51
|
Buechner J, Caruana I, Künkele A, Rives S, Vettenranta K, Bader P, Peters C, Baruchel A, Calkoen FG. Chimeric Antigen Receptor T-Cell Therapy in Paediatric B-Cell Precursor Acute Lymphoblastic Leukaemia: Curative Treatment Option or Bridge to Transplant? Front Pediatr 2022; 9:784024. [PMID: 35145941 PMCID: PMC8823293 DOI: 10.3389/fped.2021.784024] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/02/2021] [Indexed: 01/02/2023] Open
Abstract
Chimeric antigen receptor T-cell therapy (CAR-T) targeting CD19 has been associated with remarkable responses in paediatric patients and adolescents and young adults (AYA) with relapsed/refractory (R/R) B-cell precursor acute lymphoblastic leukaemia (BCP-ALL). Tisagenlecleucel, the first approved CD19 CAR-T, has become a viable treatment option for paediatric patients and AYAs with BCP-ALL relapsing repeatedly or after haematopoietic stem cell transplantation (HSCT). Based on the chimeric antigen receptor molecular design and the presence of a 4-1BB costimulatory domain, tisagenlecleucel can persist for a long time and thereby provide sustained leukaemia control. "Real-world" experience with tisagenlecleucel confirms the safety and efficacy profile observed in the pivotal registration trial. Recent guidelines for the recognition, management and prevention of the two most common adverse events related to CAR-T - cytokine release syndrome and immune-cell-associated neurotoxicity syndrome - have helped to further decrease treatment toxicity. Consequently, the questions of how and for whom CD19 CAR-T could substitute HSCT in BCP-ALL are inevitable. Currently, 40-50% of R/R BCP-ALL patients relapse post CD19 CAR-T with either CD19- or CD19+ disease, and consolidative HSCT has been proposed to avoid disease recurrence. Contrarily, CD19 CAR-T is currently being investigated in the upfront treatment of high-risk BCP-ALL with an aim to avoid allogeneic HSCT and associated treatment-related morbidity, mortality and late effects. To improve survival and decrease long-term side effects in children with BCP-ALL, it is important to define parameters predicting the success or failure of CAR-T, allowing the careful selection of candidates in need of HSCT consolidation. In this review, we describe the current clinical evidence on CAR-T in BCP-ALL and discuss factors associated with response to or failure of this therapy: product specifications, patient- and disease-related factors and the impact of additional therapies given before (e.g., blinatumomab and inotuzumab ozogamicin) or after infusion (e.g., CAR-T re-infusion and/or checkpoint inhibition). We discuss where to position CAR-T in the treatment of BCP-ALL and present considerations for the design of supportive trials for the different phases of disease. Finally, we elaborate on clinical settings in which CAR-T might indeed replace HSCT.
Collapse
Affiliation(s)
- Jochen Buechner
- Department of Pediatric Hematology and Oncology, Oslo University Hospital, Oslo, Norway
| | - Ignazio Caruana
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation, University Hospital Würzburg, Würzburg, Germany
| | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Susana Rives
- Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu de Barcelona, Institut per la Recerca Sant Joan de Déu, Barcelona, Spain
| | - Kim Vettenranta
- University of Helsinki and Children's Hospital, University of Helsinki, Helsinki, Finland
| | - Peter Bader
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital, Goethe University, Frankfurt, Germany
| | - Christina Peters
- St. Anna Children's Hospital, Medical University Vienna, Vienna, Austria
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - André Baruchel
- Université de Paris et Institut de Recherche Saint-Louis (EA 35-18) and Hôpital Universitaire Robert Debré (APHP), Paris, France
| | - Friso G. Calkoen
- Department of Stem Cell Transplantation and Cellular Therapy, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| |
Collapse
|
52
|
Wang X, Wong LM, McElvain ME, Martire S, Lee WH, Li CZ, Fisher FA, Maheshwari RL, Wu ML, Imun MC, Murad R, Warshaviak DT, Yin J, Kamb A, Xu H. A rational approach to assess off-target reactivity of a dual-signal integrator for T cell therapy. Toxicol Appl Pharmacol 2022; 437:115894. [DOI: 10.1016/j.taap.2022.115894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 01/16/2023]
|
53
|
Kashyap A, Rapsomaniki MA, Barros V, Fomitcheva-Khartchenko A, Martinelli AL, Rodriguez AF, Gabrani M, Rosen-Zvi M, Kaigala G. Quantification of tumor heterogeneity: from data acquisition to metric generation. Trends Biotechnol 2021; 40:647-676. [PMID: 34972597 DOI: 10.1016/j.tibtech.2021.11.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 01/18/2023]
Abstract
Tumors are unique and complex ecosystems, in which heterogeneous cell subpopulations with variable molecular profiles, aggressiveness, and proliferation potential coexist and interact. Understanding how heterogeneity influences tumor progression has important clinical implications for improving diagnosis, prognosis, and treatment response prediction. Several recent innovations in data acquisition methods and computational metrics have enabled the quantification of spatiotemporal heterogeneity across different scales of tumor organization. Here, we summarize the most promising efforts from a common experimental and computational perspective, discussing their advantages, shortcomings, and challenges. With personalized medicine entering a new era of unprecedented opportunities, our vision is that of future workflows integrating across modalities, scales, and dimensions to capture intricate aspects of the tumor ecosystem and to open new avenues for improved patient care.
Collapse
Affiliation(s)
- Aditya Kashyap
- IBM Research Europe -Säumerstrasse 4, Rüschlikon CH-8803, Zurich, Switzerland
| | | | - Vesna Barros
- Department of Healthcare Informatics, IBM Research, IBM R&D Labs, University of Haifa Campus, Mount Carmel, Haifa, 3498825, Israel; The Hebrew University, The Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Anna Fomitcheva-Khartchenko
- IBM Research Europe -Säumerstrasse 4, Rüschlikon CH-8803, Zurich, Switzerland; Eidgenössische Technische Hochschule (ETH-Zurich), Vladimir-Prelog-Weg 1-5/10, 8099 Zurich, Switzerland
| | | | | | - Maria Gabrani
- IBM Research Europe -Säumerstrasse 4, Rüschlikon CH-8803, Zurich, Switzerland
| | - Michal Rosen-Zvi
- Department of Healthcare Informatics, IBM Research, IBM R&D Labs, University of Haifa Campus, Mount Carmel, Haifa, 3498825, Israel; The Hebrew University, The Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Govind Kaigala
- IBM Research Europe -Säumerstrasse 4, Rüschlikon CH-8803, Zurich, Switzerland.
| |
Collapse
|
54
|
Katsarou A, Sjöstrand M, Naik J, Mansilla-Soto J, Kefala D, Kladis G, Nianias A, Ruiter R, Poels R, Sarkar I, Patankar YR, Merino E, Reijmers RM, Frerichs KA, Yuan H, de Bruijn J, Stroopinsky D, Avigan D, van de Donk NW, Zweegman S, Mutis T, Sadelain M, Groen RW, Themeli M. Combining a CAR and a chimeric costimulatory receptor enhances T cell sensitivity to low antigen density and promotes persistence. Sci Transl Med 2021; 13:eabh1962. [PMID: 34878825 PMCID: PMC9869449 DOI: 10.1126/scitranslmed.abh1962] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Despite the high remission rates achieved using T cells bearing a chimeric antigen receptor (CAR) against hematogical malignancies, there is still a considerable proportion of patients who eventually experience tumor relapse. Clinical studies have established that mechanisms of treatment failure include the down-regulation of target antigen expression and the limited persistence of effective CAR T cells. We hypothesized that dual targeting mediated by a CAR and a chimeric costimulatory receptor (CCR) could simultaneously enhance T cell cytotoxicity and improve durability. Concomitant high-affinity engagement of a CD38-binding CCR enhanced the cytotoxicity of BCMA-CAR and CD19-CAR T cells by increasing their functional binding avidity. In comparison to second-generation BCMA-CAR or CD19-CAR T cells, double-targeted CAR + CD38-CCR T cells exhibited increased sensitivity to recognize and lyse tumor variants of multiple myeloma and acute lymphoblastic leukemia with low antigen density in vitro. In addition, complimentary costimulation by 4-1BB and CD28 endodomains provided by the CAR and CCR combination conferred increased cytokine secretion and expansion and improved persistence in vivo. The cumulatively improved properties of CAR + CCR T cells enabled the in vivo eradication of antigen-low tumor clones, which were otherwise resistant to treatment with conventional CAR T cells. Therefore, multiplexing targeting and costimulation through the combination of a CAR and a CCR is a powerful strategy to improve the clinical outcomes of CAR T cells by enhancing cytotoxic efficacy and persistence, thus preventing relapses of tumor clones with low target antigen density.
Collapse
Affiliation(s)
- Afroditi Katsarou
- Department of Hematology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam; 1081 HV Amsterdam, Netherlands
| | - Maria Sjöstrand
- Center for Cell Engineering, Immunology Program, Memorial Sloan Kettering Cancer Center; NY 10065 New York, USA
| | - Jyoti Naik
- Department of Hematology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam; 1081 HV Amsterdam, Netherlands
| | - Jorge Mansilla-Soto
- Center for Cell Engineering, Immunology Program, Memorial Sloan Kettering Cancer Center; NY 10065 New York, USA
| | - Dionysia Kefala
- Department of Hematology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam; 1081 HV Amsterdam, Netherlands
| | - Georgios Kladis
- Department of Hematology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam; 1081 HV Amsterdam, Netherlands
| | - Alexandros Nianias
- Department of Hematology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam; 1081 HV Amsterdam, Netherlands
| | - Ruud Ruiter
- Department of Hematology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam; 1081 HV Amsterdam, Netherlands
| | - Renée Poels
- Department of Hematology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam; 1081 HV Amsterdam, Netherlands
| | - Irene Sarkar
- LUMICKS; Pilotenstraat 41 1059 CH Amsterdam, Netherlands
| | | | - Elena Merino
- LUMICKS; Pilotenstraat 41 1059 CH Amsterdam, Netherlands
| | | | - Kristine A. Frerichs
- Department of Hematology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam; 1081 HV Amsterdam, Netherlands
| | - Huipin Yuan
- Kuros Biosciences BV; 3723 MB Bilthoven, The Netherlands
| | - Joost de Bruijn
- Kuros Biosciences BV; 3723 MB Bilthoven, The Netherlands.,The School of Engineering and Materials Science, Queen Mary University of London; E1 4NS London, United Kingdom
| | - Dina Stroopinsky
- Beth Israel Deaconess Medical Center, Harvard Medical School; MA 02215 Boston, MA, USA
| | - David Avigan
- Beth Israel Deaconess Medical Center, Harvard Medical School; MA 02215 Boston, MA, USA
| | - Niels W.C.J. van de Donk
- Department of Hematology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam; 1081 HV Amsterdam, Netherlands
| | - Sonja Zweegman
- Department of Hematology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam; 1081 HV Amsterdam, Netherlands
| | - Tuna Mutis
- Department of Hematology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam; 1081 HV Amsterdam, Netherlands
| | - Michel Sadelain
- Center for Cell Engineering, Immunology Program, Memorial Sloan Kettering Cancer Center; NY 10065 New York, USA
| | - Richard W.J. Groen
- Department of Hematology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam; 1081 HV Amsterdam, Netherlands
| | - Maria Themeli
- Department of Hematology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam; 1081 HV Amsterdam, Netherlands.,Corresponding author: Maria Themeli MD PhD., VU University Medical Center, Dept. of Hematology, CCA 4.28, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands. Tel. +31 (0) 204447413,
| |
Collapse
|
55
|
Two-colour single-molecule photoinduced electron transfer fluorescence imaging microscopy of chaperone dynamics. Nat Commun 2021; 12:6964. [PMID: 34845214 PMCID: PMC8630005 DOI: 10.1038/s41467-021-27286-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/11/2021] [Indexed: 11/20/2022] Open
Abstract
Many proteins are molecular machines, whose function is dependent on multiple conformational changes that are initiated and tightly controlled through biochemical stimuli. Their mechanistic understanding calls for spectroscopy that can probe simultaneously such structural coordinates. Here we present two-colour fluorescence microscopy in combination with photoinduced electron transfer (PET) probes as a method that simultaneously detects two structural coordinates in single protein molecules, one colour per coordinate. This contrasts with the commonly applied resonance energy transfer (FRET) technique that requires two colours per coordinate. We demonstrate the technique by directly and simultaneously observing three critical structural changes within the Hsp90 molecular chaperone machinery. Our results reveal synchronicity of conformational motions at remote sites during ATPase-driven closure of the Hsp90 molecular clamp, providing evidence for a cooperativity mechanism in the chaperone’s catalytic cycle. Single-molecule PET fluorescence microscopy opens up avenues in the multi-dimensional exploration of protein dynamics and allosteric mechanisms. Revealing mechanisms of complex protein machines requires simultaneous exploration of multiple structural coordinates. Here the authors report two-colour fluorescence microscopy combined with photoinduced electron transfer probes to simultaneously detect two structural coordinates in single protein molecules.
Collapse
|
56
|
Liang Z, Dong J, Yang N, Li SD, Yang ZY, Huang R, Li FJ, Wang WT, Ren JK, Lei J, Xu C, Wang D, Wang YZ, Liang ZQ. Tandem CAR-T cells targeting FOLR1 and MSLN enhance the antitumor effects in ovarian cancer. Int J Biol Sci 2021; 17:4365-4376. [PMID: 34803504 PMCID: PMC8579462 DOI: 10.7150/ijbs.63181] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/30/2021] [Indexed: 11/05/2022] Open
Abstract
Given the heterogeneity of solid tumors, single-target CAR-T cell therapy often leads to recurrence, especially in ovarian cancer (OV). Here, we constructed a Tandem-CAR targeting two antigens with secretory activity (IL-12) to improve the effects of CAR-T cell therapy. Twenty coexpressed upregulated genes were identified from the GEO database, and we found FOLR1 (folate receptor 1) and MSLN (mesothelin) were specifically and highly expressed in cancer tissues and only 11.25% of samples were negative for both antigens. We observed an increased proliferation rate for these three CAR-T cells, and Tandem CAR-T cells could efficiently lyse antigen-positive OV cells in vitro and secrete higher levels of cytokines than single-target CAR-T cells. More importantly, in vivo experiments indicated that Tandem CAR-T cells markedly decreased tumor volume, exhibited enhanced antitumor activity, and prolonged mouse survival. Furthermore, the infiltration and persistence of T cells in the Tandem-CAR group were higher than those in the MSLN-CAR and Control-T groups but comparable to those in the FOLR1-CAR group. Collectively, this study demonstrated that Tandem CAR-T cells secreting IL-12 could enhance immunotherapeutic effects by reducing tumor antigen escape and increasing T cell functionality, which could be a promising therapeutic strategy for OV and other solid tumors.
Collapse
Affiliation(s)
- Zhen Liang
- Department of Obstetrics and Gynecology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiao Dong
- Department of Obstetrics and Gynecology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Obstetrics and Gynecology, Guangyuan Traditional Chinese Medicine Hospital, Guangyuan, China
| | - Neng Yang
- Department of Obstetrics and Gynecology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Si-Di Li
- Department of Obstetrics and Gynecology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ze-Yu Yang
- Breast and Thyroid Surgical Department, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Rui Huang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Feng-Jie Li
- Department of Obstetrics and Gynecology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wen-Ting Wang
- Department of Obstetrics and Gynecology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jia-Kui Ren
- Department of Obstetrics and Gynecology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jie Lei
- Department of Internal Medicine, Hui Long-Ba Town Hospital, Chongqing, China
| | - Chen Xu
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dan Wang
- Department of Obstetrics and Gynecology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan-Zhou Wang
- Department of Obstetrics and Gynecology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhi-Qing Liang
- Department of Obstetrics and Gynecology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
57
|
Schröder T, Bange S, Schedlbauer J, Steiner F, Lupton JM, Tinnefeld P, Vogelsang J. How Blinking Affects Photon Correlations in Multichromophoric Nanoparticles. ACS NANO 2021; 15:18037-18047. [PMID: 34735135 DOI: 10.1021/acsnano.1c06649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A single chromophore can only emit a maximum of one single photon per excitation cycle. This limitation results in a phenomenon commonly referred to as photon antibunching (pAB). When multiple chromophores contribute to the fluorescence measured, the degree of pAB has been used as a metric to "count" the number of chromophores. But the fact that chromophores can switch randomly between bright and dark states also impacts pAB and can lead to incorrect chromophore numbers being determined from pAB measurements. By both simulations and experiment, we demonstrate how pAB is affected by independent and collective chromophore blinking, enabling us to formulate universal guidelines for correct interpretation of pAB measurements. We use DNA-origami nanostructures to design multichromophoric model systems that exhibit either independent or collective chromophore blinking. Two approaches are presented that can distinguish experimentally between these two blinking mechanisms. The first one utilizes the different excitation intensity dependence on the blinking mechanisms. The second approach exploits the fact that collective blinking implies energy transfer to a quenching moiety, which is a time-dependent process. In pulsed-excitation experiments, the degree of collective blinking can therefore be altered by time gating the fluorescence photon stream, enabling us to extract the energy-transfer rate to a quencher. The ability to distinguish between different blinking mechanisms is valuable in materials science, such as for multichromophoric nanoparticles like conjugated-polymer chains as well as in biophysics, for example, for quantitative analysis of protein assemblies by counting chromophores.
Collapse
Affiliation(s)
- Tim Schröder
- Department Chemie and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Sebastian Bange
- Institut für Experimentelle und Angewandte Physik and Regensburg Center for Ultrafast Nanoscopy (RUN), Universität Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| | - Jakob Schedlbauer
- Institut für Experimentelle und Angewandte Physik and Regensburg Center for Ultrafast Nanoscopy (RUN), Universität Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| | - Florian Steiner
- Department Chemie and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - John M Lupton
- Institut für Experimentelle und Angewandte Physik and Regensburg Center for Ultrafast Nanoscopy (RUN), Universität Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| | - Philip Tinnefeld
- Department Chemie and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Jan Vogelsang
- Institut für Experimentelle und Angewandte Physik and Regensburg Center for Ultrafast Nanoscopy (RUN), Universität Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| |
Collapse
|
58
|
Abstract
Fluorescence imaging techniques play a pivotal role in our understanding of the nervous system. The emergence of various super-resolution microscopy methods and specialized fluorescent probes enables direct insight into neuronal structure and protein arrangements in cellular subcompartments with so far unmatched resolution. Super-resolving visualization techniques in neurons unveil a novel understanding of cytoskeletal composition, distribution, motility, and signaling of membrane proteins, subsynaptic structure and function, and neuron-glia interaction. Well-defined molecular targets in autoimmune and neurodegenerative disease models provide excellent starting points for in-depth investigation of disease pathophysiology using novel and innovative imaging methodology. Application of super-resolution microscopy in human brain samples and for testing clinical biomarkers is still in its infancy but opens new opportunities for translational research in neurology and neuroscience. In this review, we describe how super-resolving microscopy has improved our understanding of neuronal and brain function and dysfunction in the last two decades.
Collapse
Affiliation(s)
- Christian Werner
- Department of Biotechnology & Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology & Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Christian Geis
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
59
|
Hosny M, Verkleij CPM, van der Schans J, Frerichs KA, Mutis T, Zweegman S, van de Donk NWCJ. Current State of the Art and Prospects of T Cell-Redirecting Bispecific Antibodies in Multiple Myeloma. J Clin Med 2021; 10:4593. [PMID: 34640611 PMCID: PMC8509238 DOI: 10.3390/jcm10194593] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) patients eventually develop multi-drug-resistant disease with poor survival. Hence, the development of novel treatment strategies is of great importance. Recently, different classes of immunotherapeutic agents have shown great promise in heavily pre-treated MM, including T cell-redirecting bispecific antibodies (BsAbs). These BsAbs simultaneously interact with CD3 on effector T cells and a tumor-associated antigen on MM cells, resulting in redirection of T cells to MM cells. This leads to the formation of an immunologic synapse, the release of granzymes/perforins, and subsequent tumor cell lysis. Several ongoing phase 1 studies show substantial activity and a favorable toxicity profile with BCMA-, GPRC5D-, or FcRH5-targeting BsAbs in heavily pre-treated MM patients. Resistance mechanisms against BsAbs include tumor-related features, T cell characteristics, and impact of components of the immunosuppressive tumor microenvironment. Various clinical trials are currently evaluating combination therapy with a BsAb and another agent, such as a CD38-targeting antibody or an immunomodulatory drug (e.g., pomalidomide), to further improve response depth and duration. Additionally, the combination of two BsAbs, simultaneously targeting two different antigens to prevent antigen escape, is being explored in clinical studies. The evaluation of BsAbs in earlier lines of therapy, including newly diagnosed MM, is warranted, based on the efficacy of BsAbs in advanced MM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Niels W. C. J. van de Donk
- Cancer Center Amsterdam, Department of Hematology, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands; (M.H.); (C.P.M.V.); (J.v.d.S.); (K.A.F.); (T.M.); (S.Z.)
| |
Collapse
|
60
|
The role of CD44 in the assessment of minimal residual disease of multiple myeloma by flow cytometry. J Hematop 2021. [DOI: 10.1007/s12308-021-00468-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
61
|
Wang X, Sandberg ML, Martin AD, Negri KR, Gabrelow GB, Nampe DP, Wu ML, McElvain ME, Toledo Warshaviak D, Lee WH, Oh J, Daris ME, Chai F, Yao C, Furney J, Pigott C, Kamb A, Xu H. Potent, Selective CARs as Potential T-Cell Therapeutics for HPV-positive Cancers. J Immunother 2021; 44:292-306. [PMID: 34432728 PMCID: PMC8415731 DOI: 10.1097/cji.0000000000000386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 07/08/2021] [Indexed: 11/26/2022]
Abstract
Next-generation T-cell therapies will likely continue to utilize T-cell receptors (TCRs) and chimeric antigen receptors (CARs) because each receptor type has advantages. TCRs often possess exceptional properties even when tested unmodified from patients' T cells. CARs are generally less sensitive, possibly because their ligand-binding domains are grafted from antibodies selected for binding affinity or avidity and not broadly optimized for a functional response. Because of the disconnect between binding and function among these receptor types, the ultimate potential of CARs optimized for sensitivity and selectivity is not clear. Here, we focus on a thoroughly studied immuno-oncology target, the HLA-A*02/HPV-E629-38 complex, and show that CARs can be optimized by a combination of high-throughput binding screens and low-throughput functional assays to have comparable activity to clinical TCRs in acute assays in vitro. These results provide a case study for the challenges and opportunities of optimizing high-performing CARs, especially in the context of targets utilized naturally by TCRs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Julyun Oh
- A2 Biotherapeutics, Agoura Hills, CA
| | | | - Falene Chai
- Innovative Targeting Solutions, Vancouver, BC, Canada
| | - Christine Yao
- Innovative Targeting Solutions, Vancouver, BC, Canada
| | - James Furney
- Innovative Targeting Solutions, Vancouver, BC, Canada
| | - Craig Pigott
- Innovative Targeting Solutions, Vancouver, BC, Canada
| | | | - Han Xu
- A2 Biotherapeutics, Agoura Hills, CA
| |
Collapse
|
62
|
Rasche L, Wäsch R, Munder M, Goldschmidt H, Raab MS. Novel immunotherapies in multiple myeloma - chances and challenges. Haematologica 2021; 106:2555-2565. [PMID: 34196164 PMCID: PMC8485654 DOI: 10.3324/haematol.2020.266858] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/29/2021] [Indexed: 11/09/2022] Open
Abstract
In this review article, we summarize the latest data on antibody-drug conjugates, bispecific T-cell-engaging antibodies, and chimeric antigen receptor T cells in the treatment of multiple myeloma. We discuss the pivotal questions to be addressed as these new immunotherapies become standard agents in the management of multiple myeloma. We also focus on the selection of patients for these therapies and speculate as to how best to individualize treatment approaches. We see these novel immunotherapies as representing a paradigm shift. However, despite the promising preliminary data, many open issues remain to be evaluated in future trials.
Collapse
Affiliation(s)
- Leo Rasche
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg; Mildred Scheel Early Career Center, University Hospital of Würzburg, Würzburg
| | - Ralph Wäsch
- Department of Internal Medicine I, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg
| | - Markus Munder
- Third Department of Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz
| | - Hartmut Goldschmidt
- Department of Internal Medicine V, University Hospital of Heidelberg, Heidelberg; National Center of Tumor Diseases (NCT), Heidelberg and
| | - Marc S Raab
- Department of Internal Medicine V, University Hospital of Heidelberg, Heidelberg; CCU Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
63
|
Abramson HN. Immunotherapy of Multiple Myeloma: Promise and Challenges. Immunotargets Ther 2021; 10:343-371. [PMID: 34527606 PMCID: PMC8437262 DOI: 10.2147/itt.s306103] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
Whereas the treatment of MM was dependent solely on alkylating agents and corticosteroids during the prior three decades, the landscape of therapeutic measures to treat the disease began to expand enormously early in the current century. The introduction of new classes of small-molecule drugs, such as proteasome blockers (bortezomib and carfilzomib), immunomodulators (lenalidomide and pomalidomide), nuclear export inhibitors (selinexor), and histone deacetylase blockers (panobinostat), as well as the application of autologous stem cell transplantation (ASCT), resulted in a seismic shift in how the disease is treated. The picture changed dramatically once again starting with the 2015 FDA approval of two monoclonal antibodies (mAbs) - the anti-CD38 daratumumab and the anti-SLAMF7 elotuzumab. Daratumumab, in particular, has had a great impact on MM therapy and today is often included in various regimens to treat the disease, both in newly diagnosed cases and in the relapse/refractory setting. Recently, other immunotherapies have been added to the arsenal of drugs available to fight this malignancy. These include isatuximab (also anti-CD38) and, in the past year, the antibody-drug conjugate (ADC) belantamab mafodotin and the chimeric antigen receptor (CAR) T-cell product idecabtagene vicleucel (ide-cel). While the accumulated benefits of these newer agents have resulted in a doubling of the disease's five-year survival rate to more than 5 years and improved quality of life, the disease remains incurable. Almost without exception patients experience relapse and/or become refractory to the drugs used, making the search for innovative therapies all the more essential. This review covers the current scope of anti-myeloma immunotherapeutic agents, both those in clinical use and on the horizon, including naked mAbs, ADCs, bi- and multi-targeted mAbs, and CAR T-cells. Emphasis is placed on the benefits of each along with the challenges that need to be overcome if MM is to be considered curable in the future.
Collapse
Affiliation(s)
- Hanley N Abramson
- Wayne State University, Department of Pharmaceutical Sciences, Detroit, MI, 48201, USA
| |
Collapse
|
64
|
Hwang MS, Miller MS, Thirawatananond P, Douglass J, Wright KM, Hsiue EHC, Mog BJ, Aytenfisu TY, Murphy MB, Aitana Azurmendi P, Skora AD, Pearlman AH, Paul S, DiNapoli SR, Konig MF, Bettegowda C, Pardoll DM, Papadopoulos N, Kinzler KW, Vogelstein B, Zhou S, Gabelli SB. Structural engineering of chimeric antigen receptors targeting HLA-restricted neoantigens. Nat Commun 2021; 12:5271. [PMID: 34489470 PMCID: PMC8421441 DOI: 10.1038/s41467-021-25605-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 08/16/2021] [Indexed: 01/17/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cells have emerged as a promising class of therapeutic agents, generating remarkable responses in the clinic for a subset of human cancers. One major challenge precluding the wider implementation of CAR therapy is the paucity of tumor-specific antigens. Here, we describe the development of a CAR targeting the tumor-specific isocitrate dehydrogenase 2 (IDH2) with R140Q mutation presented on the cell surface in complex with a common human leukocyte antigen allele, HLA-B*07:02. Engineering of the hinge domain of the CAR, as well as crystal structure-guided optimization of the IDH2R140Q-HLA-B*07:02-targeting moiety, enhances the sensitivity and specificity of CARs to enable targeting of this HLA-restricted neoantigen. This approach thus holds promise for the development and optimization of immunotherapies specific to other cancer driver mutations that are difficult to target by conventional means. Chimeric antigen receptor T cells in the clinic currently target cell-type-specific extracellular antigens on malignant cells. Here, authors engineer tumor-specific chimeric antigen receptor T cells that target human leukocyte antigen-presented neoantigens derived from mutant intracellular proteins.
Collapse
Affiliation(s)
- Michael S Hwang
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Genentech, Inc., South San Francisco, CA, USA
| | - Michelle S Miller
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.,Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Puchong Thirawatananond
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacqueline Douglass
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Katharine M Wright
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Emily Han-Chung Hsiue
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brian J Mog
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Tihitina Y Aytenfisu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - P Aitana Azurmendi
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew D Skora
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Lilly Biotechnology Center, Eli Lilly and Co, San Diego, CA, USA
| | - Alexander H Pearlman
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Suman Paul
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah R DiNapoli
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maximilian F Konig
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chetan Bettegowda
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Drew M Pardoll
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nickolas Papadopoulos
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth W Kinzler
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bert Vogelstein
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA. .,Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA. .,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA. .,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Sandra B Gabelli
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
65
|
Swan D, Routledge D, Harrison S. The evolving status of immunotherapies in multiple myeloma: the future role of bispecific antibodies. Br J Haematol 2021; 196:488-506. [PMID: 34472091 DOI: 10.1111/bjh.17805] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022]
Abstract
Treatment outcomes in multiple myeloma (MM) have improved dramatically over the past 10 years. However, patients with high-risk disease such as those with Stage III disease by the Revised International Staging System, the presence of adverse cytogenetics, or who are refractory to proteosome inhibitors, immunomodulatory drugs and monoclonal antibodies may have dismal outcomes. These patients represent an urgent ongoing need in MM. One of the hallmarks of MM is immune dysfunction and a tumour-permissive immune microenvironment. Ameliorating the immune-paresis could lead to improved outcomes. The role of immunotherapies has been growing at an exponential pace with numerous agents under development in clinical trials. In the present review, we provide an overview of immunotherapies in MM, focussing on bispecific antibodies (BsAbs). We review efficacy outcomes from the published clinical trials and consider the important safety aspects of these therapies, in particular the risk of cytokine-release syndrome and immune effector cell-associated neurotoxicity syndrome, and how these compare with patients receiving chimeric antigen receptor T cells. We discuss the MM epitopes being targeted by BsAbs, either in clinical or preclinical stages, and we consider where these therapies might best fit within the future ever-changing paradigm of MM treatment.
Collapse
Affiliation(s)
- Dawn Swan
- Department of Haematology, St James' Hospital, Dublin, Ireland
| | - David Routledge
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | - Simon Harrison
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
66
|
The ROR1 antibody-drug conjugate huXBR1-402-G5-PNU effectively targets ROR1+ leukemia. Blood Adv 2021; 5:3152-3162. [PMID: 34424320 DOI: 10.1182/bloodadvances.2020003276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 04/18/2021] [Indexed: 11/20/2022] Open
Abstract
Antibody-drug conjugates directed against tumor-specific targets have allowed targeted delivery of highly potent chemotherapy to malignant cells while sparing normal cells. Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is an oncofetal protein with limited expression on normal adult tissues and is overexpressed on the surface of malignant cells in mantle cell lymphoma, acute lymphocytic leukemia with t(1;19)(q23;p13) translocation, and chronic lymphocytic leukemia. This differential expression makes ROR1 an attractive target for antibody-drug conjugate therapy, especially in malignancies such as mantle cell lymphoma and acute lymphocytic leukemia, in which systemic chemotherapy remains the gold standard. Several preclinical and phase 1 clinical studies have established the safety and effectiveness of anti-ROR1 monoclonal antibody-based therapies. Herein we describe a humanized, first-in-class anti-ROR1 antibody-drug conjugate, huXBR1-402-G5-PNU, which links a novel anti-ROR1 antibody (huXBR1-402) to a highly potent anthracycline derivative (PNU). We found that huXBR1-402-G5-PNU is cytotoxic to proliferating ROR1+ malignant cells in vitro and suppressed leukemia proliferation and extended survival in multiple models of mice engrafted with human ROR1+ leukemia. Lastly, we show that the B-cell lymphoma 2 (BCL2)-dependent cytotoxicity of huXBR1-402-G5-PNU can be leveraged by combined treatment strategies with the BCL2 inhibitor venetoclax. Together, our data present compelling preclinical evidence for the efficacy of huXBR1-402-G5-PNU in treating ROR1+ hematologic malignancies.
Collapse
|
67
|
Ng DP. Flow cytometric myeloma measurable residual disease testing in the era of targeted therapies. Int J Lab Hematol 2021; 43 Suppl 1:71-77. [PMID: 34288444 DOI: 10.1111/ijlh.13587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 11/30/2022]
Abstract
Therapies in myeloma are rapidly advancing with a host of new targeted therapies coming to market. While these drugs offer significant survival benefits and better side-effect profiles compared with conventional chemotherapeutics, they raise significant difficulties in monitoring post-therapy disease status by flow cytometry due to assay interference and/or selection of phenotypically different sub-clones. The principal culprit, anti-CD38 monoclonal antibodies, limits the ability to detect plasma cells based on classical CD38/CD45 gating. Other markers, such as CD138, are known to be suboptimal by flow cytometry. Various techniques have been proposed to overcome this problem. The most promising of these techniques has been the marker VS38c, a monoclonal antibody targeting an endoplasmic reticulum protein which has shown high sensitivity for plasma cells. Alternative techniques for gating plasma cells, while variably effective in the near term are already the subject of several targeted therapies rendering their usefulness limited in the longer term. Likewise, future targets of these therapies may render present aberrancy markers ineffective in MRD testing. These therapies pose challenges that must be overcome with new markers and novel panels in order for flow cytometric MRD testing to remain relevant.
Collapse
Affiliation(s)
- David P Ng
- University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
68
|
Bruno B, Wäsch R, Engelhardt M, Gay F, Giaccone L, D'Agostino M, Rodríguez-Lobato LG, Danhof S, Gagelmann N, Kröger N, Popat R, Van de Donk NWCJ, Terpos E, Dimopoulos MA, Sonneveld P, Einsele H, Boccadoro M. European Myeloma Network perspective on CAR T-Cell therapies for multiple myeloma. Haematologica 2021; 106:2054-2065. [PMID: 33792221 PMCID: PMC8327729 DOI: 10.3324/haematol.2020.276402] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells (CAR-T) have dramatically changed the treatment landscape of B-cell malignancies, providing a potential cure for relapsed/refractory patients. Long-term responses in patients with acute lymphoblastic leukemia and non Hodgkin lymphomas have encouraged further development in myeloma. In particular, B-cell maturation antigen (BCMA)-targeted CAR-T have established very promising results in heavily pre-treated patients. Moreover, CAR-T targeting other antigens (i.e., SLAMF7 and CD44v6) are currently under investigation. However, none of these current autologous therapies have been approved, and despite high overall response rates across studies, main issues such as long-term outcome, toxicities, treatment resistance, and management of complications limit as yet their widespread use. Here, we critically review the most important pre-clinical and clinical findings, recent advances in CAR-T against myeloma, as well as discoveries in the biology of a still incurable disease, that, all together, will further improve safety and efficacy in relapsed/refractory patients, urgently in need of novel treatment options.
Collapse
Affiliation(s)
- Benedetto Bruno
- Department of Molecular Biotechnology and Health Sciences, University of Torino and Department of Oncology, Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy; Division of Hematology and Medical Oncology, Perlmutter Cancer Center, Grossman School of Medicine, NYU Langone Health, New York, NY.
| | - Ralph Wäsch
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg
| | - Monika Engelhardt
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg
| | - Francesca Gay
- Department of Molecular Biotechnology and Health Sciences, University of Torino and Department of Oncology, Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino
| | - Luisa Giaccone
- Department of Molecular Biotechnology and Health Sciences, University of Torino and Department of Oncology, Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino
| | - Mattia D'Agostino
- Department of Molecular Biotechnology and Health Sciences, University of Torino and Department of Oncology, Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino
| | - Luis-Gerardo Rodríguez-Lobato
- Unit of Amyloidosis and Multiple Myeloma, Department of Hematology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Division of Medicine II, University Hospital Würzburg, Würzburg
| | - Sophia Danhof
- Division of Medicine II, University Hospital Würzburg, Würzburg
| | - Nico Gagelmann
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg
| | - Rakesh Popat
- Department of Hematology, University College London Hospitals, London
| | - Niels W C J Van de Donk
- Department of Hematology, Amsterdam University Medical Centers, Cancer Center Amsterdam, Location VUmc, Amsterdam
| | - Evangelos Terpos
- Stem Cell Transplantation Unit, Plasma Cell Dyscrasias Unit, Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens
| | - Meletios A Dimopoulos
- Stem Cell Transplantation Unit, Plasma Cell Dyscrasias Unit, Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens
| | | | - Hermann Einsele
- Division of Medicine II, University Hospital Würzburg, Würzburg
| | - Mario Boccadoro
- Department of Molecular Biotechnology and Health Sciences, University of Torino and Department of Oncology, Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino
| |
Collapse
|
69
|
Glowacki SK, Gomes de Castro MA, Yip KM, Asadpour O, Münchhalfen M, Engels N, Opazo F. A fluorescent probe for STED microscopy to study NIP-specific B cells. Analyst 2021; 146:4744-4747. [PMID: 34226908 DOI: 10.1039/d1an00601k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a series of monovalent fluorophore-conjugated affinity probes based on the hapten 3-nitro-4-hydroxy-5-iodophenylacetyl (NIP), which is widely used as a model antigen to study B lymphocytes and the functional principles of B cell antigen receptors (BCRs). We successfully used them in flow-cytometry, confocal and super-resolution microscopy techniques.
Collapse
Affiliation(s)
- Selda Kabatas Glowacki
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
70
|
Siglec-6 is a novel target for CAR T-cell therapy in acute myeloid leukemia (AML). Blood 2021; 138:1830-1842. [PMID: 34289026 PMCID: PMC9642786 DOI: 10.1182/blood.2020009192] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 06/26/2021] [Indexed: 11/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is attractive for the development of CAR T-cell immunotherapy because AML blasts are susceptible to T-cell-mediated elimination. Here, we introduce sialic-acid-binding immunoglobulin-like lectin (Siglec)-6 as a novel target for CAR T-cells in AML. We designed a Siglec-6-specific CAR with a targeting-domain derived from a human monoclonal antibody JML‑1. We found that Siglec-6 is prevalently expressed on AML cell lines and primary AML blasts, including the subpopulation of AML stem cells. Treatment with Siglec-6-CAR T-cells confers specific anti-leukemia reactivity that correlates with Siglec-6-expression in pre-clinical models, including induction of complete remission in a xenograft AML model in immunodeficient mice (NSG/U937). In addition, we confirmed Siglec-6-expression on transformed B-cells in chronic lymphocytic leukemia (CLL) and show specific anti-CLL-reactivity of Siglec-6-CAR T-cells in vitro. Of particular interest, we found that Siglec-6 is not detectable on normal hematopoietic stem and progenitor cells (HSC/P) and that treatment with Siglec-6-CAR T-cells does not affect their viability and lineage differentiation in colony-formation assays. These data suggest that Siglec-6-CAR T-cell therapy may be used to effectively treat AML without a need for subsequent allogeneic hematopoietic stem cell transplantation. In mature normal hematopoietic cells, we detected Siglec-6 in a proportion of memory (and naïve) B-cells and basophilic granulocytes, suggesting the potential for limited on-target/off-tumor reactivity. The lacking expression of Siglec-6 on normal HSC/P is a key differentiator from other Siglec-family members (e.g. Siglec-3=CD33) and other CAR target antigens, e.g. CD123, that are under investigation in AML and warrants the clinical investigation of Siglec-6-CAR T-cell therapy.
Collapse
|
71
|
van de Donk NWCJ, Themeli M, Usmani SZ. Determinants of response and mechanisms of resistance of CAR T-cell therapy in multiple myeloma. Blood Cancer Discov 2021; 2:302-318. [PMID: 34386775 PMCID: PMC8357299 DOI: 10.1158/2643-3230.bcd-20-0227] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/18/2021] [Accepted: 03/28/2021] [Indexed: 01/17/2023] Open
Abstract
BCMA-specific CAR T-cells have substantial therapeutic potential in multiple myeloma (MM), but most patients eventually relapse. Determinants of response and mechanisms of resistance are most likely multifactorial and include MM-related factors, premanufacturing T-cell characteristics, CAR T-cell-related features, and several components of the immunosuppressive microenvironment. Efforts to improve the potency and safety of CAR T-cell therapy include optimizing CAR design, combinatorial approaches to enhance persistence and activity, treatment of less heavily pretreated patients, and dual-antigen targeting to prevent antigen escape. We expect that these rationally designed strategies will contribute to further improvement in the clinical outcome of MM patients.
Collapse
Affiliation(s)
- Niels W C J van de Donk
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| | - Maria Themeli
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Saad Z Usmani
- Levine Cancer Institute, Carolinas Healthcare System, Charlotte, North Carolina
| |
Collapse
|
72
|
Schoutrop E, El-Serafi I, Poiret T, Zhao Y, Gultekin O, He R, Moyano-Galceran L, Carlson JW, Lehti K, Hassan M, Magalhaes I, Mattsson J. Mesothelin-Specific CAR T Cells Target Ovarian Cancer. Cancer Res 2021; 81:3022-3035. [PMID: 33795251 DOI: 10.1158/0008-5472.can-20-2701] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/02/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022]
Abstract
New therapeutic options for patients with ovarian cancer are urgently needed. Therefore, we evaluated the efficacy of two second-generation mesothelin (MSLN)-directed CAR T cells in orthotopic mouse models of ovarian cancer. Treatment with CAR T cells expressing an MSLN CAR construct including the CD28 domain (M28z) significantly prolonged survival, but no persistent tumor control was observed. Despite lower response rates, MSLN-4-1BB (MBBz) CAR T cells induced long-term remission in some SKOV3-bearing mice. Tumor-infiltrating M28z and MBBz CAR T cells upregulated PD-1 and LAG3 in an antigen-dependent manner while MSLN+ tumor cells expressed the corresponding ligands (PD-L1 and HLA-DR), demonstrating that coinhibitory pathways impede CAR T-cell persistence in the ovarian tumor microenvironment. Furthermore, profiling plasma soluble factors identified a cluster of M28z- and MBBz-treated mice characterized by elevated T-cell secreted factors that had increased survival, higher CD8+ T-cell tumor infiltration, less exhausted CAR T-cell phenotypes, and increased HLA-DR expression by tumor cells. Altogether, our study demonstrates the therapeutic potential of MSLN-CAR T cells to treat ovarian cancer. SIGNIFICANCE: These findings demonstrate that MSLN-directed CAR T cells can provide antitumor immunity against ovarian cancer.
Collapse
Affiliation(s)
- Esther Schoutrop
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ibrahim El-Serafi
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Biochemistry, Faculty of Medicine, Port-Said University, Port-Said, Egypt
| | - Thomas Poiret
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ying Zhao
- Experimental Cancer Medicine, Division of Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Clinical Research Center and Center of Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Okan Gultekin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Rui He
- Experimental Cancer Medicine, Division of Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Clinical Research Center and Center of Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lidia Moyano-Galceran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Joseph W Carlson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Moustapha Hassan
- Experimental Cancer Medicine, Division of Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Clinical Research Center and Center of Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Isabelle Magalhaes
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
- Department of Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Mattsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
- Gloria and Seymour Epstein Chair in Cell Therapy and Transplantation, Princess Margaret Cancer Centre and University of Toronto; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
73
|
Nishida H. Rapid Progress in Immunotherapies for Multiple Myeloma: An Updated Comprehensive Review. Cancers (Basel) 2021; 13:2712. [PMID: 34072645 PMCID: PMC8198014 DOI: 10.3390/cancers13112712] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022] Open
Abstract
Despite rapid advances in treatment approaches of multiple myeloma (MM) over the last two decades via proteasome inhibitors (PIs), immunomodulatory drugs (IMiDs), and monoclonal antibodies (mAbs), their efficacies are limited. MM still remains incurable, and the majority of patients shortly relapse and eventually become refractory to existing therapies due to the genetic heterogeneity and clonal evolution. Therefore, the development of novel therapeutic strategies with different mechanisms of action represents an unmet need to achieve a deep and highly durable response as well as to improve patient outcomes. The antibody-drug conjugate (ADC), belanatmab mafadotin, which targets B cell membrane antigen (BCMA) on plasma cells, was approved for the treatment of MM in 2020. To date, numerous immunotherapies, including bispecific antibodies, such as bispecific T cell engager (BiTE), the duobody adoptive cellular therapy using a dendritic cell (DC) vaccine, autologous chimeric antigen (CAR)-T cells, allogeneic CAR-natural killer (NK) cells, and checkpoint inhibitors have been developed for the treatment of MM, and a variety of clinical trials are currently underway or are expected to be planned. In the future, the efficacy of combination approaches, as well as allogenic CAR-T or NK cell therapy, will be examined, and promising results may alter the treatment paradigm of MM. This is a comprehensive review with an update on the most recent clinical and preclinical advances with a focus on results from clinical trials in progress with BCMA-targeted immunotherapies and the development of other novel targets in MM. Future perspectives will also be discussed.
Collapse
Affiliation(s)
- Hiroko Nishida
- Department of Pathology, Keio University, School of Medicine, Tokyo 160-8582, Japan; ; Tel.: +81-3-5363-3764; Fax: +81-3-3353-3290
- Division of Hematology, Department of Internal of Medicine, Keio University, School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
74
|
Pearlman AH, Hwang MS, Konig MF, Hsiue EHC, Douglass J, DiNapoli SR, Mog BJ, Bettegowda C, Pardoll DM, Gabelli SB, Papadopoulos N, Kinzler KW, Vogelstein B, Zhou S. Targeting public neoantigens for cancer immunotherapy. NATURE CANCER 2021; 2:487-497. [PMID: 34676374 PMCID: PMC8525885 DOI: 10.1038/s43018-021-00210-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
Several current immunotherapy approaches target private neoantigens derived from mutations that are unique to individual patients' tumors. However, immunotherapeutic agents can also be developed against public neoantigens derived from recurrent mutations in cancer driver genes. The latter approaches target proteins that are indispensable for tumor growth, and each therapeutic agent can be applied to numerous patients. Here we review the opportunities and challenges involved in the identification of suitable public neoantigen targets and the development of therapeutic agents targeting them.
Collapse
Affiliation(s)
- Alexander H Pearlman
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Michael S Hwang
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Genentech, Inc., South San Francisco, CA, USA
| | - Maximilian F Konig
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Division of Rheumatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emily Han-Chung Hsiue
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Jacqueline Douglass
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Sarah R DiNapoli
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Brian J Mog
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Chetan Bettegowda
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Drew M Pardoll
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Sandra B Gabelli
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas Papadopoulos
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth W Kinzler
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bert Vogelstein
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.
| |
Collapse
|
75
|
Meghnem D, Oldford SA, Haidl ID, Barrett L, Marshall JS. Histamine receptor 2 blockade selectively impacts B and T cells in healthy subjects. Sci Rep 2021; 11:9405. [PMID: 33931709 PMCID: PMC8087813 DOI: 10.1038/s41598-021-88829-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/12/2021] [Indexed: 11/18/2022] Open
Abstract
Histamine receptor 2 (H2R) blockade is commonly used in patients with gastric, duodenal ulcers or gastroesophageal reflux disease. Beyond the gastrointestinal tract, H2R is expressed by multiple immune cells, yet little is known about the immunomodulatory effects of such treatment. Clinical reports have associated H2R blockade with leukopenia, neutropenia, and myelosuppression, and has been shown to provide clinical benefit in certain cancer settings. To systematically assess effects of H2R blockade on key immune parameters, a single-center, single-arm clinical study was conducted in 29 healthy subjects. Subjects received daily high dose ranitidine for 6 weeks. Peripheral blood immunophenotyping and mediator analysis were performed at baseline, 3 and 6 weeks into treatment, and 12 weeks after treatment cessation. Ranitidine was well-tolerated, and no drug related adverse events were observed. Ranitidine had no effect on number of neutrophils, basophils or eosinophils. However, ranitidine decreased numbers of B cells and IL-2Rα (CD25) expressing T cells that remained lower even after treatment cessation. Reduced serum levels of IL-2 were also observed and remained low after treatment. These observations highlight a previously unrecognised immunomodulatory sustained impact of H2R blockade. Therefore, the immune impacts of H2R blockade may require greater consideration in the context of vaccination and immunotherapy.
Collapse
Affiliation(s)
- Dihia Meghnem
- Dalhousie Human Immunology and Inflammation Group, Department of Microbiology and Immunology, Dalhousie University, Sir Charles Tupper Medical Building, Room 7-C2, 5850 College Street, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Sharon A Oldford
- Dalhousie Human Immunology and Inflammation Group, Department of Microbiology and Immunology, Dalhousie University, Sir Charles Tupper Medical Building, Room 7-C2, 5850 College Street, PO Box 15000, Halifax, NS, B3H 4R2, Canada.,Senescence, Aging, Infection and Immunity Laboratory, Department of Medicine, Dalhousie University, Halifax, NS, Canada.,Division of Infectious Diseases, Nova Scotia Health Authority, Halifax, NS, Canada
| | - Ian D Haidl
- Dalhousie Human Immunology and Inflammation Group, Department of Microbiology and Immunology, Dalhousie University, Sir Charles Tupper Medical Building, Room 7-C2, 5850 College Street, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Lisa Barrett
- Dalhousie Human Immunology and Inflammation Group, Department of Microbiology and Immunology, Dalhousie University, Sir Charles Tupper Medical Building, Room 7-C2, 5850 College Street, PO Box 15000, Halifax, NS, B3H 4R2, Canada.,Senescence, Aging, Infection and Immunity Laboratory, Department of Medicine, Dalhousie University, Halifax, NS, Canada.,Division of Infectious Diseases, Nova Scotia Health Authority, Halifax, NS, Canada
| | - Jean S Marshall
- Dalhousie Human Immunology and Inflammation Group, Department of Microbiology and Immunology, Dalhousie University, Sir Charles Tupper Medical Building, Room 7-C2, 5850 College Street, PO Box 15000, Halifax, NS, B3H 4R2, Canada. .,Division of Infectious Diseases, Nova Scotia Health Authority, Halifax, NS, Canada.
| |
Collapse
|
76
|
What is the future of immunotherapy in multiple myeloma? Blood 2021; 136:2491-2497. [PMID: 32735639 DOI: 10.1182/blood.2019004176] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
The treatment of multiple myeloma (MM) is currently being redefined by humoral and cellular immunotherapies. For decades, there was limited belief in immune-based anti-MM therapy as a result of the moderate graft-versus-myeloma effect of allogeneic stem cell transplantation. Today, monoclonal antibodies comprise the new backbone of anti-MM therapy, and T-cell therapies targeting BCMA are emerging as the most potent single agents for MM treatment. Herein, we present our assessment of and vision for MM immunotherapy in the short and midterm.
Collapse
|
77
|
Establishing CD19 B-cell reference control materials for comparable and quantitative cytometric expression analysis. PLoS One 2021; 16:e0248118. [PMID: 33740004 PMCID: PMC7978366 DOI: 10.1371/journal.pone.0248118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/20/2021] [Indexed: 12/30/2022] Open
Abstract
In the field of cell-based therapeutics, there is a great need for high-quality, robust, and validated measurements for cell characterization. Flow cytometry has emerged as a critically important platform due to its high-throughput capability and its ability to simultaneously measure multiple parameters in the same sample. However, to assure the confidence in measurement, well characterized biological reference materials are needed for standardizing clinical assays and harmonizing flow cytometric results between laboratories. To date, the lack of adequate reference materials, and the complexity of the cytometer instrumentation have resulted in few standards. This study was designed to evaluate CD19 expression in three potential biological cell reference materials and provide a preliminary assessment of their suitability to support future development of CD19 reference standards. Three commercially available human peripheral blood mononuclear cells (PBMCs) obtained from three different manufacturers were tested. Variables that could potentially contribute to the differences in the CD19 expression, such as PBMCs manufacturing process, number of healthy donors used in manufacturing each PBMC lot, antibody reagent, operators, and experimental days were included in our evaluation. CD19 antibodies bound per cell (ABC) values were measured using two flow cytometry-based quantification schemes with two independent calibration methods, a single point calibration using a CD4 reference cell and QuantiBrite PE bead calibration. Three lots of PBMC from three different manufacturers were obtained. Each lot of PBMC was tested on three different experimental days by three operators using three different lots of unimolar anti-CD19PE conjugates. CD19 ABC values were obtained in parallel on a selected lot of the PBMC samples using mass spectrometry (CyTOF) with two independent calibration methods, EQ4 and bead-based calibration were evaluated with CyTOF-technology. Including all studied variabilities such as PBMC lot, antibody reagent lot, and operator, the averaged mean values of CD19 ABC for the three PBMC manufacturers (A,B, and C) obtained by flow cytometry were found to be: 7953 with a %CV of 9.0 for PBMC-A, 10535 with a %CV of 7.8 for PBMC-B, and 12384 with a %CV of 16 for PBMC-C. These CD19 ABC values agree closely with the findings using CyTOF. The averaged mean values of CD19 ABC for the tested PBMCs is 9295 using flow cytometry-based method and 9699 using CyTOF. The relative contributions from various sources of uncertainty in CD19 ABC values were quantified for the flow cytometry-based measurement scheme. This uncertainty analysis suggests that the number of antigens or ligand binding sites per cell in each PBMC preparation is the largest source of variability. On the other hand, the calibration method does not add significant uncertainty to the expression estimates. Our preliminary assessment showed the suitability of the tested materials to serve as PBMC-based CD19+ reference control materials for use in quantifying relevant B cell markers in B cell lymphoproliferative disorders and immunotherapy. However, users should consider the variabilities resulting from different lots of PBMC and antibody reagent when utilizing cell-based reference materials for quantification purposes and perform bridging studies to ensure harmonization between the results before switching to a new lot.
Collapse
|
78
|
A quantitative view on multivalent nanomedicine targeting. Adv Drug Deliv Rev 2021; 169:1-21. [PMID: 33264593 DOI: 10.1016/j.addr.2020.11.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/11/2020] [Accepted: 11/21/2020] [Indexed: 12/17/2022]
Abstract
Although the concept of selective delivery has been postulated over 100 years ago, no targeted nanomedicine has been clinically approved so far. Nanoparticles modified with targeting ligands to promote the selective delivery of therapeutics towards a specific cell population have been extensively reported. However, the rational design of selective particles is still challenging. One of the main reasons for this is the lack of quantitative theoretical and experimental understanding of the interactions involved in cell targeting. In this review, we discuss new theoretical models and experimental methods that provide a quantitative view of targeting. We show the new advancements in multivalency theory enabling the rational design of super-selective nanoparticles. Furthermore, we present the innovative approaches to obtain key targeting parameters at the single-cell and single molecule level and their role in the design of targeting nanoparticles. We believe that the combination of new theoretical multivalent design and experimental methods to quantify receptors and ligands aids in the rational design and clinical translation of targeted nanomedicines.
Collapse
|
79
|
Abstract
T-cell cancer therapy is a clinical field flush with opportunity. It is part of the revolution in immuno-oncology, most apparent in the dramatic clinical success of PD-1/CTLA-4 antibodies and chimeric antigen receptor T-cells (CAR-Ts) to cure certain melanomas and lymphomas, respectively. Therapeutics based on T cells ultimately hold more promise because of their capacity to carry out complex behaviors and their ease of modification via genetic engineering. But to overcome the substantial obstacles of effective solid-tumor treatment, T-cell therapy must access novel molecular targets or exploit existing ones in new ways. As always, tumor selectivity is the key. T-cell therapy has the potential to address target opportunities afforded by its own unique capacity for signal integration and high sensitivity. With a history of breathtaking innovation, the scientific foundation for the cellular modality has often been bypassed in favor of rapid advance in the clinic. This situation is changing, as the mechanistic basis for activity of CAR-Ts and TCR-Ts is backfilled by painstaking, systematic experiments—harking back to last century’s evolution and maturation of the small-molecule drug discovery field. We believe this trend must continue for T-cell therapy to reach its enormous potential. We support an approach that integrates sound reductionist scientific principles with well-informed, thorough preclinical and translational clinical experiments.
Collapse
Affiliation(s)
- Alexander Kamb
- A2 Biotherapeutics, Agoura Hills, California, 91301, USA
| | - William Y Go
- A2 Biotherapeutics, Agoura Hills, California, 91301, USA
| |
Collapse
|
80
|
Dell'Olio F, Su J, Huser T, Sottile V, Cortés-Hernández LE, Alix-Panabières C. Photonic technologies for liquid biopsies: recent advances and open research challenges. LASER & PHOTONICS REVIEWS 2021; 15:2000255. [PMID: 35360260 PMCID: PMC8966629 DOI: 10.1002/lpor.202000255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Indexed: 05/15/2023]
Abstract
The recent development of sophisticated techniques capable of detecting extremely low concentrations of circulating tumor biomarkers in accessible body fluids, such as blood or urine, could contribute to a paradigm shift in cancer diagnosis and treatment. By applying such techniques, clinicians can carry out liquid biopsies, providing information on tumor presence, evolution, and response to therapy. The implementation of biosensing platforms for liquid biopsies is particularly complex because this application domain demands high selectivity/specificity and challenging limit-of-detection (LoD) values. The interest in photonics as an enabling technology for liquid biopsies is growing owing to the well-known advantages of photonic biosensors over competing technologies in terms of compactness, immunity to external disturbance, and ultra-high spatial resolution. Some encouraging experimental results in the field of photonic devices and systems for liquid biopsy have already been achieved by using fluorescent labels and label-free techniques and by exploiting super-resolution microscopy, surface plasmon resonance, surface-enhanced Raman scattering, and whispering gallery mode resonators. This paper critically reviews the current state-of-the-art, starting from the requirements imposed by the detection of the most common circulating biomarkers. Open research challenges are considered together with competing technologies, and the most promising paths of improvement are discussed for future applications.
Collapse
Affiliation(s)
- Francesco Dell'Olio
- Department of Electrical and Information Engineering, Polytechnic University of Bari, 70125, Italy
| | - Judith Su
- Department of Biomedical Engineering, College of Optical Sciences, and BIO5 Institute, University of Arizona, 85721, USA
| | - Thomas Huser
- Biomolecular Photonics, Department of Physics, University of Bielefeld, 33615 Germany
| | - Virginie Sottile
- Department of Molecular Medicine, University of Pavia, 27100, Italy
| | | | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Center of Montpellier, 34093 CEDEX 5, France
| |
Collapse
|
81
|
Lelek M, Gyparaki MT, Beliu G, Schueder F, Griffié J, Manley S, Jungmann R, Sauer M, Lakadamyali M, Zimmer C. Single-molecule localization microscopy. NATURE REVIEWS. METHODS PRIMERS 2021; 1:39. [PMID: 35663461 PMCID: PMC9160414 DOI: 10.1038/s43586-021-00038-x] [Citation(s) in RCA: 394] [Impact Index Per Article: 98.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Single-molecule localization microscopy (SMLM) describes a family of powerful imaging techniques that dramatically improve spatial resolution over standard, diffraction-limited microscopy techniques and can image biological structures at the molecular scale. In SMLM, individual fluorescent molecules are computationally localized from diffraction-limited image sequences and the localizations are used to generate a super-resolution image or a time course of super-resolution images, or to define molecular trajectories. In this Primer, we introduce the basic principles of SMLM techniques before describing the main experimental considerations when performing SMLM, including fluorescent labelling, sample preparation, hardware requirements and image acquisition in fixed and live cells. We then explain how low-resolution image sequences are computationally processed to reconstruct super-resolution images and/or extract quantitative information, and highlight a selection of biological discoveries enabled by SMLM and closely related methods. We discuss some of the main limitations and potential artefacts of SMLM, as well as ways to alleviate them. Finally, we present an outlook on advanced techniques and promising new developments in the fast-evolving field of SMLM. We hope that this Primer will be a useful reference for both newcomers and practitioners of SMLM.
Collapse
Affiliation(s)
- Mickaël Lelek
- Imaging and Modeling Unit, Department of Computational
Biology, Institut Pasteur, Paris, France
- CNRS, UMR 3691, Paris, France
| | - Melina T. Gyparaki
- Department of Biology, University of Pennsylvania,
Philadelphia, PA, USA
| | - Gerti Beliu
- Department of Biotechnology and Biophysics Biocenter,
University of Würzburg, Würzburg, Germany
| | - Florian Schueder
- Faculty of Physics and Center for Nanoscience, Ludwig
Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried,
Germany
| | - Juliette Griffié
- Laboratory of Experimental Biophysics, Institute of
Physics, École Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland
| | - Suliana Manley
- Laboratory of Experimental Biophysics, Institute of
Physics, École Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland
- ;
;
;
;
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, Ludwig
Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried,
Germany
- ;
;
;
;
| | - Markus Sauer
- Department of Biotechnology and Biophysics Biocenter,
University of Würzburg, Würzburg, Germany
- ;
;
;
;
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA, USA
- ;
;
;
;
| | - Christophe Zimmer
- Imaging and Modeling Unit, Department of Computational
Biology, Institut Pasteur, Paris, France
- CNRS, UMR 3691, Paris, France
- ;
;
;
;
| |
Collapse
|
82
|
Abstract
PURPOSE OF REVIEW Immunotherapy with gene-engineered chimeric antigen receptor (CAR)-T cells has curative potential in advanced malignancies and undergoes a surging preclinical and clinical development. Here, we present a selection of new targets and technologies that illustrate the progress that is being made with the aspiration to make CAR-T cell therapy a universally applicable and effective treatment in cancer medicine. RECENT FINDINGS There is a rich pipeline of new target antigens for CAR-T cells in hematology and oncology that are rated based on uniformity but also stability of expression on tumor cells under therapeutic pressure. New technologies in CAR-T cell engineering are directed at neutralizing inhibitory ligands and factors in the tumor microenvironment, preventing CAR-T cell exhaustion and enhancing selectivity for tumor cells with 'smart' CAR designs. The manufacture of CAR-T cells using virus-free protocols is anticipated to reduce supply-chain complexity and to improve patient access. SUMMARY CD19 CAR-T cell therapy is an approved treatment for B-cell leukemia and -lymphoma and considering the current 'target and technology' pipeline, we anticipate that additional CAR-T cell products will accomplish their 'breakthrough' and clinical proof-of-concept in other indications in hematology and in oncology. Technologies to enhance therapeutic index and facilitate manufacturing will be key for assuring availability and accessibility of CAR-T cell products and their implementation into routine clinical practice.
Collapse
|
83
|
Abstract
Multiple myeloma remains an incurable disease despite great advances in its therapeutic landscape. Increasing evidence supports the belief that immune dysfunction plays an important role in the disease pathogenesis, progression, and drug resistance. Recent efforts have focused on harnessing the immune system to exert anti-myeloma effects with encouraging outcomes. First-in-class anti-CD38 monoclonal antibody, daratumumab, now forms part of standard treatment regimens in relapsed and refractory settings and is shifting to front-line treatments. However, a non-negligible number of patients will progress and be triple refractory from the first line of treatment. Antibody-drug conjugates, bispecific antibodies, and chimeric antigen receptors (CAR) are being developed in a heavily pretreated setting with outstanding results. Belantamab mafodotin-blmf has already received approval and other anti-B-cell maturation antigen (BCMA) therapies (CARs and bispecific antibodies are expected to be integrated in therapeutic options against myeloma soon. Nonetheless, immunotherapy faces different challenges in terms of efficacy and safety, and manufacturing and economic drawbacks associated with such a line of therapy pose additional obstacles to broadening its use. In this review, we described the most important clinical data on immunotherapeutic agents, delineated the limitations that lie in immunotherapy, and provided potential insights to overcome such issues.
Collapse
|
84
|
Abstract
PURPOSE OF REVIEW A number of clinical trials are currently testing chimeric antigen receptor (CAR) and T cell receptor (TCR) engineered T cells for the treatment of haematologic malignancies and selected solid tumours, and CD19-CAR-T cells have produced impressive clinical responses in B-cell malignancies. Here, we summarize the current state of the field, highlighting the key aspects required for the optimal application of CAR and TCR-engineered T cells for cancer immunotherapy. RECENT FINDINGS Toxicities, treatment failure and disease recurrence have been observed at different rates and kinetics. Several strategies have been designed to overcome these hurdles: the identification and combination of known and new antigens, together with the combination of immunotherapeutic and classical approaches may overcome cancer immune evasion. New protocols for genetic modification and T cell culture may improve the overall fitness of cellular products and their resistance to hostile tumour immunomodulatory signals. Finally, the schedules of T cell administration and toxicity management have been adapted to improve the safety of this transformative therapeutic approach. SUMMARY In order to develop effective adoptive T cell treatments for cancer, therapeutic optimization of engineered CAR and TCR T cells is crucial, by simultaneously focusing on intrinsic and extrinsic factors. This review focuses on the innovative approaches designed and tested to overcome the hurdles encountered so far in the clinical practice, with new excitement on novel laboratory insights and ongoing clinical investigations.
Collapse
|
85
|
Xiang X, He Q, Ou Y, Wang W, Wu Y. Efficacy and Safety of CAR-Modified T Cell Therapy in Patients with Relapsed or Refractory Multiple Myeloma: A Meta-Analysis of Prospective Clinical Trials. Front Pharmacol 2020; 11:544754. [PMID: 33343342 PMCID: PMC7744881 DOI: 10.3389/fphar.2020.544754] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 10/16/2020] [Indexed: 02/05/2023] Open
Abstract
Background: In recent years, chimeric antigen receptor-modified T (CAR-T) cell therapy for B-cell leukemia and lymphoma has shown high clinical efficacy. Similar CAR-T clinical trials have also been carried out in patients with refractory/relapsed multiple myeloma (RRMM). However, no systematic review has evaluated the efficacy and safety of CAR-T cell therapy in RRMM. The purpose of this study was to fill this literature gap. Methods: Eligible studies were searched in PUBMED, EMBASE, the Cochrane Central Register of Controlled Trials (CENTRAL), CNKI, and WanFang from data inception to December 2019. For efficacy assessment, the overall response rate (ORR), minimal residual disease (MRD) negativity rate, strict complete response (sCR), complete response (CR), very good partial response (VGPR), and partial response (PR) were calculated. The incidence of any grade cytokine release syndrome (CRS) and grade ≥3 adverse events (AEs) were calculated for safety analysis. The effect estimates were then pooled using an inverse variance method. Results: Overall, 27 studies involving 497 patients were included in this meta-analysis. The pooled ORR and MRD negativity rate were 89% (95% Cl: 83-94%) and 81% (95% Cl: 67-91%), respectively. The pooled sCR, CR, VGPR, and PR were 14% (95% Cl: 5-27%), 13% (95% Cl: 4-26%), 23% (95% Cl: 14-33%), and 15% (95% Cl: 10-21%), respectively. Subgroup analyses of ORR by age, proportion of previous autologous stem cell transplantation (ASCT), and target selection of CAR-T cells revealed that age ≤ 55 years (≤55 years vs. > 55 years, p = 0.0081), prior ASCT ≤70% (≤70% vs. > 70%, p = 0.035), and bispecific CAR-T cells (dual B-cell maturation antigen (BCMA)/BCMA + CD19 vs specific BCMA, p = 0.0329) associated with higher ORR in patients. Subgroup analyses of remission depth by target selection suggested that more patients achieved a better response than VGPR with dual BCMA/BCMA + CD19 CAR-T cells compared to specific BCMA targeting (p = 0.0061). In terms of safety, the pooled incidence of any grade and grade ≥ 3 CRS was 76% (95% CL: 63-87%) and 11% (95% CL: 6-17%). The most common grade ≥ 3 AEs were hematologic toxic effects. Conclusion: In heavily treated patients, CAR-T therapy associates with promising responses and tolerable AEs, as well as CRS in RRMM. However, additional information regarding the durability of CAR-T cell therapy, as well as further randomized controlled trials, is needed.
Collapse
Affiliation(s)
- Xinrong Xiang
- Hematology Research Laboratory, West China Hospital, Department of Hematology, Sichuan University, Chengdu, China
| | - Qiao He
- Chinese Evidence-based Medicine Center and Cochrane China Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Ou
- Hematology Research Laboratory, West China Hospital, Department of Hematology, Sichuan University, Chengdu, China
| | - Wen Wang
- Chinese Evidence-based Medicine Center and Cochrane China Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Wu
- Hematology Research Laboratory, West China Hospital, Department of Hematology, Sichuan University, Chengdu, China
| |
Collapse
|
86
|
Feucht J, Sadelain M. Function and evolution of the prototypic CD28ζ and 4-1BBζ chimeric antigen receptors. ACTA ACUST UNITED AC 2020; 8:2-11. [PMID: 35757562 PMCID: PMC9216534 DOI: 10.1016/j.iotech.2020.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
T cells engineered to express chimeric antigen receptors (CARs) specific for CD19 have yielded remarkable clinical outcomes in patients with refractory B-cell malignancies. The first CARs to be approved by the US Food and Drug Administration and the European Medicines Agency are CD19 CARs that comprise either CD28/CD3ζ or 4-1BB/CD3ζ dual-signalling domains. While their efficacy and safety profiles in patients with B-cell malignancies are comparable overall, the functional properties these two CAR designs impart upon engineered T cells differ significantly. Remarkably, alternative costimulatory domains have not, to date, superseded these foundational designs. Rather, recent CAR advances have focused on perfecting the original CD28- and 4-1BB-based CD19 CARs by calibrating strength of activation, pre-empting T-cell exhaustion and increasing the functional persistence of CAR T cells. This article reviews the essential biological properties of these first-in-class prototypes and their recent evolution. CD19 chimeric antigen receptor (CAR) therapy has shown remarkable success against B-cell malignancies. The prototypic CD19 CARs comprise either CD28/CD3ζ or 4-1BB/CD3ζ signalling domains. Both CD19 CARs yield similar efficacy but impart distinct T-cell functionalities. Novel CAR designs aim to enhance the persistence or effector potency of T cells. Genome editing averts variegated CAR expression and sustains T-cell function.
Collapse
Affiliation(s)
| | - M. Sadelain
- Correspondence to: Michel Sadelain, Director, Center for Cell Engineering and Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA. Tel: 212-639-6190
| |
Collapse
|
87
|
Leone P, Solimando AG, Malerba E, Fasano R, Buonavoglia A, Pappagallo F, De Re V, Argentiero A, Silvestris N, Vacca A, Racanelli V. Actors on the Scene: Immune Cells in the Myeloma Niche. Front Oncol 2020; 10:599098. [PMID: 33194767 PMCID: PMC7658648 DOI: 10.3389/fonc.2020.599098] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
Two mechanisms are involved in the immune escape of cancer cells: the immunoediting of tumor cells and the suppression of the immune system. Both processes have been revealed in multiple myeloma (MM). Complex interactions between tumor plasma cells and the bone marrow (BM) microenvironment contribute to generate an immunosuppressive milieu characterized by high concentration of immunosuppressive factors, loss of effective antigen presentation, effector cell dysfunction, and expansion of immunosuppressive cell populations, such as myeloid-derived suppressor cells, regulatory T cells and T cells expressing checkpoint molecules such as programmed cell death 1. Considering the great immunosuppressive impact of BM myeloma microenvironment, many strategies to overcome it and restore myeloma immunosurveillance have been elaborated. The most successful ones are combined approaches such as checkpoint inhibitors in combination with immunomodulatory drugs, anti-monoclonal antibodies, and proteasome inhibitors as well as chimeric antigen receptor (CAR) T cell therapy. How best to combine anti-MM therapies and what is the optimal timing to treat the patient are important questions to be addressed in future trials. Moreover, intratumor MM heterogeneity suggests the crucial importance of tailored therapies to identify patients who might benefit the most from immunotherapy, reaching deeper and more durable responses.
Collapse
Affiliation(s)
- Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
- Department of Medical Oncology, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Eleonora Malerba
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Rossella Fasano
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Alessio Buonavoglia
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Fabrizio Pappagallo
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Valli De Re
- Bio-Proteomics Facility, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Antonella Argentiero
- Department of Medical Oncology, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Nicola Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
- Department of Medical Oncology, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
88
|
van der Horst HJ, Nijhof IS, Mutis T, Chamuleau MED. Fc-Engineered Antibodies with Enhanced Fc-Effector Function for the Treatment of B-Cell Malignancies. Cancers (Basel) 2020; 12:E3041. [PMID: 33086644 PMCID: PMC7603375 DOI: 10.3390/cancers12103041] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 11/17/2022] Open
Abstract
Monoclonal antibody (mAb) therapy has rapidly changed the field of cancer therapy. In 1997, the CD20-targeting mAb rituximab was the first mAb to be approved by the U.S. Food and Drug Administration (FDA) for treatment of cancer. Within two decades, dozens of mAbs entered the clinic for treatment of several hematological cancers and solid tumors, and numerous more are under clinical investigation. The success of mAbs as cancer therapeutics lies in their ability to induce various cytotoxic machineries against specific targets. These cytotoxic machineries include antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement-dependent cytotoxicity (CDC), which are all mediated via the fragment crystallizable (Fc) domain of mAbs. In this review article, we will outline the novel approaches of engineering these Fc domains of mAbs to enhance their Fc-effector function and thereby their anti-tumor potency, with specific focus to summarize their (pre-) clinical status for the treatment of B-cell malignancies, including chronic lymphocytic leukemia (CLL), B-cell non-Hodgkin lymphoma (B-NHL), and multiple myeloma (MM).
Collapse
Affiliation(s)
- Hilma J. van der Horst
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, VU Medical Center, 1081 HV Amsterdam, The Netherlands; (I.S.N.); (T.M.); (M.E.D.C.)
| | | | | | | |
Collapse
|
89
|
Nicolini F, Bravaccini S, Mazza M, Gruszka AM, Tazzari M, MartÍn-Antonio B, Juan M, Ibrahim T, Maltoni R, Martinelli G, Cerchione C. CAR T cells targeting options in the fight against multiple myeloma. Panminerva Med 2020; 63:37-45. [PMID: 32955187 DOI: 10.23736/s0031-0808.20.04146-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
INTRODUCTION Multiple myeloma (MM) is a hematological malignancy in which patients present with bone marrow infiltration of clonal terminally-differentiated plasma cells. Monoclonal protein in the serum and/or urine is frequently detected. Over the past decade, important progress has been made in the comprehension of disease biology and treatment personalization. Much work has been put into the development of chimeric antigen receptor (CAR) gene-modified T-cell therapy thought to be a promising therapeutic option for pluritreated patients with refractory MM. EVIDENCE ACQUISITION We performed an analysis of clinical trials registered at the international repository clinicaltrials.gov using "CAR" OR "CAR T" AND "multiple myeloma" as search terms to understand what were the antigens targeted by CAR T strategies and what was the trade-off of their exploitation. The search retrieved a list of 103 trials that was manually filtered to eliminate follow-up and observational or not-pertinent trials. EVIDENCE SYNTHESIS Most studies employed anti-BCMA targeting either alone (62/94; 66%), or in combination with a second target (12/94; 13%). The second target most studied was SLAMF7 (CD319) explored by 4/94 (4%) clinical trials. Other antigens investigated and described here include: CD44v6, CD38, CD138, MUC1, CD56, CD19, Igk light chain, Lewis Y, CD229 and GPRC5D. CONCLUSIONS Targeting an appropriate antigen(s) is the key to both safety and efficacy of CAR T approaches in MM as there is dearth of tumor-specific antigens. Most antigens tested are merely enriched on MM cells. Working with tumor-enriched antigens requires careful assessment of the balance between harm (toxicity) and benefit (disease eradication) to the patient. This review provides an up-to-date overview of the avenues that are being explored.
Collapse
Affiliation(s)
- Fabio Nicolini
- Immunotherapy, Cell Therapy and Biobank (ITCB), IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Forlì-Cesena, Italy
| | - Sara Bravaccini
- Biosciences Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Forlì-Cesena, Italy
| | - Massimiliano Mazza
- Immunotherapy, Cell Therapy and Biobank (ITCB), IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Forlì-Cesena, Italy -
| | - Alicja M Gruszka
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Milan, Italy
| | - Marcella Tazzari
- Immunotherapy, Cell Therapy and Biobank (ITCB), IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Forlì-Cesena, Italy
| | - Beatriz MartÍn-Antonio
- August Pi Biomedical Research Institute, Sunyer Hospital, Barcelona, Spain.,Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Manel Juan
- August Pi Biomedical Research Institute, Sunyer Hospital, Clinic of Immunology, Barcelona, Spain
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Forlì-Cesena, Italy
| | - Roberta Maltoni
- Department of Medical Oncology, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Forlì-Cesena, Italy
| | - Giovanni Martinelli
- IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Forlì-Cesena, Italy
| | - Claudio Cerchione
- IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Forlì-Cesena, Italy
| |
Collapse
|
90
|
Deyà-Martínez A, Alonso-Saladrigues A, García AP, Faura A, Torrebadell M, Vlagea A, Català A, Esteve-Solé A, Juan M, Rives S, Alsina L. Kinetics of humoral deficiency in CART19-treated children and young adults with acute lymphoblastic leukaemia. Bone Marrow Transplant 2020; 56:376-386. [PMID: 32801317 PMCID: PMC7870804 DOI: 10.1038/s41409-020-01027-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/21/2020] [Accepted: 08/04/2020] [Indexed: 01/22/2023]
Abstract
CD19-CAR T-cell therapy (CART19) causes B-cell aplasia (BCA) and dysgammaglobulinemia but there is a lack of information about the degree of its secondary immunodeficiency. We conducted a prospective study in children and young adults with acute lymphoblastic leukaemia treated with CART19, analysing the kinetics of BCA and dysgammaglobulinemia during therapy, as well as the B-cell reconstitution in those with CART19 loss. Thirty-four patients were included (14 female) with a median age at CART19 infusion of 8.7 years (2.9–24.9). Median follow-up after infusion was 7.1 months (0.5–42). BCA was observed 7 days after infusion (3–8), with persistence at 24 months in 60% of patients. All patients developed a progressive decrease in IgM and IgA: 71% had undetectable IgM levels at 71 days (41–99) and 13% undetectable IgA levels at 185 days (11–308). Three of 12 patients had protective levels of IgA in saliva. In two of three patients who lost CART19, persistent B-cell dysfunction was observed. No severe infections occurred. In conclusion, BCA occurs soon after CART19 infusion, with a progressive decrease in IgM and IgA, and with less impairment of IgA, suggesting the possibility of an immune reservoir. A persistent B-cell dysfunction might persist after CART19 loss in this population.
Collapse
Affiliation(s)
- A Deyà-Martínez
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Pediatric Research Institute Sant Joan de Déu, Barcelona, Spain.,Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - A Alonso-Saladrigues
- CAR T-Cell Unit, Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, University of Barcelona, Pediatric Research Institute Sant Joan de Déu, Barcelona, Spain
| | - A P García
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Pediatric Research Institute Sant Joan de Déu, Barcelona, Spain.,Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - A Faura
- CAR T-Cell Unit, Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, University of Barcelona, Pediatric Research Institute Sant Joan de Déu, Barcelona, Spain
| | - M Torrebadell
- CAR T-Cell Unit, Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, University of Barcelona, Pediatric Research Institute Sant Joan de Déu, Barcelona, Spain
| | - A Vlagea
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Department of Immunology-CDB, Hospital Clínic-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - A Català
- CAR T-Cell Unit, Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, University of Barcelona, Pediatric Research Institute Sant Joan de Déu, Barcelona, Spain.,Department of Immunology-CDB, Hospital Clínic-IDIBAPS, Universitat de Barcelona, Barcelona, Spain.,Immunotherapy Platform, Hospital Sant Joan de Déu-Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - A Esteve-Solé
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Pediatric Research Institute Sant Joan de Déu, Barcelona, Spain.,Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - M Juan
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Department of Immunology-CDB, Hospital Clínic-IDIBAPS, Universitat de Barcelona, Barcelona, Spain.,Immunotherapy Platform, Hospital Sant Joan de Déu-Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - S Rives
- CAR T-Cell Unit, Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, University of Barcelona, Pediatric Research Institute Sant Joan de Déu, Barcelona, Spain. .,Department of Immunology-CDB, Hospital Clínic-IDIBAPS, Universitat de Barcelona, Barcelona, Spain. .,Immunotherapy Platform, Hospital Sant Joan de Déu-Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.
| | - L Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Pediatric Research Institute Sant Joan de Déu, Barcelona, Spain. .,Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Universitat de Barcelona, Barcelona, Spain. .,Immunotherapy Platform, Hospital Sant Joan de Déu-Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
91
|
Abstract
Chimeric antigen receptor-T (CAR-T) cell therapy is a promising frontier of immunoengineering and cancer immunotherapy. Methods that detect, quantify, track, and visualize the CAR, have catalyzed the rapid advancement of CAR-T cell therapy from preclinical models to clinical adoption. For instance, CAR-staining/labeling agents have enabled flow cytometry analysis, imaging applications, cell sorting, and high-dimensional clinical profiling. Molecular assays, such as quantitative polymerase chain reaction, integration site analysis, and RNA-sequencing, have characterized CAR transduction, expression, and in vivo CAR-T cell expansion kinetics. In vitro visualization methods, including confocal and total internal reflection fluorescence microscopy, have captured the molecular details underlying CAR immunological synapse formation, signaling, and cytotoxicity. In vivo tracking methods, including two-photon microscopy, bioluminescence imaging, and positron emission tomography scanning, have monitored CAR-T cell biodistribution across blood, tissue, and tumor. Here, we review the plethora of CAR detection methods, which can operate at the genomic, transcriptomic, proteomic, and organismal levels. For each method, we discuss: (1) what it measures; (2) how it works; (3) its scientific and clinical importance; (4) relevant examples of its use; (5) specific protocols for CAR detection; and (6) its strengths and weaknesses. Finally, we consider current scientific and clinical needs in order to provide future perspectives for improved CAR detection.
Collapse
Affiliation(s)
- Yifei Hu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
- Pritzker School of Medicine, University of Chicago, Chicago, IL, United States
| | - Jun Huang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| |
Collapse
|
92
|
Chimeric antigen receptor T cell therapy in multiple myeloma: promise and challenges. Bone Marrow Transplant 2020; 56:9-19. [PMID: 32770147 DOI: 10.1038/s41409-020-01023-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/29/2020] [Indexed: 11/09/2022]
Abstract
Despite a sea change in the therapeutic landscape, multiple myeloma (MM), a cancer of antibody producing plasma cells, remains incurable requiring continued intervention for disease control. In this context, chimeric antigen receptor (CAR) T cell therapy has emerged as a promising immunotherapeutic approach with unprecedented results in heavily treated relapsed and/or refractory MM patients. Although B cell maturation antigen (BCMA) is the current lead target for CAR-T cell therapy in MM, several other antigenic targets are also being investigated. Relapses, however, are inevitable in spite of the promising early responses, and may be mediated by antigenic modulation, poor persistence and "immunostat" in tumor microenvironment. Akin to multi-agent chemotherapy, multi-targeted CAR-T antigens and combinatorial approaches are underway to overcome the resistance mechanisms. Further, CAR-T specific toxicity concerns such as cytokine release syndrome and neurotoxicity, as well as manufacturing time lag are other key challenges. Allogeneic CAR that offers "off-the-shelf" options, and mRNA transfected CAR are being developed to mitigate the access and safety issues. In this review we provide the comprehensive review of the most current clinical trial data for CAR-T in myeloma, challenges associated with this therapy and discuss its future in myeloma therapeutics.
Collapse
|
93
|
Rodríguez-Lobato LG, Ganzetti M, Fernández de Larrea C, Hudecek M, Einsele H, Danhof S. CAR T-Cells in Multiple Myeloma: State of the Art and Future Directions. Front Oncol 2020; 10:1243. [PMID: 32850376 PMCID: PMC7399644 DOI: 10.3389/fonc.2020.01243] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/16/2020] [Indexed: 01/24/2023] Open
Abstract
Despite recent therapeutic advances, the prognosis of multiple myeloma (MM) patients remains poor. Thus, new strategies to improve outcomes are imperative. Chimeric antigen receptor (CAR) T-cell therapy has changed the treatment landscape of B-cell malignancies, providing a potentially curative option for patients who are refractory to standard treatment. Long-term remissions achieved in patients with acute lymphoblastic leukemia and Non-Hodgkin Lymphoma encouraged its further development in MM. B-cell maturation antigen (BCMA)-targeted CAR T-cells have established outstanding results in heavily pre-treated patients. However, several other antigens such as SLAMF7 and CD44v6 are currently under investigation with promising results. Idecabtagene vicleucel is expected to be approved soon for clinical use. Unfortunately, relapses after CAR T-cell infusion have been reported. Hence, understanding the underlying mechanisms of resistance is essential to promote prevention strategies and to enhance CAR T-cell efficacy. In this review we provide an update of the most recent clinical and pre-clinical data and we elucidate both, the potential and the challenges of CAR T-cell therapy in the future.
Collapse
Affiliation(s)
- Luis Gerardo Rodríguez-Lobato
- Division of Medicine II, University Hospital Würzburg, Würzburg, Germany
- Amyloidosis and Multiple Myeloma Unit, Department of Hematology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maya Ganzetti
- Division of Medicine II, University Hospital Würzburg, Würzburg, Germany
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carlos Fernández de Larrea
- Amyloidosis and Multiple Myeloma Unit, Department of Hematology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Michael Hudecek
- Division of Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Division of Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Sophia Danhof
- Division of Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
94
|
Clinical data, limitations and perspectives on chimeric antigen receptor T-cell therapy in multiple myeloma. Curr Opin Oncol 2020; 32:418-426. [DOI: 10.1097/cco.0000000000000667] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
95
|
Adaptive T cell immunotherapy in cancer. SCIENCE CHINA-LIFE SCIENCES 2020; 64:363-371. [PMID: 32712831 DOI: 10.1007/s11427-020-1713-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
Abstract
Impaired tumor-specific effector T cells contribute to tumor progression and unfavorable clinical outcomes. As a compensatory T cell-dependent cancer immunoediting strategy, adoptive T cell therapy (ACT) has achieved encouraging therapeutic results, and this strategy is now on the center stage of cancer treatment and research. ACT involves the ex vivo stimulation and expansion of tumor-infiltrating lymphocytes (TILs) with inherent tumor reactivity or T cells that have been genetically modified to express the cognate chimeric antigen receptor or T cell receptor (CAR/TCR), followed by the passive transfer of these cells into a lymphodepleted host. Primed T cells must provide highly efficient and long-lasting immune defense against transformed cells during ACT. Anin-depth understanding of the basic mechanisms of these living drugs can help us improve upon current strategies and design better next-generation T cell-based immunotherapies. From this perspective, we provide an overview of current developments in different ACT strategies, with a focus on frontier clinical trials that offer a proof of principle. Meanwhile, insights into the determinants of ACT are discussed, which will lead to more rational, potent and widespread applications in the future.
Collapse
|
96
|
Zhou X, Einsele H, Danhof S. Bispecific Antibodies: A New Era of Treatment for Multiple Myeloma. J Clin Med 2020; 9:jcm9072166. [PMID: 32659909 PMCID: PMC7408718 DOI: 10.3390/jcm9072166] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the introduction of novel agents such as proteasome inhibitors, immunomodulatory drugs, and autologous stem cell transplant, multiple myeloma (MM) largely remains an incurable disease. In recent years, monoclonal antibody-based treatment strategies have been developed to target specific surface antigens on MM cells. Treatment with bispecific antibodies (bsAbs) is an immunotherapeutic strategy that leads to an enhanced interaction between MM cells and immune effector cells, e.g., T-cells and natural killer cells. With the immune synapse built by bsAbs, the elimination of MM cells can be facilitated. To date, bsAbs have demonstrated encouraging results in preclinical studies, and clinical trials evaluating bsAbs in patients with MM are ongoing. Early clinical data show the promising efficacy of bsAbs in relapsed/refractory MM. Together with chimeric antigen receptor-modified (CAR)-T-cells, bsAbs represent a new dimension of precision medicine. In this review, we provide an overview of rationale, current clinical development, resistance mechanisms, and future directions of bsAbs in MM.
Collapse
|
97
|
Feng D, Sun J. Overview of anti-BCMA CAR-T immunotherapy for multiple myeloma and relapsed/refractory multiple myeloma. Scand J Immunol 2020; 92:e12910. [PMID: 32471019 DOI: 10.1111/sji.12910] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/23/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
Multiple myeloma (MM) is a haematological malignancy caused by malignant proliferation of plasma cells in bone marrow. In recent years, MM patients are commonly treated with chemotherapy, autologous stem cell transplantation, protease inhibitors, immunomodulatory drugs and monoclonal antibodies, however most patients eventually relapse. Therefore, more effective therapies are highly needed. Anti-BCMA CAR-T therapy, a novel and efficacious method for treating MM and relapsed/refractory multiple myeloma (RRMM), has been designed and applied in clinics. The CAR-T can specifically recognize the targeted molecule B cell maturation antigen (BCMA) and kill MM cells expressing BCMA and several clinical trials have revealed high response rates in the therapy. Herein, we summarize the developments, the current design and clinical trials, the side effects of anti-BCMA CAR-T therapy and comparison of it with other CAR-T therapies.
Collapse
Affiliation(s)
- Deming Feng
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Jian Sun
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
98
|
García-Guerrero E, Sierro-Martínez B, Pérez-Simón JA. Overcoming Chimeric Antigen Receptor (CAR) Modified T-Cell Therapy Limitations in Multiple Myeloma. Front Immunol 2020; 11:1128. [PMID: 32582204 PMCID: PMC7290012 DOI: 10.3389/fimmu.2020.01128] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) remains an incurable disease regardless of recent advances in the field. Therefore, a substantial unmet need exists to treat patients with relapsed/refractory myeloma. The use of novel agents such as daratumumab, elotuzumab, carfilzomib, or pomalidomide, among others, usually cannot completely eradicate myeloma cells. Although these new drugs have had a significant impact on the prognosis of MM patients, the vast majority ultimately become refractory or can no longer be treated due to toxicity of prior treatment, and thus succumb to the disease. Cellular therapies represent a novel approach with a unique mechanism of action against myeloma with the potential to defeat drug resistance and achieve long-term remissions. Genetic modification of cells to express a novel receptor with tumor antigen specificity is currently being explored in myeloma. Chimeric antigen receptor gene-modified T-cells (CAR T-cells) have shown to be the most promising approach so far. CAR T-cells have shown to induce durable complete remissions in other advanced hematologic malignancies like acute lymphocytic leukemia (ALL) and diffuse large B-cell lymphoma (DLBCL). With this background, significant efforts are underway to develop CAR-based therapies for MM. Currently, several antigen targets, including CD138, CD19, immunoglobulin kappa (Ig-Kappa) and B-cell maturation antigen (BCMA), are being used in clinical trials to treat myeloma patients. Some of these trials have shown promising results, especially in terms of response rates. However, the absence of a plateau is observed in most studies which correlates with the absence of durable remissions. Therefore, several potential limitations such as lack of effectiveness, off-tumor toxicities, and antigen loss or interference with soluble proteins could hamper the efficacy of CAR T-cells in myeloma. In this review, we will focus on clinical outcomes reported with CAR T-cells in myeloma, as well as on CAR T-cell limitations and how to overcome them with next generation of CAR T-cells.
Collapse
Affiliation(s)
- Estefanía García-Guerrero
- Instituto de Biomedicina de Sevilla, UGC de Hematología, Hospital Universitario Virgen del Rocío and Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Universidad de Sevilla, Seville, Spain
| | - Belén Sierro-Martínez
- Instituto de Biomedicina de Sevilla, UGC de Hematología, Hospital Universitario Virgen del Rocío and Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Universidad de Sevilla, Seville, Spain
| | - Jose Antonio Pérez-Simón
- Instituto de Biomedicina de Sevilla, UGC de Hematología, Hospital Universitario Virgen del Rocío and Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Universidad de Sevilla, Seville, Spain
| |
Collapse
|
99
|
Ma H, Liu Y. Super-resolution localization microscopy: Toward high throughput, high quality, and low cost. APL PHOTONICS 2020; 5:060902. [PMID: 34350342 PMCID: PMC8330581 DOI: 10.1063/5.0011731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
After nearly 15 years since its initial debut, super-resolution localization microscopy that surpasses the diffraction-limited resolution barrier of optical microscopy has rapidly gotten out of the ivory tower and entered a new phase to address various challenging biomedical questions. Recent advances in this technology greatly increased the imaging throughput, improved the imaging quality, simplified the sample preparation, and reduced the system cost, making this technology suitable for routine biomedical research. We will provide our perspective on the recent technical advances and their implications in serving the community of biomedical research.
Collapse
Affiliation(s)
- Hongqiang Ma
- Biomedical Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Yang Liu
- Biomedical Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
100
|
Wu L, Wei Q, Brzostek J, Gascoigne NRJ. Signaling from T cell receptors (TCRs) and chimeric antigen receptors (CARs) on T cells. Cell Mol Immunol 2020; 17:600-612. [PMID: 32451454 DOI: 10.1038/s41423-020-0470-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
T cells react to foreign or self-antigens through T cell receptor (TCR) signaling. Several decades of research have delineated the mechanism of TCR signal transduction and its impact on T cell performance. This knowledge provides the foundation for chimeric antigen receptor T cell (CAR-T cell) technology, by which T cells are redirected in a major histocompatibility complex-unrestricted manner. TCR and CAR signaling plays a critical role in determining the T cell state, including exhaustion and memory. Given its artificial nature, CARs might affect or rewire signaling differently than TCRs. A better understanding of CAR signal transduction would greatly facilitate improvements to CAR-T cell technology and advance its usefulness in clinical practice. Herein, we systematically review the knowns and unknowns of TCR and CAR signaling, from the contact of receptors and antigens, proximal signaling, immunological synapse formation, and late signaling outcomes. Signaling through different T cell subtypes and how signaling is translated into practice are also discussed.
Collapse
Affiliation(s)
- Ling Wu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Qianru Wei
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Joanna Brzostek
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Nicholas R J Gascoigne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore. .,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|