51
|
Chen D, Yu R, Yu K, Lu R, Zhao H, Jiao J, Yao Y, Zhu J, Wu J, Mu S. Bicontinuous RuO 2 nanoreactors for acidic water oxidation. Nat Commun 2024; 15:3928. [PMID: 38724489 PMCID: PMC11082236 DOI: 10.1038/s41467-024-48372-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Improving activity and stability of Ruthenium (Ru)-based catalysts in acidic environments is eager to replace more expensive Iridium (Ir)-based materials as practical anode catalyst for proton-exchange membrane water electrolyzers (PEMWEs). Here, a bicontinuous nanoreactor composed of multiscale defective RuO2 nanomonomers (MD-RuO2-BN) is conceived and confirmed by three-dimensional tomograph reconstruction technology. The unique bicontinuous nanoreactor structure provides abundant active sites and rapid mass transfer capability through a cavity confinement effect. Besides, existing vacancies and grain boundaries endow MD-RuO2-BN with generous low-coordination Ru atoms and weakened Ru-O interaction, inhibiting the oxidation of lattice oxygen and dissolution of high-valence Ru. Consequently, in acidic media, the electron- and micro-structure synchronously optimized MD-RuO2-BN achieves hyper water oxidation activity (196 mV @ 10 mA cm-2) and an ultralow degradation rate of 1.2 mV h-1. A homemade PEMWE using MD-RuO2-BN as anode also conveys high water splitting performance (1.64 V @ 1 A cm-2). Theoretical calculations and in-situ Raman spectra further unveil the electronic structure of MD-RuO2-BN and the mechanism of water oxidation processes, rationalizing the enhanced performance by the synergistic effect of multiscale defects and protected active Ru sites.
Collapse
Affiliation(s)
- Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Ruohan Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- The Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya, 572000, China
| | - Kesong Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Ruihu Lu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Hongyu Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jixiang Jiao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Youtao Yao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiawei Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jinsong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- NRC (Nanostructure Research Centre), Wuhan University of Technology, Wuhan, 430070, China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
52
|
Guo X, Wang Y, Zhu W, Zhuang Z. Design of Superior Electrocatalysts for Proton-Exchange Membrane-Water Electrolyzers: Importance of Catalyst Stability and Evolution. Chempluschem 2024; 89:e202300514. [PMID: 37986238 DOI: 10.1002/cplu.202300514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
By virtue of the high energy conversion efficiency and compact facility, proton exchange membrane water electrolysis (PEMWE) is a promising green hydrogen production technology ready for commercial applications. However, catalyst stability is a challenging but often-ignored topic for the electrocatalyst design, which retards the device applications of many newly-developed electrocatalysts. By defining catalyst stability as the function of activity versus time, we ascribe the stability issue to the evolution of catalysts or catalyst layers during the water electrolysis. We trace the instability sources of electrocatalysts as the function versus time for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in acid and classify them into internal and external sources. Accordingly, we summarize the latest studies for stability improvements into five strategies, i. e., thermodynamic stable active site construction, precatalyst design, support regulation, superwetting electrode fabrication, and catalyst-ionomer interface engineering. With the help of ex-situ/ in-situ characterizations and theoretical calculations, an in-depth understanding of the instability sources benefits the rational development of highly active and stable HER/OER electrocatalysts for PEMWE applications.
Collapse
Affiliation(s)
- Xiaoxuan Guo
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yongsheng Wang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wei Zhu
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
53
|
Lan M, Yan G, Yu W, Shen S. Oxygen Impurity-Tuned Structure and Adhesion Properties of the Cu/SiO 2 Interface. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22724-22735. [PMID: 38642043 DOI: 10.1021/acsami.4c03418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
The properties of the Cu/SiO2 interface usually deteriorate in the complex atmospheric environment, which may limit its performance and application in the engineering. Using the reactive molecular dynamics method, we investigate how the mechanical behaviors of the Cu/SiO2 interface change as it interacts with oxygen impurities. The interfacial oxidation degree could be enhanced as O2 penetrates into the interface area. This makes the interfacial structure disordered and is not conducive to the survival of Cu-O-Si bondings, which reduces the tensile and shear strengths of the interface. To improve the abrupt bonding property change at the interface and modify the interfacial adhesion properties, O impurities are introduced at the Cu interstitial sites near the interface. By doing so, the interface strength can be significantly enhanced due to the production of typical O-Cu-O bondings while the regular interfacial structure is retained. Meanwhile, the interfacial oxidation also changes the tensile failure site and shearing sliding mode of the interface, i.e., from inside the oxide to between oxide and Cu. The findings of this work may not only advance the understanding of interaction mechanism between oxygen impurities and the Cu/SiO2 interface but also provide new insights into optimizing the bonding properties of the metal/oxide interface.
Collapse
Affiliation(s)
- Mengdie Lan
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Shaanxi Engineering Laboratory for Vibration Control of Aerospace Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Gaosheng Yan
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Shaanxi Engineering Laboratory for Vibration Control of Aerospace Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Wenshan Yu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Shaanxi Engineering Laboratory for Vibration Control of Aerospace Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Shengping Shen
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Shaanxi Engineering Laboratory for Vibration Control of Aerospace Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
54
|
He GY, He XF, Mu HY, Su R, Zhou Y, Meng C, Li FT, Chen XM. Electronic Structure Modulation Via Iron-Incorporated NiO to Boost Urea Oxidation/Oxygen Evolution Reaction. Inorg Chem 2024; 63:7937-7945. [PMID: 38629190 DOI: 10.1021/acs.inorgchem.4c00893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024]
Abstract
The urea-assisted water splitting not only enables a reduction in energy consumption during hydrogen production but also addresses the issue of environmental pollution caused by urea. Doping heterogeneous atoms in Ni-based electrocatalysts is considered an efficient means for regulating the electronic structure of Ni sites in catalytic processes. However, the current methodologies for synthesizing heteroatom-doped Ni-based electrocatalysts exhibit certain limitations, including intricate experimental procedures, prolonged reaction durations, and low product yield. Herein, Fe-doped NiO electrocatalysts were successfully synthesized using a rapid and facile solution combustion method, enabling the synthesis of 1.1107 g within a mere 5 min. The incorporation of iron atoms facilitates the modulation of the electronic environment around Ni atoms, generating a substantial decrease in the Gibbs free energy of intermediate species for the Fe-NiO catalyst. This modification promotes efficient cleavage of C-N bonds and consequently enhances the catalytic performance of UOR. Benefiting from the tunability of the electronic environment around the active sites and its efficient electron transfer, Fe-NiO electrocatalysts only needs 1.334 V to achieve 50 mA cm-2 during UOR. Moreover, Fe-NiO catalysts were integrated into a dual electrode urea electrolytic system, requiring only 1.43 V of cell voltage at 10 mA cm-2.
Collapse
Affiliation(s)
- Guang-Yuan He
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xiong-Fei He
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Hui-Ying Mu
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Ran Su
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yue Zhou
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Chao Meng
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
| | - Fa-Tang Li
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xue-Min Chen
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
| |
Collapse
|
55
|
Zhao S, Hung SF, Deng L, Zeng WJ, Xiao T, Li S, Kuo CH, Chen HY, Hu F, Peng S. Constructing regulable supports via non-stoichiometric engineering to stabilize ruthenium nanoparticles for enhanced pH-universal water splitting. Nat Commun 2024; 15:2728. [PMID: 38553434 PMCID: PMC10980754 DOI: 10.1038/s41467-024-46750-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/06/2024] [Indexed: 04/02/2024] Open
Abstract
Establishing appropriate metal-support interactions is imperative for acquiring efficient and corrosion-resistant catalysts for water splitting. Herein, the interaction mechanism between Ru nanoparticles and a series of titanium oxides, including TiO, Ti4O7 and TiO2, designed via facile non-stoichiometric engineering is systematically studied. Ti4O7, with the unique band structure, high conductivity and chemical stability, endows with ingenious metal-support interaction through interfacial Ti-O-Ru units, which stabilizes Ru species during OER and triggers hydrogen spillover to accelerate HER kinetics. As expected, Ru/Ti4O7 displays ultralow overpotentials of 8 mV and 150 mV for HER and OER with a long operation of 500 h at 10 mA cm-2 in acidic media, which is expanded in pH-universal environments. Benefitting from the excellent bifunctional performance, the proton exchange membrane and anion exchange membrane electrolyzer assembled with Ru/Ti4O7 achieves superior performance and robust operation. The work paves the way for efficient energy conversion devices.
Collapse
Affiliation(s)
- Sheng Zhao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Liming Deng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Wen-Jing Zeng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Tian Xiao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Shaoxiong Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Chun-Han Kuo
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Feng Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| |
Collapse
|
56
|
Li J, Wu G, Huang Z, Han X, Wu B, Liu P, Hu H, Yu G, Hong X. Vertically Stacked Amorphous Ir/Ru/Ir Oxide Nanosheets for Boosted Acidic Water Splitting. JACS AU 2024; 4:1243-1249. [PMID: 38559737 PMCID: PMC10976594 DOI: 10.1021/jacsau.4c00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Integrating multiple functional components into vertically stacked heterostructures offers a prospective approach to manipulating the physicochemical properties of materials. The synthesis of vertically stacked heterogeneous noble metal oxides remains a challenge. Herein, we report a surface segregation approach to create vertically stacked amorphous Ir/Ru/Ir oxide nanosheets (NSs). Cross-sectional high-angle annular darkfield scanning transmission electron microscopy images demonstrate a three-layer heterostructure in the amorphous Ir/Ru/Ir oxide NSs, with IrOx layers located on the upper and lower surfaces, and a layer of RuOx sandwiched between the two IrOx layers. The vertically stacked heterostructure is a result of the diffusion of Ir atoms from the amorphous IrRuOx solid solution to the surface. The obtained A-Ir/Ru/Ir oxide NSs display an ultralow overpotential of 191 mV at 10 mA cm-2 toward acid oxygen evolution reaction and demonstrate excellent performance in a proton exchange membrane water electrolyzer, which requires only 1.63 V to achieve 1 A cm-2 at 60 °C, with virtually no activity decay observed after a 1300 h test.
Collapse
Affiliation(s)
- Junmin Li
- Center
of Advanced Nanocatalysis (CAN), Department of Applied Chemistry,
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Geng Wu
- Center
of Advanced Nanocatalysis (CAN), Department of Applied Chemistry,
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zixiang Huang
- National
Synchrotron Radiation Laboratory, University
of Science and Technology of China, Hefei, Anhui 230029, China
| | - Xiao Han
- Center
of Advanced Nanocatalysis (CAN), Department of Applied Chemistry,
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bei Wu
- Center
of Advanced Nanocatalysis (CAN), Department of Applied Chemistry,
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Peigen Liu
- National
Synchrotron Radiation Laboratory, University
of Science and Technology of China, Hefei, Anhui 230029, China
| | - Haohui Hu
- Center
of Advanced Nanocatalysis (CAN), Department of Applied Chemistry,
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ge Yu
- Center
of Advanced Nanocatalysis (CAN), Department of Applied Chemistry,
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xun Hong
- School
of Chemistry and Materials Science, University
of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
57
|
Yang M, Bao W, Zhang J, Ai T, Han J, Li Y, Liu J, Zhang P, Feng L. Molybdenum/selenium based heterostructure catalyst for efficient hydrogen evolution: Effects of ionic dissolution and repolymerization on catalytic performance. J Colloid Interface Sci 2024; 658:32-42. [PMID: 38091796 DOI: 10.1016/j.jcis.2023.12.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024]
Abstract
Transition metal chalcogenides (TMCs) are recognized as highly efficient electrocatalysts and have wide applications in the field of hydrogen production by electrolysis of water, but the real catalytic substances and catalytic processes of these catalysts are not clear. The species evolution of Mo and Se during alkaline hydrogen evolution was investigated by constructing MoSe2@CoSe2 heterostructure. The real-time evolution of Mo and Se in MoSe2@CoSe2 was monitored using in situ Raman spectroscopy to determine the origin of the activity. Mo and Se in MoSe2@CoSe2 were dissolved in the form of MoO42- and SeO32-, respectively, and subsequently re-adsorbed and polymerized on the electrode surface to form new species Mo2O72- and SeO42-. Theoretical calculations show that adsorption of Mo2O72- and SeO42- can significantly enhance the HER catalytic activity of Co(OH)2. The addition of additional MoO42- and SeO32- to the electrolyte with Co(OH)2 electrodes both enhances its HER activity and promotes its durability. This study helps to deepen our insight into mechanisms involved in the structural changes of catalyst surfaces and offers a logical basis for revealing the mechanism of the influence of species evolution on catalytic performance.
Collapse
Affiliation(s)
- Mameng Yang
- National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, PR China
| | - Weiwei Bao
- National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, PR China.
| | - Junjun Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan 750021, Ningxia, PR China.
| | - Taotao Ai
- National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, PR China
| | - Jie Han
- National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, PR China
| | - Yan Li
- National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, PR China
| | - Jiangying Liu
- National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, PR China
| | - Pengfei Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan 750021, Ningxia, PR China; School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Liangliang Feng
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, PR China.
| |
Collapse
|
58
|
Sun Z, Lin J, Lu S, Li Y, Qi T, Peng X, Liang S, Jiang L. Interfacial Engineering Boosting the Activity and Stability of MIL-53(Fe) toward Electrocatalytic Nitrogen Reduction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5469-5478. [PMID: 38433716 DOI: 10.1021/acs.langmuir.3c04025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
The electrochemical nitrogen reduction reaction (eNRR) has emerged as a promising strategy for green ammonia synthesis. However, it suffers unsatisfactory reaction performance owing to the low aqueous solubility of N2 in aqueous solution, the high dissociation energy of N≡N, and the unavoidable competing hydrogen evolution reaction (HER). Herein, a MIL-53(Fe)@TiO2 catalyst is designed and synthesized for highly efficient eNRR. Relative to simple MIL-53(Fe), MIL-53(Fe)@TiO2 achieves a 2-fold enhancement in the Faradaic efficiency (FE) with an improved ammonia yield rate by 76.5% at -0.1 V versus reversible hydrogen electrode (RHE). After four cycles of electrocatalysis, MIL-53(Fe)@TiO2 can maintain a good catalytic activity, while MIL-53(Fe) exhibits a significant decrease in the NH3 yield rate and FE by 79.8 and 82.3%, respectively. Benefiting from the synergetic effect between TiO2 and MIL-53(Fe) in the composites, Fe3+ ions can be greatly stabilized in MIL-53(Fe) during the eNRR process, which greatly hinders the catalyst deactivation caused by the electrochemical reduction of Fe3+ ions. Further, the charge transfer ability in the interface of composites can be improved, and thus, the eNRR activity is significantly boosted. These findings provide a promising insight into the preparation of efficient composite electrocatalysts.
Collapse
Affiliation(s)
- Zhuangzhi Sun
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, P. R. China
| | - Jiawei Lin
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, P. R. China
| | - Suwei Lu
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, P. R. China
| | - Yuhang Li
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, P. R. China
| | - Tingting Qi
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, P. R. China
| | - Xiaobo Peng
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, P. R. China
| | - Shijing Liang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, P. R. China
| | - Lilong Jiang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, P. R. China
| |
Collapse
|
59
|
Do VH, Lee JM. Surface engineering for stable electrocatalysis. Chem Soc Rev 2024; 53:2693-2737. [PMID: 38318782 DOI: 10.1039/d3cs00292f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
In recent decades, significant progress has been achieved in rational developments of electrocatalysts through constructing novel atomistic structures and modulating catalytic surface topography, realizing substantial enhancement in electrocatalytic activities. Numerous advanced catalysts were developed for electrochemical energy conversion, exhibiting low overpotential, high intrinsic activity, and selectivity. Yet, maintaining the high catalytic performance under working conditions with high polarization and vigorous microkinetics that induce intensive degradation of surface nanostructures presents a significant challenge for commercial applications. Recently, advanced operando and computational techniques have provided comprehensive mechanistic insights into the degradation of surficial functional structures. Additionally, various innovative strategies have been devised and proven effective in sustaining electrocatalytic activity under harsh operating conditions. This review aims to discuss the most recent understanding of the degradation microkinetics of catalysts across an entire range of anodic to cathodic polarizations, encompassing processes such as oxygen evolution and reduction, hydrogen reduction, and carbon dioxide reduction. Subsequently, innovative strategies adopted to stabilize the materials' structure and activity are highlighted with an in-depth discussion of the underlying rationale. Finally, we present conclusions and perspectives regarding future research and development. By identifying the research gaps, this review aims to inspire further exploration of surface degradation mechanisms and rational design of durable electrocatalysts, ultimately contributing to the large-scale utilization of electroconversion technologies.
Collapse
Affiliation(s)
- Viet-Hung Do
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141
| |
Collapse
|
60
|
Sahu A, K S A, Rajak AK, Naik R, Qureshi M. Competing double-exchange/super-exchange ordering for enhanced water oxidation kinetics. Chem Commun (Camb) 2024; 60:2236-2239. [PMID: 38315556 DOI: 10.1039/d3cc04484j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Competing double-exchange and super-exchange interactions yield rich chemistry for understanding robust oxygen evolution activity in Ru-doped lanthanum strontium manganite, with an overpotential of 300 mV at 10 mA cm-2 and a Tafel slope of 110 mV dec-1. Favourable redox potentials of Mn3+/Mn4+ and Ru4+/Ru5+ lead to improved charge transfer kinetics for OER activity.
Collapse
Affiliation(s)
- Alpana Sahu
- Materials Science Laboratory, Department of Chemistry, Indian Institute of Technology Guwahati, Assam, India.
| | - Aswathi K S
- Materials Science Laboratory, Department of Chemistry, Indian Institute of Technology Guwahati, Assam, India.
| | - Amit Kumar Rajak
- Materials Science Laboratory, Department of Chemistry, Indian Institute of Technology Guwahati, Assam, India.
| | - Roshan Naik
- Materials Science Laboratory, Department of Chemistry, Indian Institute of Technology Guwahati, Assam, India.
| | - Mohammad Qureshi
- Materials Science Laboratory, Department of Chemistry, Indian Institute of Technology Guwahati, Assam, India.
| |
Collapse
|
61
|
Zhao S, Wang Y, Hao Y, Yin L, Kuo CH, Chen HY, Li L, Peng S. Lewis Acid Driving Asymmetric Interfacial Electron Distribution to Stabilize Active Species for Efficient Neutral Water Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308925. [PMID: 37879753 DOI: 10.1002/adma.202308925] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/13/2023] [Indexed: 10/27/2023]
Abstract
Neutral oxygen evolution reaction (OER) with unique reactive environments exhibits extremely slow reaction kinetics, posing significant challenges in the design of catalysts. Herein, a built-in electric field between the tungstate (Ni-FeWO4 ) with adjustable work function and Lewis acid WO3 is elaborately constructed to regulate asymmetric interfacial electron distribution, which promotes electron accumulation of Fe sites in the tungstate. This decelerates the rapid dissolution of Fe under the OER potentials, thereby retaining the active hydroxyl oxide with the optimized OER reaction pathway. Meanwhile, Lewis acid WO3 enhances hydroxyl adsorption near the electrode surface to improve mass transfer. As expected, the optimized Ni-FeWO4 @WO3 /NF self-supporting electrode achieves a low overpotential of 235 mV at 10 mA cm-2 in neutral media and maintains stable operation for 200 h. Furthermore, the membrane electrode assembly constructed by such self-supporting electrode exhibits robust stability for 250 h during neutral seawater electrolysis. This work deepens the understanding of the reconstruction of OER catalysts in neutral environments and paves the way for development of the energy conversion technologies.
Collapse
Affiliation(s)
- Sheng Zhao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yue Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yixin Hao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Lijie Yin
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Chun-Han Kuo
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
62
|
Liu S, Shi Y, Wang D, Zhang Q, Ma X, Yin Z, Zhou P, Wu L, Zhang M. Multiple synergies on cobalt-based spinel oxide nanowires for electrocatalytic oxygen evolution. J Colloid Interface Sci 2024; 655:685-692. [PMID: 37976741 DOI: 10.1016/j.jcis.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Cobalt-based spinel oxides have excellent oxygen evolution reaction (OER) activities and are cheap to produce; however, they have limited commercial applications due to their poor electrical conductivities and weak stabilities. Herein, we soaked Co3-xNixO4 nanowires in NaBH4 solutions, which endowed Co3-xNixO4 with significant oxygen vacancy content and decorated BOx motifs outside the Co3-xNixO4 nanowires. X-ray photoelectron spectroscopy and in situ Raman data suggest that these evolutions improved the conductivity, hydrophilicity, and increased active sites of the spinel oxides, which synergistically boosted their overall OER performances. This improved performance made the optimized BOx-covered Co2.1Ni0.9O4 nanowires generate a current density of 10 mA cm-2 when used for the OER at an overpotential of only 307 mV, maintaining excellent stability at 50 mA cm-2 for 24 h. This study provides a facile method for designing cobalt-based spinel oxide OER catalysts.
Collapse
Affiliation(s)
- Sirui Liu
- Jiangsu R&D Center of the Ecological Textile Engineering & Technology, Yancheng Polytechnic College, Yancheng 224005, PR China; Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China
| | - Yuxin Shi
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China
| | - Di Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China
| | - Qiulan Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China
| | - Xinzhi Ma
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China; Department of Mechanical Engineering, Hong Kong Polytechnic University, Hong Kong 999077, PR China.
| | - Zhuoxun Yin
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Pengfei Zhou
- Jiangsu R&D Center of the Ecological Textile Engineering & Technology, Yancheng Polytechnic College, Yancheng 224005, PR China.
| | - Lili Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China
| | - Mingyi Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China.
| |
Collapse
|
63
|
Bai J, Zhou W, Xu J, Zhou P, Deng Y, Xiang M, Xiang D, Su Y. RuO 2 Catalysts for Electrocatalytic Oxygen Evolution in Acidic Media: Mechanism, Activity Promotion Strategy and Research Progress. Molecules 2024; 29:537. [PMID: 38276614 PMCID: PMC10819928 DOI: 10.3390/molecules29020537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Proton Exchange Membrane Water Electrolysis (PEMWE) under acidic conditions outperforms alkaline water electrolysis in terms of less resistance loss, higher current density, and higher produced hydrogen purity, which make it more economical in long-term applications. However, the efficiency of PEMWE is severely limited by the slow kinetics of anodic oxygen evolution reaction (OER), poor catalyst stability, and high cost. Therefore, researchers in the past decade have made great efforts to explore cheap, efficient, and stable electrode materials. Among them, the RuO2 electrocatalyst has been proved to be a major promising alternative to Ir-based catalysts and the most promising OER catalyst owing to its excellent electrocatalytic activity and high pH adaptability. In this review, we elaborate two reaction mechanisms of OER (lattice oxygen mechanism and adsorbate evolution mechanism), comprehensively summarize and discuss the recently reported RuO2-based OER electrocatalysts under acidic conditions, and propose many advanced modification strategies to further improve the activity and stability of RuO2-based electrocatalytic OER. Finally, we provide suggestions for overcoming the challenges faced by RuO2 electrocatalysts in practical applications and make prospects for future research. This review provides perspectives and guidance for the rational design of highly active and stable acidic OER electrocatalysts based on PEMWE.
Collapse
Affiliation(s)
- Jirong Bai
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China; (J.B.); (P.Z.); (Y.D.); (M.X.)
| | - Wangkai Zhou
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China; (W.Z.); (J.X.)
| | - Jinnan Xu
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China; (W.Z.); (J.X.)
| | - Pin Zhou
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China; (J.B.); (P.Z.); (Y.D.); (M.X.)
| | - Yaoyao Deng
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China; (J.B.); (P.Z.); (Y.D.); (M.X.)
| | - Mei Xiang
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China; (J.B.); (P.Z.); (Y.D.); (M.X.)
| | - Dongsheng Xiang
- School of Medicine and Health, Yancheng Polytechnic College, Yancheng 224005, China
| | - Yaqiong Su
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
64
|
Liu X, Gong L, Wang L, Chang C, Su P, Dou Y, Dou SX, Li Y, Gong F, Liu J. Enabling Ultrafine Ru Nanoparticles with Tunable Electronic Structures via a Double-Shell Hollow Interlayer Confinement Strategy toward Enhanced Hydrogen Evolution Reaction Performance. NANO LETTERS 2024; 24:592-600. [PMID: 38039420 PMCID: PMC10797610 DOI: 10.1021/acs.nanolett.3c03514] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/03/2023]
Abstract
Engineering of the catalysts' structural stability and electronic structure could enable high-throughput H2 production over electrocatalytic water splitting. Herein, a double-shell interlayer confinement strategy is proposed to modulate the spatial position of Ru nanoparticles in hollow carbon nanoreactors for achieving tunable sizes and electronic structures toward enhanced H2 evolution. Specifically, the Ru can be anchored in either the inner layer (Ru-DSC-I) or the external shell (Ru-DSC-E) of double-shell nanoreactors, and the size of Ru is reduced from 2.2 to 0.9 nm because of the double-shell confinement effect. The electronic structures are efficiently optimized thereby stabilizing active sites and lowering the reaction barrier. According to finite element analysis results, the mesoscale mass diffusion can be promoted in the double-shell configuration. The Ru-DSC-I nanoreactor exhibits a much lower overpotential (η10 = 73.5 mV) and much higher stability (100 mA cm-2). Our work might shed light on the precise design of multishell catalysts with efficient refining electrostructures toward electrosynthesis applications.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Key
Laboratory of Surface and Interface Science and Technology of Henan
Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450001, PR China
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
- Institute
of Industrial Catalysis, Zhejiang University
of Technology, Hangzhou Chaowang Road 18, Hangzhou, Zhejiang 310014, PR China
| | - Lihua Gong
- Key
Laboratory of Surface and Interface Science and Technology of Henan
Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450001, PR China
| | - Liwei Wang
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
| | - Chaoqun Chang
- Key
Laboratory of Surface and Interface Science and Technology of Henan
Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450001, PR China
| | - Panpan Su
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
| | - Yuhai Dou
- Institute
of Energy Materials Science, University
of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Shi Xue Dou
- Institute
of Energy Materials Science, University
of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Ying Li
- Institute
of Industrial Catalysis, Zhejiang University
of Technology, Hangzhou Chaowang Road 18, Hangzhou, Zhejiang 310014, PR China
| | - Feilong Gong
- Key
Laboratory of Surface and Interface Science and Technology of Henan
Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450001, PR China
| | - Jian Liu
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
- DICP-Surrey
Joint Centre for Future Materials, Department
of Chemical and Process Engineering and Advanced Technology Institute
of University of Surrey, Guildford, Surrey GU2 7XH, U.K.
- College
of Chemistry and Chemical Engineering, Inner
Mongolia University, Hohhot, Inner Mongolia 010021, PR China
| |
Collapse
|
65
|
Wang Y, Lei X, Zhang B, Bai B, Das P, Azam T, Xiao J, Wu ZS. Breaking the Ru-O-Ru Symmetry of a RuO 2 Catalyst for Sustainable Acidic Water Oxidation. Angew Chem Int Ed Engl 2024; 63:e202316903. [PMID: 37997556 DOI: 10.1002/anie.202316903] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/25/2023]
Abstract
Proton exchange membrane water electrolysis is a highly promising hydrogen production technique for sustainable energy supply, however, achieving a highly active and durable catalyst for acidic water oxidation still remains a formidable challenge. Herein, we propose a local microenvironment regulation strategy for precisely tuning In-RuO2 /graphene (In-RuO2 /G) catalyst with intrinsic electrochemical activity and stability to boost acidic water oxidation. The In-RuO2 /G displays robust acid oxygen evolution reaction performance with a mass activity of 671 A gcat -1 at 1.5 V, an overpotential of 187 mV at 10 mA cm-2 , and long-lasting stability of 350 h at 100 mA cm-2 , which arises from the asymmetric Ru-O-In local structure interactions. Further, it is unraveled theoretically that the asymmetric Ru-O-In structure breaks the thermodynamic activity limit of the traditional adsorption evolution mechanism which significantly weakens the formation energy barrier of OOH*, thus inducing a new rate-determining step of OH* absorption. Therefore, this strategy showcases the immense potential for constructing high-performance acidic catalysts for water electrolyzers.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xue Lei
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Bo Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Bing Bai
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Pratteek Das
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Tasmia Azam
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianping Xiao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| |
Collapse
|
66
|
Li D, Guo Z, Zhao R, Ren H, Huang Y, Yan Y, Cui W, Yao X. An efficient cerium dioxide incorporated nickel cobalt phosphide complex as electrocatalyst for All-pH hydrogen evolution reaction and overall water splitting. J Colloid Interface Sci 2024; 653:1725-1742. [PMID: 37827011 DOI: 10.1016/j.jcis.2023.09.144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/14/2023]
Abstract
Transition metal phosphides (TMPs) have been considered as potential electrocatalysts with adjustable valence states, metal characteristics, and phase diversity. However, it is necessary but remains a major challenge to obtain efficient and durable TMPs catalysts, which can realize efficiently for not only all-pH hydrogen evolution reaction (HER), but also oxygen evolution reaction (OER). Hence, cerium dioxide incorporated nickel cobalt phosphide growth on nickel foam (CeO2/NiCoP) is fabricated by hydrothermal and phosphating reaction. CeO2/NiCoP shows excellent activity for all-pH HER (overpotentials of 48, 58 and 72 mV in alkaline, neutral and acidic solution at the current density of 10 mA cm-2), and has a small OER overpotential (231 mV @ 10 mA cm-2). Moreover, the voltage of overall water splitting in alkaline solution and simulated seawater electrolyte is only 1.46 and 1.41 V (10 mA cm-2), respectively, coupled with outstanding operational stability and corrosion resistance. Further mechanism research shows that CeO2/NiCoP possesses rich heterointerfaces, which serves more exposed active sites and possesses a promising superhydrophilic and superaerophobic surface. Density functional theory calculations manifest that CeO2/NiCoP has appropriate energy for intermediates of reactions. This work provides a deep insight into the CeO2/NiCoP catalyst for high-performance water/seawater electrolysis.
Collapse
Affiliation(s)
- Dongxiao Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhimin Guo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ruihuan Zhao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hao Ren
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yubiao Huang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yu Yan
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wei Cui
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Yao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China; Binzhou Institute of Technology, Binzhou 256606, PR China; National Engineering Laboratory for VOCs Pollution Control Material & Technology Research Center for Environment Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
67
|
Qiao Y, Luo M, Cai L, Kao CW, Lan J, Meng L, Lu YR, Peng M, Ma C, Tan Y. Constructing Nanoporous Ir/Ta 2 O 5 Interfaces on Metallic Glass for Durable Acidic Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305479. [PMID: 37658510 DOI: 10.1002/smll.202305479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/11/2023] [Indexed: 09/03/2023]
Abstract
Although proton exchange membrane water electrolyzers (PEMWE) are considered as a promising technique for green hydrogen production, it remains crucial to develop intrinsically effective oxygen evolution reaction (OER) electrocatalysts with high activity and durability. Here, a flexible self-supporting electrode with nanoporous Ir/Ta2O5 electroactive surface is reported for acidic OER via dealloying IrTaCoB metallic glass ribbons. The catalyst exhibits excellent electrocatalytic OER performance with an overpotential of 218 mV for a current density of 10 mA cm-2 and a small Tafel slope of 46.1 mV dec-1 in acidic media, superior to most electrocatalysts. More impressively, the assembled PEMWE with nanoporous Ir/Ta2 O5 as an anode shows exceptional performance of electrocatalytic hydrogen production and can operate steadily for 260 h at 100 mA cm-2 . In situ spectroscopy characterizations and density functional theory calculations reveal that the modest adsorption of OOH* intermediates to active Ir sites lower the OER energy barrier, while the electron donation behavior of Ta2 O5 to stabilize the high-valence states of Ir during the OER process extended catalyst's durability.
Collapse
Affiliation(s)
- Yijing Qiao
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Min Luo
- Shanghai Technical Institute of Electronics & Information, Shanghai, 201411, China
| | - Lebin Cai
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Cheng-Wei Kao
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Jiao Lan
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Linghu Meng
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Ming Peng
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Chao Ma
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Yongwen Tan
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| |
Collapse
|
68
|
Fu X, Zhang Z, Zheng Y, Lu J, Cheng S, Su J, Wei H, Gao Y. Cobalt phosphide/nickel-cobalt phosphide heterostructured hollow nanoflowers for high-performance supercapacitor and overall water splitting. J Colloid Interface Sci 2024; 653:1272-1282. [PMID: 37797503 DOI: 10.1016/j.jcis.2023.09.124] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/01/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
In this work, a novel CoP/NiCoP heterostructure with hollow nanoflower morphology is designed and constructed. Benefiting from the hollow nanoflower morphology and tuned electronic structure, the heterostructured CoP/NiCoP hollow nanoflowers are demonstrated as both high-performance supercapacitor electrode materials and superior bifunctional electrocatalysts in overall water splitting. The CoP/NiCoP delivers a high capacitance of 1476.6 F g-1 at 1.0 A g-1 and shows enhanced rate capability. The constructed asymmetric supercapacitor achieves a high energy density of 32.4 Wh kg-1 at 800.5 W kg-1 and high power density of 16.5 kW kg-1 at 20.0 Wh kg-1. The CoP/NiCoP hollow nanoflowers are also proven to be remarkable hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) catalyst which achieves the current density of 10.0 mA cm-2 under an overpotential of 110.4 mV for HER and 310.7 mV for OER with superior stability in alkaline solution. In addition, the constructed CoP/NiCoP||CoP/NiCoP cell with CoP/NiCoP as both cathode material and anode material only requires 1.63 V @ 10.0 mA cm-2 for overall water splitting. This study sheds lights on the rational design and construction of bimetallic phosphides for both supercapacitor and overall water splitting.
Collapse
Affiliation(s)
- Xiutao Fu
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, PR China
| | - Zhi Zhang
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, PR China.
| | - Yifan Zheng
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, PR China
| | - Jianing Lu
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, PR China
| | - Siya Cheng
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, PR China
| | - Jun Su
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, PR China
| | - Helin Wei
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, PR China
| | - Yihua Gao
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, PR China.
| |
Collapse
|
69
|
Xue Y, Zhao J, Huang L, Lu YR, Malek A, Gao G, Zhuang Z, Wang D, Yavuz CT, Lu X. Stabilizing ruthenium dioxide with cation-anchored sulfate for durable oxygen evolution in proton-exchange membrane water electrolyzers. Nat Commun 2023; 14:8093. [PMID: 38062017 PMCID: PMC10703920 DOI: 10.1038/s41467-023-43977-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/27/2023] [Indexed: 09/14/2024] Open
Abstract
Ruthenium dioxide is the most promising alternative to the prevailing but expensive iridium-based catalysts for the oxygen evolution reaction in proton-exchange membrane water electrolyzers. However, the under-coordinated lattice oxygen of ruthenium dioxide is prone to over-oxidation, and oxygen vacancies are formed at high oxidation potentials under acidic corrosive conditions. Consequently, ruthenium atoms adjacent to oxygen vacancies are oxidized into soluble high-valence derivatives, causing the collapse of the ruthenium dioxide crystal structure and leading to its poor stability. Here, we report an oxyanion protection strategy to prevent the formation of oxygen vacancies on the ruthenium dioxide surface by forming coordination-saturated lattice oxygen. Combining density functional theory calculations, electrochemical measurements, and a suite of operando spectroscopies, we showcase that barium-anchored sulfate can greatly impede ruthenium loss and extend the lifetime of ruthenium-based catalysts during acidic oxygen evolution, while maintaining the activity. This work paves a new way for designing stable and active anode catalysts toward acidic water splitting.
Collapse
Affiliation(s)
- Yanrong Xue
- CCRC, Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Solar Center (KSC), PSE, KAUST, Thuwal, Kingdom of Saudi Arabia
| | - Jiwu Zhao
- CCRC, Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Solar Center (KSC), PSE, KAUST, Thuwal, Kingdom of Saudi Arabia
| | - Liang Huang
- CCRC, Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Solar Center (KSC), PSE, KAUST, Thuwal, Kingdom of Saudi Arabia
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan
| | - Abdul Malek
- CCRC, Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Solar Center (KSC), PSE, KAUST, Thuwal, Kingdom of Saudi Arabia
| | - Ge Gao
- CCRC, Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Solar Center (KSC), PSE, KAUST, Thuwal, Kingdom of Saudi Arabia
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Cafer T Yavuz
- Advanced Membranes and Porous Materials Center (AMPM), PSE, KAUST, Thuwal, Kingdom of Saudi Arabia
| | - Xu Lu
- CCRC, Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
- KAUST Solar Center (KSC), PSE, KAUST, Thuwal, Kingdom of Saudi Arabia.
| |
Collapse
|
70
|
Zhou L, Shao Y, Yin F, Li J, Kang F, Lv R. Stabilizing non-iridium active sites by non-stoichiometric oxide for acidic water oxidation at high current density. Nat Commun 2023; 14:7644. [PMID: 37996423 PMCID: PMC10667250 DOI: 10.1038/s41467-023-43466-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Stabilizing active sites of non-iridium-based oxygen evolution reaction (OER) electrocatalysts is crucial, but remains a big challenge for hydrogen production by acidic water splitting. Here, we report that non-stoichiometric Ti oxides (TiOx) can safeguard the Ru sites through structural-confinement and charge-redistribution, thereby extending the catalyst lifetime in acid by 10 orders of magnitude longer compared to that of the stoichiometric one (Ru/TiO2). By exploiting the redox interaction-engaged strategy, the in situ growth of TiOx on Ti foam and the loading of Ru nanoparticles are realized in one step. The as-synthesized binder-free Ru/TiOx catalyst exhibits low OER overpotentials of 174 and 265 mV at 10 and 500 mA cm-2, respectively. Experimental characterizations and theoretical calculations confirm that TiOx stabilizes the Ru active center, enabling operation at 10 mA cm-2 for over 37 days. This work opens an avenue of using non-stoichiometric compounds as stable and active materials for energy technologies.
Collapse
Affiliation(s)
- Lingxi Zhou
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yangfan Shao
- Institute of Materials Research and Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Fang Yin
- Institute of Materials Research and Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jia Li
- Institute of Materials Research and Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Feiyu Kang
- Institute of Materials Research and Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Ruitao Lv
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
71
|
Liu H, Shen W, Jin H, Xu J, Xi P, Dong J, Zheng Y, Qiao SZ. High-Performance Alkaline Seawater Electrolysis with Anomalous Chloride Promoted Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2023; 62:e202311674. [PMID: 37711095 DOI: 10.1002/anie.202311674] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
A highly selective and durable oxygen evolution reaction (OER) electrocatalyst is the bottleneck for direct seawater splitting because of side reactions primarily caused by chloride ions (Cl- ). Most studies about OER catalysts in seawater focus on the repulsion of the Cl- to reduce its negative effects. Herein, we demonstrate that the absorption of Cl- on the specific site of a popular OER electrocatalyst, nickel-iron layered double hydroxide (NiFe LDH), does not have a significant negative impact; rather, it is beneficial for its activity and stability enhancement in natural seawater. A set of in situ characterization techniques reveals that the adsorption of Cl- on the desired Fe site suppresses Fe leaching, and creates more OER-active Ni sites, improving the catalyst's long-term stability and activity simultaneously. Therefore, we achieve direct alkaline seawater electrolysis for the very first time on a commercial-scale alkaline electrolyser (AE, 120 cm2 electrode area) using the NiFe LDH anode. The new alkaline seawater electrolyser exhibits a reduction in electricity consumption by 20.7 % compared to the alkaline purified water-based AE using commercial Ni catalyst, achieving excellent durability for 100 h at 200 mA cm-2 .
Collapse
Affiliation(s)
- Hao Liu
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, 5005, Adelaide, SA, Australia
| | - Wei Shen
- College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Huanyu Jin
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, 5005, Adelaide, SA, Australia
| | - Jun Xu
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, 5005, Adelaide, SA, Australia
| | - Pinxian Xi
- College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Juncai Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China
| | - Yao Zheng
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, 5005, Adelaide, SA, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, 5005, Adelaide, SA, Australia
| |
Collapse
|
72
|
Liang J, Gao X, Xu K, Lu J, Liu D, Zhao Z, Tse ECM, Peng Z, Zhang W, Liu J. Unraveling the Asymmetric O─O Radical Coupling Mechanism on Ru─O─Co for Enhanced Acidic Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304889. [PMID: 37438574 DOI: 10.1002/smll.202304889] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/27/2023] [Indexed: 07/14/2023]
Abstract
Heterogeneous oxides with multiple interfaces provide significant advantages in electrocatalytic activity and stability. However, controlling the local structure of these oxides is challenging. In this work, unique heterojunctions are demonstrated based on two oxide types, which are formed via pyrolysis of a ruthenocene metal-organic framework (Ru-MOF) at specific temperatures. The resulted Ru-MOF-400 exhibits excellent electrocatalytic activity, with an overpotential of 190 mV at a current density of 10 mA cm-2 in 0.1 m HClO4 , and a mass activity of 2557 A gRu -1 , three orders of magnitude higher than commercial RuO2 . The Ru─O─Co bond formed by the incorporation of Co into the rutile lattice of RuO2 inhibits the disolution of Ru. Operando electrochemical investigations and density functional theory results reveal that the Ru-MOF-400 undergo asymmetric dual-active site oxide path mechanism during the acidic oxygen evolution reaction process, which is predominantly mediated by the asymmetric Ru─Co dual active site present at the interfaces between Co3 O4 and CoRuOx .
Collapse
Affiliation(s)
- Jing Liang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Xutao Gao
- Department of Chemistry, CAS-HKU Joint Laboratory on New Materials, University of Hong Kong, Hong Kong, SAR, HKG, P. R. China
| | - Ke Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jun Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Delong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhiwei Zhao
- Laboratory of Advanced Spectro-Electrochemistry and Lithium-Ion Batteries, Dalian Institute of Chemical Physics Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Edmund C M Tse
- Department of Chemistry, CAS-HKU Joint Laboratory on New Materials, University of Hong Kong, Hong Kong, SAR, HKG, P. R. China
| | - Zhangquan Peng
- Laboratory of Advanced Spectro-Electrochemistry and Lithium-Ion Batteries, Dalian Institute of Chemical Physics Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jinxuan Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
73
|
Deng L, Hung SF, Lin ZY, Zhang Y, Zhang C, Hao Y, Liu S, Kuo CH, Chen HY, Peng J, Wang J, Peng S. Valence Oscillation of Ru Active Sites for Efficient and Robust Acidic Water Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305939. [PMID: 37671910 DOI: 10.1002/adma.202305939] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/05/2023] [Indexed: 09/07/2023]
Abstract
The continuous oxidation and leachability of active sites in Ru-based catalysts hinder practical application in proton-exchange membrane water electrolyzers (PEMWE). Herein, robust inter-doped tungsten-ruthenium oxide heterostructures [(Ru-W)Ox ] fabricated by sequential rapid oxidation and metal thermomigration processes are proposed to enhance the activity and stability of acidic oxygen evolution reaction (OER). The introduction of high-valent W species induces the valence oscillation of the Ru sites during OER, facilitating the cyclic transition of the active metal oxidation states and maintaining the continuous operation of the active sites. The preferential oxidation of W species and electronic gain of Ru sites in the inter-doped heterostructure significantly stabilize RuOx on WOx substrates beyond the Pourbaix stability limit of bare RuO2 . Furthermore, the asymmetric Ru-O-W active units are generated around the heterostructure interface to adsorb the oxygen intermediates synergistically, enhancing the intrinsic OER activity. Consequently, the inter-doped (Ru-W)Ox heterostructures not only demonstrate an overpotential of 170 mV at 10 mA cm-2 and excellent stability of 300 h in acidic electrolytes but also exhibit the potential for practical applications, as evidenced by the stable operation at 0.5 A cm-2 for 300 h in PEMWE.
Collapse
Affiliation(s)
- Liming Deng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Zih-Yi Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Ying Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chenchen Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yixin Hao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Shuyi Liu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Chun-Han Kuo
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jian Peng
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials, University of Wollongong Innovation Campus, Squires Way, North Wollongong, NSW, 2522, Australia
| | - Jiazhao Wang
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials, University of Wollongong Innovation Campus, Squires Way, North Wollongong, NSW, 2522, Australia
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
74
|
Xu J, Yu L, Dong B, Yang F, Feng L. Ruthenium-nickel oxide derived from Ru-coupled Ni metal-organic framework for effective oxygen evolution reaction. J Colloid Interface Sci 2023; 654:1080-1088. [PMID: 39491065 DOI: 10.1016/j.jcis.2023.10.088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/23/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024]
Abstract
Developing Ru-based catalysts with both high activity and stability for the oxygen evolution reaction (OER) is very significant in the water electrolysis technique. Here, a bimetallic metal oxide catalyst (RuO2-NiO) derived from Ru-coupled Ni metal-organic framework (Ni-MOF) by using terephthalic acid as the ligand was successfully synthesized through a facile ultrasonic treatment and subsequent thermal annealing approach; and the effective role of the coupled effect between RuO2 and NiO in stabilizing Ru was found significant in OER catalysis. A relatively small d-band center due to the electronic structure regulation and synergistic effect of the heterostructure was found to cause weakened adsorption of surface oxygen species. Theoretical calculations demonstrated that the electronic modulation between RuO2 and NiO can significantly accelerate the dissociation of water and modulate the chemical adsorption of oxygen intermediates on the catalyst, thereby enhancing the OER activity of the catalyst. The optimized catalyst of RuO2-NiO afforded a current density of 10 mA cm-2 at low overpotentials of 210 mV toward OER, and good catalytic stability, kinetics and efficiency were also discussed. This remarkable catalytic performance can be attributed to the unique sheet-like structure and porous morphology of the catalyst with increased exposure of active sites and the coupling effect between RuO2 and NiO for moderate binding strength to the intermediates. This study showed an effective approach for bimetallic oxide catalyst fabrication and their applications in energy conversion reactions.
Collapse
Affiliation(s)
- Jiayu Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| | - Lice Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| | - Baoxia Dong
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| | - Fulin Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China.
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China.
| |
Collapse
|
75
|
Chen Y, Zhang R, Wang HT, Lu YR, Huang YC, Chuang YC, Wang H, Luo J, Han L. Temperature-Dependent Structures of Single-Atom Catalysts. Chem Asian J 2023; 18:e202300679. [PMID: 37695094 DOI: 10.1002/asia.202300679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Single-atom catalysts (SACs) have the unique coordination environment and electronic structure due to the quantum size effect, which plays an essential role in facilitating catalytic reactions. However, due to the limited understanding of the formation mechanism of single atoms, achieving the modulation of the local atomic structure of SACs is still difficult and challenging. Herein, we have prepared a series of Ni SACs loaded on nitrogen-doped carbon substrates with different parameters using a dissolution-and-carbonization method to systematically investigate the effect of temperature on the structure of the SACs. The results of characterization and electrochemical measurements are analyzed to reveal the uniform law between temperature and the metal loading, bond length, coordination number, valence state and CO2 reduction performance, showing the feasibility of controlling the structure of SACs through temperature to regulate the catalytic performance. This is important for the understanding of catalytic reaction mechanisms and the design of efficient catalysts.
Collapse
Affiliation(s)
- Yuhui Chen
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Rui Zhang
- Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA
| | - Hsiao-Tsu Wang
- Bachelors's Program in Advanced Materials Science, Tamkang University, New Taipei City, 25137, Taiwan
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Yu-Cheng Huang
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Yu-Chun Chuang
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Hua Wang
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen, 518110, P. R. China
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen, 518110, P. R. China
| | - Lili Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| |
Collapse
|
76
|
Zhang L, Jin N, Yang Y, Miao XY, Wang H, Luo J, Han L. Advances on Axial Coordination Design of Single-Atom Catalysts for Energy Electrocatalysis: A Review. NANO-MICRO LETTERS 2023; 15:228. [PMID: 37831204 PMCID: PMC10575848 DOI: 10.1007/s40820-023-01196-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/28/2023] [Indexed: 10/14/2023]
Abstract
Single-atom catalysts (SACs) have garnered increasingly growing attention in renewable energy scenarios, especially in electrocatalysis due to their unique high efficiency of atom utilization and flexible electronic structure adjustability. The intensive efforts towards the rational design and synthesis of SACs with versatile local configurations have significantly accelerated the development of efficient and sustainable electrocatalysts for a wide range of electrochemical applications. As an emergent coordination avenue, intentionally breaking the planar symmetry of SACs by adding ligands in the axial direction of metal single atoms offers a novel approach for the tuning of both geometric and electronic structures, thereby enhancing electrocatalytic performance at active sites. In this review, we briefly outline the burgeoning research topic of axially coordinated SACs and provide a comprehensive summary of the recent advances in their synthetic strategies and electrocatalytic applications. Besides, the challenges and outlooks in this research field have also been emphasized. The present review provides an in-depth and comprehensive understanding of the axial coordination design of SACs, which could bring new perspectives and solutions for fine regulation of the electronic structures of SACs catering to high-performing energy electrocatalysis.
Collapse
Affiliation(s)
- Linjie Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Na Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, People's Republic of China
| | - Yibing Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Xiao-Yong Miao
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics and Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Hua Wang
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, People's Republic of China
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, People's Republic of China.
| | - Lili Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
77
|
Malek A, Xue Y, Lu X. Dynamically Restructuring Ni x Cr y O Electrocatalyst for Stable Oxygen Evolution Reaction in Real Seawater. Angew Chem Int Ed Engl 2023; 62:e202309854. [PMID: 37578684 DOI: 10.1002/anie.202309854] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/15/2023]
Abstract
In the pursuit of long-term stability for oxygen evolution reaction (OER) in seawater, retaining the intrinsic catalytic activity is essential but has remained challenging. Herein, we developed a Nix Cry O electrocatalyst that manifested exceptional OER stability in alkaline condition while improving the activity over time by dynamic self-restructuring. In 1 M KOH, Nix Cry O required overpotentials of only 270 and 320 mV to achieve current densities of 100 and 500 mA cm-2 , respectively, with excellent long-term stability exceeding 475 h at 100 mA cm-2 and 280 h at 500 mA cm-2 . The combination of electrochemical measurements and in situ studies revealed that leaching and redistribution of Cr during the prolonged electrolysis resulted in increased electrochemically active surface area. This eventually enhanced the catalyst porosity and improved OER activity. Nix Cry O was further applied in real seawater from the Red Sea (without purification, 1 M KOH added), envisaging that the dynamically evolving porosity can offset the adverse active site-blocking effect posed by the seawater impurities. Remarkably, Nix Cry O exhibited stable operation for 2000, 275 and 100 h in seawater at 10, 100 and 500 mA cm-2 , respectively. The proposed catalyst and the mechanistic insights represented a step towards realization of non-noble metal-based direct seawater splitting.
Collapse
Affiliation(s)
- Abdul Malek
- CCRC, Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 (Kingdom of, Saudi Arabia
- KAUST Solar Center (KSC), PSE, KAUST (Kingdom of, Saudi Arabia
| | - Yanrong Xue
- CCRC, Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 (Kingdom of, Saudi Arabia
- KAUST Solar Center (KSC), PSE, KAUST (Kingdom of, Saudi Arabia
| | - Xu Lu
- CCRC, Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 (Kingdom of, Saudi Arabia
- KAUST Solar Center (KSC), PSE, KAUST (Kingdom of, Saudi Arabia
| |
Collapse
|
78
|
Zheng L, Zhao Y, Bao Z, Xu P, Jia Y, Wang Y, Yang P, Shi X, Wu Q, Zheng H. High-Valence Mo Doping and Oxygen Vacancy Engineering to Promote Morphological Evolution and Oxygen Evolution Reaction Activity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43953-43962. [PMID: 37682728 DOI: 10.1021/acsami.3c10238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
The rational design of high-efficiency, low-cost electrocatalysts for electrochemical water oxidation in alkaline media remains a huge challenge. Herein, combined strategies of metal doping and vacancy engineering are employed to develop unique Mo-doped cobalt oxide nanosheet arrays. The Mo dopants exist in the form of high-valence Mo6+, and the doping amount has a significant effect on the structure morphology, which transforms from 1D nanowires/nanobelts to 2D nanosheets and finally 3D nanoflowers. In addition, the introduction of vast oxygen vacancies helps to modulate the electronic states and increase the electronic conductivity. The optimal catalyst MoCoO-3 exhibits greatly increased active sites and enhanced reaction kinetics. It gives a dramatically lower overpotential at 50 mA cm-2 (288 mV), much smaller than that of the undoped counterpart (418 mV) and comparable to those of the recently reported electrocatalysts. Density functional theory results further verify that the increased electronic conductivity and optimized adsorption energy toward oxygen evolution reaction intermediates are mainly responsible for the enhanced catalytic activity. Moreover, the assembled two-electrode electrolyzer (MoCoO-3||Pt/C) exhibits superior performance with the cell potential decreased by 233 mV to reach a current density of 50 mA cm-2 with respect to the benchmark counterpart catalysts (RuO2||Pt/C). This work might contribute to the rational design of effective, low-cost electrocatalyst materials by combining multiple strategies.
Collapse
Affiliation(s)
- Lingxia Zheng
- Department of Applied Chemistry, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yujuan Zhao
- Department of Applied Chemistry, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhenyu Bao
- Department of Applied Chemistry, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Penghui Xu
- Department of Applied Chemistry, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yi Jia
- Department of Applied Chemistry, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yongzhi Wang
- Department of Applied Chemistry, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Pengju Yang
- Department of Applied Chemistry, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaowei Shi
- Department of Applied Chemistry, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Qi Wu
- School of Science and Institute of Oxygen Supply and Everest Research Institute, Tibet University, Lhasa, 850000, China
| | - Huajun Zheng
- Department of Applied Chemistry, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
79
|
Wei XZ, Liao FJ, Xu X, Ye C, Tung CH, Wu LZ. In situ assembly of nickel-based ultrathin catalyst film for water oxidation. Chem Commun (Camb) 2023; 59:11109-11112. [PMID: 37646081 DOI: 10.1039/d3cc03110a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A nickel-based ultrathin catalyst film is assembled in situ from a solution of Ni(OAc)2 and a Schiff-base ligand L. The resulting ultrathin catalyst film shows a low overpotential of 330 mV, a steady current of 7 mA cm-2 for water oxidation over 10 h.
Collapse
Affiliation(s)
- Xiang-Zhu Wei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fang-Jie Liao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xin Xu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chen Ye
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
80
|
Zhang P, Chen K, Li J, Wang M, Li M, Liu Y, Pan Y. Bifunctional Single Atom Catalysts for Rechargeable Zinc-Air Batteries: From Dynamic Mechanism to Rational Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303243. [PMID: 37283478 DOI: 10.1002/adma.202303243] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/21/2023] [Indexed: 06/08/2023]
Abstract
Ever-growing demands for rechargeable zinc-air batteries (ZABs) call for efficient bifunctional electrocatalysts. Among various electrocatalysts, single atom catalysts (SACs) have received increasing attention due to the merits of high atom utilization, structural tunability, and remarkable activity. Rational design of bifunctional SACs relies heavily on an in-depth understanding of reaction mechanisms, especially dynamic evolution under electrochemical conditions. This requires a systematic study in dynamic mechanisms to replace current trial and error modes. Herein, fundamental understanding of dynamic oxygen reduction reaction and oxygen evolution reaction mechanisms for SACs is first presented combining in situ and/or operando characterizations and theoretical calculations. By highlighting structure-performance relationships, rational regulation strategies are particularly proposed to facilitate the design of efficient bifunctional SACs. Furthermore, future perspectives and challenges are discussed. This review provides a thorough understanding of dynamic mechanisms and regulation strategies for bifunctional SACs, which are expected to pave the avenue for exploring optimum single atom bifunctional oxygen catalysts and effective ZABs.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Kuo Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiaye Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Minmin Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Min Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
81
|
Kazi OA, Chen W, Eatman JG, Gao F, Liu Y, Wang Y, Xia Z, Darling SB. Material Design Strategies for Recovery of Critical Resources from Water. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300913. [PMID: 37000538 DOI: 10.1002/adma.202300913] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Population growth, urbanization, and decarbonization efforts are collectively straining the supply of limited resources that are necessary to produce batteries, electronics, chemicals, fertilizers, and other important products. Securing the supply chains of these critical resources via the development of separation technologies for their recovery represents a major global challenge to ensure stability and security. Surface water, groundwater, and wastewater are emerging as potential new sources to bolster these supply chains. Recently, a variety of material-based technologies have been developed and employed for separations and resource recovery in water. Judicious selection and design of these materials to tune their properties for targeting specific solutes is central to realizing the potential of water as a source for critical resources. Here, the materials that are developed for membranes, sorbents, catalysts, electrodes, and interfacial solar steam generators that demonstrate promise for applications in critical resource recovery are reviewed. In addition, a critical perspective is offered on the grand challenges and key research directions that need to be addressed to improve their practical viability.
Collapse
Affiliation(s)
- Omar A Kazi
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Wen Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Jamila G Eatman
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Feng Gao
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Yining Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Yuqin Wang
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Zijing Xia
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Seth B Darling
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
82
|
Deng L, Liu S, Liu D, Chang YM, Li L, Li C, Sun Y, Hu F, Chen HY, Pan H, Peng S. Activity-Stability Balance: The Role of Electron Supply Effect of Support in Acidic Oxygen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2302238. [PMID: 37191328 DOI: 10.1002/smll.202302238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/11/2023] [Indexed: 05/17/2023]
Abstract
Developing efficient and durable electrocatalysts for the oxygen evolution reaction (OER) in proton exchange membrane (PEM) electrolyzers represents a significant challenge. Herein, the cobalt-ruthenium oxide nano-heterostructures are successfully synthesized on carbon cloth (CoOx /RuOx -CC) for acidic OER through a simple and fast solution combustion strategy. The rapid oxidation process endows CoOx /RuOx -CC with abundant interfacial sites and defect structures, which enhances the number of active sites and the charge transfer at the electrolyte-catalyst interface, promoting the OER kinetics. Moreover, the electron supply effect of the CoOx support allows electrons to transfer from Co to Ru sites during the OER process, which is beneficial to alleviate the ion leaching and over-oxidation of Ru sites, improving the catalyst activity and stability. As a self-supported electrocatalyst, CoOx /RuOx -CC displays an ultralow overpotential of 180 mV at 10 mA cm-2 for OER. Notably, the PEM electrolyzer using CoOx /RuOx -CC as the anode can be operated at 100 mA cm-2 stably for 100 h. Mechanistic analysis shows that the strong catalyst-support interaction is beneficial to redistribute the electronic structure of RuO bond to weaken its covalency, thereby optimizing the binding energy of OER intermediates and lowering the reaction energy barrier.
Collapse
Affiliation(s)
- Liming Deng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Shuyi Liu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Di Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Zhuhai, Macao SAR, 999078, China
| | - Yu-Ming Chang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Chunsheng Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
- Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yan Sun
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
- Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Feng Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Zhuhai, Macao SAR, 999078, China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
83
|
Sun YY, Zhang XY, Tang J, Li X, Fu HQ, Xu HG, Mao F, Liu P, Yang HG. Amorphous Oxysulfide Reconstructed from Spinel NiCo 2 S 4 for Efficient Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207965. [PMID: 36965022 DOI: 10.1002/smll.202207965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The progress of effective and durable electrocatalysts for oxygen evolution reaction (OER) is urgent, which is essential to promote the overall efficiency of green hydrogen production. To improve the performance of spinel cobalt-based oxides, which serve as promising water oxidation electrocatalysts in alkaline electrolytes, most researches have been concentrated on cations modification. Here, an anionic regulation mechanism is employed to adopt sulfur(S) anion substitution to supplant NiCo2 O4 by NiCo2 S4 , which contributed to an impressive OER performance in alkali. It is revealed that the substitution of S constructs a sub-stable spinel structure that facilitates its reconstruction into active amorphous oxysulfide under OER conditions. More importantly, as the active phase in the actual reaction process, the hetero-anionic amorphous oxysulfide has an appropriately tuned electronic structure and efficient OER electrocatalytic activity. This work demonstrates a promising approach for achieving anion conditioning-based tunable structure reconstruction for robust and easy preparation spinel oxide OER electrocatalysts.
Collapse
Affiliation(s)
- Ying Ying Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xin Yu Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jianfang Tang
- China General Nuclear New Energy Holdings Co., Ltd., Beijing, 100071, China
| | - Xiaoxia Li
- China General Nuclear New Energy Holdings Co., Ltd., Beijing, 100071, China
| | - Huai Qin Fu
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Hao Guan Xu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Fangxin Mao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - PengFei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
84
|
Zhang K, Duan Y, Graham N, Yu W. Efficient electrochemical generation of active chlorine to mediate urea and ammonia oxidation in a hierarchically porous-Ru/RuO 2-based flow reactor. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130327. [PMID: 36434919 DOI: 10.1016/j.jhazmat.2022.130327] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The electrochemical chlorination of urea to CO2 and N2 end-products, via active-chlorine-mediated oxidation under nearly neutral conditions, is an effective treatment for medium-concentrated urea-containing wastewater. Herein, we design a novel flow reactor integrated with three-dimensional hierarchically porous Ru/RuO2 architectures anchored on a Ti mesh. The hierarchically macroporous electrode can create sufficient exposure of catalytically active sites and facilitate the microscopic mass transport and diffusion inside the active layer, thereby contributing to the increased removal efficiency of urea-N and ammonia-N. The combined results of electrochemical measurements, UV-visible spectrometry and in situ Raman spectrometry, show that the OCl- species produced by chlorine evolution reaction (CER) are the main active constituents for removing urea-N. Theoretical calculations reveal thLTWAat the Ru/RuO2 possesses a moderate Cl binding strength, lower theoretical overpotentials of CER and a higher conductivity, compared with pure RuO2. On this basis, we assemble a circular flow reactor with the hierarchically porous electrodes in a two-electrode system to obtain an enhanced microfluidic process, which during 9 days of uninterrupted operation, at a high electrolysis current of 500 mA, achieve a total nitrogen removal of 92.6% and an energy consumption of 7.94 kWh kg-1 N, demonstrating the promising application of the novel process.
Collapse
Affiliation(s)
- Kai Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuanxiao Duan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Nigel Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
85
|
Ruiz-Gonzalez A, Kempson H, Haseloff J. A Simple Reversed Iontophoresis-Based Sensor to Enable In Vivo Multiplexed Measurement of Plant Biomarkers Using Screen-Printed Electrodes. SENSORS (BASEL, SWITZERLAND) 2023; 23:780. [PMID: 36679574 PMCID: PMC9863583 DOI: 10.3390/s23020780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The direct quantification of plant biomarkers in sap is crucial to enhancing crop production. However, current approaches are inaccurate, involving the measurement of non-specific parameters such as colour intensity of leaves, or requiring highly invasive processes for the extraction of sap. In addition, these methods rely on bulky and expensive equipment, and they are time-consuming. The present work reports for the first time a low-cost sensing device that can be used for the simultaneous determination of sap K+ and pH in living plants by means of reverse iontophoresis. A screen-printed electrode was modified by deposition of a K+-selective membrane, achieving a super-Nernstian sensitivity of 70 mV Log[K+]−1 and a limit of detection within the micromolar level. In addition, the cathode material of the reverse iontophoresis device was modified by electrodeposition of RuOx particles. This electrode could be used for the direct extraction of ions from plant leaves and the amperometric determination of pH within the physiological range (pH 3−8), triggered by the selective reaction of RuOx with H+. A portable and low-cost (<£60) microcontroller-based device was additionally designed to enable its use in low-resource settings. The applicability of this system was demonstrated by measuring the changes in concentration of K+ and pH in tomato plants before and after watering with deionised water. These results represent a step forward in the design of affordable and non-invasive devices for the monitoring of key biomarkers in plants, with a plethora of applications in smart farming and precision agriculture among others.
Collapse
|
86
|
Lin L, Xin R, Yuan M, Wang T, Li J, Xu Y, Xu X, Li M, Du Y, Wang J, Wang S, Jiang F, Wu W, Lu C, Huang B, Sun Z, Liu J, He J, Sun G. Revealing Spin Magnetic Effect of Iron-Group Layered Double Hydroxides with Enhanced Oxygen Catalysis. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Liu Lin
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Ruiyun Xin
- Inner Mongolia University, 235 West University Street, Hohhot010021, China
| | - Mengwei Yuan
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Tongyue Wang
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Jie Li
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Yunming Xu
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Xuhui Xu
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Mingxuan Li
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Yu Du
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Jianing Wang
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Shuyi Wang
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Fubin Jiang
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Wenxin Wu
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Caicai Lu
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Binbin Huang
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Zemin Sun
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Jian Liu
- Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao266101, China
| | - Jinlu He
- Inner Mongolia University, 235 West University Street, Hohhot010021, China
| | - Genban Sun
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing100875, China
| |
Collapse
|
87
|
Fu ZY, Xu HM, Li WH, Jin GP, Han SK. Phase Transformation from Amorphous RuS x to Ru-RuS 2 Hybrid Nanostructure for Efficient Water Splitting in Alkaline Media. Inorg Chem 2023; 62:583-590. [PMID: 36563110 DOI: 10.1021/acs.inorgchem.2c03882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ruthenium (Ru)-based materials, as a class of efficient hydrogen evolution reaction (HER) catalysts, play an important role in hydrogen generation by electrolysis of water in an alkaline solution for clean hydrogen energy. Hybrid nanostructure (HN) materials, which include two or more components with distinct functionality, show better performance than their individual materials, since HN materials can potentially integrate their advantages and overcome the weaknesses. However, it remains a challenge to construct Ru-based HN materials with desired crystal phases for enhanced HER performances. Herein, a series of new Ru-based HN materials (t-Ru-RuS2, S-Ru-RuS2, and T-Ru-RuS2) through phase engineering of nanomaterials (PEN) and chemical transformation are designed to achieve highly efficient HER properties. Owing to the plentiful formation of heterojunctions and amorphous/crystalline interfaces, the t-Ru-RuS2 HN delivers the most outstanding overpotential of 16 mV and owns a small Tafel slope of 29 mV dec-1 at a current density of 10 mA cm-2, which exceeds commercial Pt/C catalysts (34 mV, 38 mV dec-1). This work shows a new insight for HN and provides alternative opportunities in designing advanced electrocatalysts with low cost for HER in the hydrogen economy.
Collapse
Affiliation(s)
- Zi-Yu Fu
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Hou-Ming Xu
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Wan-Hong Li
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Guan-Ping Jin
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Shi-Kui Han
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| |
Collapse
|
88
|
Zhang L, Wang J, Jiang K, Xiao Z, Gao Y, Lin S, Chen B. Self-Reconstructed Metal-Organic Framework Heterojunction for Switchable Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2022; 61:e202214794. [PMID: 36278261 DOI: 10.1002/anie.202214794] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 11/18/2022]
Abstract
Designing metal-organic framework (MOF)-based catalysts with superior oxygen evolution reaction (OER) activity and robust durability simultaneously is highly required yet very challenging due to the limited intrinsic activity and their elusive evolution under harsh OER conditions. Herein, a steady self-reconstructed MOF heterojunction is constructed via redox electrochemistry and topology-guided strategy. Thanks to the inhibiting effect from hydrogen bonds of Ni-BDC-1 (BDC=1,4-benzenedicarboxylic acid), the obatained MOF heterojunction shows greatly improved OER activity with low overpotential of 225 mV at 10 mA cm-2 , relative to the totally reconstructed Ni-BDC-3 (332 mV). Density function theory calculations reveal that the formed built-in electric field in the MOF heterojunction remarkably optimizes the ad/desorption free energy of active Ni sites. Moreover, such MOF heterojunction shows superior durability attributed to the shielding effect of the surface-evolved NiOOH coating.
Collapse
Affiliation(s)
- Ling Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Jiaji Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Ke Jiang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Zhaohui Xiao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Yuntian Gao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Shiwei Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio One UTSA Circle, San Antonio, Texas, 78249-0698, USA
| |
Collapse
|