51
|
Effects of small molecule-induced dimerization on the programmed death ligand 1 protein life cycle. Sci Rep 2022; 12:21286. [PMID: 36494467 PMCID: PMC9734112 DOI: 10.1038/s41598-022-25417-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
The programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) checkpoint blockade is central to Immuno-Oncology based therapies, and alternatives to antibody blockers of this interaction are an active area of research due to antibody related toxicities. Recently, small molecule compounds that induce PD-L1 dimerization and occlusion of PD-1 binding site have been identified and developed for clinical trials. This mechanism invokes an oligomeric state of PD-L1 not observed in cells previously, as PD-L1 is generally believed to function as a monomer. Therefore, understanding the cellular lifecycle of the induced PD-L1 dimer is of keen interest. Our report describes a moderate but consistent increase in the PD-L1 rate of degradation observed upon protein dimerization as compared to the monomer counterpart. This subtle change, while not resolved by measuring total PD-L1 cellular levels by western blotting, triggered investigations of the overall protein distribution across various cellular compartments. We show that PD-L1 dimerization does not lead to rapid internalization of neither transfected nor endogenously expressed protein forms. Instead, evidence is presented that dimerization results in retention of PD-L1 intracellularly, which concomitantly correlates with its reduction on the cell surface. Therefore, the obtained data for the first time points to the ability of small molecules to induce dimerization of the newly synthesized PD-L1 in addition to the protein already present on the plasma membrane. Overall, this work serves to improve our understanding of this important target on a molecular level in order to guide advances in drug development.
Collapse
|
52
|
Sun C, Cheng Y, Liu X, Wang G, Min W, Wang X, Yuan K, Hou Y, Li J, Zhang H, Dong H, Wang L, Lou C, Sun Y, Yu X, Deng H, Xiao Y, Yang P. Novel phthalimides regulating PD-1/PD-L1 interaction as potential immunotherapy agents. Acta Pharm Sin B 2022; 12:4446-4457. [PMID: 36561991 PMCID: PMC9764071 DOI: 10.1016/j.apsb.2022.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/30/2021] [Accepted: 04/06/2022] [Indexed: 12/25/2022] Open
Abstract
Programmed cell death 1(PD-1)/programmed cell death ligand 1(PD-L1) have emerged as one of the most promising immune checkpoint targets for cancer immunotherapy. Despite the inherent advantages of small-molecule inhibitors over antibodies, the discovery of small-molecule inhibitors has fallen behind that of antibody drugs. Based on docking studies between small molecule inhibitor and PD-L1 protein, changing the chemical linker of inhibitor from a flexible chain to an aromatic ring may improve its binding capacity to PD-L1 protein, which was not reported before. A series of novel phthalimide derivatives from structure-based rational design was synthesized. P39 was identified as the best inhibitor with promising activity, which not only inhibited PD-1/PD-L1 interaction (IC50 = 8.9 nmol/L), but also enhanced killing efficacy of immune cells on cancer cells. Co-crystal data demonstrated that P39 induced the dimerization of PD-L1 proteins, thereby blocking the binding of PD-1/PD-L1. Moreover, P39 exhibited a favorable safety profile with a LD50 > 5000 mg/kg and showed significant in vivo antitumor activity through promoting CD8+ T cell activation. All these data suggest that P39 acts as a promising small chemical inhibitor against the PD-1/PD-L1 axis and has the potential to improve the immunotherapy efficacy of T-cells.
Collapse
Affiliation(s)
- Chengliang Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yao Cheng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaojia Liu
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Gefei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wenjian Min
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiao Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Kai Yuan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Hou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiaxing Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Haolin Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Haojie Dong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Liping Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chenguang Lou
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Yanze Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xinmiao Yu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hongbin Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China,Corresponding authors.
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China,Corresponding authors.
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China,Corresponding authors.
| |
Collapse
|
53
|
Burley SK, Bhikadiya C, Bi C, Bittrich S, Chao H, Chen L, Craig PA, Crichlow GV, Dalenberg K, Duarte JM, Dutta S, Fayazi M, Feng Z, Flatt JW, Ganesan SJ, Ghosh S, Goodsell DS, Green RK, Guranovic V, Henry J, Hudson BP, Khokhriakov I, Lawson CL, Liang Y, Lowe R, Peisach E, Persikova I, Piehl DW, Rose Y, Sali A, Segura J, Sekharan M, Shao C, Vallat B, Voigt M, Webb B, Westbrook JD, Whetstone S, Young JY, Zalevsky A, Zardecki C. RCSB Protein Data bank: Tools for visualizing and understanding biological macromolecules in 3D. Protein Sci 2022; 31:e4482. [PMID: 36281733 PMCID: PMC9667899 DOI: 10.1002/pro.4482] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 12/14/2022]
Abstract
Now in its 52nd year of continuous operations, the Protein Data Bank (PDB) is the premiere open-access global archive housing three-dimensional (3D) biomolecular structure data. It is jointly managed by the Worldwide Protein Data Bank (wwPDB) partnership. The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) is funded by the National Science Foundation, National Institutes of Health, and US Department of Energy and serves as the US data center for the wwPDB. RCSB PDB is also responsible for the security of PDB data in its role as wwPDB-designated Archive Keeper. Every year, RCSB PDB serves tens of thousands of depositors of 3D macromolecular structure data (coming from macromolecular crystallography, nuclear magnetic resonance spectroscopy, electron microscopy, and micro-electron diffraction). The RCSB PDB research-focused web portal (RCSB.org) makes PDB data available at no charge and without usage restrictions to many millions of PDB data consumers around the world. The RCSB PDB training, outreach, and education web portal (PDB101.RCSB.org) serves nearly 700 K educators, students, and members of the public worldwide. This invited Tools Issue contribution describes how RCSB PDB (i) is organized; (ii) works with wwPDB partners to process new depositions; (iii) serves as the wwPDB-designated Archive Keeper; (iv) enables exploration and 3D visualization of PDB data via RCSB.org; and (v) supports training, outreach, and education via PDB101.RCSB.org. New tools and features at RCSB.org are presented using examples drawn from high-resolution structural studies of proteins relevant to treatment of human cancers by targeting immune checkpoints.
Collapse
Affiliation(s)
- Stephen K. Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Cancer Institute of New Jersey, Rutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
- Research Collaboratory for Structural Bioinformatics Protein Data BankSan Diego Supercomputer Center, University of CaliforniaLa JollaCaliforniaUSA
- Department of Chemistry and Chemical Biology, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Charmi Bhikadiya
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Chunxiao Bi
- Research Collaboratory for Structural Bioinformatics Protein Data BankSan Diego Supercomputer Center, University of CaliforniaLa JollaCaliforniaUSA
| | - Sebastian Bittrich
- Research Collaboratory for Structural Bioinformatics Protein Data BankSan Diego Supercomputer Center, University of CaliforniaLa JollaCaliforniaUSA
| | - Henry Chao
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Li Chen
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Paul A. Craig
- School of Chemistry and Materials ScienceRochester Institute of TechnologyRochesterNew YorkUSA
| | - Gregg V. Crichlow
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Kenneth Dalenberg
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Jose M. Duarte
- Research Collaboratory for Structural Bioinformatics Protein Data BankSan Diego Supercomputer Center, University of CaliforniaLa JollaCaliforniaUSA
| | - Shuchismita Dutta
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Cancer Institute of New Jersey, Rutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
| | - Maryam Fayazi
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Zukang Feng
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Justin W. Flatt
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Sai J. Ganesan
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Department of Bioengineering and Therapeutic SciencesQuantitative Biosciences Institute, University of CaliforniaSan FranciscoCaliforniaUSA
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Department of Pharmaceutical ChemistryQuantitative Biosciences Institute, University of CaliforniaSan FranciscoCaliforniaUSA
| | - Sutapa Ghosh
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - David S. Goodsell
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Cancer Institute of New Jersey, Rutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Rachel Kramer Green
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Vladimir Guranovic
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Jeremy Henry
- Research Collaboratory for Structural Bioinformatics Protein Data BankSan Diego Supercomputer Center, University of CaliforniaLa JollaCaliforniaUSA
| | - Brian P. Hudson
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Igor Khokhriakov
- Research Collaboratory for Structural Bioinformatics Protein Data BankSan Diego Supercomputer Center, University of CaliforniaLa JollaCaliforniaUSA
| | - Catherine L. Lawson
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Yuhe Liang
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Robert Lowe
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Ezra Peisach
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Irina Persikova
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Dennis W. Piehl
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Yana Rose
- Research Collaboratory for Structural Bioinformatics Protein Data BankSan Diego Supercomputer Center, University of CaliforniaLa JollaCaliforniaUSA
| | - Andrej Sali
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Department of Bioengineering and Therapeutic SciencesQuantitative Biosciences Institute, University of CaliforniaSan FranciscoCaliforniaUSA
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Department of Pharmaceutical ChemistryQuantitative Biosciences Institute, University of CaliforniaSan FranciscoCaliforniaUSA
| | - Joan Segura
- Research Collaboratory for Structural Bioinformatics Protein Data BankSan Diego Supercomputer Center, University of CaliforniaLa JollaCaliforniaUSA
| | - Monica Sekharan
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Chenghua Shao
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Brinda Vallat
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Maria Voigt
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Benjamin Webb
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Department of Bioengineering and Therapeutic SciencesQuantitative Biosciences Institute, University of CaliforniaSan FranciscoCaliforniaUSA
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Department of Pharmaceutical ChemistryQuantitative Biosciences Institute, University of CaliforniaSan FranciscoCaliforniaUSA
| | - John D. Westbrook
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Shamara Whetstone
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Jasmine Y. Young
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Arthur Zalevsky
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Department of Bioengineering and Therapeutic SciencesQuantitative Biosciences Institute, University of CaliforniaSan FranciscoCaliforniaUSA
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Department of Pharmaceutical ChemistryQuantitative Biosciences Institute, University of CaliforniaSan FranciscoCaliforniaUSA
| | - Christine Zardecki
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| |
Collapse
|
54
|
Liu C, Yang M, Zhang D, Chen M, Zhu D. Clinical cancer immunotherapy: Current progress and prospects. Front Immunol 2022; 13:961805. [PMID: 36304470 PMCID: PMC9592930 DOI: 10.3389/fimmu.2022.961805] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint therapy via PD-1 antibodies has shown exciting clinical value and robust therapeutic potential in clinical practice. It can significantly improve progression-free survival and overall survival. Following surgery, radiotherapy, chemotherapy, and targeted therapy, cancer treatment has now entered the age of immunotherapy. Although cancer immunotherapy has shown remarkable efficacy, it also suffers from limitations such as irAEs, cytokine storm, low response rate, etc. In this review, we discuss the basic classification, research progress, and limitations of cancer immunotherapy. Besides, by combining cancer immunotherapy resistance mechanism with analysis of combination therapy, we give our insights into the development of new anticancer immunotherapy strategies.
Collapse
Affiliation(s)
- Chenglong Liu
- Minhang Hospital and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Mengxuan Yang
- Minhang Hospital and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Daizhou Zhang
- New Drug Evaluation Center, Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Ming Chen
- Department of Laboratory Medicine, Sixth Affiliated Hospital of Yangzhou University, Yangzhou, China
- Department of Laboratory Medicine, Affiliated Taixing Hospital of Bengbu Medical College, Taizhou, China
| | - Di Zhu
- Minhang Hospital and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
- New Drug Evaluation Center, Shandong Academy of Pharmaceutical Science, Jinan, China
- Shanghai Engineering Research Center of ImmunoTherapeutics, Fudan University, Shanghai, China
| |
Collapse
|
55
|
Kitel R, Rodríguez I, del Corte X, Atmaj J, Żarnik M, Surmiak E, Muszak D, Magiera-Mularz K, Popowicz GM, Holak TA, Musielak B. Exploring the Surface of the Ectodomain of the PD-L1 Immune Checkpoint with Small-Molecule Fragments. ACS Chem Biol 2022; 17:2655-2663. [PMID: 36073782 PMCID: PMC9486809 DOI: 10.1021/acschembio.2c00583] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Development of small molecules targeting the PD-L1/PD-1 interface is advancing both in industry and academia, but only a few have reached early-stage clinical trials. Here, we take a closer look at the general druggability of PD-L1 using in silico hot spot mapping and nuclear magnetic resonance (NMR)-based characterization. We found that the conformational elasticity of the PD-L1 surface strongly influences the formation of hot spots. We deconstructed several generations of known inhibitors into fragments and examined their binding properties using differential scanning fluorimetry (DSF) and protein-based nuclear magnetic resonance (NMR). These biophysical analyses showed that not all fragments bind to the PD-L1 ectodomain despite having the biphenyl scaffold. Although most of the binding fragments induced PD-L1 oligomerization, two compounds, TAH35 and TAH36, retain the monomeric state of proteins upon binding. Additionally, the presence of the entire ectodomain did not affect the binding of the hit compounds and dimerization of PD-L1. The data demonstrated here provide important information on the PD-L1 druggability and the structure-activity relationship of the biphenyl core moiety and therefore may aid in the design of novel inhibitors and focused fragment libraries for PD-L1.
Collapse
Affiliation(s)
- Radoslaw Kitel
- Faculty
of Chemistry, Organic Chemistry Department, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Ismael Rodríguez
- Faculty
of Chemistry, Organic Chemistry Department, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Xabier del Corte
- Departamento
de Química Orgánica I, Centro de Investigación
y Estudios Avanzados “Lucio Lascaray” − Facultad
de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad
7, 01006 Vitoria-Gasteiz, Spain
| | - Jack Atmaj
- Faculty
of Chemistry, Organic Chemistry Department, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Magdalena Żarnik
- Faculty
of Chemistry, Organic Chemistry Department, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Ewa Surmiak
- Faculty
of Chemistry, Organic Chemistry Department, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Damian Muszak
- Faculty
of Chemistry, Organic Chemistry Department, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Katarzyna Magiera-Mularz
- Faculty
of Chemistry, Organic Chemistry Department, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Grzegorz M. Popowicz
- Institute
of Structural Biology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
| | - Tad A. Holak
- Faculty
of Chemistry, Organic Chemistry Department, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Bogdan Musielak
- Faculty
of Chemistry, Organic Chemistry Department, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland,
| |
Collapse
|
56
|
Offringa R, Kötzner L, Huck B, Urbahns K. The expanding role for small molecules in immuno-oncology. Nat Rev Drug Discov 2022; 21:821-840. [PMID: 35982333 DOI: 10.1038/s41573-022-00538-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2022] [Indexed: 02/07/2023]
Abstract
The advent of immune checkpoint inhibition (ICI) using antibodies against PD1 and its ligand PDL1 has prompted substantial efforts to develop complementary drugs. Although many of these are antibodies directed against additional checkpoint proteins, there is an increasing interest in small-molecule immuno-oncology drugs that address intracellular pathways, some of which have recently entered clinical trials. In parallel, small molecules that target pro-tumorigenic pathways in cancer cells and the tumour microenvironment have been found to have immunostimulatory effects that synergize with the action of ICI antibodies, leading to the approval of an increasing number of regimens that combine such drugs. Combinations with small molecules targeting cancer metabolism, cytokine/chemokine and innate immune pathways, and T cell checkpoints are now under investigation. This Review discusses the recent milestones and hurdles encountered in this area of drug development, as well as our views on the best path forward.
Collapse
Affiliation(s)
- Rienk Offringa
- Department of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Germany. .,DKFZ-Bayer Immunotherapeutics Laboratory, German Cancer Research Center, Heidelberg, Germany. .,Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany.
| | - Lisa Kötzner
- Merck Healthcare KGaA, Healthcare R&D, Discovery and Development Technologies, Darmstadt, Germany
| | - Bayard Huck
- EMD Serono, Healthcare R&D, Discovery and Development Technologies, Billerica, MA, USA
| | - Klaus Urbahns
- EMD Serono, Healthcare R&D, Discovery and Development Technologies, Billerica, MA, USA.
| |
Collapse
|
57
|
Jutel M, Torres MJ, Palomares O, Akdis CA, Eiwegger T, Untersmayr E, Barber D, Zemelka-Wiacek M, Kosowska A, Palmer E, Vieths S, Mahler V, Canonica WG, Nadeau K, Shamji MH, Agache I. COVID-19 vaccination in patients receiving allergen immunotherapy (AIT) or biologicals-EAACI recommendations. Allergy 2022; 77:2313-2336. [PMID: 35147230 PMCID: PMC9111382 DOI: 10.1111/all.15252] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 12/16/2022]
Abstract
Immune modulation is a key therapeutic approach for allergic diseases, asthma and autoimmunity. It can be achieved in an antigen-specific manner via allergen immunotherapy (AIT) or in an endotype-driven approach using biologicals that target the major pathways of the type 2 (T2) immune response: immunoglobulin (Ig)E, interleukin (IL)-5 and IL-4/IL-13 or non-type 2 response: anti-cytokine antibodies and B-cell depletion via anti-CD20. Coronavirus disease 2019 (COVID-19) vaccination provides an excellent opportunity to tackle the global pandemics and is currently being applied in an accelerated rhythm worldwide. The vaccine exerts its effects through immune modulation, induces and amplifies the response against the severe acute respiratory syndrome coronavirus (SARS-CoV-2). Thus, as there may be a discernible interference between these treatment modalities, recommendations on how they should be applied in sequence are expected. The European Academy of Allergy and Clinical Immunology (EAACI) assembled an expert panel under its Research and Outreach Committee (ROC). This expert panel evaluated the evidence and have formulated recommendations on the administration of COVID-19 vaccine in patients with allergic diseases and asthma receiving AIT or biologicals. The panel also formulated recommendations for COVID-19 vaccine in association with biologicals targeting the type 1 or type 3 immune response. In formulating recommendations, the panel evaluated the mechanisms of COVID-19 infection, of COVID-19 vaccine, of AIT and of biologicals and considered the data published for other anti-infectious vaccines administered concurrently with AIT or biologicals.
Collapse
Affiliation(s)
- Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
- ALL-MED Medical Research Institute, Wroclaw, Poland
| | - Maria J Torres
- Allergy Unit, Regional University Hospital of Malaga, IBIMA-UMA-ARADyAL-BIONAND, Malaga, Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Zurich, Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Thomas Eiwegger
- Division of Immunology and Allergy, The Department of 13 Pediatrics, Food Allergy and Anaphylaxis Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Translational Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Domingo Barber
- Facultad de Medicina, Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | | | - Anna Kosowska
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
- ALL-MED Medical Research Institute, Wroclaw, Poland
| | - Elizabeth Palmer
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London. MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Stefan Vieths
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | | | - Walter G Canonica
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Personalized Medicine Asthma, & Allergy Center-IRCCS Humanitas Research Hospital, Milan, Italy
| | - Kari Nadeau
- Division of Pulmonary, Allergy and Critical Care Medicine, Dept of Medicine, Stanford, California, USA
| | - Mohamed H Shamji
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London. MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | | |
Collapse
|
58
|
Chow S, Unciti-Broceta A. Targeted Molecular Construct for Bioorthogonal Theranostics of PD-L1-Expressing Cancer Cells. JACS AU 2022; 2:1747-1756. [PMID: 35911461 PMCID: PMC9326819 DOI: 10.1021/jacsau.2c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Molecular targeting of tumor-overexpressed oncoproteins can improve the selectivity and tolerability of anticancer therapies. The immunoinhibitory membrane protein programmed death ligand 1 (PD-L1) is highly expressed on certain tumor types, which masks malignant cells from T cell recognition and creates an optimal environment for the cancer to thrive and spread. We report here a ligand-tetrazine conjugate (LTzC) armed with a PD-L1 small molecule inhibitor to selectively target PD-L1-expressing cancer cells and inhibit PD-L1 function and conjugated to a tetrazine module and a lipoyl group to incorporate bioorthogonal reactivities and an oxidative stress enhancer into the construct. By pairing LTzC with an imaging probe, we have established a "track-&-tag" system for selective labeling of PD-L1 both on and in living cells using click chemistry. We have further shown the specificity and versatility of LTzC by click-to-release activation of prodrugs and selective killing of PD-L1-expressing breast cancer cells, offering a new multimodal approach to "track-&-treat" malignant cells that are capable of evading the immune system.
Collapse
Affiliation(s)
- Shiao
Y. Chow
- Cancer Research UK Edinburgh Centre,
Institute of Genetics and Cancer, University
of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
| | - Asier Unciti-Broceta
- Cancer Research UK Edinburgh Centre,
Institute of Genetics and Cancer, University
of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
| |
Collapse
|
59
|
Yang J, Basu S, Hu L. Design, synthesis, and structure–activity relationships of 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid derivatives as inhibitors of the programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) immune checkpoint pathway. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02926-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
60
|
Microscale Thermophoresis as a Tool to Study Protein Interactions and Their Implication in Human Diseases. Int J Mol Sci 2022; 23:ijms23147672. [PMID: 35887019 PMCID: PMC9315744 DOI: 10.3390/ijms23147672] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 02/06/2023] Open
Abstract
The review highlights how protein–protein interactions (PPIs) have determining roles in most life processes and how interactions between protein partners are involved in various human diseases. The study of PPIs and binding interactions as well as their understanding, quantification and pharmacological regulation are crucial for therapeutic purposes. Diverse computational and analytical methods, combined with high-throughput screening (HTS), have been extensively used to characterize multiple types of PPIs, but these procedures are generally laborious, long and expensive. Rapid, robust and efficient alternative methods are proposed, including the use of Microscale Thermophoresis (MST), which has emerged as the technology of choice in drug discovery programs in recent years. This review summarizes selected case studies pertaining to the use of MST to detect therapeutically pertinent proteins and highlights the biological importance of binding interactions, implicated in various human diseases. The benefits and limitations of MST to study PPIs and to identify regulators are discussed.
Collapse
|
61
|
Fung S, Choi HSJ, Gehring A, Janssen HLA. Getting to HBV cure: The promising paths forward. Hepatology 2022; 76:233-250. [PMID: 34990029 DOI: 10.1002/hep.32314] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/18/2022]
Abstract
Chronic HBV infection is a global public health burden estimated to impact nearly 300 million persons worldwide. Despite the advent of potent antiviral agents that effectively suppress viral replication, HBV cure remains difficult to achieve because of the persistence of covalently closed circular DNA (cccDNA), HBV-DNA integration into the host genome, and impaired immune response. Indefinite treatment is necessary for most patients to maintain level of viral suppression. The success of direct-acting antivirals (DAAs) for hepatitis C treatment has rejuvenated the search for a cure for chronic hepatitis B (CHB), though an HBV cure likely requires an additional layer: immunomodulators for restoration of robust immune responses. DAAs such as entry inhibitors, capsid assembly modulators, inhibitors of subviral particle release, cccDNA silencers, and RNA interference molecules have reached clinical development. Immunomodulators, namely innate immunomodulators (Toll-like receptor agonists), therapeutic vaccines, checkpoint inhibitors, and monoclonal antibodies, are also progressing toward clinical development. The future of the HBV cure possibly lies in triple combination therapies with concerted action on replication inhibition, antigen reduction, and immune stimulation. Many obstacles remain, such as overcoming translational failures, choosing the right endpoint using the right biomarkers, and leveraging current treatments in combination regimens to enhance response rates. This review gives an overview of the current therapies for CHB, HBV biomarkers used to evaluate treatment response, and development of DAAs and immune-targeting drugs and discusses the limitations and unanswered questions on the journey to an HBV cure.
Collapse
Affiliation(s)
- Scott Fung
- Toronto Centre for Liver Disease, Toronto General Hospital, Toronto, Ontario, Canada
| | - Hannah S J Choi
- Toronto Centre for Liver Disease, Toronto General Hospital, Toronto, Ontario, Canada
| | - Adam Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital, Toronto, Ontario, Canada
| | - Harry L A Janssen
- Toronto Centre for Liver Disease, Toronto General Hospital, Toronto, Ontario, Canada
| |
Collapse
|
62
|
Ahmed M, Ganesan A, Barakat K. Leveraging structural and 2D-QSAR to investigate the role of functional group substitutions, conserved surface residues and desolvation in triggering the small molecule-induced dimerization of hPD-L1. BMC Chem 2022; 16:49. [PMID: 35761353 PMCID: PMC9238240 DOI: 10.1186/s13065-022-00842-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 06/21/2022] [Indexed: 12/02/2022] Open
Abstract
Small molecules are rising as a new generation of immune checkpoints’ inhibitors, with compounds targeting the human Programmed death-ligand 1 (hPD-L1) protein are pioneering this area of research. Promising examples include the recently disclosed compounds from Bristol-Myers-Squibb (BMS). These molecules bind specifically to hPD-L1 through a unique mode of action. They induce dimerization between two hPD-L1 monomers through the hPD-1 binding interface in each monomer, thereby inhibiting the PD-1/PD-L1 axis. While the recently reported crystal structures of such small molecules bound to hPD-L1 reveal valuable insights regarding their molecular interactions, there is still limited information about the dynamics driving this unusual complex formation. The current study provides an in-depth computational structural analysis to study the interactions of five small molecule compounds in complex with hPD-L1. By employing a combination of molecular dynamic simulations, binding energy calculations and computational solvent mapping techniques, our analyses quantified the dynamic roles of different hydrophilic and lipophilic residues at the surface of hPD-L1 in mediating these interactions. Furthermore, ligand-based analyses, including Free-Wilson 2D-QSAR was conducted to quantify the impact of R-group substitutions at different sites of the phenoxy-methyl biphenyl core. Our results emphasize the importance of a terminal phenyl ring that must be present in any hPD-L1 small molecule inhibitor. This phenyl moiety overlaps with a very unfavorable hydration site, which can explain the ability of such small molecules to trigger hPD-L1 dimerization.
Collapse
Affiliation(s)
- Marawan Ahmed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Aravindhan Ganesan
- ArGan's Lab, School of Pharmacy, University of Waterloo, Kitchener, ON, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada. .,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
63
|
Krutzek F, Kopka K, Stadlbauer S. Development of Radiotracers for Imaging of the PD-1/PD-L1 Axis. Pharmaceuticals (Basel) 2022; 15:ph15060747. [PMID: 35745666 PMCID: PMC9228425 DOI: 10.3390/ph15060747] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has emerged as a major treatment option for a variety of cancers. Among the immune checkpoints addressed, the programmed death receptor 1 (PD-1) and its ligand PD-L1 are the key targets for an ICI. PD-L1 has especially been proven to be a reproducible biomarker allowing for therapy decisions and monitoring therapy success. However, the expression of PD-L1 is not only heterogeneous among and within tumor lesions, but the expression is very dynamic and changes over time. Immunohistochemistry, which is the standard diagnostic tool, can only inadequately address these challenges. On the other hand, molecular imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) provide the advantage of a whole-body scan and therefore fully address the issue of the heterogeneous expression of checkpoints over time. Here, we provide an overview of existing PET, SPECT, and optical imaging (OI) (radio)tracers for the imaging of the upregulation levels of PD-1 and PD-L1. We summarize the preclinical and clinical data of the different molecule classes of radiotracers and discuss their respective advantages and disadvantages. At the end, we show possible future directions for developing new radiotracers for the imaging of PD-1/PD-L1 status in cancer patients.
Collapse
Affiliation(s)
- Fabian Krutzek
- Department of Translational TME Ligands, Institute of Radiopharmaceutical Cancer Research, Helmholtz Center Dresden-Rossendorf, 01328 Dresden, Germany; (F.K.); (K.K.)
| | - Klaus Kopka
- Department of Translational TME Ligands, Institute of Radiopharmaceutical Cancer Research, Helmholtz Center Dresden-Rossendorf, 01328 Dresden, Germany; (F.K.); (K.K.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technical University Dresden, 01069 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, University Cancer Cancer (UCC), 01307 Dresden, Germany
| | - Sven Stadlbauer
- Department of Translational TME Ligands, Institute of Radiopharmaceutical Cancer Research, Helmholtz Center Dresden-Rossendorf, 01328 Dresden, Germany; (F.K.); (K.K.)
- Correspondence:
| |
Collapse
|
64
|
Koblish HK, Wu L, Wang LCS, Liu PC, Wynn R, Rios-Doria J, Spitz S, Liu H, Volgina A, Zolotarjova N, Kapilashrami K, Behshad E, Covington M, Yang YO, Li J, Diamond S, Soloviev M, O'Hayer K, Rubin S, Kanellopoulou C, Yang G, Rupar M, DiMatteo D, Lin L, Stevens C, Zhang Y, Thekkat P, Geschwindt R, Marando C, Yeleswaram S, Jackson J, Scherle P, Huber R, Yao W, Hollis G. Characterization of INCB086550: A Potent and Novel Small-Molecule PD-L1 Inhibitor. Cancer Discov 2022; 12:1482-1499. [PMID: 35254416 PMCID: PMC9394386 DOI: 10.1158/2159-8290.cd-21-1156] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/22/2021] [Accepted: 02/28/2022] [Indexed: 01/07/2023]
Abstract
Blocking the activity of the programmed cell death protein 1 (PD-1) inhibitory receptor with therapeutic antibodies against either the ligand (PD-L1) or PD-1 itself has proven to be an effective treatment modality for multiple cancers. Contrasting with antibodies, small molecules could demonstrate increased tissue penetration, distinct pharmacology, and potentially enhanced antitumor activity. Here, we describe the identification and characterization of INCB086550, a novel, oral, small-molecule PD-L1 inhibitor. In vitro, INCB086550 selectively and potently blocked the PD-L1/PD-1 interaction, induced PD-L1 dimerization and internalization, and induced stimulation-dependent cytokine production in primary human immune cells. In vivo, INCB086550 reduced tumor growth in CD34+ humanized mice and induced T-cell activation gene signatures, consistent with PD-L1/PD-1 pathway blockade. Preliminary data from an ongoing phase I study confirmed PD-L1/PD-1 blockade in peripheral blood cells, with increased immune activation and tumor growth control. These data support continued clinical evaluation of INCB086550 as an alternative to antibody-based therapies. SIGNIFICANCE We have identified a potent small-molecule inhibitor of PD-L1, INCB086550, which has biological properties similar to PD-L1/PD-1 monoclonal antibodies and may represent an alternative to antibody therapy. Preliminary clinical data in patients demonstrated increased immune activation and tumor growth control, which support continued clinical evaluation of this approach. See related commentary by Capparelli and Aplin, p. 1413. This article is highlighted in the In This Issue feature, p. 1397.
Collapse
Affiliation(s)
| | | | | | | | | | - Jonathan Rios-Doria
- Incyte Research Institute, Wilmington, DE
- Corresponding Author: Jonathan Rios-Doria, Incyte Corporation, 1801 Augustine Cut Off, Wilmington, DE 19803. Phone: 302-498-6914; E-mail:
| | | | - Hao Liu
- Incyte Research Institute, Wilmington, DE
| | | | | | | | | | | | | | - Jingwei Li
- Incyte Research Institute, Wilmington, DE
| | | | | | | | | | | | | | - Mark Rupar
- Incyte Research Institute, Wilmington, DE
| | | | - Luping Lin
- Incyte Research Institute, Wilmington, DE
| | | | - Yue Zhang
- Incyte Research Institute, Wilmington, DE
| | | | | | | | | | | | | | - Reid Huber
- Incyte Research Institute, Wilmington, DE
| | | | | |
Collapse
|
65
|
Le Biannic R, Magnez R, Klupsch F, Leleu-Chavain N, Thiroux B, Tardy M, El Bouazzati H, Dezitter X, Renault N, Vergoten G, Bailly C, Quesnel B, Thuru X, Millet R. Pyrazolones as inhibitors of immune checkpoint blocking the PD-1/PD-L1 interaction. Eur J Med Chem 2022; 236:114343. [DOI: 10.1016/j.ejmech.2022.114343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 01/13/2023]
|
66
|
Sasikumar PG, Ramachandra M. Small Molecule Agents Targeting PD-1 Checkpoint Pathway for Cancer Immunotherapy: Mechanisms of Action and Other Considerations for Their Advanced Development. Front Immunol 2022; 13:752065. [PMID: 35585982 PMCID: PMC9108255 DOI: 10.3389/fimmu.2022.752065] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/29/2022] [Indexed: 12/20/2022] Open
Abstract
Pioneering success of antibodies targeting immune checkpoints such as programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) has changed the outlook of cancer therapy. Although these antibodies show impressive durable clinical activity, low response rates and immune-related adverse events are becoming increasingly evident in antibody-based approaches. For further strides in cancer immunotherapy, novel treatment strategies including combination therapies and alternate therapeutic modalities are highly warranted. Towards this discovery and development of small molecule, checkpoint inhibitors are actively being pursued, and the efforts have culminated in the ongoing clinical testing of orally bioavailable checkpoint inhibitors. This review focuses on the small molecule agents targeting PD-1 checkpoint pathway for cancer immunotherapy and highlights various chemotypes/scaffolds and their characterization including binding and functionality along with reported mechanism of action. The learnings from the ongoing small molecule clinical trials and crucial points to be considered for their clinical development are also discussed.
Collapse
|
67
|
Lu L, Qi Z, Wang T, Zhang X, Zhang K, Wang K, Cheng Y, Xiao Y, Li Z, Jiang S. Design, Synthesis, and Evaluation of PD-1/PD-L1 Antagonists Bearing a Benzamide Scaffold. ACS Med Chem Lett 2022; 13:586-592. [PMID: 35450381 PMCID: PMC9014519 DOI: 10.1021/acsmedchemlett.1c00646] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/25/2022] [Indexed: 12/21/2022] Open
Abstract
Several antibodies targeting programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) have been approved by the U.S. Food and Drug Administration (FDA) for cancer therapy. Although many small-molecule inhibitors of the PD-1/PD-L1 pathway have been reported, no small-molecule inhibitors have been approved for cancer treatment. In this work, a series of novel benzamide derivatives were designed, synthesized, and evaluated to find effective inhibitors of the PD-1/PD-L1 interaction. The most potent compound D2 exhibited better activity than that of BMS202, with an IC50 of 16.17 nM. D2 could activate the antitumor immunity of T cells efficiently in PBMCs. The proposed binding mode of compound D2 was investigated by docking analysis. These results indicate that compound D2 is a promising lead compound that can be used for further development.
Collapse
Affiliation(s)
- Lu Lu
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry and Department of Biomedical Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Zhihao Qi
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry and Department of Biomedical Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Tianyu Wang
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry and Department of Biomedical Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangyu Zhang
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry and Department of Biomedical Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Kuojun Zhang
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry and Department of Biomedical Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Kaizhen Wang
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry and Department of Biomedical Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yao Cheng
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry and Department of Biomedical Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry and Department of Biomedical Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Zheng Li
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner, Houston, Texas 77030, United States
| | - Sheng Jiang
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry and Department of Biomedical Engineering, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
68
|
Abstract
The paradigm of surface-expressed programmed death ligand 1 (PDL1) signalling to immune cell programmed death 1 (PD1) to inhibit antitumour immunity has helped to develop effective and revolutionary immunotherapies using antibodies blocking these cell-extrinsic interactions. The recent discovery of cancer cell-intrinsic PDL1 signals has broadened understanding of pathologic tumour PDL1 signal consequences that now includes control of tumour growth and survival pathways, stemness, immune effects, DNA damage responses and gene expression regulation. Many such effects are PD1-independent. These insights demonstrate that the prevailing cell-extrinsic PDL1 signalling paradigm is useful, but incomplete in important respects. This Perspective discusses historical and recent advances in understanding cancer cell-intrinsic PDL1 signals, mechanisms for signal controls and important immunopathologic consequences including resistance to cytotoxic agents, targeted small molecules and immunotherapies. Cancer cell-intrinsic PDL1 signals present novel drug discovery targets and also have potential as reliable treatment response biomarkers. Cancer cell-intrinsic PD1 signals and cell-intrinsic PDL1 signals in non-cancer cells are discussed briefly, as are PDL1 signals from soluble and vesicle-bound PDL1 and PDL1 isoforms. We conclude with suggestions for addressing the most pressing challenges and opportunities in this rapidly developing field.
Collapse
Affiliation(s)
- Anand V R Kornepati
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Ratna K Vadlamudi
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, USA
- MD Anderson Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Tyler J Curiel
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX, USA.
- MD Anderson Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA.
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
69
|
Wang T, Cai S, Cheng Y, Zhang W, Wang M, Sun H, Guo B, Li Z, Xiao Y, Jiang S. Discovery of Small-Molecule Inhibitors of the PD-1/PD-L1 Axis That Promote PD-L1 Internalization and Degradation. J Med Chem 2022; 65:3879-3893. [PMID: 35188766 DOI: 10.1021/acs.jmedchem.1c01682] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Several monoclonal antibodies targeting the programmed cell death-1/programmed cell death-ligand 1 (PD-1/PD-L1) pathway have been used successfully in anticancer immunotherapy. Inherent limitations of antibody-based therapies remain, however, and alternative small-molecule inhibitors that can block the PD-1/PD-L1 axis are urgent needed. Herein, we report the discovery of compound 17 as a bifunctional inhibitor of PD-1/PD-L1 interactions. 17 inhibits PD-1/PD-L1 interactions and promotes dimerization, internalization, and degradation of PD-L1. 17 promotes cell-surface PD-L1 internalized into the cytosol and induces the degradation of PD-L1 in tumor cells through a lysosome-dependent pathway. Furthermore, 17 suppresses tumor growth in vivo by activating antitumor immunity. These results demonstrate that 17 targets the PD-1/PD-L1 axis and induces PD-L1 degradation.
Collapse
Affiliation(s)
- Tianyu Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shi Cai
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yao Cheng
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wanheng Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Minmin Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Huiyong Sun
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Binghua Guo
- Syntron Company, Ltd., Yanchen 224500, China
| | - Zheng Li
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner, Houston, Texas 77030, United States
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Sheng Jiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
70
|
Suzuki Y, Ichinohe K, Sugawara A, Kida S, Murase S, Zhang J, Yamada O, Hattori T, Oshima Y, Kikuchi H. Development of Indole Alkaloid-Type Dual Immune Checkpoint Inhibitors Against CTLA-4 and PD-L1 Based on Diversity-Enhanced Extracts. Front Chem 2021; 9:766107. [PMID: 34858943 PMCID: PMC8630621 DOI: 10.3389/fchem.2021.766107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Cancer immunotherapy involves the use of the immune system for cancer treatment. Recently, immune checkpoint-blocking antibodies have become integral for the treatment of some cancers. However, small molecules exhibit advantages over monoclonal antibody drugs, such as cell penetration, long half-life, and low manufacturing costs, and the possibility of oral administration. Thus, it is imperative to develop small-molecule immune checkpoint inhibitors. Previously, we have screened a library of synthetic indole-alkaloid-type compounds, which are produced by diversity-enhanced extracts of Japanese cornelian cherry, and reported that an unnatural pentacyclic compound inhibits CTLA-4 gene expression. In this study, immune checkpoint inhibitors with increased potency were developed by introducing substituents and conversion of functional groups based on the unnatural pentacyclic compound. The developed compounds suppressed not only CTLA-4 and PD-L1 gene expression but also protein expression on the cell surface. Their efficacy was not as potent as that of the existing small-molecule immune checkpoint inhibitors, but, to the best of our knowledge, the developed compounds are the first reported dual small-molecule inhibitors of CTLA-4 and PD-L1.
Collapse
Affiliation(s)
- Yoshihide Suzuki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Keisuke Ichinohe
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Akihiro Sugawara
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Shinya Kida
- Research and Development Center, FUSO Pharmaceutical Industries, Ltd., Osaka, Japan
| | - Shinya Murase
- Research and Development Center, FUSO Pharmaceutical Industries, Ltd., Osaka, Japan
| | - Jing Zhang
- Research and Development Center, FUSO Pharmaceutical Industries, Ltd., Osaka, Japan
| | - Osamu Yamada
- Research and Development Center, FUSO Pharmaceutical Industries, Ltd., Osaka, Japan
| | - Toshio Hattori
- Research Institute of Health and Welfare, Kibi International University, Takahashi, Japan
| | - Yoshiteru Oshima
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Haruhisa Kikuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.,Division of Natural Medicines, Faculty of Pharmacy, Keio University, Tokyo, Japan
| |
Collapse
|
71
|
Surmiak E, Magiera-Mularz K, Musielak B, Muszak D, Kocik-Krol J, Kitel R, Plewka J, Holak TA, Skalniak L. PD-L1 Inhibitors: Different Classes, Activities, and Mechanisms of Action. Int J Mol Sci 2021; 22:ijms222111797. [PMID: 34769226 PMCID: PMC8583776 DOI: 10.3390/ijms222111797] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 01/02/2023] Open
Abstract
Targeting the programmed cell death protein 1/programmed cell death 1 ligand 1 (PD-1/PD-L1) interaction has become an established strategy for cancer immunotherapy. Although hundreds of small-molecule, peptide, and peptidomimetic inhibitors have been proposed in recent years, only a limited number of drug candidates show good PD-1/PD-L1 blocking activity in cell-based assays. In this article, we compare representative molecules from different classes in terms of their PD-1/PD-L1 dissociation capacity measured by HTRF and in vitro bioactivity determined by the immune checkpoint blockade (ICB) co-culture assay. We point to recent discoveries that underscore important differences in the mechanisms of action of these molecules and also indicate one principal feature that needs to be considered, which is the eventual human PD-L1 specificity.
Collapse
|
72
|
Thangam R, Patel KD, Kang H, Paulmurugan R. Advances in Engineered Polymer Nanoparticle Tracking Platforms towards Cancer Immunotherapy-Current Status and Future Perspectives. Vaccines (Basel) 2021; 9:vaccines9080935. [PMID: 34452059 PMCID: PMC8402739 DOI: 10.3390/vaccines9080935] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/17/2022] Open
Abstract
Engineering polymeric nanoparticles for their shape, size, surface chemistry, and functionalization using various targeting molecules has shown improved biomedical applications for nanoparticles. Polymeric nanoparticles have created tremendous therapeutic platforms, particularly applications related to chemo- and immunotherapies in cancer. Recently advancements in immunotherapies have broadened this field in immunology and biomedical engineering, where "immunoengineering" creates solutions to target translational science. In this regard, the nanoengineering field has offered the various techniques necessary to manufacture and assemble multifunctional polymeric nanomaterial systems. These include nanoparticles functionalized using antibodies, small molecule ligands, targeted peptides, proteins, and other novel agents that trigger and encourage biological systems to accept the engineered materials as immune enhancers or as vaccines to elevate therapeutic functions. Strategies to engineer polymeric nanoparticles with therapeutic and targeting molecules can provide solutions for developing immune vaccines via maintaining the receptor storage in T- and B cells. Furthermore, cancer immunotherapy using polymeric nanomaterials can serve as a gold standard approach for treating primary and metastasized tumors. The current status of the limited availability of immuno-therapeutic drugs highlights the importance of polymeric nanomaterial platforms to improve the outcomes via delivering anticancer agents at localized sites, thereby enhancing the host immune response in cancer therapy. This review mainly focuses on the potential scientific enhancements and recent developments in cancer immunotherapies by explicitly discussing the role of polymeric nanocarriers as nano-vaccines. We also briefly discuss the role of multifunctional nanomaterials for their therapeutic impacts on translational clinical applications.
Collapse
Affiliation(s)
- Ramar Thangam
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea; (K.D.P.); (H.K.)
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
- Correspondence: (R.T.); (R.P.)
| | - Kapil D. Patel
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea; (K.D.P.); (H.K.)
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea; (K.D.P.); (H.K.)
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
- Department of Biomicrosystem Technology, Korea University, Seoul 02841, Korea
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Correspondence: (R.T.); (R.P.)
| |
Collapse
|
73
|
Gunaydin G, Gedik ME, Ayan S. Photodynamic Therapy for the Treatment and Diagnosis of Cancer-A Review of the Current Clinical Status. Front Chem 2021; 9:686303. [PMID: 34409014 PMCID: PMC8365093 DOI: 10.3389/fchem.2021.686303] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Photodynamic therapy (PDT) has been used as an anti-tumor treatment method for a long time and photosensitizers (PS) can be used in various types of tumors. Originally, light is an effective tool that has been used in the treatment of diseases for ages. The effects of combination of specific dyes with light illumination was demonstrated at the beginning of 20th century and novel PDT approaches have been developed ever since. Main strategies of current studies are to reduce off-target effects and improve pharmacokinetic properties. Given the high interest and vast literature about the topic, approval of PDT as the first drug/device combination by the FDA should come as no surprise. PDT consists of two stages of treatment, combining light energy with a PS in order to destruct tumor cells after activation by light. In general, PDT has fewer side effects and toxicity than chemotherapy and/or radiotherapy. In addition to the purpose of treatment, several types of PSs can be used for diagnostic purposes for tumors. Such approaches are called photodynamic diagnosis (PDD). In this Review, we provide a general overview of the clinical applications of PDT in cancer, including the diagnostic and therapeutic approaches. Assessment of PDT therapeutic efficacy in the clinic will be discussed, since identifying predictors to determine the response to treatment is crucial. In addition, examples of PDT in various types of tumors will be discussed. Furthermore, combination of PDT with other therapy modalities such as chemotherapy, radiotherapy, surgery and immunotherapy will be emphasized, since such approaches seem to be promising in terms of enhancing effectiveness against tumor. The combination of PDT with other treatments may yield better results than by single treatments. Moreover, the utilization of lower doses in a combination therapy setting may cause less side effects and better results than single therapy. A better understanding of the effectiveness of PDT in a combination setting in the clinic as well as the optimization of such complex multimodal treatments may expand the clinical applications of PDT.
Collapse
Affiliation(s)
- Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - M. Emre Gedik
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Seylan Ayan
- Department of Chemistry, Bilkent University, Ankara, Turkey
| |
Collapse
|
74
|
Muszak D, Surmiak E, Plewka J, Magiera-Mularz K, Kocik-Krol J, Musielak B, Sala D, Kitel R, Stec M, Weglarczyk K, Siedlar M, Dömling A, Skalniak L, Holak TA. Terphenyl-Based Small-Molecule Inhibitors of Programmed Cell Death-1/Programmed Death-Ligand 1 Protein-Protein Interaction. J Med Chem 2021; 64:11614-11636. [PMID: 34313116 PMCID: PMC8365601 DOI: 10.1021/acs.jmedchem.1c00957] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
We describe a new
class of potent PD-L1/PD-1 inhibitors based on
a terphenyl scaffold that is derived from the rigidified biphenyl-inspired
structure. Using in silico docking, we designed and
then experimentally demonstrated the effectiveness of the terphenyl-based
scaffolds in inhibiting PD-1/PD-L1 complex formation using various
biophysical and biochemical techniques. We also present a high-resolution
structure of the complex of PD-L1 with one of our most potent inhibitors
to identify key PD-L1/inhibitor interactions at the molecular level.
In addition, we show the efficacy of our most potent inhibitors in
activating the antitumor response using primary human immune cells
from healthy donors.
Collapse
Affiliation(s)
- Damian Muszak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Ewa Surmiak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Jacek Plewka
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Kraków, Poland
| | - Katarzyna Magiera-Mularz
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Justyna Kocik-Krol
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Bogdan Musielak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Dominik Sala
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Radoslaw Kitel
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Malgorzata Stec
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
| | - Kazimierz Weglarczyk
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
| | - Alexander Dömling
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lukasz Skalniak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Tad A Holak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
75
|
Spiesschaert B, Angerer K, Park J, Wollmann G. Combining Oncolytic Viruses and Small Molecule Therapeutics: Mutual Benefits. Cancers (Basel) 2021; 13:3386. [PMID: 34298601 PMCID: PMC8306439 DOI: 10.3390/cancers13143386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
The focus of treating cancer with oncolytic viruses (OVs) has increasingly shifted towards achieving efficacy through the induction and augmentation of an antitumor immune response. However, innate antiviral responses can limit the activity of many OVs within the tumor and several immunosuppressive factors can hamper any subsequent antitumor immune responses. In recent decades, numerous small molecule compounds that either inhibit the immunosuppressive features of tumor cells or antagonize antiviral immunity have been developed and tested for. Here we comprehensively review small molecule compounds that can achieve therapeutic synergy with OVs. We also elaborate on the mechanisms by which these treatments elicit anti-tumor effects as monotherapies and how these complement OV treatment.
Collapse
Affiliation(s)
- Bart Spiesschaert
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
- ViraTherapeutics GmbH, 6063 Rum, Austria
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany;
| | - Katharina Angerer
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - John Park
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany;
| | - Guido Wollmann
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
76
|
Furuta H, Kato S, Masago K, Hida T. Palmoplantar Pustulosis Caused by Immune-Checkpoint Inhibitors. Clin Lung Cancer 2021; 22:e829-e832. [PMID: 34023207 DOI: 10.1016/j.cllc.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023]
Affiliation(s)
| | - Seiichi Kato
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Aichi, Japan
| | - Katsuhiro Masago
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Aichi, Japan.
| | | |
Collapse
|