51
|
Mao M, Lin Z, Chen L, Zou Z, Zhang J, Dou Q, Wu J, Chen J, Wu M, Niu L, Fan C, Zhang Y. Modular DNA-Origami-Based Nanoarrays Enhance Cell Binding Affinity through the "Lock-and-Key" Interaction. J Am Chem Soc 2023; 145:5447-5455. [PMID: 36812464 DOI: 10.1021/jacs.2c13825] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Surface proteins of cells are generally recognized through receptor-ligand interactions (RLIs) in disease diagnosis, but their nonuniform spatial distribution and higher-order structure lead to low binding affinity. Constructing nanotopologies that match the spatial distribution of membrane proteins to improve the binding affinity remains a challenge. Inspired by the multiantigen recognition of immune synapses, we developed modular DNA-origami-based nanoarrays with multivalent aptamers. By adjusting the valency and interspacing of the aptamers, we constructed specific nanotopology to match the spatial distribution of target protein clusters and avoid potential steric hindrance. We found that the nanoarrays significantly enhanced the binding affinity of target cells and synergistically recognized low-affinity antigen-specific cells. In addition, DNA nanoarrays used for the clinical detection of circulating tumor cells successfully verified their precise recognition ability and high-affinity RLIs. Such nanoarrays will further promote the potential application of DNA materials in clinical detection and even cell membrane engineering.
Collapse
Affiliation(s)
- Miao Mao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Zhun Lin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Liang Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Zhengyu Zou
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Jie Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Quanhao Dou
- Joint Laboratory of Optofluidic Technology and Systems, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Jiacheng Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Jinglin Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Minhao Wu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Li Niu
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuanqing Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
52
|
Mathur D, Galvan AR, Green CM, Liu K, Medintz IL. Uptake and stability of DNA nanostructures in cells: a cross-sectional overview of the current state of the art. NANOSCALE 2023; 15:2516-2528. [PMID: 36722508 PMCID: PMC10407680 DOI: 10.1039/d2nr05868e] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The physical and chemical properties of synthetic DNA have transformed this prototypical biopolymer into a versatile nanoscale building block material in the form of DNA nanotechnology. DNA nanotechnology is, in turn, providing unprecedented precision bioengineering for numerous biomedical applications at the nanoscale including next generation immune-modulatory materials, vectors for targeted delivery of nucleic acids, drugs, and contrast agents, intelligent sensors for diagnostics, and theranostics, which combines several of these functionalities into a single construct. Assembling a DNA nanostructure to be programmed with a specific number of targeting moieties on its surface to imbue it with concomitant cellular uptake and retention capabilities along with carrying a specific therapeutic dose is now eminently feasible due to the extraordinary self-assembling properties and high formation efficiency of these materials. However, what remains still only partially addressed is how exactly this class of materials is taken up into cells in both the native state and as targeted or chemically facilitated, along with how stable they are inside the cellular cytosol and other cellular organelles. In this minireview, we summarize what is currently reported in the literature about how (i) DNA nanostructures are taken up into cells along with (ii) what is understood about their subsequent stability in the complex multi-organelle environment of the cellular milieu along with biological fluids in general. This allows us to highlight the many challenges that still remain to overcome in understanding DNA nanostructure-cellular interactions in order to fully translate these exciting new materials.
Collapse
Affiliation(s)
- Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Angelica Rose Galvan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, Washington, DC 20375, USA
| | - Christopher M Green
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, Washington, DC 20375, USA
| | - Kevin Liu
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, Washington, DC 20375, USA
| |
Collapse
|
53
|
Knappe GA, Wamhoff EC, Bathe M. Functionalizing DNA origami to investigate and interact with biological systems. NATURE REVIEWS. MATERIALS 2023; 8:123-138. [PMID: 37206669 PMCID: PMC10191391 DOI: 10.1038/s41578-022-00517-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 05/21/2023]
Abstract
DNA origami has emerged as a powerful method to generate DNA nanostructures with dynamic properties and nanoscale control. These nanostructures enable complex biophysical studies and the fabrication of next-generation therapeutic devices. For these applications, DNA origami typically needs to be functionalized with bioactive ligands and biomacromolecular cargos. Here, we review methods developed to functionalize, purify, and characterize DNA origami nanostructures. We identify remaining challenges, such as limitations in functionalization efficiency and characterization. We then discuss where researchers can contribute to further advance the fabrication of functionalized DNA origami.
Collapse
Affiliation(s)
- Grant A. Knappe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Address correspondence to or
| | - Eike-Christian Wamhoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Address correspondence to or
| |
Collapse
|
54
|
Xu Y, Zhang Q, Chen R, Cao H, Tang J, Wu Y, Lu X, Chu B, Song B, Wang H, He Y. NIR-II Photoacoustic-Active DNA Origami Nanoantenna for Early Diagnosis and Smart Therapy of Acute Kidney Injury. J Am Chem Soc 2022; 144:23522-23533. [PMID: 36508257 DOI: 10.1021/jacs.2c10323] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein, we designed and synthesized a novel microRNA (miR)-responsive nanoantenna capable of early diagnosis and smart treatment of acute kidney injury (AKI). The nanoantenna was made of two miniature gold nanorods (AuNRs) (e.g., length: ∼48 nm; width: ∼9 nm) linked together by a rectangular DNA origami nanostructure (rDONs) scaffold (e.g., length: ∼90 nm; width: ∼60 nm) (rDONs@AuNR dimer). The surface plasmon resonance peak of the constructed nanoantenna is located within the NIR-II window (e.g., ∼1060 nm), thus guaranteeing photoacoustic (PA) imaging of the nanoantenna in deep tissues. Intriguingly, the nanoantenna displayed exclusive kidney retention in both healthy mice and ischemia reperfusion-induced AKI mice by leveraging the kidney-targeting ability of rDONs. Distinguished from the stable signals in the healthy mice, the PA signals of the nanoantenna would turn down in the AKI mice due to the AuNR detached from rDONs upon interaction with miR-21, which were up-expressed in AKI mice. The limit of detection toward miR-21 was down to 2.8 nM, enabling diagnosis of AKI as early as 10 min post-treatment with ischemia reperfusion, around 2 orders of magnitude earlier than most established probes. Moreover, the naked rDON scaffold generated by AKI could capture more reactive oxygen species (e.g., 1.5-fold more than rDONs@AuNR dimer), alleviating ischemic AKI. This strategy provided a new avenue for early diagnosis and smart treatment of AKI.
Collapse
Affiliation(s)
- Yanan Xu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Qian Zhang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Runzhi Chen
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Haiting Cao
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Jie Tang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Yuqi Wu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Xing Lu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Binbin Chu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Bin Song
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Houyu Wang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Yao He
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
55
|
Xu F, Xia Q, Ye J, Dong L, Yang D, Xue W, Wang P. Programming DNA Aptamer Arrays of Prescribed Spatial Features with Enhanced Bioavailability and Cell Growth Modulation. NANO LETTERS 2022; 22:9935-9942. [PMID: 36480429 DOI: 10.1021/acs.nanolett.2c03377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Epithelial cell adhesion molecules (EpCAMs) play pivotal roles in tumorigenesis in many cancer types, which is reported to reside within nano- to microscale membrane domains, forming small clusters. We propose that building multivalent ligands that spatially patch to EpCAM clusters may largely enhance their targeting capability. Herein, we assembled EpCAM aptamers into nanoscale arrays of prescribed valency and spatial arrangements by using a rectangular DNA pegboard. Our results revealed that EpCAM aptamer arrays exhibited significantly higher binding avidity to MCF-7 cells than free monovalent aptamers, which was affected by both valency and spatial arrangement of aptamers. Furthermore, EpCAM aptamer arrays showed improved tolerance against competing targets in an extracellular environment and potent bioavailability and targeting specificity in a xenograft tumor model in mice. This work may shed light on rationally designing multivalent ligand complexes of defined parameters with optimized binding avidity and targeting capability toward various applications in the biomedical fields.
Collapse
Affiliation(s)
- Fan Xu
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogene and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qing Xia
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jing Ye
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogene and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Liang Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Donglei Yang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogene and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Pengfei Wang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogene and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
56
|
Huang Y, Ryssy J, Nguyen MK, Loo J, Hällsten S, Kuzyk A. Measuring the Affinities of RNA and DNA Aptamers with DNA Origami-Based Chiral Plasmonic Probes. Anal Chem 2022; 94:17577-17586. [PMID: 36480745 PMCID: PMC9773176 DOI: 10.1021/acs.analchem.2c04034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reliable characterization of binding affinities is crucial for selected aptamers. However, the limited repertoire of universal approaches to obtain the dissociation constant (KD) values often hinders the further development of aptamer-based applications. Herein, we present a competitive hybridization-based strategy to characterize aptamers using DNA origami-based chiral plasmonic assemblies as optical reporters. We incorporated aptamers and partial complementary strands blocking different regions of the aptamers into the reporters and measured the kinetic behaviors of the target binding to gain insights on aptamers' functional domains. We introduced a reference analyte and developed a thermodynamic model to obtain a relative dissociation constant of an aptamer-target pair. With this approach, we characterized RNA and DNA aptamers binding to small molecules with low and high affinities.
Collapse
Affiliation(s)
- Yike Huang
- Department
of Neuroscience and Biomedical Engineering, School of Science, Aalto University, FI-00076Aalto, Finland,E-mail:
| | - Joonas Ryssy
- Department
of Neuroscience and Biomedical Engineering, School of Science, Aalto University, FI-00076Aalto, Finland
| | - Minh-Kha Nguyen
- Department
of Neuroscience and Biomedical Engineering, School of Science, Aalto University, FI-00076Aalto, Finland,Faculty
of Chemical Engineering, Ho Chi Minh City
University of Technology (HCMUT), 268 Ly Thuong Kiet St., Dist. 10, Ho Chi Minh
City700000, Vietnam,Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc Dist., Ho Chi Minh
City700000, Vietnam
| | - Jacky Loo
- Department
of Neuroscience and Biomedical Engineering, School of Science, Aalto University, FI-00076Aalto, Finland
| | - Susanna Hällsten
- Department
of Neuroscience and Biomedical Engineering, School of Science, Aalto University, FI-00076Aalto, Finland
| | - Anton Kuzyk
- Department
of Neuroscience and Biomedical Engineering, School of Science, Aalto University, FI-00076Aalto, Finland,E-mail:
| |
Collapse
|
57
|
Snider DM, Pandit S, Coffin ML, Ebrahimi SB, Samanta D. DNA-Mediated Control of Protein Function in Semi-Synthetic Systems. Chembiochem 2022; 23:e202200464. [PMID: 36058885 DOI: 10.1002/cbic.202200464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Indexed: 01/25/2023]
Abstract
The development of strategies for controlling protein function in a precise and predictable manner has the potential to revolutionize catalysis, diagnostics, and medicine. In this regard, the use of DNA has emerged as a powerful approach for modulating protein activity. The programmable nature of DNA allows for constructing sophisticated architectures wherein proteins can be placed with control over position, orientation, and stoichiometry. This ability is especially useful considering that the properties of proteins can be influenced by their local environment or their proximity to other functional molecules. Here, we chronicle the different strategies that have been developed to interface DNA with proteins in semi-synthetic systems. We further delineate the unique applications unlocked by the unprecedented level of structural control that DNA affords. We end by outlining outstanding challenges in the area and discuss future research directions towards potential solutions.
Collapse
Affiliation(s)
- Dylan M Snider
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX, 78712, USA
| | - Subrata Pandit
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX, 78712, USA
| | - Mackenzie L Coffin
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX, 78712, USA
| | - Sasha B Ebrahimi
- Drug Product Development - Steriles, GlaxoSmithKline 1250 S Collegeville Rd, Collegeville, PA 19426, USA
| | - Devleena Samanta
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX, 78712, USA
| |
Collapse
|
58
|
Sun Y, Sun J, Xiao M, Lai W, Li L, Fan C, Pei H. DNA origami-based artificial antigen-presenting cells for adoptive T cell therapy. SCIENCE ADVANCES 2022; 8:eadd1106. [PMID: 36459554 PMCID: PMC10936057 DOI: 10.1126/sciadv.add1106] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
Nanosized artificial antigen-presenting cells (aAPCs) with efficient signal presentation hold great promise for in vivo adoptive cell therapy. Here, we used DNA origami nanostructures as two-dimensional scaffolds to regulate the spatial presentation of activating ligands at nanoscale to construct high-effective aAPCs. The DNA origami-based aAPC comprises costimulatory ligands anti-CD28 antibody anchored at three vertices and T cell receptor (TCR) ligands peptide-major histocompatibility complex (pMHC) anchored at three edges with varying density. The DNA origami scaffold enables quantitative analysis of ligand-receptor interactions in T cell activation at the single-particle, single-molecule resolution. The pMHC-TCR-binding dwell time is increased from 9.9 to 12.1 s with increasing pMHC density, driving functional T cell responses. In addition, both in vitro and in vivo assays demonstrate that the optimized DNA origami-based aAPCs show effective tumor growth inhibiting capability in adoptive immunotherapy. These results provide important insights into the rational design of molecular vaccines for cancer immunotherapy.
Collapse
Affiliation(s)
- Yueyang Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jiajia Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
59
|
Wang M, Yang D, Lu Q, Liu L, Cai Z, Wang Y, Wang HH, Wang P, Nie Z. Spatially Reprogramed Receptor Organization to Switch Cell Behavior Using a DNA Origami-Templated Aptamer Nanoarray. NANO LETTERS 2022; 22:8445-8454. [PMID: 36255126 DOI: 10.1021/acs.nanolett.2c02489] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Receptor oligomerization is a highly complex molecular process that modulates divergent cell signaling. However, there is a lack of molecular tools for systematically interrogating how receptor oligomerization governs the signaling response. Here, we developed a DNA origami-templated aptamer nanoarray (DOTA) that enables precise programming of the oligomerization of receptor tyrosine kinases (RTK) with defined valency, distribution, and stoichiometry at the ligand-receptor interface. The DOTA allows for advanced receptor manipulations by arraying either monomeric aptamer ligands (mALs) that oligamerize receptor monomers to elicit artificial signaling or dimeric aptamer ligands (dALs) that preorganize the receptor dimer to recapitulate natural activation. We demonstrated that the multivalency and nanoscale spacing of receptor oligomerization coordinately influence the activation level of receptor tyrosine kinase signaling. Furthermore, we illustrated that DOTA-modulated receptor oligomerization could function as a signaling switch to promote the transition from epithelia to mesenchymal-like cells, demonstrating robust control over cellular behaviors. Together, we present a versatile all-in-one DNA nanoplatform for the systematical investigation and regulation of receptor-mediated cellular response.
Collapse
Affiliation(s)
- Miao Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Donglei Yang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qin Lu
- GeneMind Biosciences Company Limited, Shenzhen, Guangdong 518000, China
| | - Lin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Zixin Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Yirong Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Hong-Hui Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Pengfei Wang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
60
|
Majikes JM, Liddle JA. Synthesizing the biochemical and semiconductor worlds: the future of nucleic acid nanotechnology. NANOSCALE 2022; 14:15586-15595. [PMID: 36268635 PMCID: PMC10949957 DOI: 10.1039/d2nr04040a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Since its inception nearly 40 years ago [Kallenbach, et al., Nature, 1983, 305, 829; N. C. Seeman, J. Theoretical Biology, 1982, 99, 237], Nucleic Acid Nanotechnology (NAN) has matured and is beginning to find commercial applications. For the last 20 years, it has been suggested that NAN might be an effective replacement for parts of the semiconductor lithography or protein engineering workflows. However, in that time, these incumbent technologies have made significant advances, and our understanding of NAN's strengths and weaknesses has progressed, suggesting that the greatest opportunities in fact lie elsewhere. Given the commitment of resources necessary to bring new technologies to the market and the desire to use those resources as wisely as possible, we conduct a critical examination of where NAN may benefit from, and provide benefit to, adjacent technologies and compete least with market incumbents. While the accuracy of our conclusions may be limited by our ability to extrapolate from the current state of NAN to its future commercial success, we conclude that the next promising direction is to create a bridge between biology and semiconductor technology. We also hope to stimulate a robust conversation around this technology's capabilities with the goal of building consensus on those research and development efforts that would advance NAN to the greatest effect in real-world applications.
Collapse
Affiliation(s)
- Jacob M Majikes
- Physical Measurement Laboratory, National Institute Standards and Technology, 100 Bureau drive, Gaithersburg, MD, 20878, USA.
| | - J Alexander Liddle
- Physical Measurement Laboratory, National Institute Standards and Technology, 100 Bureau drive, Gaithersburg, MD, 20878, USA.
| |
Collapse
|
61
|
Chen X, Ma Y, Xie Y, Pu J. Aptamer-based applications for cardiovascular disease. Front Bioeng Biotechnol 2022; 10:1002285. [PMID: 36312558 PMCID: PMC9606242 DOI: 10.3389/fbioe.2022.1002285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease (especially atherosclerosis) is a major cause of death worldwide, and novel diagnostic tools and treatments for this disease are urgently needed. Aptamers are single-stranded oligonucleotides that specifically recognize and bind to the targets by forming unique structures in vivo, enabling them to rival antibodies in cardiac applications. Chemically synthesized aptamers can be readily modified in a site-specific way, so they have been engineered in the diagnosis of cardiac diseases and anti-thrombosis therapeutics. Von Willebrand Factor plays a unique role in the formation of thrombus, and as an aptamer targeting molecule, has shown initial success in antithrombotic treatment. A combination of von Willebrand Factor and nucleic acid aptamers can effectively inhibit the progression of blood clots, presenting a positive diagnosis and therapeutic effect, as well as laying a novel theory and strategy to improve biocompatibility paclitaxel drug balloon or implanted stent in the future. This review summarizes aptamer-based applications in cardiovascular disease, including biomarker discovery and future management strategy. Although relevant applications are relatively new, the significant advancements achieved have demonstrated that aptamers can be promising agents to realize the integration of diagnosis and therapy in cardiac research.
Collapse
Affiliation(s)
| | | | | | - Jun Pu
- *Correspondence: Yuquan Xie, ; Jun Pu,
| |
Collapse
|
62
|
Wang Y, Wang D, Lin J, Lyu Z, Chen P, Sun T, Xue C, Mojtabavi M, Vedadghavami A, Zhang Z, Wang R, Zhang L, Park C, Heo GS, Liu Y, Dong SS, Zhang K. A Long-Circulating Vector for Aptamers Based upon Polyphosphodiester-Backboned Molecular Brushes. Angew Chem Int Ed Engl 2022; 61:e202204576. [PMID: 35979844 PMCID: PMC9529849 DOI: 10.1002/anie.202204576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 11/11/2022]
Abstract
Aptamers face challenges for use outside the ideal conditions in which they are developed. These difficulties are most palpable in vivo due to nuclease activities, rapid clearance, and off-target binding. Herein, we demonstrate that a polyphosphodiester-backboned molecular brush can suppress enzymatic digestion, reduce non-specific cell uptake, enable long blood circulation, and rescue the bioactivity of a conjugated aptamer in vivo. The backbone along with the aptamer is assembled via solid-phase synthesis, followed by installation of poly(ethylene glycol) (PEG) side chains using a two-step process with near-quantitative efficiency. The synthesis allows for precise control over polymer size and architecture. Consisting entirely of building blocks that are generally recognized as safe for therapeutics, this novel molecular brush is expected to provide a highly translatable route for aptamer-based therapeutics.
Collapse
Affiliation(s)
- Yuyan Wang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Dali Wang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Jiachen Lin
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Zidi Lyu
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Peiru Chen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Tingyu Sun
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Chenyang Xue
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Mehrnaz Mojtabavi
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Armin Vedadghavami
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Zheyu Zhang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Ruimeng Wang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Lei Zhang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Christopher Park
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Gyu Seong Heo
- Department of Radiology, Washington University, St. Louis, MO 63110, USA
| | - Yongjian Liu
- Department of Radiology, Washington University, St. Louis, MO 63110, USA
| | - Sijia S Dong
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Ke Zhang
- Departments of Chemistry and Chemical Biology, Chemical Engineering, and Bioengineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
63
|
Wan S, Liu S, Sun M, Zhang J, Wei X, Song T, Li Y, Liu X, Chen H, Yang CJ, Song Y. Spatial- and Valence-Matched Neutralizing DNA Nanostructure Blocks Wild-Type SARS-CoV-2 and Omicron Variant Infection. ACS NANO 2022; 16:15310-15317. [PMID: 36073793 PMCID: PMC9469956 DOI: 10.1021/acsnano.2c06803] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/06/2022] [Indexed: 06/02/2023]
Abstract
Natural ligand-receptor interactions that play pivotal roles in biological events are ideal models for design and assembly of artificial recognition molecules. Herein, aiming at the structural characteristics of the spike trimer and infection mechanism of SARS-CoV-2, we have designed a DNA framework-guided spatial-patterned neutralizing aptamer trimer for SARS-CoV-2 neutralization. The ∼5.8 nm tetrahedral DNA framework affords precise spatial organization and matched valence as four neutralizing aptamers (MATCH-4), which matches with nanometer precision the topmost surface of SARS-CoV-2 spike trimer, enhancing the interaction between MATCH-4 and spike trimer. Moreover, the DNA framework provides a dimensionally complementary nanoscale barrier to prevent the spike trimer-ACE2 interaction and the conformational transition, thereby inhibiting SARS-CoV-2-host cell fusion and infection. As a result, the spatial- and valence-matched MATCH-4 ensures improved binding affinity and neutralizing activity against SARS-CoV-2 and its varied mutant strains, particularly the current Omicron variant, that are evasive of the majority of existing neutralizing antibodies. In addition, because neutralizing aptamers specific to other targets can be evolved and assembled, the present design has the potential to inhibit other wide-range and emerging pathogens.
Collapse
Affiliation(s)
- Shuang Wan
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Siwen Liu
- State Key Laboratory for Emerging Infectious Diseases and InnoHK Centre for Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Miao Sun
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jialu Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xinyu Wei
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ting Song
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yuhao Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xinyang Liu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Honglin Chen
- State Key Laboratory for Emerging Infectious Diseases and InnoHK Centre for Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chaoyong James Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
64
|
Wang Y, Chen-Mayfield TJ, Li Z, Younis MH, Cai W, Hu Q. Harnessing DNA for immunotherapy: Cancer, infectious diseases, and beyond. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2112273. [PMID: 36304724 PMCID: PMC9595111 DOI: 10.1002/adfm.202112273] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 05/03/2023]
Abstract
Despite the rapid development of immunotherapy, low response rates, poor therapeutic outcomes and severe side effects still limit their implementation, making the augmentation of immunotherapy an important goal for current research. DNA, which has principally been recognized for its functions of encoding genetic information, has recently attracted research interest due to its emerging role in immune modulation. Inspired by the intrinsic DNA-sensing signaling that triggers the host defense in response to foreign DNA, DNA or nucleic acid-based immune stimulators have been used in the prevention and treatment of various diseases. Besides that, DNA vaccines allow the synthesis of target proteins in host cells, subsequently inducing recognition of these antigens to provoke immune responses. On this basis, researchers have designed numerous vehicles for DNA and nucleic acid delivery to regulate immune systems. Additionally, DNA nanostructures have also been implemented as vaccine delivery systems to elicit strong immune responses against pathogens and diseased cells. This review will introduce the mechanism of harnessing DNA-mediated immunity for the prevention and treatment of diseases, summarize recent progress, and envisage their future applications and challenges.
Collapse
Affiliation(s)
- Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Ting-Jing Chen-Mayfield
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Muhsin H. Younis
- Department of Radiology and Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Weibo Cai
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Department of Radiology and Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
65
|
Wang Y, Wang D, Lin J, Lyu Z, Chen P, Sun T, Xue C, Mojtabavi M, Vedadghavami A, Zhang Z, Wang R, Zhang L, Park C, Heo GS, Liu Y, Dong SS, Zhang K. A Long‐Circulating Vector for Aptamers Based upon Polyphosphodiester‐Backboned Molecular Brushes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuyan Wang
- Northeastern University Chemistry and chemical biology UNITED STATES
| | - Dali Wang
- Northeastern University Chemistry and chemical biology UNITED STATES
| | - Jiachen Lin
- Northeastern University Chemistry and chemical biology UNITED STATES
| | - Zidi Lyu
- Northeastern University Chemistry and chemical biology UNITED STATES
| | - Peiru Chen
- Northeastern University Chemistry and chemical biology UNITED STATES
| | - Tingyu Sun
- Northeastern University Chemistry and chemical biology UNITED STATES
| | - Chenyang Xue
- Northeastern University Chemistry and chemical biology UNITED STATES
| | | | | | - Zheyu Zhang
- Northeastern University Chemistry and chemical biology UNITED STATES
| | - Ruimeng Wang
- Northeastern University Chemistry and chemical biology UNITED STATES
| | - Lei Zhang
- Northeastern University Chemistry and chemical biology UNITED STATES
| | - Christopher Park
- Northeastern University Chemistry and chemical biology UNITED STATES
| | - Gyu Seong Heo
- Washington University in St Louis Department of radiology UNITED STATES
| | - Yongjian Liu
- Washington University in St Louis Department of radiology UNITED STATES
| | - Sijia S. Dong
- Northeastern University Chemistry and chemical biology UNITED STATES
| | - Ke Zhang
- Northeastern University Chemistry and Chemical Biology 360 Huntington AveHT 102 02115 Boston UNITED STATES
| |
Collapse
|
66
|
Ke W, Chandler M, Cedrone E, Saito RF, Rangel MC, de Souza Junqueira M, Wang J, Shi D, Truong N, Richardson M, Rolband LA, Dréau D, Bedocs P, Chammas R, Dokholyan NV, Dobrovolskaia MA, Afonin KA. Locking and Unlocking Thrombin Function Using Immunoquiescent Nucleic Acid Nanoparticles with Regulated Retention In Vivo. NANO LETTERS 2022; 22:5961-5972. [PMID: 35786891 PMCID: PMC9511123 DOI: 10.1021/acs.nanolett.2c02019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The unbalanced coagulation of blood is a life-threatening event that requires accurate and timely treatment. We introduce a user-friendly biomolecular platform based on modular RNA-DNA anticoagulant fibers programmed for reversible extracellular communication with thrombin and subsequent control of anticoagulation via a "kill-switch" mechanism that restores hemostasis. To demonstrate the potential of this reconfigurable technology, we designed and tested a set of anticoagulant fibers that carry different thrombin-binding aptamers. All fibers are immunoquiescent, as confirmed in freshly collected human peripheral blood mononuclear cells. To assess interindividual variability, the anticoagulation is confirmed in the blood of human donors from the U.S. and Brazil. The anticoagulant fibers reveal superior anticoagulant activity and prolonged renal clearance in vivo in comparison to free aptamers. Finally, we confirm the efficacy of the "kill-switch" mechanism in vivo in murine and porcine models.
Collapse
Affiliation(s)
- Weina Ke
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Edward Cedrone
- Nanotechnology Characterization Lab., Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702, United States
| | - Renata F Saito
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP 01246-903, Brazil
| | - Maria Cristina Rangel
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP 01246-903, Brazil
| | - Mara de Souza Junqueira
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP 01246-903, Brazil
| | - Jian Wang
- Department of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Da Shi
- Nanotechnology Characterization Lab., Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702, United States
| | - Nguyen Truong
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Melina Richardson
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Lewis A Rolband
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Didier Dréau
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Peter Bedocs
- Department of Anesthesiology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland 20817, United States
| | - Roger Chammas
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP 01246-903, Brazil
| | - Nikolay V Dokholyan
- Department of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
- Department of Chemistry, Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania 16802, United States
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab., Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702, United States
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
67
|
Hanke M, Hansen N, Chen R, Grundmeier G, Fahmy K, Keller A. Salting-Out of DNA Origami Nanostructures by Ammonium Sulfate. Int J Mol Sci 2022; 23:ijms23052817. [PMID: 35269959 PMCID: PMC8911265 DOI: 10.3390/ijms23052817] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/16/2022] Open
Abstract
DNA origami technology enables the folding of DNA strands into complex nanoscale shapes whose properties and interactions with molecular species often deviate significantly from that of genomic DNA. Here, we investigate the salting-out of different DNA origami shapes by the kosmotropic salt ammonium sulfate that is routinely employed in protein precipitation. We find that centrifugation in the presence of 3 M ammonium sulfate results in notable precipitation of DNA origami nanostructures but not of double-stranded genomic DNA. The precipitated DNA origami nanostructures can be resuspended in ammonium sulfate-free buffer without apparent formation of aggregates or loss of structural integrity. Even though quasi-1D six-helix bundle DNA origami are slightly less susceptible toward salting-out than more compact DNA origami triangles and 24-helix bundles, precipitation and recovery yields appear to be mostly independent of DNA origami shape and superstructure. Exploiting the specificity of ammonium sulfate salting-out for DNA origami nanostructures, we further apply this method to separate DNA origami triangles from genomic DNA fragments in a complex mixture. Our results thus demonstrate the possibility of concentrating and purifying DNA origami nanostructures by ammonium sulfate-induced salting-out.
Collapse
Affiliation(s)
- Marcel Hanke
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany; (M.H.); (N.H.); (R.C.); (G.G.)
| | - Niklas Hansen
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany; (M.H.); (N.H.); (R.C.); (G.G.)
| | - Ruiping Chen
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany; (M.H.); (N.H.); (R.C.); (G.G.)
| | - Guido Grundmeier
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany; (M.H.); (N.H.); (R.C.); (G.G.)
| | - Karim Fahmy
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstrasse 400, 01328 Dresden, Germany;
- Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01062 Dresden, Germany
| | - Adrian Keller
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany; (M.H.); (N.H.); (R.C.); (G.G.)
- Correspondence: ; Tel.: +49-5251-605722
| |
Collapse
|
68
|
Lin-Shiao E, Pfeifer WG, Shy BR, Saffari Doost M, Chen E, Vykunta VS, Hamilton JR, Stahl EC, Lopez DM, Sandoval Espinoza CR, Deyanov AE, Lew RJ, Poirer MG, Marson A, Castro CE, Doudna JA. CRISPR-Cas9-mediated nuclear transport and genomic integration of nanostructured genes in human primary cells. Nucleic Acids Res 2022; 50:1256-1268. [PMID: 35104875 PMCID: PMC8860605 DOI: 10.1093/nar/gkac049] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/13/2022] [Accepted: 01/30/2022] [Indexed: 12/22/2022] Open
Abstract
DNA nanostructures are a promising tool to deliver molecular payloads to cells. DNA origami structures, where long single-stranded DNA is folded into a compact nanostructure, present an attractive approach to package genes; however, effective delivery of genetic material into cell nuclei has remained a critical challenge. Here, we describe the use of DNA nanostructures encoding an intact human gene and a fluorescent protein encoding gene as compact templates for gene integration by CRISPR-mediated homology-directed repair (HDR). Our design includes CRISPR–Cas9 ribonucleoprotein binding sites on DNA nanostructures to increase shuttling into the nucleus. We demonstrate efficient shuttling and genomic integration of DNA nanostructures using transfection and electroporation. These nanostructured templates display lower toxicity and higher insertion efficiency compared to unstructured double-stranded DNA templates in human primary cells. Furthermore, our study validates virus-like particles as an efficient method of DNA nanostructure delivery, opening the possibility of delivering nanostructures in vivo to specific cell types. Together, these results provide new approaches to gene delivery with DNA nanostructures and establish their use as HDR templates, exploiting both their design features and their ability to encode genetic information. This work also opens a door to translate other DNA nanodevice functions, such as biosensing, into cell nuclei.
Collapse
Affiliation(s)
- Enrique Lin-Shiao
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Wolfgang G Pfeifer
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA.,Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Brian R Shy
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA.,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mohammad Saffari Doost
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Evelyn Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Vivasvan S Vykunta
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Jennifer R Hamilton
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Elizabeth C Stahl
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Diana M Lopez
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA.,Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Cindy R Sandoval Espinoza
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Alexander E Deyanov
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rachel J Lew
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA.,Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Michael G Poirer
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA.,Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Alexander Marson
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Carlos E Castro
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA.,Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA.,Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.,Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley 94720, CA, USA.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA.,Gladstone Institutes, University of California, San Francisco, San Francisco, CA, 94158, USA
| |
Collapse
|
69
|
Halloy F, Biscans A, Bujold KE, Debacker A, Hill AC, Lacroix A, Luige O, Strömberg R, Sundstrom L, Vogel J, Ghidini A. Innovative developments and emerging technologies in RNA therapeutics. RNA Biol 2022; 19:313-332. [PMID: 35188077 PMCID: PMC8865321 DOI: 10.1080/15476286.2022.2027150] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RNA-based therapeutics are emerging as a powerful platform for the treatment of multiple diseases. Currently, the two main categories of nucleic acid therapeutics, antisense oligonucleotides and small interfering RNAs (siRNAs), achieve their therapeutic effect through either gene silencing, splicing modulation or microRNA binding, giving rise to versatile options to target pathogenic gene expression patterns. Moreover, ongoing research seeks to expand the scope of RNA-based drugs to include more complex nucleic acid templates, such as messenger RNA, as exemplified by the first approved mRNA-based vaccine in 2020. The increasing number of approved sequences and ongoing clinical trials has attracted considerable interest in the chemical development of oligonucleotides and nucleic acids as drugs, especially since the FDA approval of the first siRNA drug in 2018. As a result, a variety of innovative approaches is emerging, highlighting the potential of RNA as one of the most prominent therapeutic tools in the drug design and development pipeline. This review seeks to provide a comprehensive summary of current efforts in academia and industry aimed at fully realizing the potential of RNA-based therapeutics. Towards this, we introduce established and emerging RNA-based technologies, with a focus on their potential as biosensors and therapeutics. We then describe their mechanisms of action and their application in different disease contexts, along with the strengths and limitations of each strategy. Since the nucleic acid toolbox is rapidly expanding, we also introduce RNA minimal architectures, RNA/protein cleavers and viral RNA as promising modalities for new therapeutics and discuss future directions for the field.
Collapse
Affiliation(s)
- François Halloy
- Department of Paediatrics, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Annabelle Biscans
- Oligonucleotide Chemistry, Discovery Sciences, BioPharmaceuticals R&d, AstraZeneca, Gothenburg, Sweden
| | - Katherine E. Bujold
- Department of Chemistry & Chemical Biology, McMaster University, (Ontario), Canada
| | | | - Alyssa C. Hill
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Eth Zürich, Zürich, Switzerland
| | - Aurélie Lacroix
- Sixfold Bioscience, Translation & Innovation Hub, London, UK
| | - Olivia Luige
- Department of Biosciences and Nutrition, Karolinska Institutet, Sweden
| | - Roger Strömberg
- Department of Biosciences and Nutrition, Karolinska Institutet, Sweden
| | - Linda Sundstrom
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&d, AstraZeneca, Gothenburg, Sweden
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (Hiri), Helmholtz Center for Infection Research (Hzi), Würzburg, Germany
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Alice Ghidini
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&d, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
70
|
Sun M, Liu S, Song T, Chen F, Zhang J, Huang JA, Wan S, Lu Y, Chen H, Tan W, Song Y, Yang C. Spherical Neutralizing Aptamer Inhibits SARS-CoV-2 Infection and Suppresses Mutational Escape. J Am Chem Soc 2021; 143:21541-21548. [PMID: 34855379 DOI: 10.1021/jacs.1c08226] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
New neutralizing agents against SARS-CoV-2 and associated mutant strains are urgently needed for the treatment and prophylaxis of COVID-19. Herein, we develop a spherical cocktail neutralizing aptamer-gold nanoparticle (SNAP) to block the interaction between the receptor-binding domain (RBD) of SARS-CoV-2 and host ACE2. With the multivalent aptamer assembly as well as the steric hindrance effect of the gold scaffold, SNAP exhibits exceptional binding affinity against the RBD with a dissociation constant of 3.90 pM and potent neutralization against authentic SARS-CoV-2 with a half-maximal inhibitory concentration of 142.80 fM, about 2 or 3 orders of magnitude lower than that of the reported neutralizing aptamers and antibodies. More importantly, the synergetic blocking strategy of multivalent multisite binding and steric hindrance ensures broad neutralizing activity of SNAP, almost completely blocking the infection of three mutant pseudoviruses. Overall, the SNAP strategy provides a new direction for the development of antivirus agents against SARS-CoV-2 and other emerging coronaviruses.
Collapse
Affiliation(s)
- Miao Sun
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Siwen Liu
- State Key Laboratory for Emerging Infectious Diseases, InnoHK Centre for Virology, Vaccinology, and Therapeutics, and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Ting Song
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fude Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jialu Zhang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.,Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jia-Ao Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuang Wan
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yao Lu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Honglin Chen
- State Key Laboratory for Emerging Infectious Diseases, InnoHK Centre for Virology, Vaccinology, and Therapeutics, and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Weihong Tan
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.,Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
71
|
Xu Z, Qu A, Wang W, Lu M, Shi B, Chen C, Hao C, Xu L, Sun M, Xu C, Kuang H. Facet-Dependent Biodegradable Mn 3 O 4 Nanoparticles for Ameliorating Parkinson's Disease. Adv Healthc Mater 2021; 10:e2101316. [PMID: 34601811 DOI: 10.1002/adhm.202101316] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/16/2021] [Indexed: 12/31/2022]
Abstract
Parkinson's disease (PD) is a common neurodegeneration disease. Unfortunately, there are no effective measures to prevent or inhibit this disease. In this study, biodegradable Mn3 O4 nanoparticles (NPs) in different shapes are prepared and enclosed them by {100}, {200} and {103} facets that exhibit facet-dependent protection against neurotoxicity induced by oxidative damage in a cell model of PD. Notably, Mn3 O4 nanorods enclosed by {103} facets exhibit high levels of enzyme-like activity to eliminate reactive oxygen specie in vitro. It is also determined that the uptake pathway of Mn3 O4 NPs into MN9D cells is mediated by caveolin. The data demonstrate that Mn3 O4 nanorods can be taken up by cells effectively and confer excellent levels of neuroprotection while the biodegradation of Mn3 O4 NPs in vivo is confirmed by photoacoustic image of Mn3 O4 NPs in brain at 60 d. Furthermore, the oxygen scavenging effect created by Mn3 O4 nanorods is successfully applied to a mouse model of PD; the amount of α-synuclein in the cerebrospinal fluid of PD mice is reduced by 61.2% in two weeks, thus demonstrating the potential application of facet-directed Mn3 O4 NPs for the clinical therapy of neurodegenerative disease.
Collapse
Affiliation(s)
- Zhuojia Xu
- State Key Lab of Food Science & Technology, and School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 China
| | - Aihua Qu
- State Key Lab of Food Science & Technology, and School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 China
| | - Weiwei Wang
- State Key Lab of Food Science & Technology, and School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 China
| | - Meiru Lu
- State Key Lab of Food Science & Technology, and School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 China
| | - Baimei Shi
- State Key Lab of Food Science & Technology, and School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 China
| | - Chen Chen
- State Key Lab of Food Science & Technology, and School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 China
| | - Changlong Hao
- State Key Lab of Food Science & Technology, and School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 China
| | - Liguang Xu
- State Key Lab of Food Science & Technology, and School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 China
| | - Maozhong Sun
- State Key Lab of Food Science & Technology, and School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 China
| | - Chuanlai Xu
- State Key Lab of Food Science & Technology, and School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 China
| | - Hua Kuang
- State Key Lab of Food Science & Technology, and School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 China
| |
Collapse
|
72
|
Wu H, Zhang L, Zhu Z, Ding C, Chen S, Liu R, Fan H, Chen Y, Li H. Novel CD123 polyaptamer hydrogel edited by Cas9/sgRNA for AML-targeted therapy. Drug Deliv 2021; 28:1166-1178. [PMID: 34121564 PMCID: PMC8205012 DOI: 10.1080/10717544.2021.1934191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 11/10/2022] Open
Abstract
CD123 targeting molecules have been widely applied in acute myelocytic leukemia (AML) therapeutics. Although antibodies have been more widely used as targeting molecules, aptamer have unique advantages for CD123 targeting therapy. In this study, we constructed an aptamer hydrogel termed as SSFH which could be precisely cut by Cas9/sgRNA for programmed SS30 release. To construct hydrogel, rolling-circle amplification (RCA) was used to generate hydrogel containing CD123 aptamer SS30 and sgRNA-targeting sequence. After incubation with Cas9/sgRNA, SSFH could lose its gel property and liberated the SS30 aptamer sequence, and released SS30 has been confirmed by gel electrophoresis. In addition, SS30 released from SSFH could inhibit cell proliferation and induce cell apoptosis in vitro. Moreover, SSFH could prolong survival rate and inhibit tumor growth via JAK2/STAT5 signaling pathway in vivo. Additionally, molecular imaging revealed SSFH co-injected with Cas9/sgRNA remained at the injection site longer than free aptamer. Furthermore, once the levels of cytokines were increasing, the complementary sequences of aptamers injection could neutralize SS30 and relieve side effect immediately. This study suggested that CD123 aptamer hydrogel SSFH and Cas9/sgRNA system has strong potential for CD123-positive AML anticancer therapy.
Collapse
Affiliation(s)
- Haibin Wu
- Department of Neonatology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Institute of Pediatric Diseases, Affiliated Children’s hospital of Xi’an Jiaotong University, Xi’an, China
| | - Liyu Zhang
- Department of Neonatology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Institute of Pediatric Diseases, Affiliated Children’s hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zeen Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chenxi Ding
- Department of Neonatology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shengquan Chen
- Department of Neonatology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ruiping Liu
- Department of Clinical Nutrition, Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huafeng Fan
- Department of Cardiovascular Medicine, Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yang Chen
- Department of Clinical Nutrition, Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hui Li
- Department of Neonatology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Neonatology, Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
73
|
Xu T, Yu S, Sun Y, Wu S, Gao D, Wang M, Wang Z, Tian Y, Min Q, Zhu JJ. DNA Origami Frameworks Enabled Self-Protective siRNA Delivery for Dual Enhancement of Chemo-Photothermal Combination Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101780. [PMID: 34611987 DOI: 10.1002/smll.202101780] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Although chemotherapy and photothermal therapy are widely used to combat cancer, their efficacy is often limited by multidrug resistance. Small interfering RNAs (siRNAs) have ability to suppress the expression of target genes, which has been extensively employed for combating the multidrug resistance to chemodrugs and hyperthermia in cancer therapy. However, efficient delivery of siRNAs along with chemo-photothermal agents in vivo is still an enormous challenge. Herein, octahedral DNA origami frameworks (OctDOFs) are constructed as a nanovehicle for precise organization and orchestrated delivery of siRNAs, chemodrugs (doxorubicin, Dox), and photothermal agents (gold nanorods, AuNRs) in combinatorial treatment of cancer. The inner cavity of the rigid OctDOFs structure is able to shield the encapsulated siRNAs during transportation by sterically hindering RNase degradation and protein binding, thus achieving effective downregulation of connective tissue growth factor (CTGF) and heat shock protein 72 (HSP72) for dual sensitization of cancer cells to chemodrugs and hyperthermia. By amplifying chemo-photothermal therapeutic potency with siRNAs, the proposed OctDOFs exhibited superior cytotoxicity and tumor inhibition efficacy in vitro and in vivo. This nanovehicle creates a promising siRNA delivery platform for precise medication and combination therapy.
Collapse
Affiliation(s)
- Tingting Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Sha Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, P. R. China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518000, P. R. China
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, P. R. China
| | - Yao Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Shaojun Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Di Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Mingyang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhenzhen Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Ye Tian
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, P. R. China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518000, P. R. China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
74
|
Liu G, Zhu M, Zhao X, Nie G. Nanotechnology-empowered vaccine delivery for enhancing CD8 + T cells-mediated cellular immunity. Adv Drug Deliv Rev 2021; 176:113889. [PMID: 34364931 DOI: 10.1016/j.addr.2021.113889] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/17/2021] [Accepted: 07/18/2021] [Indexed: 12/18/2022]
Abstract
After centuries of development, using vaccination to stimulate immunity has become an effective method for prevention and treatment of a variety of diseases including infective diseases and cancers. However, the tailor-made efficient delivery system for specific antigens is still urgently needed due to the low immunogenicity and stability of antigens, especially for vaccines to induce CD8+ T cells-mediated cellular immunity. Unlike B cells-mediated humoral immunity, CD8+ T cells-mediated cellular immunity mainly aims at the intracellular antigens from microorganism in virus-infected cells or genetic mutations in tumor cells. Therefore, the vaccines for stimulating CD8+ T cells-mediated cellular immunity should deliver the antigens efficiently into the cytoplasm of antigen presenting cells (APCs) to form major histocompatibility complex I (MHCI)-antigen complex through cross-presentation, followed by activating CD8+ T cells for immune protection and clearance. Importantly, nanotechnology has been emerged as a powerful tool to facilitate these multiple processes specifically, allowing not only enhanced antigen immunogenicity and stability but also APCs-targeted delivery and elevated cross-presentation. This review summarizes the process of CD8+ T cells-mediated cellular immunity induced by vaccines and the technical advantages of nanotechnology implementation in general, then provides an overview of the whole spectrum of nanocarriers studied so far and the recent development of delivery nanotechnology in vaccines against infectious diseases and cancer. Finally, we look forward to the future development of nanotechnology for the next generation of vaccines to induce CD8+ T cells-mediated cellular immunity.
Collapse
Affiliation(s)
- Guangna Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; The GBA National Institute for Nanotechnology Innovation, Guangdong 510700, China.
| |
Collapse
|
75
|
Chen X, Jia B, Lu Z, Liao L, Yu H, Li Z. Aptamer-Integrated Scaffolds for Biologically Functional DNA Origami Structures. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39711-39718. [PMID: 34402304 DOI: 10.1021/acsami.1c09307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The manufacture of DNA origami nanostructures with highly ordered functional motifs is of great significance for biomedical applications. Here, we present a robust strategy to produce customized scaffolds with integrated aptamer sequences, which enables direct construction of functional DNA origami structures. As we demonstrated, aptamers of various numbers and types were efficiently and stably integrated in user-defined positions of the scaffolds. Specifically, two different thrombin aptamer sequences were simultaneously inserted into the M13mp18 phage genome. The assembled functional DNA origami structures from this aptamer-integrated scaffold exhibited increased binding efficiency to thrombin and displayed more than 10-fold stronger resistance to exonuclease degradation than that produced using the traditional staple extension method. Additionally, a scaffold integrated with the platelet-derived growth factor aptamer was produced, and the assembled DNA origami structures showed significant inhibitory effect on breast cancer cells MDA-MB-231. This scalable method of creating design-specific scaffolds opens up a new way to construct more stable and functionally robust DNA origami structures and thus provides an important basis for their broader applications.
Collapse
Affiliation(s)
- Xiaoxing Chen
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Bin Jia
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Zhangwei Lu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Libing Liao
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Hanyang Yu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Zhe Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
76
|
Wang J, Zhang P, Xia Q, Wei Y, Chen W, Wang J, Li P, Li B, Zhou X. [Application of DNA origami in nanobiomedicine]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:960-964. [PMID: 34238752 DOI: 10.12122/j.issn.1673-4254.2021.06.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The development of DNA nanotechnology make it possible to artificially generate complex nucleic acid nanostructures with controllable sizes and shapes. DNA origami emerges as an effective and versatile approach to construct two- and three-dimensional programmable nanostructures, and represents a milestone in the development of structural DNA nanotechnology. Due to its high degree of controllable geometry, spatial addressability, easy chemical modification and good biocompatibility, DNA origami has great potentials for applications in many fields. In this review, we briefly summarize the applications of DNA origami in antigen-antibody interaction, targeted drug delivery and the synthesis of biomaterials.
Collapse
Affiliation(s)
- J Wang
- Schoolof Physics Science and Technology, Ningbo University, Ningbo 315211, China
| | - P Zhang
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Q Xia
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Y Wei
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,Basic Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - W Chen
- Schoolof Physics Science and Technology, Ningbo University, Ningbo 315211, China
| | - J Wang
- Schoolof Physics Science and Technology, Ningbo University, Ningbo 315211, China
| | - P Li
- Schoolof Physics Science and Technology, Ningbo University, Ningbo 315211, China
| | - B Li
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,Basic Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - X Zhou
- Schoolof Physics Science and Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
77
|
Chen Q, Ding F, Zhang S, Li Q, Liu X, Song H, Zuo X, Fan C, Mou S, Ge Z. Sequential Therapy of Acute Kidney Injury with a DNA Nanodevice. NANO LETTERS 2021; 21:4394-4402. [PMID: 33998787 DOI: 10.1021/acs.nanolett.1c01044] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The high demand for acute kidney injury (AKI) therapy calls the development of multifunctional nanomedicine for renal management with programmable pharmacokinetics. Here, we developed a renal-accumulating DNA nanodevice with exclusive kidney retention for longitudinal protection of AKI in different stages in a renal ischemia-reperfusion (I/R) model. Due to the prolonged kidney retention time (>12 h), the ROS-sensitive nucleic acids of the nanodevice could effectively alleviate oxidative stress by scavenging ROS in stage I, and then the anticomplement component 5a (aC5a) aptamer loaded nanodevice could sequentially suppress the inflammatory responses by blocking C5a in stage II, which is directly related to the cytokine storm. This sequential therapy provides durable and pathogenic treatment of kidney dysfunction based on successive pathophysiological events induced by I/R, which holds great promise for renal management and the suppression of the cytokine storm in more broad settings including COVID-19.
Collapse
Affiliation(s)
- Qian Chen
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fei Ding
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuangye Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haiyun Song
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shan Mou
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhilei Ge
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
78
|
Wang DX, Wang J, Wang YX, Du YC, Huang Y, Tang AN, Cui YX, Kong DM. DNA nanostructure-based nucleic acid probes: construction and biological applications. Chem Sci 2021; 12:7602-7622. [PMID: 34168817 PMCID: PMC8188511 DOI: 10.1039/d1sc00587a] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/04/2021] [Indexed: 12/22/2022] Open
Abstract
In recent years, DNA has been widely noted as a kind of material that can be used to construct building blocks for biosensing, in vivo imaging, drug development, and disease therapy because of its advantages of good biocompatibility and programmable properties. However, traditional DNA-based sensing processes are mostly achieved by random diffusion of free DNA probes, which were restricted by limited dynamics and relatively low efficiency. Moreover, in the application of biosystems, single-stranded DNA probes face challenges such as being difficult to internalize into cells and being easily decomposed in the cellular microenvironment. To overcome the above limitations, DNA nanostructure-based probes have attracted intense attention. This kind of probe showed a series of advantages compared to the conventional ones, including increased biostability, enhanced cell internalization efficiency, accelerated reaction rate, and amplified signal output, and thus improved in vitro and in vivo applications. Therefore, reviewing and summarizing the important roles of DNA nanostructures in improving biosensor design is very necessary for the development of DNA nanotechnology and its applications in biology and pharmacology. In this perspective, DNA nanostructure-based probes are reviewed and summarized from several aspects: probe classification according to the dimensions of DNA nanostructures (one, two, and three-dimensional nanostructures), the common connection modes between nucleic acid probes and DNA nanostructures, and the most important advantages of DNA self-assembled nanostructures in the applications of biosensing, imaging analysis, cell assembly, cell capture, and theranostics. Finally, the challenges and prospects for the future development of DNA nanostructure-based nucleic acid probes are also discussed.
Collapse
Affiliation(s)
- Dong-Xia Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Jing Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Ya-Xin Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yi-Chen Du
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yan Huang
- College of Life Sciences, Nankai University Tianjin 300071 P. R. China
| | - An-Na Tang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yun-Xi Cui
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
- College of Life Sciences, Nankai University Tianjin 300071 P. R. China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| |
Collapse
|