51
|
Shakirova KM, Ovchinnikova VY, Dashinimaev EB. Cell Reprogramming With CRISPR/Cas9 Based Transcriptional Regulation Systems. Front Bioeng Biotechnol 2020; 8:882. [PMID: 32850737 PMCID: PMC7399070 DOI: 10.3389/fbioe.2020.00882] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/09/2020] [Indexed: 12/22/2022] Open
Abstract
The speed of reprogramming technologies evolution is rising dramatically in modern science. Both the scientific community and health workers depend on such developments due to the lack of safe autogenic cells and tissues for regenerative medicine, genome editing tools and reliable screening techniques. To perform experiments efficiently and to propel the fundamental science it is important to keep up with novel modifications and techniques that are being discovered almost weekly. One of them is CRISPR/Cas9 based genome and transcriptome editing. The aim of this article is to summarize currently existing CRISPR/Cas9 applications for cell reprogramming, mainly, to compare them with other non-CRISPR approaches and to highlight future perspectives and opportunities.
Collapse
Affiliation(s)
- Ksenia M Shakirova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Viktoriia Y Ovchinnikova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Erdem B Dashinimaev
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
52
|
Gjaltema RAF, Rots MG. Advances of epigenetic editing. Curr Opin Chem Biol 2020; 57:75-81. [PMID: 32619853 DOI: 10.1016/j.cbpa.2020.04.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022]
Abstract
Epigenetic editing refers to the locus-specific targeting of epigenetic enzymes to rewrite the local epigenetic landscape of an endogenous genomic site, often with the aim of transcriptional reprogramming. Implementing clustered regularly interspaced short palindromic repeat-dCas9 greatly accelerated the advancement of epigenetic editing, yielding preclinical therapeutic successes using a variety of epigenetic enzymes. Here, we review the current applications of these epigenetic editing tools in mammals and shed light on biochemical improvements that facilitate versatile applications.
Collapse
Affiliation(s)
- Rutger A F Gjaltema
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Marianne G Rots
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
53
|
Breunig CT, Köferle A, Neuner AM, Wiesbeck MF, Baumann V, Stricker SH. CRISPR Tools for Physiology and Cell State Changes: Potential of Transcriptional Engineering and Epigenome Editing. Physiol Rev 2020; 101:177-211. [PMID: 32525760 DOI: 10.1152/physrev.00034.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Given the large amount of genome-wide data that have been collected during the last decades, a good understanding of how and why cells change during development, homeostasis, and disease might be expected. Unfortunately, the opposite is true; triggers that cause cellular state changes remain elusive, and the underlying molecular mechanisms are poorly understood. Although genes with the potential to influence cell states are known, the historic dependency on methods that manipulate gene expression outside the endogenous chromatin context has prevented us from understanding how cells organize, interpret, and protect cellular programs. Fortunately, recent methodological innovations are now providing options to answer these outstanding questions, by allowing to target and manipulate individual genomic and epigenomic loci. In particular, three experimental approaches are now feasible due to DNA targeting tools, namely, activation and/or repression of master transcription factors in their endogenous chromatin context; targeting transcription factors to endogenous, alternative, or inaccessible sites; and finally, functional manipulation of the chromatin context. In this article, we discuss the molecular basis of DNA targeting tools and review the potential of these new technologies before we summarize how these have already been used for the manipulation of cellular states and hypothesize about future applications.
Collapse
Affiliation(s)
- Christopher T Breunig
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian- Universität, BioMedical Center, Planegg-Martinsried, Germany; and Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, BioMedical Center, Planegg-Martinsried, Germany
| | - Anna Köferle
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian- Universität, BioMedical Center, Planegg-Martinsried, Germany; and Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, BioMedical Center, Planegg-Martinsried, Germany
| | - Andrea M Neuner
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian- Universität, BioMedical Center, Planegg-Martinsried, Germany; and Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, BioMedical Center, Planegg-Martinsried, Germany
| | - Maximilian F Wiesbeck
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian- Universität, BioMedical Center, Planegg-Martinsried, Germany; and Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, BioMedical Center, Planegg-Martinsried, Germany
| | - Valentin Baumann
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian- Universität, BioMedical Center, Planegg-Martinsried, Germany; and Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, BioMedical Center, Planegg-Martinsried, Germany
| | - Stefan H Stricker
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian- Universität, BioMedical Center, Planegg-Martinsried, Germany; and Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, BioMedical Center, Planegg-Martinsried, Germany
| |
Collapse
|
54
|
Wuputra K, Ku CC, Wu DC, Lin YC, Saito S, Yokoyama KK. Prevention of tumor risk associated with the reprogramming of human pluripotent stem cells. J Exp Clin Cancer Res 2020; 39:100. [PMID: 32493501 PMCID: PMC7268627 DOI: 10.1186/s13046-020-01584-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023] Open
Abstract
Human pluripotent embryonic stem cells have two special features: self-renewal and pluripotency. It is important to understand the properties of pluripotent stem cells and reprogrammed stem cells. One of the major problems is the risk of reprogrammed stem cells developing into tumors. To understand the process of differentiation through which stem cells develop into cancer cells, investigators have attempted to identify the key factors that generate tumors in humans. The most effective method for the prevention of tumorigenesis is the exclusion of cancer cells during cell reprogramming. The risk of cancer formation is dependent on mutations of oncogenes and tumor suppressor genes during the conversion of stem cells to cancer cells and on the environmental effects of pluripotent stem cells. Dissecting the processes of epigenetic regulation and chromatin regulation may be helpful for achieving correct cell reprogramming without inducing tumor formation and for developing new drugs for cancer treatment. This review focuses on the risk of tumor formation by human pluripotent stem cells, and on the possible treatment options if it occurs. Potential new techniques that target epigenetic processes and chromatin regulation provide opportunities for human cancer modeling and clinical applications of regenerative medicine.
Collapse
Affiliation(s)
- Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Deng-Chyang Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Ying-Chu Lin
- School of Dentistry, School of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Shigeo Saito
- Waseda University Research Institute for Science and Engineering, Shinjuku, Tokyo, 162-8480, Japan.
- Saito Laboratory of Cell Technology Institute, Yaita, Tochigi, 329-1571, Japan.
| | - Kazunari K Yokoyama
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 807, Taiwan.
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Waseda University Research Institute for Science and Engineering, Shinjuku, Tokyo, 162-8480, Japan.
| |
Collapse
|
55
|
Becskei A. Tuning up Transcription Factors for Therapy. Molecules 2020; 25:E1902. [PMID: 32326099 PMCID: PMC7221782 DOI: 10.3390/molecules25081902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022] Open
Abstract
The recent developments in the delivery and design of transcription factors put their therapeutic applications within reach, exemplified by cell replacement, cancer differentiation and T-cell based cancer therapies. The success of such applications depends on the efficacy and precision in the action of transcription factors. The biophysical and genetic characterization of the paradigmatic prokaryotic repressors, LacI and TetR and the designer transcription factors, transcription activator-like effector (TALE) and CRISPR-dCas9 revealed common principles behind their efficacy, which can aid the optimization of transcriptional activators and repressors. Further studies will be required to analyze the linkage between dissociation constants and enzymatic activity, the role of phase separation and squelching in activation and repression and the long-range interaction of transcription factors with epigenetic regulators in the context of the chromosomes. Understanding these mechanisms will help to tailor natural and synthetic transcription factors to the needs of specific applications.
Collapse
Affiliation(s)
- Attila Becskei
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| |
Collapse
|
56
|
Halmai JANM, Deng P, Gonzalez CE, Coggins NB, Cameron D, Carter JL, Buchanan FKB, Waldo JJ, Lock SR, Anderson JD, O’Geen H, Segal DJ, Nolta J, Fink KD. Artificial escape from XCI by DNA methylation editing of the CDKL5 gene. Nucleic Acids Res 2020; 48:2372-2387. [PMID: 31925439 PMCID: PMC7049732 DOI: 10.1093/nar/gkz1214] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 12/29/2022] Open
Abstract
A significant number of X-linked genes escape from X chromosome inactivation and are associated with a distinct epigenetic signature. One epigenetic modification that strongly correlates with X-escape is reduced DNA methylation in promoter regions. Here, we created an artificial escape by editing DNA methylation on the promoter of CDKL5, a gene causative for an infantile epilepsy, from the silenced X-chromosomal allele in human neuronal-like cells. We identify that a fusion of the catalytic domain of TET1 to dCas9 targeted to the CDKL5 promoter using three guide RNAs causes significant reactivation of the inactive allele in combination with removal of methyl groups from CpG dinucleotides. Strikingly, we demonstrate that co-expression of TET1 and a VP64 transactivator have a synergistic effect on the reactivation of the inactive allele to levels >60% of the active allele. We further used a multi-omics assessment to determine potential off-targets on the transcriptome and methylome. We find that synergistic delivery of dCas9 effectors is highly selective for the target site. Our findings further elucidate a causal role for reduced DNA methylation associated with escape from X chromosome inactivation. Understanding the epigenetics associated with escape from X chromosome inactivation has potential for those suffering from X-linked disorders.
Collapse
MESH Headings
- Alleles
- CRISPR-Associated Protein 9/genetics
- CRISPR-Associated Protein 9/metabolism
- Catalytic Domain
- Cell Line, Tumor
- Chromosomes, Human, X/chemistry
- Chromosomes, Human, X/metabolism
- CpG Islands
- Epigenesis, Genetic
- Gene Editing
- Gene Silencing
- Humans
- Mixed Function Oxygenases/genetics
- Mixed Function Oxygenases/metabolism
- Neurons/cytology
- Neurons/metabolism
- Promoter Regions, Genetic
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Trans-Activators/genetics
- Trans-Activators/metabolism
- X Chromosome Inactivation
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Julian A N M Halmai
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, USA
| | - Peter Deng
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, USA
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Casiana E Gonzalez
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, USA
| | - Nicole B Coggins
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - David Cameron
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, USA
| | - Jasmine L Carter
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, USA
| | - Fiona K B Buchanan
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, USA
| | - Jennifer J Waldo
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, USA
| | - Samantha R Lock
- Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, USA
| | | | - Henriette O’Geen
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - David J Segal
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Jan Nolta
- Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, USA
| | - Kyle D Fink
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
57
|
Morita S, Horii T, Kimura M, Hatada I. Synergistic Upregulation of Target Genes by TET1 and VP64 in the dCas9-SunTag Platform. Int J Mol Sci 2020; 21:E1574. [PMID: 32106616 PMCID: PMC7084704 DOI: 10.3390/ijms21051574] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Overexpression of a gene of interest is a general approach used in both basic research and therapeutic applications. However, the conventional approach involving overexpression of exogenous genes has difficulty achieving complete genome coverage, and is also limited by the cloning capacity of viral vectors. Therefore, an alternative approach would be to drive the expression of an endogenous gene using an artificial transcriptional activator. Fusion proteins of dCas9 and a transcription activation domain, such as dCas9-VP64, are widely used for activation of endogenous genes. However, when using a single sgRNA, the activation range is low. Consequently, tiling of several sgRNAs is required for robust transcriptional activation. Here we describe the screening of factors that exhibit the best synergistic activation of gene expression with TET1 in the dCas9-SunTag format. All seven factors examined showed some synergy with TET1. Among them, VP64 gave the best results. Thus, simultaneous tethering of VP64 and TET1 to a target gene using an optimized dCas9-SunTag format synergistically activates gene expression using a single sgRNA.
Collapse
Affiliation(s)
| | | | | | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan; (S.M.); (T.H.); (M.K.)
| |
Collapse
|
58
|
Devesa-Guerra I, Morales-Ruiz T, Pérez-Roldán J, Parrilla-Doblas JT, Dorado-León M, García-Ortiz MV, Ariza RR, Roldán-Arjona T. DNA Methylation Editing by CRISPR-guided Excision of 5-Methylcytosine. J Mol Biol 2020; 432:2204-2216. [PMID: 32087201 DOI: 10.1016/j.jmb.2020.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 12/22/2022]
Abstract
Tools for actively targeted DNA demethylation are required to increase our knowledge about regulation and specific functions of this important epigenetic modification. DNA demethylation in mammals involves TET-mediated oxidation of 5-methylcytosine (5-meC), which may promote its replication-dependent dilution and/or active removal through base excision repair (BER). However, it is still unclear whether oxidized derivatives of 5-meC are simply DNA demethylation intermediates or rather epigenetic marks on their own. Unlike animals, plants have evolved enzymes that directly excise 5-meC without previous modification. In this work, we have fused the catalytic domain of Arabidopsis ROS1 5-meC DNA glycosylase to a CRISPR-associated null-nuclease (dCas9) and analyzed its capacity for targeted reactivation of methylation-silenced genes, in comparison to other dCas9-effectors. We found that dCas9-ROS1, but not dCas9-TET1, is able to reactivate methylation-silenced genes and induce partial demethylation in a replication-independent manner. We also found that reactivation induced by dCas9-ROS1, as well as that achieved by two different CRISPR-based chromatin effectors (dCas9-VP160 and dCas9-p300), generally decreases with methylation density. Our results suggest that plant 5-meC DNA glycosylases are a valuable addition to the CRISPR-based toolbox for epigenetic editing.
Collapse
Affiliation(s)
- Iván Devesa-Guerra
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071, Córdoba, Spain; Department of Genetics, University of Córdoba, 14071, Córdoba, Spain; Reina Sofía University Hospital, 14071, Córdoba, Spain
| | - Teresa Morales-Ruiz
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071, Córdoba, Spain; Department of Genetics, University of Córdoba, 14071, Córdoba, Spain; Reina Sofía University Hospital, 14071, Córdoba, Spain
| | - Juan Pérez-Roldán
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071, Córdoba, Spain; Department of Genetics, University of Córdoba, 14071, Córdoba, Spain; Reina Sofía University Hospital, 14071, Córdoba, Spain
| | - Jara Teresa Parrilla-Doblas
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071, Córdoba, Spain; Department of Genetics, University of Córdoba, 14071, Córdoba, Spain; Reina Sofía University Hospital, 14071, Córdoba, Spain
| | - Macarena Dorado-León
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071, Córdoba, Spain; Department of Genetics, University of Córdoba, 14071, Córdoba, Spain; Reina Sofía University Hospital, 14071, Córdoba, Spain
| | - María Victoria García-Ortiz
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071, Córdoba, Spain; Department of Genetics, University of Córdoba, 14071, Córdoba, Spain; Reina Sofía University Hospital, 14071, Córdoba, Spain
| | - Rafael R Ariza
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071, Córdoba, Spain; Department of Genetics, University of Córdoba, 14071, Córdoba, Spain; Reina Sofía University Hospital, 14071, Córdoba, Spain
| | - Teresa Roldán-Arjona
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071, Córdoba, Spain; Department of Genetics, University of Córdoba, 14071, Córdoba, Spain; Reina Sofía University Hospital, 14071, Córdoba, Spain.
| |
Collapse
|
59
|
Editing DNA Methylation in Mammalian Embryos. Int J Mol Sci 2020; 21:ijms21020637. [PMID: 31963664 PMCID: PMC7014263 DOI: 10.3390/ijms21020637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 01/08/2023] Open
Abstract
DNA methylation in mammals is essential for numerous biological functions, such as ensuring chromosomal stability, genomic imprinting, and X-chromosome inactivation through transcriptional regulation. Gene knockout of DNA methyltransferases and demethylation enzymes has made significant contributions to analyzing the functions of DNA methylation in development. By applying epigenome editing, it is now possible to manipulate DNA methylation in specific genomic regions and to understand the functions of these modifications. In this review, we first describe recent DNA methylation editing technology. We then focused on changes in DNA methylation status during mammalian gametogenesis and preimplantation development, and have discussed the implications of applying this technology to early embryos.
Collapse
|
60
|
Sajwan S, Mannervik M. Gene activation by dCas9-CBP and the SAM system differ in target preference. Sci Rep 2019; 9:18104. [PMID: 31792240 PMCID: PMC6888908 DOI: 10.1038/s41598-019-54179-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/08/2019] [Indexed: 12/21/2022] Open
Abstract
Gene overexpression through the targeting of transcription activation domains to regulatory DNA via catalytically defective Cas9 (dCas9) represents a powerful approach to investigate gene function as well as the mechanisms of gene control. To date, the most efficient dCas9-based activator is the Synergistic Activation Mediator (SAM) system whereby transcription activation domains are directly fused to dCas9 as well as tethered through MS2 loops engineered into the gRNA. Here, we show that dCas9 fused to the catalytic domain of the histone acetyltransferase CBP is a more potent activator than the SAM system at some loci, but less efficient at other locations in Drosophila cells. Our results suggest that different rate-limiting steps in the transcription cycle are affected by dCas9-CBP and the SAM system, and that comparing these activators may be useful for mechanistic studies of transcription as well as for increasing the number of hits in genome-wide overexpression screens.
Collapse
Affiliation(s)
- Suresh Sajwan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden.
| | - Mattias Mannervik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden.
| |
Collapse
|
61
|
Brezgin S, Kostyusheva A, Kostyushev D, Chulanov V. Dead Cas Systems: Types, Principles, and Applications. Int J Mol Sci 2019; 20:E6041. [PMID: 31801211 PMCID: PMC6929090 DOI: 10.3390/ijms20236041] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022] Open
Abstract
The gene editing tool CRISPR-Cas has become the foundation for developing numerous molecular systems used in research and, increasingly, in medical practice. In particular, Cas proteins devoid of nucleolytic activity (dead Cas proteins; dCas) can be used to deliver functional cargo to programmed sites in the genome. In this review, we describe current CRISPR systems used for developing different dCas-based molecular approaches and summarize their most significant applications. We conclude with comments on the state-of-art in the CRISPR field and future directions.
Collapse
MESH Headings
- CRISPR-Associated Protein 9/genetics
- CRISPR-Associated Protein 9/metabolism
- CRISPR-Cas Systems
- Chromatin/chemistry
- Chromatin/metabolism
- Clustered Regularly Interspaced Short Palindromic Repeats
- Communicable Diseases/genetics
- Communicable Diseases/metabolism
- Communicable Diseases/pathology
- Communicable Diseases/therapy
- DNA Methylation
- Epigenesis, Genetic
- Gene Editing/methods
- Genetic Diseases, Inborn/genetics
- Genetic Diseases, Inborn/metabolism
- Genetic Diseases, Inborn/pathology
- Genetic Diseases, Inborn/therapy
- Genome, Human
- Histones/genetics
- Histones/metabolism
- Humans
- Inflammation/genetics
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation/therapy
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- Neoplasms/therapy
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
Collapse
Affiliation(s)
- Sergey Brezgin
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow 127994, Russia; (S.B.); (A.K.); (V.C.)
- Institute of Immunology, Federal Medical Biological Agency, Moscow 115522, Russia
| | - Anastasiya Kostyusheva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow 127994, Russia; (S.B.); (A.K.); (V.C.)
| | - Dmitry Kostyushev
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow 127994, Russia; (S.B.); (A.K.); (V.C.)
| | - Vladimir Chulanov
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow 127994, Russia; (S.B.); (A.K.); (V.C.)
- Sechenov First Moscow State Medical University, Moscow 119146, Russia
- Central Research Institute of Epidemiology, Moscow 111123, Russia
| |
Collapse
|
62
|
Baumann V, Stricker SH. Seeking fate-CRISPRa screens reveal new neural lineage and reprogramming factors. Stem Cell Investig 2019; 6:30. [PMID: 31620477 DOI: 10.21037/sci.2019.08.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/30/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Valentin Baumann
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian-Universität, BioMedical Center, Planegg-Martinsried, Germany
| | - Stefan H Stricker
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian-Universität, BioMedical Center, Planegg-Martinsried, Germany.,Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, BioMedical Center, Planegg-Martinsried, Germany
| |
Collapse
|