51
|
Liu Y, Chen Q, Jeong HW, Koh BI, Watson EC, Xu C, Stehling M, Zhou B, Adams RH. A specialized bone marrow microenvironment for fetal haematopoiesis. Nat Commun 2022; 13:1327. [PMID: 35288551 PMCID: PMC8921288 DOI: 10.1038/s41467-022-28775-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/09/2022] [Indexed: 12/19/2022] Open
Abstract
In adult mammalian bone marrow (BM), vascular endothelial cells and perivascular reticular cells control the function of haematopoietic stem and progenitor cells (HSPCs). During fetal development, the mechanisms regulating the de novo haematopoietic cell colonization of BM remain largely unknown. Here, we show that fetal and adult BM exhibit fundamental differences in cellular composition and molecular interactions by single cell RNA sequencing. While fetal femur is largely devoid of leptin receptor-expressing cells, arterial endothelial cells (AECs) provide Wnt ligand to control the initial HSPC expansion. Haematopoietic stem cells and c-Kit+ HSPCs are reduced when Wnt secretion by AECs is genetically blocked. We identify Wnt2 as AEC-derived signal that activates β-catenin-dependent proliferation of fetal HSPCs. Treatment of HSPCs with Wnt2 promotes their proliferation and improves engraftment after transplantation. Our work reveals a fundamental switch in the cellular organization and molecular regulation of BM niches in the embryonic and adult organism. The colonization of bone marrow by haematopoietic stem and progenitor cells is critical for lifelong blood cell formation. Here the authors report distinct features of fetal bone marrow and show that artery-derived signals promote haematopoietic colonization.
Collapse
|
52
|
Ren C, Xu Y, Liu H, Wang Z, Ma T, Li Z, Sun L, Huang Q, Zhang K, Zhang C, Cui Y, Wang Q, Lu Y. Effects of runt-related transcription factor 2 ( RUNX2) on the autophagy of rapamycin-treated osteoblasts. Bioengineered 2022; 13:5262-5276. [PMID: 35170378 PMCID: PMC8973582 DOI: 10.1080/21655979.2022.2037881] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 12/14/2022] Open
Abstract
Autophagy occurs throughout the development and maturation of bone tissues and various types of bone cells and plays a vital role in osteoporosis progression. This study aimed to explore the role of runt-related transcription factor 2 (RUNX2) in osteoblast autophagy and its related molecular mechanisms. MC3T3-E1 cells were treated with different concentrations of rapamycin, and their viability was determined using a cell counting Kit-8 (CCK-8). The cells were then transfected with si-RUNX2 and RUNX2 overexpression plasmids, and the viability of these rapamycin-treated cells was measured using CCK-8, while the expression of autophagy-related genes/proteins and osteoblast differentiation-related genes was determined using Western blotting and RT-qPCR. Finally, Alizarin red staining was used to observe osteoblast mineralization, and transmission electron microscopy was employed to detect autophagosomes in cells administered different treatments. Rapamycin significantly inhibited cell viability and promoted cell autophagy compared with the control (P < 0.05). Cells with RUNX2 knockdown and overexpression were successfully established. Further, RUNX2 overexpression was found to significantly enhance the viability and osteoblast mineralization of rapamycin-treated cells and suppress cell autophagy. RUNX2 overexpression also increased p-p38MAPK/p38MAPK levels and ALP, OCN, and OSX expression, and markedly downregulated Beclin-1, LC3-II/LC3-I, p62, ATG1, p-Beclin-1, and ATG5 levels (P < 0.05). However, the trends after RUNX2 knockdown opposed those observed after RUNX2 overexpression. RUNX2 may regulate osteoblast differentiation and autophagy by mediating autophagy-related and osteoblast differentiation-related genes/proteins, as well as the p38MAPK signaling pathway.
Collapse
Affiliation(s)
- Cheng Ren
- Department of Orthopaedic Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaan’xi Province, China
| | - Yibo Xu
- Department of Orthopaedic Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaan’xi Province, China
| | - Hongliang Liu
- Department of Orthopaedic Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaan’xi Province, China
| | - Zhimeng Wang
- Department of Orthopaedic Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaan’xi Province, China
| | - Teng Ma
- Department of Orthopaedic Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaan’xi Province, China
| | - Zhong Li
- Department of Orthopaedic Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaan’xi Province, China
| | - Liang Sun
- Department of Orthopaedic Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaan’xi Province, China
| | - Qiang Huang
- Department of Orthopaedic Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaan’xi Province, China
| | - Kun Zhang
- Department of Orthopaedic Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaan’xi Province, China
| | - Chengcheng Zhang
- Department of Orthopaedic Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaan’xi Province, China
| | - Yu Cui
- Yan’ an University, Yan’ an, Shaanxi Province, China
| | - Qian Wang
- Department of Orthopaedic Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaan’xi Province, China
| | - Yao Lu
- Department of Orthopaedic Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaan’xi Province, China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaan’xi Province, China
| |
Collapse
|
53
|
Zhang X, Li TY, Xiao HM, Ehrlich KC, Shen H, Deng HW, Ehrlich M. Epigenomic and Transcriptomic Prioritization of Candidate Obesity-Risk Regulatory GWAS SNPs. Int J Mol Sci 2022; 23:1271. [PMID: 35163195 PMCID: PMC8836216 DOI: 10.3390/ijms23031271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Concern about rising rates of obesity has prompted searches for obesity-related single nucleotide polymorphisms (SNPs) in genome-wide association studies (GWAS). Identifying plausible regulatory SNPs is very difficult partially because of linkage disequilibrium. We used an unusual epigenomic and transcriptomic analysis of obesity GWAS-derived SNPs in adipose versus heterologous tissues. From 50 GWAS and 121,064 expanded SNPs, we prioritized 47 potential causal regulatory SNPs (Tier-1 SNPs) for 14 gene loci. A detailed examination of seven loci revealed that four (CABLES1, PC, PEMT, and FAM13A) had Tier-1 SNPs positioned so that they could regulate use of alternative transcription start sites, resulting in different polypeptides being generated or different amounts of an intronic microRNA gene being expressed. HOXA11 and long noncoding RNA gene RP11-392O17.1 had Tier-1 SNPs in their 3' or promoter region, respectively, and strong preferences for expression in subcutaneous versus visceral adipose tissue. ZBED3-AS1 had two intragenic Tier-1 SNPs, each of which could contribute to mediating obesity risk through modulating long-distance chromatin interactions. Our approach not only revealed especially credible novel regulatory SNPs, but also helped evaluate previously highlighted obesity GWAS SNPs that were candidates for transcription regulation.
Collapse
Affiliation(s)
- Xiao Zhang
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (X.Z.); (K.C.E.); (H.S.)
| | - Tian-Ying Li
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha 410013, China; (T.-Y.L.); (H.-M.X.)
| | - Hong-Mei Xiao
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha 410013, China; (T.-Y.L.); (H.-M.X.)
| | - Kenneth C. Ehrlich
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (X.Z.); (K.C.E.); (H.S.)
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (X.Z.); (K.C.E.); (H.S.)
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (X.Z.); (K.C.E.); (H.S.)
| | - Melanie Ehrlich
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (X.Z.); (K.C.E.); (H.S.)
- Tulane Cancer Center and Hayward Genetics Center, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
54
|
Wu Y, Zhou X, Yuan W, Liu J, Yang W, Zhu Y, Ye C, Xiong X, Zhang Q, Liu J, Wang J. Gli1+ Mesenchymal Stem Cells in Bone and Teeth. Curr Stem Cell Res Ther 2022; 17:494-502. [PMID: 34994317 DOI: 10.2174/1574888x17666220107102911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/11/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem cells (MSCs) are remarkable and noteworthy. Identification of markers for MSCs enables the study of their niche in vivo. It has been identified that glioma-associated oncogene 1 positive (Gli1+) cells are mesenchymal stem cells supporting homeostasis and injury repair, especially in the skeletal system and teeth. This review outlines the role of Gli1+ cells as an MSC subpopulation in both bones and teeth, suggesting the prospects of Gli1+ cells in stem cell-based tissue engineering.
Collapse
Affiliation(s)
- Yange Wu
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China; b Lab for Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xueman Zhou
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenxiu Yuan
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiaqi Liu
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenke Yang
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yufan Zhu
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengxinyue Ye
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xiong
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qinlanhui Zhang
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jin Liu
- Lab for Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Wang
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
55
|
Tan GK, Pryce BA, Stabio A, Keene DR, Tufa SF, Schweitzer R. Cell autonomous TGFβ signaling is essential for stem/progenitor cell recruitment into degenerative tendons. Stem Cell Reports 2021; 16:2942-2957. [PMID: 34822771 PMCID: PMC8693658 DOI: 10.1016/j.stemcr.2021.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/03/2022] Open
Abstract
Understanding cell recruitment in damaged tendons is critical for improvements in regenerative therapy. We recently reported that targeted disruption of transforming growth factor beta (TGFβ) type II receptor in the tendon cell lineage (Tgfbr2ScxCre) resulted in resident tenocyte dedifferentiation and tendon deterioration in postnatal stages. Here we extend the analysis and identify direct recruitment of stem/progenitor cells into the degenerative mutant tendons. Cre-mediated lineage tracing indicates that these cells are not derived from tendon-ensheathing tissues or from a Scleraxis-expressing lineage, and they turned on tendon markers only upon entering the mutant tendons. Through immunohistochemistry and inducible gene deletion, we further find that the recruited cells originated from a Sox9-expressing lineage and their recruitment was dependent on cell autonomous TGFβ signaling. The cells identified in this study thus differ from previous reports of cell recruitment into injured tendons and suggest a critical role for TGFβ signaling in cell recruitment, providing insights that may support improvements in tendon repair. Targeted deletion of TGFβ signaling led to degenerative changes in mouse tendons Stem/progenitor cells were recruited into the degenerative mutant tendons The recruited cells are different from the ones so far reported in tendon injury Recruitment was dependent on cell autonomous TGFβ signaling in the recruited cells
Collapse
Affiliation(s)
- Guak-Kim Tan
- Research Division, Shriners Hospital for Children, Portland, OR 97239, USA; Department of Orthopaedics and Rehabilitation, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Brian A Pryce
- Research Division, Shriners Hospital for Children, Portland, OR 97239, USA
| | - Anna Stabio
- Research Division, Shriners Hospital for Children, Portland, OR 97239, USA
| | - Douglas R Keene
- Research Division, Shriners Hospital for Children, Portland, OR 97239, USA
| | - Sara F Tufa
- Research Division, Shriners Hospital for Children, Portland, OR 97239, USA
| | - Ronen Schweitzer
- Research Division, Shriners Hospital for Children, Portland, OR 97239, USA; Department of Orthopaedics and Rehabilitation, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
56
|
Weldon SA, Münsterberg AE. Somite development and regionalisation of the vertebral axial skeleton. Semin Cell Dev Biol 2021; 127:10-16. [PMID: 34690064 DOI: 10.1016/j.semcdb.2021.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 11/25/2022]
Abstract
A critical stage in the development of all vertebrate embryos is the generation of the body plan and its subsequent patterning and regionalisation along the main anterior-posterior axis. This includes the formation of the vertebral axial skeleton. Its organisation begins during early embryonic development with the periodic formation of paired blocks of mesoderm tissue called somites. Here, we review axial patterning of somites, with a focus on studies using amniote model systems - avian and mouse. We summarise the molecular and cellular mechanisms that generate paraxial mesoderm and review how the different anatomical regions of the vertebral column acquire their specific identity and thus shape the body plan. We also discuss the generation of organoids and embryo-like structures from embryonic stem cells, which provide insights regarding axis formation and promise to be useful for disease modelling.
Collapse
Affiliation(s)
- Shannon A Weldon
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | |
Collapse
|
57
|
TNF-α-mediated m 6A modification of ELMO1 triggers directional migration of mesenchymal stem cell in ankylosing spondylitis. Nat Commun 2021; 12:5373. [PMID: 34508078 PMCID: PMC8433149 DOI: 10.1038/s41467-021-25710-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Ankylosing spondylitis (AS) is a type of rheumatic disease characterized by chronic inflammation and pathological osteogenesis in the entheses. Previously, we demonstrated that enhanced osteogenic differentiation of MSC from AS patients (AS-MSC) resulted in pathological osteogenesis, and that during the enhanced osteogenic differentiation course, AS-MSC induced TNF-α-mediated local inflammation. However, whether TNF-α in turn affects AS-MSC remains unknown. Herein, we further demonstrate that a high-concentration TNF-α treatment triggers enhanced directional migration of AS-MSC in vitro and in vivo, which enforces AS pathogenesis. Mechanistically, TNF-α leads to increased expression of ELMO1 in AS-MSC, which is mediated by a METTL14 dependent m6A modification in ELMO1 3′UTR. Higher ELMO1 expression of AS-MSC is found in vivo in AS patients, and inhibiting ELMO1 in SKG mice produces therapeutic effects in this spondyloarthritis model. This study may provide insight into not only the pathogenesis but also clinical therapy for AS. Abnormal functions of mesenchymal stem cells (MSC) contribute into the pathogenensis of ankylosing spondylitis (AS). Here, the authors show that TNF-α at high concentration induces enhances migration of AS-MSC through METTL14 mediated m6A modification of the ELMO1 3′ UTR.
Collapse
|
58
|
Shu HS, Liu YL, Tang XT, Zhang XS, Zhou B, Zou W, Zhou BO. Tracing the skeletal progenitor transition during postnatal bone formation. Cell Stem Cell 2021; 28:2122-2136.e3. [PMID: 34499868 DOI: 10.1016/j.stem.2021.08.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 02/23/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022]
Abstract
Multiple distinct types of skeletal progenitors have been shown to contribute to endochondral bone development and maintenance. However, the division of labor and hierarchical relationship between different progenitor populations remain undetermined. Here we developed dual-recombinase fate-mapping systems to capture the skeletal progenitor transition during postnatal bone formation. We showed that postnatal osteoblasts arose primarily from chondrocytes before adolescence and from Lepr+ bone marrow stromal cells (BMSCs) after adolescence. This transition occurred in the diaphysis during adolescence and progressively spread to the metaphysis. The osteoblast-forming Lepr+ BMSCs derived primarily from fetal Col2+ cells. Conditional deletion of Runx2 from perinatal chondrocytes and adult Lepr+ BMSCs impaired bone lengthening and thickening, respectively. Forced running increased osteoblast formation by perinatal chondrocytes but not by adult Lepr+ BMSCs. Thus, the short-term developmental skeletal progenitors generated the long-term adult skeletal progenitors. They sequentially control the growth and maintenance of endochondral bones.
Collapse
Affiliation(s)
- Hui Sophie Shu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yiming Liam Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinyu Thomas Tang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinyi Shirley Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bo O Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin 300020, China.
| |
Collapse
|
59
|
Couasnay G, Madel MB, Lim J, Lee B, Elefteriou F. Sites of Cre-recombinase activity in mouse lines targeting skeletal cells. J Bone Miner Res 2021; 36:1661-1679. [PMID: 34278610 DOI: 10.1002/jbmr.4415] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022]
Abstract
The Cre/Lox system is a powerful tool in the biologist's toolbox, allowing loss-of-function and gain-of-function studies, as well as lineage tracing, through gene recombination in a tissue-specific and inducible manner. Evidence indicates, however, that Cre transgenic lines have a far more nuanced and broader pattern of Cre activity than initially thought, exhibiting "off-target" activity in tissues/cells other than the ones they were originally designed to target. With the goal of facilitating the comparison and selection of optimal Cre lines to be used for the study of gene function, we have summarized in a single manuscript the major sites and timing of Cre activity of the main Cre lines available to target bone mesenchymal stem cells, chondrocytes, osteoblasts, osteocytes, tenocytes, and osteoclasts, along with their reported sites of "off-target" Cre activity. We also discuss characteristics, advantages, and limitations of these Cre lines for users to avoid common risks related to overinterpretation or misinterpretation based on the assumption of strict cell-type specificity or unaccounted effect of the Cre transgene or Cre inducers. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Greig Couasnay
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
| | | | - Joohyun Lim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Florent Elefteriou
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
60
|
Inoue S, Takito J, Nakamura M. Site-Specific Fracture Healing: Comparison between Diaphysis and Metaphysis in the Mouse Long Bone. Int J Mol Sci 2021; 22:ijms22179299. [PMID: 34502206 PMCID: PMC8430651 DOI: 10.3390/ijms22179299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
The process of fracture healing varies depending upon internal and external factors, such as the fracture site, mode of injury, and mechanical environment. This review focuses on site-specific fracture healing, particularly diaphyseal and metaphyseal healing in mouse long bones. Diaphyseal fractures heal by forming the periosteal and medullary callus, whereas metaphyseal fractures heal by forming the medullary callus. Bone healing in ovariectomized mice is accompanied by a decrease in the medullary callus formation both in the diaphysis and metaphysis. Administration of estrogen after fracture significantly recovers the decrease in diaphyseal healing but fails to recover the metaphyseal healing. Thus, the two bones show different osteogenic potentials after fracture in ovariectomized mice. This difference may be attributed to the heterogeneity of the skeletal stem cells (SSCs)/osteoblast progenitors of the two bones. The Hox genes that specify the patterning of the mammalian skeleton during embryogenesis are upregulated during the diaphyseal healing. Hox genes positively regulate the differentiation of osteoblasts from SSCs in vitro. During bone grafting, the SSCs in the donor’s bone express Hox with adaptability in the heterologous bone. These novel functions of the Hox genes are discussed herein with reference to the site-specificity of fracture healing.
Collapse
|
61
|
Niches that regulate stem cells and hematopoiesis in adult bone marrow. Dev Cell 2021; 56:1848-1860. [PMID: 34146467 DOI: 10.1016/j.devcel.2021.05.018] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/27/2021] [Accepted: 05/27/2021] [Indexed: 01/08/2023]
Abstract
In mammals, hematopoietic stem cells (HSCs) engage in hematopoiesis throughout adult life within the bone marrow, where they produce the mature cells necessary to maintain blood cell counts and immune function. In the bone marrow and spleen, HSCs are sustained in perivascular niches (microenvironments) associated with sinusoidal blood vessels-specialized veins found only in hematopoietic tissues. Endothelial cells and perivascular leptin receptor+ stromal cells produce the known factors required to maintain HSCs and many restricted progenitors in the bone marrow. Various other cells synthesize factors that maintain other restricted progenitors or modulate HSC or niche function. Recent studies identified new markers that resolve some of the heterogeneity among stromal cells and refine the localization of restricted progenitor niches. Other recent studies identified ways in which niches regulate HSC function and hematopoiesis beyond growth factors. We summarize the current understanding of hematopoietic niches, review recent progress, and identify important unresolved questions.
Collapse
|
62
|
Regulation and Role of Transcription Factors in Osteogenesis. Int J Mol Sci 2021; 22:ijms22115445. [PMID: 34064134 PMCID: PMC8196788 DOI: 10.3390/ijms22115445] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Bone is a dynamic tissue constantly responding to environmental changes such as nutritional and mechanical stress. Bone homeostasis in adult life is maintained through bone remodeling, a controlled and balanced process between bone-resorbing osteoclasts and bone-forming osteoblasts. Osteoblasts secrete matrix, with some being buried within the newly formed bone, and differentiate to osteocytes. During embryogenesis, bones are formed through intramembraneous or endochondral ossification. The former involves a direct differentiation of mesenchymal progenitor to osteoblasts, and the latter is through a cartilage template that is subsequently converted to bone. Advances in lineage tracing, cell sorting, and single-cell transcriptome studies have enabled new discoveries of gene regulation, and new populations of skeletal stem cells in multiple niches, including the cartilage growth plate, chondro-osseous junction, bone, and bone marrow, in embryonic development and postnatal life. Osteoblast differentiation is regulated by a master transcription factor RUNX2 and other factors such as OSX/SP7 and ATF4. Developmental and environmental cues affect the transcriptional activities of osteoblasts from lineage commitment to differentiation at multiple levels, fine-tuned with the involvement of co-factors, microRNAs, epigenetics, systemic factors, circadian rhythm, and the microenvironments. In this review, we will discuss these topics in relation to transcriptional controls in osteogenesis.
Collapse
|
63
|
Rux D, Helbig K, Koyama E, Pacifici M. Hox11 expression characterizes developing zeugopod synovial joints and is coupled to postnatal articular cartilage morphogenesis into functional zones in mice. Dev Biol 2021; 477:49-63. [PMID: 34010606 DOI: 10.1016/j.ydbio.2021.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/07/2021] [Accepted: 05/10/2021] [Indexed: 11/26/2022]
Abstract
Previous studies on mouse embryo limbs have established that interzone mesenchymal progenitor cells emerging at each prescribed joint site give rise to joint tissues over fetal time. These incipient tissues undergo structural maturation and morphogenesis postnatally, but underlying mechanisms of regulation remain unknown. Hox11 genes dictate overall zeugopod musculoskeletal patterning and skeletal element identities during development. Here we asked where these master regulators are expressed in developing limb joints and whether they are maintained during postnatal zeugopod joint morphogenesis. We found that Hoxa11 was predominantly expressed and restricted to incipient wrist and ankle joints in E13.5 mouse embryos, and became apparent in medial and central regions of knees by E14.5, though remaining continuously dormant in elbow joints. Closer examination revealed that Hoxa11 initially characterized interzone and neighboring cells and was then restricted to nascent articular cartilage, intra joint ligaments and structures such as meniscal horns over prenatal time. Postnatally, articular cartilage progresses from a nondescript cell-rich, matrix-poor tissue to a highly structured, thick, zonal and mechanically competent tissue with chondrocyte columns over time, most evident at sites such as the tibial plateau. Indeed, Hox11 expression (primarily Hoxa11) was intimately coupled to such morphogenetic processes and, in particular, to the topographical rearrangement of chondrocytes into columns within the intermediate and deep zones of tibial plateau that normally endures maximal mechanical loads. Revealingly, these expression patterns were maintained even at 6 months of age. In sum, our data indicate that Hox11 genes remain engaged well beyond embryonic synovial joint patterning and are specifically tied to postnatal articular cartilage morphogenesis into a zonal and resilient tissue. The data demonstrate that Hox11 genes characterize adult, terminally differentiated, articular chondrocytes and maintain region-specificity established in the embryo.
Collapse
Affiliation(s)
- Danielle Rux
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Kimberly Helbig
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
64
|
Donsante S, Palmisano B, Serafini M, Robey PG, Corsi A, Riminucci M. From Stem Cells to Bone-Forming Cells. Int J Mol Sci 2021; 22:ijms22083989. [PMID: 33924333 PMCID: PMC8070464 DOI: 10.3390/ijms22083989] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 12/22/2022] Open
Abstract
Bone formation starts near the end of the embryonic stage of development and continues throughout life during bone modeling and growth, remodeling, and when needed, regeneration. Bone-forming cells, traditionally termed osteoblasts, produce, assemble, and control the mineralization of the type I collagen-enriched bone matrix while participating in the regulation of other cell processes, such as osteoclastogenesis, and metabolic activities, such as phosphate homeostasis. Osteoblasts are generated by different cohorts of skeletal stem cells that arise from different embryonic specifications, which operate in the pre-natal and/or adult skeleton under the control of multiple regulators. In this review, we briefly define the cellular identity and function of osteoblasts and discuss the main populations of osteoprogenitor cells identified to date. We also provide examples of long-known and recently recognized regulatory pathways and mechanisms involved in the specification of the osteogenic lineage, as assessed by studies on mice models and human genetic skeletal diseases.
Collapse
Affiliation(s)
- Samantha Donsante
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina 324, 00161 Rome, Italy; (S.D.); (B.P.); (A.C.)
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo, 20900 Monza, Italy;
| | - Biagio Palmisano
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina 324, 00161 Rome, Italy; (S.D.); (B.P.); (A.C.)
| | - Marta Serafini
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo, 20900 Monza, Italy;
| | - Pamela G. Robey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA;
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina 324, 00161 Rome, Italy; (S.D.); (B.P.); (A.C.)
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina 324, 00161 Rome, Italy; (S.D.); (B.P.); (A.C.)
- Correspondence:
| |
Collapse
|
65
|
Pagani CA, Huber AK, Hwang C, Marini S, Padmanabhan K, Livingston N, Nunez J, Sun Y, Edwards N, Cheng YH, Visser N, Yu P, Patel N, Greenstein JA, Rasheed H, Nelson R, Kessel K, Vasquez K, Strong AL, Hespe GE, Song JY, Wellik DM, Levi B. Novel Lineage-Tracing System to Identify Site-Specific Ectopic Bone Precursor Cells. Stem Cell Reports 2021; 16:626-640. [PMID: 33606989 PMCID: PMC7940250 DOI: 10.1016/j.stemcr.2021.01.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 11/30/2022] Open
Abstract
Heterotopic ossification (HO) is a form of pathological cell-fate change of mesenchymal stem/precursor cells (MSCs) that occurs following traumatic injury, limiting range of motion in extremities and causing pain. MSCs have been shown to differentiate to form bone; however, their lineage and aberrant processes after trauma are not well understood. Utilizing a well-established mouse HO model and inducible lineage-tracing mouse (Hoxa11-CreERT2;ROSA26-LSL-TdTomato), we found that Hoxa11-lineage cells represent HO progenitors specifically in the zeugopod. Bioinformatic single-cell transcriptomic and epigenomic analyses showed Hoxa11-lineage cells are regionally restricted mesenchymal cells that, after injury, gain the potential to undergo differentiation toward chondrocytes, osteoblasts, and adipocytes. This study identifies Hoxa11-lineage cells as zeugopod-specific ectopic bone progenitors and elucidates the fate specification and multipotency that mesenchymal cells acquire after injury. Furthermore, this highlights homeobox patterning genes as useful tools to trace region-specific progenitors and enable location-specific gene deletion. Lineage tracing, single-cell RNA-seq and single cell ATAC enable cell specific analysis of in vivo cell fate Hoxa11 lineage marks distinct mesenchymal precursors in the zeugopod Hoxa11 lineage mesenchymal precursors undergo an aberrant cell fate change towards ectopic bone and cartilage
Collapse
Affiliation(s)
- Chase A Pagani
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, 6000 Harry Hines Boulevard, Dallas, TX 75235, USA
| | - Amanda K Huber
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Charles Hwang
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Simone Marini
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Nicholas Livingston
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, 6000 Harry Hines Boulevard, Dallas, TX 75235, USA
| | - Johanna Nunez
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, 6000 Harry Hines Boulevard, Dallas, TX 75235, USA
| | - Yuxiao Sun
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, 6000 Harry Hines Boulevard, Dallas, TX 75235, USA
| | - Nicole Edwards
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yu-Hao Cheng
- Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Noelle Visser
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pauline Yu
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicole Patel
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joseph A Greenstein
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Husain Rasheed
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Reagan Nelson
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Karen Kessel
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kaetlin Vasquez
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amy L Strong
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Geoffrey E Hespe
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jane Y Song
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705, USA
| | - Deneen M Wellik
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705, USA
| | - Benjamin Levi
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, 6000 Harry Hines Boulevard, Dallas, TX 75235, USA.
| |
Collapse
|
66
|
Hawkins MB, Henke K, Harris MP. Latent developmental potential to form limb-like skeletal structures in zebrafish. Cell 2021; 184:899-911.e13. [PMID: 33545089 DOI: 10.1016/j.cell.2021.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/28/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
Changes in appendage structure underlie key transitions in vertebrate evolution. Addition of skeletal elements along the proximal-distal axis facilitated critical transformations, including the fin-to-limb transition that permitted generation of diverse modes of locomotion. Here, we identify zebrafish mutants that form supernumerary long bones in their pectoral fins. These new bones integrate into musculature, form joints, and articulate with neighboring elements. This phenotype is caused by activating mutations in previously unrecognized regulators of appendage patterning, vav2 and waslb, that function in a common pathway. This pathway is required for appendage development across vertebrates, and loss of Wasl in mice causes defects similar to those seen in murine Hox mutants. Concordantly, formation of supernumerary bones requires Hox11 function, and mutations in the vav2/wasl pathway drive enhanced expression of hoxa11b, indicating developmental homology with the forearm. Our findings reveal a latent, limb-like pattern ability in fins that is activated by simple genetic perturbation.
Collapse
Affiliation(s)
- M Brent Hawkins
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Orthopedic Research, Boston Children's Hospital, Boston, MA 02115, USA; Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Katrin Henke
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Orthopedic Research, Boston Children's Hospital, Boston, MA 02115, USA
| | - Matthew P Harris
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Orthopedic Research, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
67
|
Jing D, Li C, Yao K, Xie X, Wang P, Zhao H, Feng JQ, Zhao Z, Wu Y, Wang J. The vital role of Gli1 + mesenchymal stem cells in tissue development and homeostasis. J Cell Physiol 2021; 236:6077-6089. [PMID: 33533019 DOI: 10.1002/jcp.30310] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/04/2021] [Accepted: 01/21/2021] [Indexed: 02/05/2023]
Abstract
The hedgehog (Hh) signaling pathway plays an essential role in both tissue development and homeostasis. Glioma-associated oncogene homolog 1 (Gli1) is one of the vital transcriptional factors as well as the direct target gene in the Hh signaling pathway. The cells expressing the Gli1 gene (Gli1+ cells) have been identified as mesenchymal stem cells (MSCs) that are responsible for various tissue developments, homeostasis, and injury repair. This review outlines some recent discoveries on the crucial roles of Gli1+ MSCs in the development and homeostasis of varieties of hard and soft tissues.
Collapse
Affiliation(s)
- Dian Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chaoyuan Li
- Department of Oral Implantology, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Ke Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xudong Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peiqi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hu Zhao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
68
|
Okla M, Kassem M. Thermogenic potentials of bone marrow adipocytes. Bone 2021; 143:115658. [PMID: 32979539 DOI: 10.1016/j.bone.2020.115658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/31/2022]
Abstract
Bone marrow adipose tissue (MAT) is a unique fat depot located in proximity to bone surfaces and exerts regulatory functions in the skeleton. Recent studies have demonstrated that MAT responds to changes in whole-body energy metabolism, such as in obesity and anorexia nervosa, where MAT expands, resulting in deleterious effects on the skeleton. Interestingly, MAT shares properties with both brown and white adipose tissues but exhibits distinct features with regard to lipid metabolism and insulin sensitivity. Recent reports have addressed the capacity of MAT to undergo browning, which could be an attractive strategy for preventing excessive MAT accumulation within the skeleton. In this review, we summarize studies addressing the browning phenomenon of MAT and its regulation by a number of pathophysiological conditions. Moreover, we discuss the relationship between adaptive thermogenesis and bone health. Understanding the thermogenic potentials of MAT will delineate the biological importance of this organ and unravel its potential for improving bone health and whole-body energy metabolism.
Collapse
Affiliation(s)
- Meshail Okla
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia; Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Moustapha Kassem
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia; Department of Molecular Endocrinology, KMEB, University of Southern Denmark, Odense University Hospital, 5000 Odense C, Denmark; Department of Cellular and Molecular Medicine, The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
69
|
Abstract
Knowledge of the role of HOX proteins in cancer has been steadily accumulating in the last 25 years. They are encoded by 39 HOX genes arranged in 4 distinct clusters, and have unique and redundant function in all types of cancers. Many HOX genes behave as oncogenic transcriptional factors regulating multiple pathways that are critical to malignant progression in a variety of tumors. Some HOX proteins have dual roles that are tumor-site specific, displaying both oncogenic and tumor suppressor function. The focus of this review is on how HOX proteins contribute to growth or suppression of metastasis. The review will cover HOX protein function in the critical aspects of epithelial-mesenchymal transition, in cancer stem cell sustenance and in therapy resistance, manifested as distant metastasis. The emerging role of adiposity in both initiation and progression of metastasis is described. Defining the role of HOX genes in the metastatic process has identified candidates for targeted cancer therapies that may combat the metastatic process. We will discuss potential therapeutic opportunities, particularly in pathways influenced by HOX proteins.
Collapse
|
70
|
Cao Y, Buckels EJ, Matthews BG. Markers for Identification of Postnatal Skeletal Stem Cells In Vivo. Curr Osteoporos Rep 2020; 18:655-665. [PMID: 33034805 DOI: 10.1007/s11914-020-00622-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW The adult skeleton contains stem cells involved in growth, homeostasis, and healing. Mesenchymal or skeletal stem cells are proposed to provide precursors to osteoblasts, chondrocytes, marrow adipocytes, and stromal cells. We review the evidence for existence and functionality of different skeletal stem cell pools, and the tools available for identifying or targeting these populations in mouse and human tissues. RECENT FINDINGS Lineage tracing and single cell-based techniques in mouse models indicate that multiple pools of stem cells exist in postnatal bone. These include growth plate stem cells, stem and progenitor cells in the diaphysis, reticular cells that only form bone in response to injury, and injury-responsive periosteal stem cells. New staining protocols have also been described for prospective isolation of human skeletal stem cells. Several populations of postnatal skeletal stem and progenitor cells have been identified in mice, and we have an increasing array of tools to target these cells. Most Cre models lack a high degree of specificity to define single populations. Human studies are less advanced and require further efforts to refine methods for identifying stem and progenitor cells in adult bone.
Collapse
Affiliation(s)
- Ye Cao
- Department of Molecular Medicine and Pathology, University of Auckland, Private Bag 92-019, Auckland, 1142, New Zealand
| | - Emma J Buckels
- Department of Molecular Medicine and Pathology, University of Auckland, Private Bag 92-019, Auckland, 1142, New Zealand
| | - Brya G Matthews
- Department of Molecular Medicine and Pathology, University of Auckland, Private Bag 92-019, Auckland, 1142, New Zealand.
| |
Collapse
|
71
|
Huber AK, Patel N, Pagani CA, Marini S, Padmanabhan KR, Matera DL, Said M, Hwang C, Hsu GCY, Poli AA, Strong AL, Visser ND, Greenstein JA, Nelson R, Li S, Longaker MT, Tang Y, Weiss SJ, Baker BM, James AW, Levi B. Immobilization after injury alters extracellular matrix and stem cell fate. J Clin Invest 2020; 130:5444-5460. [PMID: 32673290 PMCID: PMC7524473 DOI: 10.1172/jci136142] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 07/09/2020] [Indexed: 11/17/2022] Open
Abstract
Cells sense the extracellular environment and mechanical stimuli and translate these signals into intracellular responses through mechanotransduction, which alters cell maintenance, proliferation, and differentiation. Here we use a mouse model of trauma-induced heterotopic ossification (HO) to examine how cell-extrinsic forces impact mesenchymal progenitor cell (MPC) fate. After injury, single-cell (sc) RNA sequencing of the injury site reveals an early increase in MPC genes associated with pathways of cell adhesion and ECM-receptor interactions, and MPC trajectories to cartilage and bone. Immunostaining uncovers active mechanotransduction after injury with increased focal adhesion kinase signaling and nuclear translocation of transcriptional coactivator TAZ, inhibition of which mitigates HO. Similarly, joint immobilization decreases mechanotransductive signaling, and completely inhibits HO. Joint immobilization decreases collagen alignment and increases adipogenesis. Further, scRNA sequencing of the HO site after injury with or without immobilization identifies gene signatures in mobile MPCs correlating with osteogenesis, and signatures from immobile MPCs with adipogenesis. scATAC-seq in these same MPCs confirm that in mobile MPCs, chromatin regions around osteogenic genes are open, whereas in immobile MPCs, regions around adipogenic genes are open. Together these data suggest that joint immobilization after injury results in decreased ECM alignment, altered MPC mechanotransduction, and changes in genomic architecture favoring adipogenesis over osteogenesis, resulting in decreased formation of HO.
Collapse
MESH Headings
- Acyltransferases
- Adipogenesis/genetics
- Animals
- Cell Differentiation
- Cell Lineage
- Disease Models, Animal
- Extracellular Matrix/metabolism
- Extremities/injuries
- Focal Adhesion Kinase 1/deficiency
- Focal Adhesion Kinase 1/genetics
- Focal Adhesion Kinase 1/metabolism
- Humans
- Male
- Mechanotransduction, Cellular/genetics
- Mechanotransduction, Cellular/physiology
- Mesenchymal Stem Cells/pathology
- Mesenchymal Stem Cells/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Ossification, Heterotopic/etiology
- Ossification, Heterotopic/pathology
- Ossification, Heterotopic/physiopathology
- Osteogenesis/genetics
- Restraint, Physical/adverse effects
- Restraint, Physical/physiology
- Signal Transduction/genetics
- Signal Transduction/physiology
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
| | - Nicole Patel
- Section of Plastic Surgery, Department of Surgery
| | | | | | | | - Daniel L. Matera
- Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Mohamed Said
- Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Andrea A. Poli
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | - Shuli Li
- Section of Plastic Surgery, Department of Surgery
| | - Michael T. Longaker
- Institute for Stem Cell Biology and Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, California, USA
| | - Yi Tang
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephen J. Weiss
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Brendon M. Baker
- Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Aaron W. James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | | |
Collapse
|
72
|
Salhotra A, Shah HN, Levi B, Longaker MT. Mechanisms of bone development and repair. Nat Rev Mol Cell Biol 2020; 21:696-711. [PMID: 32901139 DOI: 10.1038/s41580-020-00279-w] [Citation(s) in RCA: 616] [Impact Index Per Article: 123.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 12/19/2022]
Abstract
Bone development occurs through a series of synchronous events that result in the formation of the body scaffold. The repair potential of bone and its surrounding microenvironment - including inflammatory, endothelial and Schwann cells - persists throughout adulthood, enabling restoration of tissue to its homeostatic functional state. The isolation of a single skeletal stem cell population through cell surface markers and the development of single-cell technologies are enabling precise elucidation of cellular activity and fate during bone repair by providing key insights into the mechanisms that maintain and regenerate bone during homeostasis and repair. Increased understanding of bone development, as well as normal and aberrant bone repair, has important therapeutic implications for the treatment of bone disease and ageing-related degeneration.
Collapse
Affiliation(s)
- Ankit Salhotra
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Harsh N Shah
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Benjamin Levi
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.
| | - Michael T Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA. .,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
73
|
Kulebyakina M, Makarevich P. Hox-Positive Adult Mesenchymal Stromal Cells: Beyond Positional Identity. Front Cell Dev Biol 2020; 8:624. [PMID: 32850789 PMCID: PMC7412745 DOI: 10.3389/fcell.2020.00624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/22/2020] [Indexed: 01/09/2023] Open
Abstract
Homeotic genes (Hox) are universal regulators of the body patterning process in embryogenesis of metazoans. The Hox gene expression pattern (Hox code) retains in adult tissues and serves as a cellular positional identity marker. Despite previously existing notions that the Hox code is inherent in all stroma mesenchymal cells as a whole, recent studies have shown that the Hox code may be an attribute of a distinct subpopulation of adult resident mesenchymal stromal cells (MSC). Recent evidence allows suggesting a "non-canonical" role for Hox gene expression which is associated with renewal and regeneration in postnatal organs after damage. In tissues with high regenerative capacity, it has been shown that a special cell population is critical for these processes, a distinctive feature of which is the persistent expression of tissue-specific Hox genes. We believe that in the postnatal period Hox-positive subpopulation of resident MSC may serve as a unique regenerative reserve. These cells coordinate creation and maintenance of the correct structure of the stroma through a tissue-specific combination of mechanisms. In this article, we summarize data on the role of resident MSC with a tissue-specific pattern of Hox gene expression as regulators of correct tissue reconstruction after injury.
Collapse
Affiliation(s)
- Maria Kulebyakina
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Pavel Makarevich
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Laboratory of Gene and Cell Therapy, Institute for Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
74
|
Qu F, Palte IC, Gontarz PM, Zhang B, Guilak F. Transcriptomic analysis of bone and fibrous tissue morphogenesis during digit tip regeneration in the adult mouse. FASEB J 2020; 34:9740-9754. [PMID: 32506623 DOI: 10.1096/fj.202000330r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/29/2020] [Accepted: 05/15/2020] [Indexed: 12/31/2022]
Abstract
Humans have limited regenerative potential of musculoskeletal tissues following limb or digit loss. The murine digit has been used to study mammalian regeneration, where stem/progenitor cells (the "blastema") completely regenerate the digit tip after distal, but not proximal, amputation. However, the molecular mechanisms responsible for this response remain to be determined. Here, we evaluated the spatiotemporal formation of bone and fibrous tissues after level-dependent amputation of the murine terminal phalanx and quantified the transcriptome of the repair tissue. Distal (regenerative) and proximal (non-regenerative) amputations showed significant differences in temporal gene expression and tissue regrowth over time. Genes that direct skeletal system development and limb morphogenesis are transiently upregulated during blastema formation and differentiation, including distal Hox genes. Overall, our results suggest that digit tip regeneration is controlled by a gene regulatory network that recapitulates aspects of limb development, and that failure to activate this developmental program results in fibrotic wound healing.
Collapse
Affiliation(s)
- Feini Qu
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA.,Center of Regenerative Medicine, Washington University, St. Louis, MO, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, MO, USA
| | - Ilan C Palte
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA.,Center of Regenerative Medicine, Washington University, St. Louis, MO, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, MO, USA
| | - Paul M Gontarz
- Center of Regenerative Medicine, Washington University, St. Louis, MO, USA
| | - Bo Zhang
- Center of Regenerative Medicine, Washington University, St. Louis, MO, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA.,Center of Regenerative Medicine, Washington University, St. Louis, MO, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, MO, USA
| |
Collapse
|
75
|
Abstract
Hox genes are indispensable for the proper patterning of the skeletal morphology of the axial and appendicular skeleton during embryonic development. Recently, it has been demonstrated that Hox expression continues from embryonic stages through postnatal and adult stages exclusively in a skeletal stem cell population. However, whether Hox genes continue to function after development has not been rigorously investigated. We generated a Hoxd11 conditional allele and induced genetic deletion at adult stages to show that Hox11 genes play critical roles in skeletal homeostasis of the forelimb zeugopod (radius and ulna). Conditional loss of Hox11 function at adult stages leads to replacement of normal lamellar bone with an abnormal woven bone-like matrix of highly disorganized collagen fibers. Examining the lineage from the Hox-expressing mutant cells demonstrates no loss of stem cell population. Differentiation in the osteoblast lineage initiates with Runx2 expression, which is observed similarly in mutants and controls. With loss of Hox11 function, however, osteoblasts fail to mature, with no progression to osteopontin or osteocalcin expression. Osteocyte-like cells become embedded within the abnormal bony matrix, but they completely lack dendrites, as well as the characteristic lacuno-canalicular network, and do not express SOST. Together, our studies show that Hox11 genes continuously function in the adult skeleton in a region-specific manner by regulating differentiation of Hox-expressing skeletal stem cells into the osteolineage.
Collapse
|
76
|
Nilsson Hall G, Mendes LF, Gklava C, Geris L, Luyten FP, Papantoniou I. Developmentally Engineered Callus Organoid Bioassemblies Exhibit Predictive In Vivo Long Bone Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902295. [PMID: 31993293 PMCID: PMC6974953 DOI: 10.1002/advs.201902295] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/18/2019] [Indexed: 05/17/2023]
Abstract
Clinical translation of cell-based products is hampered by their limited predictive in vivo performance. To overcome this hurdle, engineering strategies advocate to fabricate tissue products through processes that mimic development and regeneration, a strategy applicable for the healing of large bone defects, an unmet medical need. Natural fracture healing occurs through the formation of a cartilage intermediate, termed "soft callus," which is transformed into bone following a process that recapitulates developmental events. The main contributors to the soft callus are cells derived from the periosteum, containing potent skeletal stem cells. Herein, cells derived from human periosteum are used for the scalable production of microspheroids that are differentiated into callus organoids. The organoids attain autonomy and exhibit the capacity to form ectopic bone microorgans in vivo. This potency is linked to specific gene signatures mimicking those found in developing and healing long bones. Furthermore, callus organoids spontaneously bioassemble in vitro into large engineered tissues able to heal murine critical-sized long bone defects. The regenerated bone exhibits similar morphological properties to those of native tibia. These callus organoids can be viewed as a living "bio-ink" allowing bottom-up manufacturing of multimodular tissues with complex geometric features and inbuilt quality attributes.
Collapse
Affiliation(s)
- Gabriella Nilsson Hall
- Prometheus Division of Skeletal Tissue EngineeringSkeletal Biology and Engineering Research CenterDepartment of Development and RegenerationKU LeuvenO&N1, Herestraat 49, PB 8133000LeuvenBelgium
| | - Luís Freitas Mendes
- Prometheus Division of Skeletal Tissue EngineeringSkeletal Biology and Engineering Research CenterDepartment of Development and RegenerationKU LeuvenO&N1, Herestraat 49, PB 8133000LeuvenBelgium
| | - Charikleia Gklava
- Prometheus Division of Skeletal Tissue EngineeringSkeletal Biology and Engineering Research CenterDepartment of Development and RegenerationKU LeuvenO&N1, Herestraat 49, PB 8133000LeuvenBelgium
| | - Liesbet Geris
- Prometheus Division of Skeletal Tissue EngineeringKU LeuvenO&N1, Herestraat 49, PB 8133000LeuvenBelgium
- GIGA In Silico MedicineUniversité de LiègeAvenue de l'Hôpital 11—BAT 344000Liège 1Belgium
- Biomechanics SectionKU LeuvenCelestijnenlaan 300C, PB 24193001LeuvenBelgium
| | - Frank P. Luyten
- Prometheus Division of Skeletal Tissue EngineeringSkeletal Biology and Engineering Research CenterDepartment of Development and RegenerationKU LeuvenO&N1, Herestraat 49, PB 8133000LeuvenBelgium
| | - Ioannis Papantoniou
- Prometheus Division of Skeletal Tissue EngineeringSkeletal Biology and Engineering Research CenterDepartment of Development and RegenerationKU LeuvenO&N1, Herestraat 49, PB 8133000LeuvenBelgium
- Present address:
Institute of Chemical Engineering Sciences (ICE‐HT)Foundation for Research and TechnologyHellas (FORTH)Stadiou St.Platani26504PatrasGreece
| |
Collapse
|
77
|
Abstract
PURPOSE OF REVIEW The goal of this review is to discuss the role of insulin signaling in bone marrow adipocyte formation, metabolic function, and its contribution to cellular senescence in relation to metabolic bone diseases. RECENT FINDINGS Insulin signaling is an evolutionally conserved signaling pathway that plays a critical role in the regulation of metabolism and longevity. Bone is an insulin-responsive organ that plays a role in whole body energy metabolism. Metabolic disturbances associated with obesity and type 2 diabetes increase a risk of fragility fractures along with increased bone marrow adiposity. In obesity, there is impaired insulin signaling in peripheral tissues leading to insulin resistance. However, insulin signaling is maintained in bone marrow microenvironment leading to hypermetabolic state of bone marrow stromal (skeletal) stem cells associated with accelerated senescence and accumulation of bone marrow adipocytes in obesity. This review summarizes current findings on insulin signaling in bone marrow adipocytes and bone marrow stromal (skeletal) stem cells and its importance for bone and fat metabolism. Moreover, it points out to the existence of differences between bone marrow and peripheral fat metabolism which may be relevant for developing therapeutic strategies for treatment of metabolic bone diseases.
Collapse
Affiliation(s)
- Michaela Tencerova
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, 5000, Odense C, Denmark.
- Department of Molecular Physiology of Bone, Institute of Physiology, Czech Academy of Sciences, 142 20, Prague 4, Czech Republic.
| | - Meshail Okla
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Moustapha Kassem
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, 5000, Odense C, Denmark
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Department of Cellular and Molecular Medicine, The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
78
|
Wang C, Shi M, Ji J, Cai Q, Jiang J, Zhang H, Zhu Z, Zhang J. A self-enforcing HOXA11/Stat3 feedback loop promotes stemness properties and peritoneal metastasis in gastric cancer cells. Theranostics 2019; 9:7628-7647. [PMID: 31695791 PMCID: PMC6831465 DOI: 10.7150/thno.36277] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
Rationale: Peritoneal metastasis is one of the most common and life-threatening metastases in gastric cancer patients. The disseminated gastric cancer cells forming peritoneal metastasis exhibit a variety of characteristics that contrast with those of adjacent epithelial cell of gastric mucosa and even primary gastric cancer cells. We hypothesized that the gene expression profiles of peritoneal foci could reveal the identities of genes that might function as metastatic activator. Methods: In this study, we show, using in vitro, in vivo, in silico and gastric cancer tissues studies in humans and mice, that Homoebox A11 (HOXA11) potently promote peritoneal metastasis of gastric cancer cells. Results: Its mechanism of action involves alternation of cancer stemness and subsequently enhancement of the adhesion, migration and invasion and anti-apoptosis. This is achieved, mainly, through formation of a positive feedback loop between HOXA11 and Stat3, which is involved in the stimulation of Stat3 signaling pathway. Conclusions: These observations uncover a novel peritoneal metastatic activator and demonstrate the association between HOXA11, Stat3 and cancer stemness of gastric cancer cells, thereby revealing a previously undescribed mechanism of peritoneal metastasis.
Collapse
Affiliation(s)
- Chao Wang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Min Shi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Jun Ji
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Qu Cai
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Jinling Jiang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Zhenggang Zhu
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| |
Collapse
|