much higher in the ISO 3-week group than in the ISO 2-week group. CaMKII-induced CaV1.2 channel phosphorylation at residue Thr1604 may be one of the key features of myocardial hypertrophy and disease development.Abbreviations: CaMKII: Ca2+/calmodulin dependent protein kinase II; p-CaMKII: autophosphorylated Ca2+/calmodulin dependent protein kinase II; CaM: calmodulin; AIP: autocamtide-2-related inhibitory peptide; ECC: excitation-contraction coupling; ISO: isoproterenol; BW: body weight; HW: heart weight; LVW: left ventricle weight; HDAC: histone deacetylase; p-HDAC: phosphorylated histone deacetylase; MEF2C: myocyte-specific enhancer factor 2C; ANP: atrial natriuretic peptide; PKC: protein kinase C
Collapse
Affiliation(s)
- Jingyuan Li
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Siqi Wang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Jie Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Yan Liu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Xi Zheng
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Fan Ding
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Xuefei Sun
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Meimi Zhao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
56
|
Chen HH, Wang SN, Cao TT, Zheng JL, Tian J, Shan XL, Zhao P, Guo W, Xu M, Zhang C, Lu R. Stachydrine hydrochloride alleviates pressure overload-induced heart failure and calcium mishandling on mice. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112306. [PMID: 31626909 DOI: 10.1016/j.jep.2019.112306] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/16/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine Leonurus japonicus Houtt. has a long history in the treatment of cardiovascular diseases. Stachydrine hydrochloride, the main bioactive ingredient extracted from Leonurus japonicus Houtt., has been shown to have cardioprotective effects. However, the underlying mechanisms of stachydrine hydrochloride haven't been comprehensively studied so far. AIM OF THE STUDY The aim of this study was to investigate the protective role of stachydrine hydrochloride in heart failure and elucidate its possible mechanisms of action. MATERIALS AND METHODS In vivo, transverse aorta constriction was carried out in C57BL/6J mice, and thereafter, 7.2 mg/kg telmisartan (a selective AT1R antagonist as positive control) and 12 mg/kg stachydrine hydrochloride was administered daily intragastrically for 4 weeks. Cardiac function was evaluated by assessing morphological changes as well as echocardiographic and haemodynamic parameters. In vitro, neonatal rat cardiomyocytes or adult mice cardiomyocytes were treated with stachydrine hydrochloride and challenged with phenylephrine (α-AR agonist). Ventricular myocytes were isolated from the hearts of C57BL/6J mice by Langendorff crossflow perfusion system. Intracellular calcium was measured by an ion imaging system. The length and movement of sarcomere were traced to evaluate the systolic and diastolic function of single myocardial cells. RESULTS Stachydrine hydrochloride improved the cardiac function and calcium transient amplitudes, and inhibited the SR leakage and the amount of sparks in cardiac myocytes isolated from TAC mice. We also demonstrated that stachydrine hydrochloride could ameliorated phenylephrine-induced enhance in sarcomere contraction, calcium transients and calcium sparks. Moreover, our data shown that stachydrine hydrochloride blocked the hyper-phosphorylation of CaMKII, RyR2, PLN, and prevented the disassociation of FKBP12.6 from RyR2. CONCLUSION Our results suggest that stachydrine hydrochloride exerts beneficial therapeutic effects against heart failure. These cardioprotective effects may be associated with the regulation of calcium handling by stachydrine hydrochloride through inhibiting the hyper-phosphorylation of CaMKII.
Collapse
Affiliation(s)
- Hui-Hua Chen
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Si-Ning Wang
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | | | - Jia-Li Zheng
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jing Tian
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xiao-Li Shan
- Public Laboratory Platform, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Pei Zhao
- Public Laboratory Platform, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Wei Guo
- Department of Pathology, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Ming Xu
- Department of Physiology, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Chen Zhang
- Department of Pathology, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Rong Lu
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
57
|
Protein Arginine Methyltransferases in Cardiovascular and Neuronal Function. Mol Neurobiol 2019; 57:1716-1732. [PMID: 31823198 DOI: 10.1007/s12035-019-01850-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/01/2019] [Indexed: 12/16/2022]
Abstract
The methylation of arginine residues by protein arginine methyltransferases (PRMTs) is a type of post-translational modification which is important for numerous cellular processes, including mRNA splicing, DNA repair, signal transduction, protein interaction, and transport. PRMTs have been extensively associated with various pathologies, including cancer, inflammation, and immunity response. However, the role of PRMTs has not been well described in vascular and neurological function. Aberrant expression of PRMTs can alter its metabolic products, asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA). Increased ADMA levels are recognized as an independent risk factor for cardiovascular disease and mortality. Recent studies have provided considerable advances in the development of small-molecule inhibitors of PRMTs to study their function under normal and pathological states. In this review, we aim to elucidate the particular roles of PRMTs in vascular and neuronal function as a potential target for cardiovascular and neurological diseases.
Collapse
|
58
|
Li ASM, Li F, Eram MS, Bolotokova A, Dela Seña CC, Vedadi M. Chemical probes for protein arginine methyltransferases. Methods 2019; 175:30-43. [PMID: 31809836 DOI: 10.1016/j.ymeth.2019.11.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/29/2019] [Accepted: 11/29/2019] [Indexed: 12/28/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) catalyze the transfer of methyl groups to specific arginine residues of their substrates using S-adenosylmethionine as a methyl donor, contributing to regulation of many biological processes including transcription, and DNA damage repair. Dysregulation of PRMT expression is often associated with various diseases including cancers. Different methods have been used to characterize the activities of PRMTs and determine their kinetic parameters including mass spectrometry, radiometric, and antibody-based assays. Here, we present kinetic characterization of PRMTs using a radioactivity-based assay for better comparison along with previously reported values. We also report on full characterization of PRMT9 activity with SAP145 peptide as substrate. We further review the potent, selective and cell-active PRMT inhibitors discovered in recent years to provide a better understanding of available tools to investigate the roles these proteins play in health and disease.
Collapse
Affiliation(s)
- Alice Shi Ming Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Mohammad S Eram
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Albina Bolotokova
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Carlo C Dela Seña
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
59
|
PRMT1 suppresses ATF4-mediated endoplasmic reticulum response in cardiomyocytes. Cell Death Dis 2019; 10:903. [PMID: 31787756 PMCID: PMC6885520 DOI: 10.1038/s41419-019-2147-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
Abstract
Endoplasmic reticulum (ER) stress signaling plays a critical role in the control of cell survival or death. Persistent ER stress activates proapoptotic pathway involving the ATF4/CHOP axis. Although accumulating evidences support its important contribution to cardiovascular diseases, but its mechanism is not well characterized. Here, we demonstrate a critical role for PRMT1 in the control of ER stress in cardiomyocytes. The inhibition of PRMT1 augments tunicamycin (TN)-triggered ER stress response in cardiomyocytes while PRMT1 overexpression attenuates it. Consistently, PRMT1 null hearts show exacerbated ER stress and cell death in response to TN treatment. Interestingly, ATF4 depletion attenuates the ER stress response induced by PRMT1 inhibition. The methylation-deficient mutant of ATF4 with the switch of arginine 239 to lysine exacerbates ER stress accompanied by enhanced levels of proapoptotic cleaved Caspase3 and phosphorylated-γH2AX in response to TN. The mechanistic study shows that PRMT1 modulates the protein stability of ATF4 through methylation. Taken together, our data suggest that ATF4 methylation on arginine 239 by PRMT1 is a novel regulatory mechanism for protection of cardiomyocytes from ER stress-induced cell death.
Collapse
|
60
|
Qiao X, Kim DI, Jun H, Ma Y, Knights AJ, Park MJ, Zhu K, Lipinski JH, Liao J, Li Y, Richard S, Weinman SA, Wu J. Protein Arginine Methyltransferase 1 Interacts With PGC1α and Modulates Thermogenic Fat Activation. Endocrinology 2019; 160:2773-2786. [PMID: 31555811 PMCID: PMC6853686 DOI: 10.1210/en.2019-00504] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023]
Abstract
Protein arginine methyltransferases (PRMTs) are enzymes that regulate the evolutionarily conserved process of arginine methylation. It has been reported that PRMTs are involved in many metabolic regulatory pathways. However, until now, their roles in adipocyte function, especially browning and thermogenesis, have not been evaluated. Even though Prmt1 adipocyte-specific-deleted mice (Prmt1fl/flAQcre) appeared normal at basal level, following cold exposure or β-adrenergic stimulation, impaired induction of the thermogenic program was observed in both the interscapular brown adipose tissue and inguinal white adipose tissue of Prmt1fl/flAQcre mice compared with littermate controls. Different splicing variants of Prmt1 have been reported. Among them, PRMT1 variant 1 and PRMT1 variant 2 (PRMT1V2) are well conserved between humans and mice. Both variants contribute to the activation of thermogenic fat, with PRMT1V2 playing a more dominant role. Mechanistic studies using cultured murine and human adipocytes revealed that PRMT1V2 mediates thermogenic fat activation through PGC1α, a transcriptional coactivator that has been shown to play a key role in mitochondrial biogenesis. To our knowledge, our data are the first to demonstrate that PRMT1 plays a regulatory role in thermogenic fat function. These findings suggest that modulating PRMT1 activity may represent new avenues to regulate thermogenic fat and mediate energy homeostasis. This function is conserved in human primary adipocytes, suggesting that further investigation of this pathway may ultimately lead to therapeutic strategies against human obesity and associated metabolic disorders.
Collapse
Affiliation(s)
- Xiaona Qiao
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Dong-il Kim
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
- Department of Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Heejin Jun
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Yingxu Ma
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
- Department of Cardiology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | - Min-Jung Park
- Department of Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Kezhou Zhu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Jay H Lipinski
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Jiling Liao
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
- Department of Endocrinology and Metabolism, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiming Li
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Stéphane Richard
- Terry Fox Molecular Oncology Group and Bloomfield Center for Research on Aging, Segal Cancer Centre, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, Quebec, Canada
- Department of Oncology and Medicine, McGill University, Montreal, Quebec, Canada
| | - Steven A Weinman
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Liver Center, University of Kansas Medical Center, Kansas City, Kansas
| | - Jun Wu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Correspondence: Jun Wu, PhD, Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Room 5115A, Ann Arbor, Michigan 48109. E-mail:
| |
Collapse
|
61
|
Methylation determines the extracellular calcium sensitivity of the leak channel NALCN in hippocampal dentate granule cells. Exp Mol Med 2019; 51:1-14. [PMID: 31601786 PMCID: PMC6802672 DOI: 10.1038/s12276-019-0325-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
The sodium leak channel NALCN is a key player in establishing the resting membrane potential (RMP) in neurons and transduces changes in extracellular Ca2+ concentration ([Ca2+]e) into increased neuronal excitability as the downstream effector of calcium-sensing receptor (CaSR). Gain-of-function mutations in the human NALCN gene cause encephalopathy and severe intellectual disability. Thus, understanding the regulatory mechanisms of NALCN is important for both basic and translational research. This study reveals a novel mechanism for NALCN regulation by arginine methylation. Hippocampal dentate granule cells in protein arginine methyltransferase 7 (PRMT7)-deficient mice display a depolarization of the RMP, decreased threshold currents, and increased excitability compared to wild-type neurons. Electrophysiological studies combined with molecular analysis indicate that enhanced NALCN activities contribute to hyperexcitability in PRMT7−/− neurons. PRMT7 depletion in HEK293T cells increases NALCN activity by shifting the dose-response curve of NALCN inhibition by [Ca2+]e without affecting NALCN protein levels. In vitro methylation studies show that PRMT7 methylates a highly conserved Arg1653 of the NALCN gene located in the carboxy-terminal region that is implicated in CaSR-mediated regulation. A kinase-specific phosphorylation site prediction program shows that the adjacent Ser1652 is a potential phosphorylation site. Consistently, our data from site-specific mutants and PKC inhibitors suggest that Arg1653 methylation might modulate Ser1652 phosphorylation mediated by CaSR/PKC-delta, leading to [Ca2+]e-mediated NALCN suppression. Collectively, these data suggest that PRMT7 deficiency decreases NALCN methylation at Arg1653, which, in turn, decreases CaSR/PKC-mediated Ser1652 phosphorylation, lifting NALCN inhibition, thereby enhancing neuronal excitability. Thus, PRMT7-mediated NALCN inhibition provides a potential target for the development of therapeutic tools for neurological diseases. The addition of a methyl group to an arginine residue on the ion channel NALCN contributes to suppress the activity of this membrane protein and reduces neuronal excitability. Hana Cho, Jong-Sun Kang and colleagues at Sungkyunkwan University in South Korea found that neurons in the hippocampus of mice lacking an enzyme that mediates the transfer of methyl groups to proteins have increased NALCN activity and are more likely to fire an electrical signal. Furthermore, they showed that NALCN methylation facilitates the phosphorylation of an adjacent amino acid that prevents channel activation in response to extracellular calcium concentrations. These findings suggest that NALCN methylation has a key role in regulating the channel’s sensitivity to calcium. Moreover, they reveal a new mechanism for regulating neuronal excitability that could be targeted therapeutically to ameliorate diseases characterised by neuronal hyperexcitability.
Collapse
|
62
|
Zhang Y, van Haren MJ, Martin NI. Peptidic transition state analogues as PRMT inhibitors. Methods 2019; 175:24-29. [PMID: 31421210 DOI: 10.1016/j.ymeth.2019.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022] Open
Abstract
Protein arginine N-methyltransferases (PRMTs) methylate arginine residues in target proteins using the ubiquitous methyl donor S-adenosyl-l-methionine (AdoMet) as a cofactor. PRMTs play important roles in both healthy and disease states and as such inhibition of PRMTs has gained increasing interest. A primary challenge in the development of PRMT inhibitors is achieving specificity for the PRMT of interest as the active sites are highly conserved for all nine members of the PRMT family. Notably, PRMTs show very little redundancy in vivo due to their specific sets of protein substrates. However, relatively little is known about the interactions of PRMTs with their protein substrates that drive this substrate specificity. We here describe the extended application of a methodology recently developed in our group for the production of peptide-based transition state mimicking PRMT inhibitors. Using this approach, an adenosine moiety, mimicking that of the AdoMet cofactor, is covalently linked to the guanidine side chain of a target arginine residue contained in a peptidic fragment derived from a PRMT substrate protein. Using this approach, histone H4 tail peptide-based transition state mimics were synthesized wherein the adenosine group was linked to the Arg3 residue. H4R3 is a substrate for multiple PRMTs, including PRMT1 and PRMT6. The inhibition results obtained with these new H4-based transition state mimics show low micromolar IC50 values against PRMT1 and PRMT6, indicating that the methodology is applicable to the broader family of PRMTs.
Collapse
Affiliation(s)
- Yurui Zhang
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Matthijs J van Haren
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| |
Collapse
|
63
|
PRMT7 methylates and suppresses GLI2 binding to SUFU thereby promoting its activation. Cell Death Differ 2019; 27:15-28. [PMID: 31000813 DOI: 10.1038/s41418-019-0334-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 01/20/2023] Open
Abstract
Cellular senescence is implicated in aging or age-related diseases. Sonic hedgehog (Shh) signaling, an inducer of embryonic development, has recently been demonstrated to inhibit cellular senescence. However, the detailed mechanisms to activate Shh signaling to prevent senescence is not well understood. Here, we demonstrate that Protein arginine methyltransferase 7 (PRMT7) promotes Shh signaling via GLI2 methylation which is critical for suppression of cellular senescence. PRMT7-deficient mouse embryonic fibroblasts (MEFs) exhibited a premature cellular senescence with accompanied increase in the cell cycle inhibitors p16 and p21. PRMT7 depletion results in reduced Shh signaling activity in MEFs while PRMT7 overexpression enhances GLI2-reporter activities that are sensitive to methylation inhibition. PRMT7 interacts with and methylates GLI2 on arginine residues 225 and 227 nearby a binding region of SUFU, a negative regulator of GLI2. This methylation interferes with GLI2-SUFU binding, leading to facilitation of GLI2 nuclear accumulation and Shh signaling. Taken together, these data suggest that PRMT7 induces GLI2 methylation, reducing its binding to SUFU and increasing Shh signaling, ultimately leading to prevention of cellular senescence.
Collapse
|