51
|
Triki Z, Aellen M, van Schaik CP, Bshary R. Relative Brain Size and Cognitive Equivalence in Fishes. BRAIN, BEHAVIOR AND EVOLUTION 2022; 96:124-136. [PMID: 34753141 DOI: 10.1159/000520741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 11/06/2021] [Indexed: 11/19/2022]
Abstract
Scientists have long struggled to establish how larger brains translate into higher cognitive performance across species. While absolute brain size often yields high predictive power of performance, its positive correlation with body size warrants some level of correction. It is expected that larger brains are needed to control larger bodies without any changes in cognitive performance. Potentially, the mean value of intraspecific brain-body slopes provides the best available estimate for an interspecific correction factor. For example, in primates, including humans, an increase in body size translates into an increase in brain size without changes in cognitive performance. Here, we provide the first evaluation of this hypothesis for another clade, teleost fishes. First, we obtained a mean intraspecific brain-body regression slope of 0.46 (albeit with a relatively large range of 0.26-0.79) from a dataset of 51 species, with at least 10 wild adult specimens per species. This mean intraspecific slope value (0.46) is similar to that of the encephalisation quotient reported for teleosts (0.5), which can be used to predict mean cognitive performance in fishes. Importantly, such a mean value (0.46) is much higher than in endothermic vertebrate species (≤0.3). Second, we used wild-caught adult cleaner fish Labroides dimidiatus as a case study to test whether variation in individual cognitive performance can be explained by body size. We first obtained the brain-body regression slope for this species from two different datasets, which gave slope values of 0.58 (MRI scan data) and 0.47 (dissection data). Then, we used another dataset involving 69 adult cleaners different from those tested for their brain-body slope. We found that cognitive performance from four different tasks that estimated their learning, numerical, and inhibitory control abilities was not significantly associated with body size. These results suggest that the intraspecific brain-body slope captures cognitive equivalence for this species. That is, individuals that are on the brain-body regression line are cognitively equal. While rather preliminary, our results suggest that fish and mammalian brain organisations are fundamentally different, resulting in different intra- and interspecific slopes of cognitive equivalence.
Collapse
Affiliation(s)
- Zegni Triki
- Behavioural Ecology Laboratory, Faculty of Science, University of Neuchâtel, Neuchâtel, Switzerland.,Institute of Zoology, Stockholm University, Stockholm, Sweden
| | - Mélisande Aellen
- Behavioural Ecology Laboratory, Faculty of Science, University of Neuchâtel, Neuchâtel, Switzerland
| | - Carel P van Schaik
- Department of Anthropology and Anthropological Museum, University of Zurich, Zurich, Switzerland
| | - Redouan Bshary
- Behavioural Ecology Laboratory, Faculty of Science, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
52
|
Goncerzewicz A, Górkiewicz T, Dzik JM, Jędrzejewska-Szmek J, Knapska E, Konarzewski M. Brain size, gut size and cognitive abilities: the energy trade-offs tested in artificial selection experiment. Proc Biol Sci 2022; 289:20212747. [PMID: 35414242 PMCID: PMC9006030 DOI: 10.1098/rspb.2021.2747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The enlarged brains of homeotherms bring behavioural advantages, but also incur high energy expenditures. The ‘expensive brain’ (EB) hypothesis posits that the energetic costs of the enlarged brain and the resulting increased cognitive abilities (CA) were met by either increased energy turnover or reduced allocation to other expensive organs, such as the gut. We tested the EB hypothesis by analysing correlated responses to selection in an experimental evolution model system, which comprises line types of laboratory mice selected for high or low basal metabolic rate (BMR), maximum (VO2max) metabolic rates and random-bred (unselected) lines. The traits are implicated in the evolution of homeothermy, having been pre-requisites for the encephalization and exceptional CA of mammals, including humans. High-BMR mice had bigger guts, but not brains, than mice of other line types. Yet, they were superior in the cognitive tasks carried out in both reward and avoidance learning contexts and had higher neuronal plasticity (indexed as the long-term potentiation) than their counterparts. Our data indicate that the evolutionary increase of CA in mammals was initially associated with increased BMR and brain plasticity. It was also fuelled by an enlarged gut, which was not traded off for brain size.
Collapse
Affiliation(s)
| | | | - Jakub M Dzik
- Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | | | - Ewelina Knapska
- Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Marek Konarzewski
- Faculty of Biology, University of Białystok, Ciołkowskiego 1 J, 15-245 Białystok, Poland
| |
Collapse
|
53
|
Bertrand OC, Shelley SL, Williamson TE, Wible JR, Chester SGB, Flynn JJ, Holbrook LT, Lyson TR, Meng J, Miller IM, Püschel HP, Smith T, Spaulding M, Tseng ZJ, Brusatte SL. Brawn before brains in placental mammals after the end-Cretaceous extinction. Science 2022; 376:80-85. [PMID: 35357913 DOI: 10.1126/science.abl5584] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mammals are the most encephalized vertebrates, with the largest brains relative to body size. Placental mammals have particularly enlarged brains, with expanded neocortices for sensory integration, the origins of which are unclear. We used computed tomography scans of newly discovered Paleocene fossils to show that contrary to the convention that mammal brains have steadily enlarged over time, early placentals initially decreased their relative brain sizes because body mass increased at a faster rate. Later in the Eocene, multiple crown lineages independently acquired highly encephalized brains through marked growth in sensory regions. We argue that the placental radiation initially emphasized increases in body size as extinction survivors filled vacant niches. Brains eventually became larger as ecosystems saturated and competition intensified.
Collapse
Affiliation(s)
- Ornella C Bertrand
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, Scotland EH9 3FE, UK
| | - Sarah L Shelley
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, Scotland EH9 3FE, UK.,Section of Mammals, Carnegie Museum of Natural History, Pittsburgh, PA, USA
| | | | - John R Wible
- Section of Mammals, Carnegie Museum of Natural History, Pittsburgh, PA, USA
| | - Stephen G B Chester
- Department of Anthropology, Brooklyn College, City University of New York, Brooklyn, NY, USA.,Department of Anthropology, The Graduate Center, City University of New York, New York, NY, USA.,New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - John J Flynn
- Division of Paleontology, American Museum of Natural History, New York, NY, USA.,Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA.,Ecology, Evolutionary Biology, and Behavior subprogram, PhD Program in Biology, The Graduate Center, City University of New York, New York, NY, USA.,PhD Program in Earth and Environmental Sciences, The Graduate Center, City University of New York, New York, NY, USA
| | - Luke T Holbrook
- Department of Biological Sciences, Rowan University, Glassboro, NJ, USA
| | | | - Jin Meng
- Division of Paleontology, American Museum of Natural History, New York, NY, USA
| | - Ian M Miller
- Denver Museum of Nature & Science, Denver, CO, USA.,National Geographic Society, Washington, DC, USA
| | - Hans P Püschel
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, Scotland EH9 3FE, UK
| | - Thierry Smith
- Directorate Earth and History of Life, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Michelle Spaulding
- Department of Biological Sciences, Purdue University Northwest, Westville, IN, USA
| | - Z Jack Tseng
- Department of Integrative Biology and Museum of Paleontology, University of California, Berkeley, CA, USA
| | - Stephen L Brusatte
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, Scotland EH9 3FE, UK.,New Mexico Museum of Natural History and Science, Albuquerque, NM, USA
| |
Collapse
|
54
|
Smith FA. The road to a larger brain. Science 2022; 376:27-28. [PMID: 35357943 DOI: 10.1126/science.abo1985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Ecological opportunities in the early Cenozoic favored larger, not smarter, mammals.
Collapse
Affiliation(s)
- Felisa A Smith
- Department of Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| |
Collapse
|
55
|
The Evolution of Brain Size in Ectothermic Tetrapods: Large Brain Mass Trades-Off with Lifespan in Reptiles. Evol Biol 2022. [DOI: 10.1007/s11692-022-09562-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
56
|
Affiliation(s)
- Mélisande Aellen
- Department of Behavioural Ecology University of Neuchâtel Neuchâtel Switzerland
| | - Judith M. Burkart
- Anthropological Institute and Museum University of Zürich Zürich Switzerland
| | - Redouan Bshary
- Department of Behavioural Ecology University of Neuchâtel Neuchâtel Switzerland
| |
Collapse
|
57
|
Abstract
The evolution of brain processing capacity has traditionally been inferred from data on brain size. However, similarly sized brains of distantly related species can differ in the number and distribution of neurons, their basic computational units. Therefore, a finer-grained approach is needed to reveal the evolutionary paths to increased cognitive capacity. Using a new, comprehensive dataset, we analyzed brain cellular composition across amniotes. Compared to reptiles, mammals and birds have dramatically increased neuron numbers in the telencephalon and cerebellum, which are brain parts associated with higher cognition. Astoundingly, a phylogenetic analysis suggests that as few as four major changes in neuron–brain scaling in over 300 million years of evolution pave the way to intelligence in endothermic land vertebrates. Reconstructing the evolution of brain information-processing capacity is paramount for understanding the rise of complex cognition. Comparative studies of brain evolution typically use brain size as a proxy. However, to get a less biased picture of the evolutionary paths leading to high cognitive power, we need to compare brains not by mass but by numbers of neurons, which are their basic computational units. This study reconstructs the evolution of brains across amniotes by directly analyzing neuron numbers by using the largest dataset of its kind and including essential data on reptiles. We show that reptiles have not only small brains relative to body size but also low neuronal densities, resulting in average neuron numbers over 20 times lower than those in birds and mammals of similar body size. Amniote brain evolution is characterized by the following four major shifts in neuron–brain scaling. The most dramatic increases in brain neurons occurred independently with the appearance of birds and mammals, resulting in convergent neuron scaling in the two endotherm lineages. The other two major increases in the number of neurons happened in core land birds and anthropoid primates, which are two groups known for their cognitive prowess. Interestingly, relative brain size is associated with relative neuronal cell density in reptiles, birds, and primates but not in other mammals. This has important implications for studies using relative brain size as a proxy when looking for evolutionary drivers of animal cognition.
Collapse
|
58
|
Razmi K, Patil JG. Primordial Germ Cell Development in the Poeciliid, Gambusia holbrooki, Reveals Shared Features Between Lecithotrophs and Matrotrophs. Front Cell Dev Biol 2022; 10:793498. [PMID: 35300414 PMCID: PMC8920993 DOI: 10.3389/fcell.2022.793498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/03/2022] [Indexed: 12/02/2022] Open
Abstract
Metazoans exhibit two modes of primordial germ cell (PGC) specification that are interspersed across taxa. However, the evolutionary link between the two modes and the reproductive strategies of lecithotrophy and matrotrophy is poorly understood. As a first step to understand this, the spatio-temporal expression of teleostean germ plasm markers was investigated in Gambusia holbrooki, a poecilid with shared lecitho- and matrotrophy. A group of germ plasm components was detected in the ovum suggesting maternal inheritance mode of PGC specification. However, the strictly zygotic activation of dnd-β and nanos1 occurred relatively early, reminiscent of models with induction mode (e.g., mice). The PGC clustering, migration and colonisation patterns of G. holbrooki resembled those of zebrafish, medaka and mice at blastula, gastrula and somitogenesis, respectively-recapitulating features of advancing evolutionary nodes with progressive developmental stages. Moreover, the expression domains of PGC markers in G. holbrooki were either specific to teleost (vasa expression in developing PGCs), murine models (dnd spliced variants) or shared between the two taxa (germline and somatic expression of piwi and nanos1). Collectively, the results suggest that the reproductive developmental adaptations may reflect a transition from lecithotrophy to matrotrophy.
Collapse
Affiliation(s)
- Komeil Razmi
- Laboratory of Molecular Biology, Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, TAS, Australia
| | - Jawahar G. Patil
- Laboratory of Molecular Biology, Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, TAS, Australia
| |
Collapse
|
59
|
Grove M, Timbrell L, Jolley B, Polack F, Borg JM. The Importance of Noise Colour in Simulations of Evolutionary Systems. ARTIFICIAL LIFE 2022; 27:1-19. [PMID: 35148391 DOI: 10.1162/artl_a_00354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Simulations of evolutionary dynamics often employ white noise as a model of stochastic environmental variation. Whilst white noise has the advantages of being simply generated and analytically tractable, empirical analyses demonstrate that most real environmental time series have power spectral densities consistent with pink or red noise, in which lower frequencies contribute proportionally greater amplitudes than higher frequencies. Simulated white noise environments may therefore fail to capture key components of real environmental time series, leading to erroneous results. To explore the effects of different noise colours on evolving populations, a simple evolutionary model of the interaction between life-history and the specialism-generalism axis was developed. Simulations were conducted using a range of noise colours as the environments to which agents adapted. Results demonstrate complex interactions between noise colour, reproductive rate, and the degree of evolved generalism; importantly, contradictory conclusions arise from simulations using white as opposed to red noise, suggesting that noise colour plays a fundamental role in generating adaptive responses. These results are discussed in the context of previous research on evolutionary responses to fluctuating environments, and it is suggested that Artificial Life as a field should embrace a wider spectrum of coloured noise models to ensure that results are truly representative of environmental and evolutionary dynamics.
Collapse
Affiliation(s)
- Matt Grove
- University of Liverpool, Department of Archaeology, Classics and Egyptology.
| | - Lucy Timbrell
- University of Liverpool, Department of Archaeology, Classics and Egyptology.
| | - Ben Jolley
- Keele University, UK, School of Computing and Mathematics.
| | - Fiona Polack
- Keele University, UK, School of Computing and Mathematics.
| | - James M Borg
- Keele University, UK, School of Computing and Mathematics
- Aston University, UK, School of Informatics and Digital Engineering.
| |
Collapse
|
60
|
Hansen TF, Bolstad GH, Tsuboi M. Analyzing Disparity and Rates of Morphological Evolution with Model-Based Phylogenetic Comparative Methods. Syst Biol 2021; 71:1054-1072. [PMID: 34865153 PMCID: PMC9366461 DOI: 10.1093/sysbio/syab079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 11/14/2022] Open
Abstract
Understanding variation in rates of evolution and morphological disparity is a goal of macroevolutionary research. In a phylogenetic comparative methods framework, we present three explicit models for linking the rate of evolution of a trait to the state of another evolving trait. This allows testing hypotheses about causal influences on rates of phenotypic evolution with phylogenetic comparative data. We develop a statistical framework for fitting the models with generalized least-squares regression and use this to discuss issues and limitations in the study of rates of evolution more generally. We show that the power to detect effects on rates of evolution is low in that even strong causal effects are unlikely to explain more than a few percent of observed variance in disparity. We illustrate the models and issues by testing if rates of beak-shape evolution in birds are influenced by brain size, as may be predicted from a Baldwin effect in which presumptively more behaviorally flexible large-brained species generate more novel selection on themselves leading to higher rates of evolution. From an analysis of morphometric data for 645 species, we find evidence that both macro- and microevolution of the beak are faster in birds with larger brains, but with the caveat that there are no consistent effects of relative brain size.[Baldwin effect; beak shape; behavioral drive; bird; brain size; disparity; phylogenetic comparative method; rate of evolution.]
Collapse
Affiliation(s)
- Thomas F Hansen
- Department of Biology, CEES & Evogene, University of Oslo, Oslo, Norway
| | - Geir H Bolstad
- Norwegian Institute for Nature Research (NINA), NO-7485 Trondheim, Norway
| | - Masahito Tsuboi
- Department of Biology, CEES & Evogene, University of Oslo, Oslo, Norway.,Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
61
|
Munn AJ, Snelling EP, Taggart DA, Clauss M. Scaling at different ontogenetic stages: Gastrointestinal tract contents of a marsupial foregut fermenter, the western grey kangaroo Macropus fuliginosus melanops. Comp Biochem Physiol A Mol Integr Physiol 2021; 264:111100. [PMID: 34737157 DOI: 10.1016/j.cbpa.2021.111100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022]
Abstract
Prominent ontogenetic changes of the gastrointestinal tract (GIT) should occur in mammals whose neonatal diet of milk differs from that of adults, and especially in herbivores (as vegetation is particularly distinct from milk), and even more so in foregut fermenters, whose forestomach only becomes functionally relevant with vegetation intake. Due to the protracted lactation in marsupials, ontogenetic differences can be particularly well investigated in this group. Here, we report body mass (BM) scaling relationships of wet GIT content mass in 28 in-pouch young (50 g to 3 kg) and 15 adult (16-70 kg) western grey kangaroos Macropus fuliginosus melanops. Apart from the small intestinal contents, in-pouch young and adults did not differ in the scaling exponents ('slope' in log-log plots) but did differ in the scaling factor ('intercept'), with an implied substantial increase in wet GIT content mass during the out-of-pouch juvenile period. In contrast to forestomach contents, caecum contents were elevated in juveniles still in the pouch, suggestive of fermentative digestion of milk and intestinal secretion residues, particularly in the caecum. The substantial increase in GIT contents (from less than 1 to 10-20% of BM) was associated mainly with the increase in forestomach contents (from 25 to 80% of total GIT contents) and a concomitant decrease in small intestine contents (from 50 to 8%), emphasizing the shifting relevance of auto-enzymatic and allo-enzymatic (microbial) digestion. There was a concomitant increase in the contents-to-tissue ratio of the fermentation chambers (forestomach and caecum), but this ratio generally did not change for the small intestine. Our study not only documents significant ontogenetic changes in digestive morpho-physiology, but also exemplifies the usefulness of intraspecific allometric analyses for quantifying these changes.
Collapse
Affiliation(s)
- Adam J Munn
- Laboratory for Ecological and Applied Physiology, Otford, NSW 2508, Australia.
| | - Edward P Snelling
- Department of Ecology and Environmental Science, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia; Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa; Centre for Veterinary Wildlife Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.
| | - David A Taggart
- Department of Ecology and Environmental Science, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Marcus Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
62
|
Tsuboi M. Exceptionally Steep Brain-Body Evolutionary Allometry Underlies the Unique Encephalization of Osteoglossiformes. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:49-63. [PMID: 34634787 DOI: 10.1159/000519067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/28/2021] [Indexed: 01/06/2023]
Abstract
Brain-body static allometry, which is the relationship between brain size and body size within species, is thought to reflect developmental and genetic constraints. Existing evidence suggests that the evolution of large brain size without accompanying changes in body size (that is, encephalization) may occur when this constraint is relaxed. Teleost fish species are generally characterized by having close-fitting brain-body static allometries, leading to strong allometric constraints and small relative brain sizes. However, one order of teleost, Osteoglossiformes, underwent extreme encephalization, and its mechanistic bases are unknown. Here, I used a dataset and phylogeny encompassing 859 teleost species to demonstrate that the encephalization of Osteoglossiformes occurred through an increase in the slope of evolutionary (among-species) brain-body allometry. The slope is virtually isometric (1.03 ± 0.09 SE), making it one of the steepest evolutionary brain-body allometric slopes reported to date, and it deviates significantly from the evolutionary brain-body allometric slopes of other clades of teleost. Examination of the relationship between static allometric parameters (intercepts and slopes) and evolutionary allometry revealed that the dramatic steepening of the evolutionary allometric slope in Osteoglossiformes was a combined result of evolution in the slopes and intercepts of static allometry. These results suggest that the evolution of static allometry, which likely has been driven by evolutionary changes in the rate and timing of brain development, has facilitated the unique encephalization of Osteoglossiformes.
Collapse
Affiliation(s)
- Masahito Tsuboi
- Department of Biology, Lund University, Lund, Sweden.,Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
63
|
García‐Navas V, Sattler T, Schmid H, Ozgul A. Bird species co‐occurrence patterns in an alpine environment supports the stress‐gradient hypothesis. OIKOS 2021. [DOI: 10.1111/oik.08588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vicente García‐Navas
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Zurich Switzerland
- Dept of Integrative Ecology, Doñana Biological Station CSIC Seville Spain
| | | | - Hans Schmid
- Swiss Ornithological Inst. Sempach Switzerland
| | - Arpat Ozgul
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Zurich Switzerland
| |
Collapse
|
64
|
Chan DTC, Poon ESK, Wong ATC, Sin SYW. Global trade in parrots – Influential factors of trade and implications for conservation. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
65
|
Wong S, Bigman JS, Yopak KE, Dulvy NK. Gill surface area provides a clue for the respiratory basis of brain size in the blacktip shark (Carcharhinus limbatus). JOURNAL OF FISH BIOLOGY 2021; 99:990-998. [PMID: 34019307 DOI: 10.1111/jfb.14797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Brain size varies dramatically, both within and across species, and this variation is often believed to be the result of trade-offs between the cognitive benefits of having a large brain for a given body size and the energetic cost of sustaining neural tissue. One potential consequence of having a large brain is that organisms must also meet the associated high energetic demands. Thus, a key question is whether metabolic rate correlates with brain size. However, using metabolic rate to measure energetic demand yields a relatively instantaneous and dynamic measure of energy turnover, which is incompatible with the longer evolutionary timescale of changes in brain size within and across species. Morphological traits associated with oxygen consumption, specifically gill surface area, have been shown to be correlates of oxygen demand and energy use, and thus may serve as integrated correlates of these processes, allowing us to assess whether evolutionary changes in brain size correlate with changes in longer-term oxygen demand and energy use. We tested how brain size relates to gill surface area in the blacktip shark Carcharhinus limbatus. First, we examined whether the allometric slope of brain mass (i.e., the rate that brain mass changes with body mass) is lower than the allometric slope of gill surface area across ontogeny. Second, we tested whether gill surface area explains variation in brain mass, after accounting for the effects of body mass on brain mass. We found that brain mass and gill surface area both had positive allometric slopes, with larger individuals having both larger brains and larger gill surface areas compared to smaller individuals. However, the allometric slope of brain mass was lower than the allometric slope of gill surface area, consistent with our prediction that the allometric slope of gill surface area could pose an upper limit to the allometric slope of brain mass. Finally, after accounting for body mass, individuals with larger brains tended to have larger gill surface areas. Together, our results provide clues as to how fishes may evolve and maintain large brains despite their high energetic cost, suggesting that C. limbatus individuals with a large gill surface area for their body mass may be able to support a higher energetic turnover, and, in turn, a larger brain for their body mass.
Collapse
Affiliation(s)
- Serena Wong
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jennifer S Bigman
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kara E Yopak
- Department of Biology and Marine Biology, University of North Carolina, Wilmington, North Carolina, USA
| | - Nicholas K Dulvy
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
66
|
Sowersby W, Eckerström-Liedholm S, Kotrschal A, Näslund J, Rowiński P, Gonzalez-Voyer A, Rogell B. Fast life-histories are associated with larger brain size in killifishes. Evolution 2021; 75:2286-2298. [PMID: 34270088 DOI: 10.1111/evo.14310] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 06/11/2021] [Accepted: 06/25/2021] [Indexed: 11/27/2022]
Abstract
The high energetic demands associated with the vertebrate brain are proposed to result in a trade-off between the pace of life-history and relative brain size. However, because both life-history and brain size also have a strong relationship with body size, any associations between the pace of life-history and relative brain size may be confounded by coevolution with body size. Studies on systems where contrasts in the pace of life-history occur without concordant contrasts in body size could therefore add to our understanding of the potential coevolution between relative brain size and life-history. Using one such system - 21 species of killifish - we employed a common garden design across two ontogenetic stages to investigate the association between relative brain size and the pace of life-history. Contrary to predictions, we found that relative brain size was larger in adult fast-living killifishes, compared to slow-living species. Although we found no differences in relative brain size between juvenile killifishes. Our results suggest that fast- and slow-living killifishes do not exhibit the predicted trade-off between brain size and life-history. Instead, fast and slow-living killifishes could differ in the ontogenetic timing of somatic versus neural growth or inhabit environments that differ considerably in cognitive demands.
Collapse
Affiliation(s)
- Will Sowersby
- Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Biology, Osaka City University, Osaka, Japan
| | - Simon Eckerström-Liedholm
- Department of Zoology, Stockholm University, Stockholm, Sweden.,Wild Animal Initiative, Farmington, Minnesota, USA
| | - Alexander Kotrschal
- Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Animal Sciences: Behavioural Ecology, Wageningen University, Wageningen, Netherlands
| | - Joacim Näslund
- Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, Drottningholm, Sweden
| | - Piotr Rowiński
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Alejandro Gonzalez-Voyer
- Department of Zoology, Stockholm University, Stockholm, Sweden.,Instituto de Ecología, Universidad Nacional Autónoma de México, México, Mexico
| | - Björn Rogell
- Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, Drottningholm, Sweden
| |
Collapse
|
67
|
Rowlands CE, McLellan WA, Rommel SA, Costidis AM, Yopak KE, Koopman HN, Glandon HL, Ann Pabst D. Comparative morphology of the spinal cord and associated vasculature in shallow versus deep diving cetaceans. J Morphol 2021; 282:1415-1431. [PMID: 34228354 DOI: 10.1002/jmor.21395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 12/19/2022]
Abstract
The cetacean vertebral canal houses the spinal cord and arterial supply to and venous drainage from the entire central nervous system (CNS). Thus, unlike terrestrial mammals, the cetacean spinal cord lies within a highly vascularized space. We compared spinal cord size and vascular volumes within the vertebral canal across a sample of shallow and deep diving odontocetes. We predicted that the (a) spinal cord, a metabolically expensive tissue, would be relatively small, while (b) volumes of vascular structures would be relatively large, in deep versus shallow divers. Our sample included the shallow diving Tursiops truncatus (n = 2) and Delphinus delphis (n = 3), and deep diving Kogia breviceps (n = 2), Mesoplodon europaeus (n = 2), and Ziphius cavirostris (n = 1). Whole, frozen vertebral columns were cross-sectioned at each intervertebral disc, scaled photographs of vertebral canal contents acquired, and cross-sectional areas of structures digitally measured. Areas were multiplied by vertebral body lengths and summed to calculated volumes of neural and vascular structures. Allometric analyses revealed that the spinal cord scaled with negative allometry (b = 0.51 ± 0.13) with total body mass (TBM), and at a rate significantly lower than that of terrestrial mammals. As predicted, the spinal cord represented a smaller percentage of the total vertebral canal volume in the deep divers relative to shallow divers studied, as low as 2.8% in Z. cavirostris. Vascular volume scaled with positive allometry (b = 1.2 ± 0.22) with TBM and represented up to 96.1% (Z. cavirostris) of the total vertebral canal volume. The extreme deep diving beaked whales possessed 22-35 times more vascular volume than spinal cord volume within the vertebral canal, compared with the 6-10 ratio in the shallow diving delphinids. These data offer new insights into morphological specializations of neural and vascular structures that may contribute to differential diving capabilities across odontocete cetaceans.
Collapse
Affiliation(s)
- Carrie E Rowlands
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - William A McLellan
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Sentiel A Rommel
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Alexander M Costidis
- Virginia Aquarium Stranding Response Program, Virginia Aquarium and Marine Science Center, Virginia Beach, Virginia, USA
| | - Kara E Yopak
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Heather N Koopman
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Hillary L Glandon
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - D Ann Pabst
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| |
Collapse
|
68
|
van Schaik CP, Triki Z, Bshary R, Heldstab SA. A Farewell to the Encephalization Quotient: A New Brain Size Measure for Comparative Primate Cognition. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:1-12. [PMID: 34247154 DOI: 10.1159/000517013] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/02/2021] [Indexed: 11/19/2022]
Abstract
Both absolute and relative brain sizes vary greatly among and within the major vertebrate lineages. Scientists have long debated how larger brains in primates and hominins translate into greater cognitive performance, and in particular how to control for the relationship between the noncognitive functions of the brain and body size. One solution to this problem is to establish the slope of cognitive equivalence, i.e., the line connecting organisms with an identical bauplan but different body sizes. The original approach to estimate this slope through intraspecific regressions was abandoned after it became clear that it generated slopes that were too low by an unknown margin due to estimation error. Here, we revisit this method. We control for the error problem by focusing on highly dimorphic primate species with large sample sizes and fitting a line through the mean values for adult females and males. We obtain the best estimate for the slope of circa 0.27, a value much lower than those constructed using all mammal species and close to the value expected based on the genetic correlation between brain size and body size. We also find that the estimate of cognitive brain size based on cognitive equivalence fits empirical cognitive studies better than the encephalization quotient, which should therefore be avoided in future studies on primates and presumably mammals and birds in general. The use of residuals from the line of cognitive equivalence may change conclusions concerning the cognitive abilities of extant and extinct primate species, including hominins.
Collapse
Affiliation(s)
- Carel P van Schaik
- Department of Anthropology and Anthropological Museum, University of Zurich, Zurich, Switzerland.,Department of Evolutionary Biology and Environmental Science, University of Zurich, Zurich, Switzerland
| | - Zegni Triki
- Behavioral Ecology Laboratory, Faculty of Science, University of Neuchâtel, Neuchâtel, Switzerland, .,Institute of Zoology, Stockholm University, Stockholm, Sweden,
| | - Redouan Bshary
- Behavioral Ecology Laboratory, Faculty of Science, University of Neuchâtel, Neuchâtel, Switzerland
| | - Sandra A Heldstab
- Department of Anthropology and Anthropological Museum, University of Zurich, Zurich, Switzerland
| |
Collapse
|
69
|
Will M, Krapp M, Stock JT, Manica A. Different environmental variables predict body and brain size evolution in Homo. Nat Commun 2021; 12:4116. [PMID: 34238930 PMCID: PMC8266824 DOI: 10.1038/s41467-021-24290-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/07/2021] [Indexed: 11/27/2022] Open
Abstract
Increasing body and brain size constitutes a key macro-evolutionary pattern in the hominin lineage, yet the mechanisms behind these changes remain debated. Hypothesized drivers include environmental, demographic, social, dietary, and technological factors. Here we test the influence of environmental factors on the evolution of body and brain size in the genus Homo over the last one million years using a large fossil dataset combined with global paleoclimatic reconstructions and formalized hypotheses tested in a quantitative statistical framework. We identify temperature as a major predictor of body size variation within Homo, in accordance with Bergmann's rule. In contrast, net primary productivity of environments and long-term variability in precipitation correlate with brain size but explain low amounts of the observed variation. These associations are likely due to an indirect environmental influence on cognitive abilities and extinction probabilities. Most environmental factors that we test do not correspond with body and brain size evolution, pointing towards complex scenarios which underlie the evolution of key biological characteristics in later Homo.
Collapse
Affiliation(s)
- Manuel Will
- Department of Early Prehistory and Quaternary Ecology, University of Tübingen, Tübingen, Germany.
| | - Mario Krapp
- Evolutionary Ecology Group, Department of Zoology, University of Cambridge, Cambridge, UK
- GNS Science, Lower Hutt, New Zealand
| | - Jay T Stock
- Department of Anthropology, Western University, London, ON, Canada
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Andrea Manica
- Evolutionary Ecology Group, Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
70
|
Abstract
The magnitude of many biological traits relates strongly and regularly to body size. Consequently, a major goal of comparative biology is to understand and apply these 'size-scaling' relationships, traditionally quantified by using linear regression analyses based on log-transformed data. However, recently some investigators have questioned this traditional method, arguing that linear or non-linear regression based on untransformed arithmetic data may provide better statistical fits than log-linear analyses. Furthermore, they advocate the replacement of the traditional method by alternative specific methods on a case-by-case basis, based simply on best-fit criteria. Here, I argue that the use of logarithms in scaling analyses presents multiple valuable advantages, both statistical and conceptual. Most importantly, log-transformation allows biologically meaningful, properly scaled (scale-independent) comparisons of organisms of different size, whereas non-scaled (scale-dependent) analyses based on untransformed arithmetic data do not. Additionally, log-based analyses can readily reveal biologically and theoretically relevant discontinuities in scale invariance during developmental or evolutionary increases in body size that are not shown by linear or non-linear arithmetic analyses. In this way, log-transformation advances our understanding of biological scaling conceptually, not just statistically. I hope that my Commentary helps students, non-specialists and other interested readers to understand the general benefits of using log-transformed data in size-scaling analyses, and stimulates advocates of arithmetic analyses to show how they may improve our understanding of scaling conceptually, not just statistically.
Collapse
Affiliation(s)
- Douglas S Glazier
- Department of Biology, Juniata College, 1700 Moore Street, Huntingdon, PA 16652, USA
| |
Collapse
|
71
|
Aellen M, Dufour V, Bshary R. Cleaner fish and other wrasse match primates in their ability to delay gratification. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
72
|
Correlational selection in the age of genomics. Nat Ecol Evol 2021; 5:562-573. [PMID: 33859374 DOI: 10.1038/s41559-021-01413-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/11/2021] [Indexed: 02/01/2023]
Abstract
Ecologists and evolutionary biologists are well aware that natural and sexual selection do not operate on traits in isolation, but instead act on combinations of traits. This long-recognized and pervasive phenomenon is known as multivariate selection, or-in the particular case where it favours correlations between interacting traits-correlational selection. Despite broad acknowledgement of correlational selection, the relevant theory has often been overlooked in genomic research. Here, we discuss theory and empirical findings from ecological, quantitative genetic and genomic research, linking key insights from different fields. Correlational selection can operate on both discrete trait combinations and quantitative characters, with profound implications for genomic architecture, linkage, pleiotropy, evolvability, modularity, phenotypic integration and phenotypic plasticity. We synthesize current knowledge and discuss promising research approaches that will enable us to understand how correlational selection shapes genomic architecture, thereby linking quantitative genetic approaches with emerging genomic methods. We suggest that research on correlational selection has great potential to integrate multiple fields in evolutionary biology, including developmental and functional biology, ecology, quantitative genetics, phenotypic polymorphisms, hybrid zones and speciation processes.
Collapse
|
73
|
Bigman JS, M'Gonigle LK, Wegner NC, Dulvy NK. Respiratory capacity is twice as important as temperature in explaining patterns of metabolic rate across the vertebrate tree of life. SCIENCE ADVANCES 2021; 7:eabe5163. [PMID: 33952516 PMCID: PMC8099188 DOI: 10.1126/sciadv.abe5163] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/17/2021] [Indexed: 05/03/2023]
Abstract
Metabolic rate underlies a wide range of phenomena from cellular dynamics to ecosystem structure and function. Models seeking to statistically explain variation in metabolic rate across vertebrates are largely based on body size and temperature. Unexpectedly, these models overlook variation in the size of gills and lungs that acquire the oxygen needed to fuel aerobic processes. Here, we assess the importance of respiratory surface area in explaining patterns of metabolic rate across the vertebrate tree of life using a novel phylogenetic Bayesian multilevel modeling framework coupled with a species-paired dataset of metabolic rate and respiratory surface area. We reveal that respiratory surface area explains twice as much variation in metabolic rate, compared to temperature, across the vertebrate tree of life. Understanding the combination of oxygen acquisition and transport provides opportunity to understand the evolutionary history of metabolic rate and improve models that quantify the impacts of climate change.
Collapse
Affiliation(s)
- Jennifer S Bigman
- Earth to Ocean Research Group, Simon Fraser University, Burnaby, B.C. V5A 1S6, Canada.
- Biological Sciences, Simon Fraser University, Burnaby, B.C. V5A 1S6, Canada
| | | | - Nicholas C Wegner
- Fisheries Resources Division, Southwest Fisheries Science Center, NOAA Fisheries, La Jolla, CA 92037, USA
| | - Nicholas K Dulvy
- Earth to Ocean Research Group, Simon Fraser University, Burnaby, B.C. V5A 1S6, Canada
- Biological Sciences, Simon Fraser University, Burnaby, B.C. V5A 1S6, Canada
| |
Collapse
|
74
|
The Evolutionary History of Brains for Numbers. Trends Cogn Sci 2021; 25:608-621. [PMID: 33926813 DOI: 10.1016/j.tics.2021.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/21/2022]
Abstract
Humans and other animals share a number sense', an intuitive understanding of countable quantities. Having evolved independent from one another for hundreds of millions of years, the brains of these diverse species, including monkeys, crows, zebrafishes, bees, and squids, differ radically. However, in all vertebrates investigated, the pallium of the telencephalon has been implicated in number processing. This suggests that properties of the telencephalon make it ideally suited to host number representations that evolved by convergent evolution as a result of common selection pressures. In addition, promising candidate regions in the brains of invertebrates, such as insects, spiders, and cephalopods, can be identified, opening the possibility of even deeper commonalities for number sense.
Collapse
|
75
|
Elizondo Lara LC, Young J, Schliep K, De León LF. Brain Allometry Across Macroevolutionary Scales in Squamates Suggests a Conserved Pattern in Snakes. ZOOLOGY 2021; 146:125926. [PMID: 33932854 DOI: 10.1016/j.zool.2021.125926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 11/24/2022]
Abstract
Despite historical interest in brain size evolution in vertebrates, few studies have assessed variation in brain size in squamate reptiles such as snakes and lizards. Here, we analyzed the pattern of brain allometry at macroevolutionary scale in snakes and lizards, using body mass and snout vent length as measures of body size. We also assessed potential energetic trade-offs associated with relative brain size changes in Crotalinae vipers. Body mass showed a conserved pattern of brain allometry across taxa of snakes, but not in lizards. Body length favored changes of brain allometry in both snakes and lizards, but less variability was observed in snakes. Moreover, we did not find evidence for trade-offs between brain size and the size of other organs in Crotalinae. Thus, despite the contribution of body elongation to changes in relative brain size in squamate reptiles, snakes present low variation in brain allometry across taxa. Although the mechanisms driving this conserved pattern are unknown, we hypothesize that the snake body plan plays an important role in balancing the energetic demands of brain and body size increase at macroevolutionary scales. We encourage future research on the evolution of brain and body size in snakes to test this hypothesis.
Collapse
Affiliation(s)
- Luis C Elizondo Lara
- Programa de Maestría en Ciencias Biológicas, Vicerrectoría de Investigación y Postgrado, Universidad de Panamá, Avenida Simón Bolívar, Panama City, Panama, Apartado 3366 Panama 4, Panama; Departamento de Fisiología y Comportamiento Animal, Escuela de Biología, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Avenida Simón Bolívar, Panama City, Panama, Apartado 3366 Panama 4, Panama.
| | - José Young
- Departamento de Fisiología y Comportamiento Animal, Escuela de Biología, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Avenida Simón Bolívar, Panama City, Panama, Apartado 3366 Panama 4, Panama
| | - Klaus Schliep
- Institute of Computational Biotechnology, Graz University of Technology, Graz, Austria
| | - Luis F De León
- Department of Biology, University of Massachusetts, Boston, USA; Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), City of Knowledge, Clayton, Panama
| |
Collapse
|
76
|
Yao Z, Qi Y, Yue B, Fu J. Brain size variation along altitudinal gradients in the Asiatic Toad ( Bufo gargarizans). Ecol Evol 2021; 11:3015-3027. [PMID: 33841763 PMCID: PMC8019028 DOI: 10.1002/ece3.7192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/05/2020] [Accepted: 12/21/2020] [Indexed: 11/23/2022] Open
Abstract
Size changes in brain and brain regions along altitudinal gradients provide insight into the trade-off between energetic expenditure and cognitive capacity. We investigated the brain size variations of the Asiatic Toad (Bufo gargarizans) across altitudes from 700 m to 3,200 m. A total of 325 individuals from 11 sites and two transects were sampled. To reduce confounding factors, all sampling sites within each transect were within a maximum distance of 85 km and an altitudinal difference close to 2,000 m. Brains were dissected, and five regions were both measured directly and with 3D CT scan. There is a significant negative correlation between the relative whole-brain volume (to snout-vent length) and altitude. Furthermore, the relative volumes (to whole-brain volume) of optic tectum and cerebellum also decrease along the altitudinal gradients, while the telencephalon increases its relative volume along the gradients. Therefore, our results are mostly consistent with the expensive brain hypothesis and the functional constraint hypothesis. We suggest that most current hypotheses are not mutually exclusive and data supporting one hypothesis are often partially consistent with others. More studies on mechanisms are needed to explain the brain size evolution in natural populations.
Collapse
Affiliation(s)
- Zhongyi Yao
- Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
- College of Life SciencesSichuan UniversityChengduChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yin Qi
- Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
| | - Bisong Yue
- College of Life SciencesSichuan UniversityChengduChina
| | - Jinzhong Fu
- Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
- Department of Integrative BiologyUniversity of GuelphGuelphONCanada
| |
Collapse
|
77
|
Smaers JB, Rothman RS, Hudson DR, Balanoff AM, Beatty B, Dechmann DKN, de Vries D, Dunn JC, Fleagle JG, Gilbert CC, Goswami A, Iwaniuk AN, Jungers WL, Kerney M, Ksepka DT, Manger PR, Mongle CS, Rohlf FJ, Smith NA, Soligo C, Weisbecker V, Safi K. The evolution of mammalian brain size. SCIENCE ADVANCES 2021; 7:7/18/eabe2101. [PMID: 33910907 PMCID: PMC8081360 DOI: 10.1126/sciadv.abe2101] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/10/2021] [Indexed: 05/08/2023]
Abstract
Relative brain size has long been considered a reflection of cognitive capacities and has played a fundamental role in developing core theories in the life sciences. Yet, the notion that relative brain size validly represents selection on brain size relies on the untested assumptions that brain-body allometry is restrained to a stable scaling relationship across species and that any deviation from this slope is due to selection on brain size. Using the largest fossil and extant dataset yet assembled, we find that shifts in allometric slope underpin major transitions in mammalian evolution and are often primarily characterized by marked changes in body size. Our results reveal that the largest-brained mammals achieved large relative brain sizes by highly divergent paths. These findings prompt a reevaluation of the traditional paradigm of relative brain size and open new opportunities to improve our understanding of the genetic and developmental mechanisms that influence brain size.
Collapse
Affiliation(s)
- J B Smaers
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA.
- Division of Anthropology, American Museum of Natural History, New York, NY 10024, USA
| | - R S Rothman
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - D R Hudson
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - A M Balanoff
- Department of Psychological and Brain Sciences Johns Hopkins University, Baltimore, MD 21218, USA
- Division of Paleontology, American Museum of Natural History, New York, NY 10024, USA
| | - B Beatty
- NYIT College of Osteopathic Medicine, Old Westbury, NY 11568, USA
- United States National Museum, Smithsonian Institution, Washington, DC 20560, USA
| | - D K N Dechmann
- Department of Migration, Max-Planck Institute of Animal Behavior, 78315 Radolfzell, Germany
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - D de Vries
- Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of Salford, Manchester M5 4WX, UK
| | - J C Dunn
- Division of Biological Anthropology, University of Cambridge, Cambridge CB2 3QG, UK
- Behavioral Ecology Research Group, Anglia Ruskin University, Cambridge CB1 1PT, UK
- Department of Cognitive Biology, University of Vienna, Vienna 1090, Austria
| | - J G Fleagle
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - C C Gilbert
- NYIT College of Osteopathic Medicine, Old Westbury, NY 11568, USA
- Department of Anthropology, Hunter College, New York, NY 10065, USA
- PhD Program in Anthropology, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- New York Consortium in Evolutionary Primatology, New York, NY 10065, USA
| | - A Goswami
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - A N Iwaniuk
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K-3M4, Canada
| | - W L Jungers
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794, USA
- Association Vahatra, BP 3972, Antananarivo 101, Madagascar
| | - M Kerney
- Behavioral Ecology Research Group, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - D T Ksepka
- Bruce Museum, Greenwich, CT 06830, USA
- Department of Ornithology, American Museum of Natural History, New York, NY 10024, USA
- Division of Science and Education, Field Museum of Natural History, Chicago, IL 60605, USA
- Department of Paleobiology, Smithsonian Institution, Washington, DC 20013, USA
| | - P R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - C S Mongle
- Division of Anthropology, American Museum of Natural History, New York, NY 10024, USA
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY 11794, USA
| | - F J Rohlf
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA
| | - N A Smith
- Division of Science and Education, Field Museum of Natural History, Chicago, IL 60605, USA
- Campbell Geology Museum, Clemson University, Clemson, SC 29634, USA
| | - C Soligo
- Department of Anthropology, University College London, London WC1H 0BW, UK
| | - V Weisbecker
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - K Safi
- Department of Migration, Max-Planck Institute of Animal Behavior, 78315 Radolfzell, Germany
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
78
|
Todorov OS, Blomberg SP, Goswami A, Sears K, Drhlík P, Peters J, Weisbecker V. Testing hypotheses of marsupial brain size variation using phylogenetic multiple imputations and a Bayesian comparative framework. Proc Biol Sci 2021; 288:20210394. [PMID: 33784860 PMCID: PMC8059968 DOI: 10.1098/rspb.2021.0394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 12/20/2022] Open
Abstract
Considerable controversy exists about which hypotheses and variables best explain mammalian brain size variation. We use a new, high-coverage dataset of marsupial brain and body sizes, and the first phylogenetically imputed full datasets of 16 predictor variables, to model the prevalent hypotheses explaining brain size evolution using phylogenetically corrected Bayesian generalized linear mixed-effects modelling. Despite this comprehensive analysis, litter size emerges as the only significant predictor. Marsupials differ from the more frequently studied placentals in displaying a much lower diversity of reproductive traits, which are known to interact extensively with many behavioural and ecological predictors of brain size. Our results therefore suggest that studies of relative brain size evolution in placental mammals may require targeted co-analysis or adjustment of reproductive parameters like litter size, weaning age or gestation length. This supports suggestions that significant associations between behavioural or ecological variables with relative brain size may be due to a confounding influence of the extensive reproductive diversity of placental mammals.
Collapse
Affiliation(s)
- Orlin S. Todorov
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Simone P. Blomberg
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Anjali Goswami
- Genetics, Evolution, and Environment Department, University College London, UK
- Department of Life Sciences, Natural History Museum, London, UK
| | - Karen Sears
- Department of Ecology and Evolutionary Biology, College of Life Sciences, University of California Los Angeles, CA, USA
| | - Patrik Drhlík
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Czechia
| | - James Peters
- Department of Animal Biology, University of Illinois at Urbana Champaign, USA
| | - Vera Weisbecker
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
- College of Science and Engineering, Flinders University, Australia
| |
Collapse
|
79
|
Godfrey RK, Swartzlander M, Gronenberg W. Allometric analysis of brain cell number in Hymenoptera suggests ant brains diverge from general trends. Proc Biol Sci 2021; 288:20210199. [PMID: 33757353 PMCID: PMC8059961 DOI: 10.1098/rspb.2021.0199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Many comparative neurobiological studies seek to connect sensory or behavioural attributes across taxa with differences in their brain composition. Recent studies in vertebrates suggest cell number and density may be better correlated with behavioural ability than brain mass or volume, but few estimates of such figures exist for insects. Here, we use the isotropic fractionator (IF) method to estimate total brain cell numbers for 32 species of Hymenoptera spanning seven subfamilies. We find estimates from using this method are comparable to traditional, whole-brain cell counts of two species and to published estimates from established stereological methods. We present allometric scaling relationships between body and brain mass, brain mass and nuclei number, and body mass and cell density and find that ants stand out from bees and wasps as having particularly small brains by measures of mass and cell number. We find that Hymenoptera follow the general trend of smaller animals having proportionally larger brains. Smaller Hymenoptera also feature higher brain cell densities than the larger ones, as is the case in most vertebrates, but in contrast with primates, in which neuron density remains rather constant across changes in brain mass. Overall, our findings establish the IF as a useful method for comparative studies of brain size evolution in insects.
Collapse
Affiliation(s)
- R. Keating Godfrey
- Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | | | - Wulfila Gronenberg
- Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
80
|
Abstract
Many species from diverse and often distantly related animal groups (e.g. monkeys, crows, fish and bees) have a sense of number. This means that they can assess the number of items in a set - its 'numerosity'. The brains of these phylogenetically distant species are markedly diverse. This Review examines the fundamentally different types of brains and neural mechanisms that give rise to numerical competence across the animal tree of life. Neural correlates of the number sense so far exist only for specific vertebrate species: the richest data concerning explicit and abstract number representations have been collected from the cerebral cortex of mammals, most notably human and nonhuman primates, but also from the pallium of corvid songbirds, which evolved independently of the mammalian cortex. In contrast, the neural data relating to implicit and reflexive numerical representations in amphibians and fish is limited. The neural basis of a number sense has not been explored in any protostome so far. However, promising candidate regions in the brains of insects, spiders and cephalopods - all of which are known to have number skills - are identified in this Review. A comparative neuroscientific approach will be indispensable for identifying evolutionarily stable neuronal circuits and deciphering codes that give rise to a sense of number across phylogeny.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
81
|
Grzywacz B, Skórka P. Genome size versus geographic range size in birds. PeerJ 2021; 9:e10868. [PMID: 33614292 PMCID: PMC7881720 DOI: 10.7717/peerj.10868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/10/2021] [Indexed: 11/20/2022] Open
Abstract
Why do some species occur in small, restricted areas, while others are distributed globally? Environmental heterogeneity increases with area and so does the number of species. Hence, diverse biotic and abiotic conditions across large ranges may lead to specific adaptations that are often linked to a species' genome size and chromosome number. Therefore, a positive association between genome size and geographic range is anticipated. Moreover, high cognitive ability in organisms would be favored by natural selection to cope with the dynamic conditions within large geographic ranges. Here, we tested these hypotheses in birds-the most mobile terrestrial vertebrates-and accounted for the effects of various confounding variables, such as body mass, relative brain mass, and geographic latitude. Using phylogenetic generalized least squares and phylogenetic confirmatory path analysis, we demonstrated that range size is positively associated with bird genome size but probably not with chromosome number. Moreover, relative brain mass had no effect on range size, whereas body mass had a possible weak and negative effect, and range size was larger at higher geographic latitudes. However, our models did not fully explain the overall variation in range size. Hence, natural selection may impose larger genomes in birds with larger geographic ranges, although there may be additional explanations for this phenomenon.
Collapse
Affiliation(s)
- Beata Grzywacz
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - Piotr Skórka
- Institute of Nature Conservation, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
82
|
Boussard A, Amcoff M, Buechel SD, Kotrschal A, Kolm N. The link between relative brain size and cognitive ageing in female guppies (Poecilia reticulata) artificially selected for variation in brain size. Exp Gerontol 2020; 146:111218. [PMID: 33373711 DOI: 10.1016/j.exger.2020.111218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 11/29/2022]
Abstract
Cognitive ageing is the general process when certain mental skills gradually deteriorate with age. Across species, there is a pattern of a slower brain structure degradation rate in large-brained species. Hence, having a larger brain might buffer the impact of cognitive ageing and positively affect survival at older age. However, few studies have investigated the link between relative brain size and cognitive ageing at the intraspecific level. In particular, experimental data on how brain size affects brain function also into higher age is largely missing. We used 288 female guppies (Poecilia reticulata), artificially selected for large and small relative brain size, to investigate variation in colour discrimination and behavioural flexibility, at 4-6, 12 and 24 months of age. These ages are particularly interesting since they cover the life span from sexual maturation until maximal life length under natural conditions. We found no evidence for a slower cognitive ageing rate in large-brained females in neither initial colour discrimination nor reversal learning. Behavioural flexibility was predicted by large relative brain size in the youngest group, but the effect of brain size disappeared with increasing age. This result suggests that cognitive ageing rate is faster in large-brained female guppies, potentially due to the faster ageing and shorter lifespan in the large-brained selection lines. It also means that cognition levels align across different brain sizes with older age. We conclude that there are cognitive consequences of ageing that vary with relative brain size in advanced learning abilities, whereas fundamental aspects of learning can be maintained throughout the ecologically relevant life span.
Collapse
Affiliation(s)
- Annika Boussard
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden.
| | - Mirjam Amcoff
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden.
| | - Severine D Buechel
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden; Department of Animal Sciences: Behavioural Ecology, Wageningen University & Research, 6708 WD Wageningen, Netherlands.
| | - Alexander Kotrschal
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden; Department of Animal Sciences: Behavioural Ecology, Wageningen University & Research, 6708 WD Wageningen, Netherlands.
| | - Niclas Kolm
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden.
| |
Collapse
|
83
|
González-Suárez M, Gonzalez-Voyer A, von Hardenberg A, Santini L. The role of brain size on mammalian population densities. J Anim Ecol 2020; 90:653-661. [PMID: 33354764 DOI: 10.1111/1365-2656.13397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/05/2020] [Indexed: 12/01/2022]
Abstract
The local abundance or population density of different organisms often varies widely. Understanding what determines this variation is an important, but not yet fully resolved question in ecology. Differences in population density are partly driven by variation in body size and diet among organisms. Here we propose that the size of an organism' brain could be an additional, overlooked, driver of mammalian population densities. We explore two possible contrasting mechanisms by which brain size, measured by its mass, could affect population density. First, because of the energetic demands of larger brains and their influence on life history, we predict mammals with larger relative brain masses would occur at lower population densities. Alternatively, larger brains are generally associated with a greater ability to exploit new resources, which would provide a competitive advantage leading to higher population densities among large-brained mammals. We tested these predictions using phylogenetic path analysis, modelling hypothesized direct and indirect relationships between diet, body mass, brain mass and population density for 656 non-volant terrestrial mammalian species. We analysed all data together and separately for marsupials and the four taxonomic orders with most species in the dataset (Carnivora, Cetartiodactyla, Primates, Rodentia). For all species combined, a single model was supported showing lower population density associated with larger brains, larger bodies and more specialized diets. The negative effect of brain mass was also supported for separate analyses in Primates and Carnivora. In other groups (Rodentia, Cetartiodactyla and marsupials) the relationship was less clear: supported models included a direct link from brain mass to population density but 95% confidence intervals of the path coefficients overlapped zero. Results support our hypothesis that brain mass can explain variation in species' average population density, with large-brained species having greater area requirements, although the relationship may vary across taxonomic groups. Future research is needed to clarify whether the role of brain mass on population density varies as a function of environmental (e.g. environmental stability) and biotic conditions (e.g. level of competition).
Collapse
Affiliation(s)
- Manuela González-Suárez
- Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Reading, UK
| | - Alejandro Gonzalez-Voyer
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, México, México
| | - Achaz von Hardenberg
- Conservation Biology Research Group, Department of Biological Sciences, University of Chester, Chester, UK
| | - Luca Santini
- Department of Environmental Science, Institute for Wetland and Water Research, Faculty of Science, Radboud University, Nijmegen, The Netherlands.,National Research Council, Institute of Research on Terrestrial Ecosystems (CNR-IRET), Monterotondo (Rome), Italy
| |
Collapse
|
84
|
Frýdlová P, Mrzílková J, Šeremeta M, Křemen J, Dudák J, Žemlička J, Minnich B, Kverková K, Němec P, Zach P, Frynta D. Determinate growth is predominant and likely ancestral in squamate reptiles. Proc Biol Sci 2020; 287:20202737. [PMID: 33352069 PMCID: PMC7779497 DOI: 10.1098/rspb.2020.2737] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Body growth is typically thought to be indeterminate in ectothermic vertebrates. Indeed, until recently, this growth pattern was considered to be ubiquitous in ectotherms. Our recent observations of a complete growth plate cartilage (GPC) resorption, a reliable indicator of arrested skeletal growth, in many species of lizards clearly reject the ubiquity of indeterminate growth in reptiles and raise the question about the ancestral state of the growth pattern. Using X-ray micro-computed tomography (µCT), here we examined GPCs of long bones in three basally branching clades of squamate reptiles, namely in Gekkota, Scincoidea and Lacertoidea. A complete loss of GPC, indicating skeletal growth arrest, was the predominant finding. Using a dataset of 164 species representing all major clades of lizards and the tuataras, we traced the evolution of determinate growth on the phylogenetic tree of Lepidosauria. The reconstruction of character states suggests that determinate growth is ancestral for the squamate reptiles (Squamata) and remains common in the majority of lizard lineages, while extended (potentially indeterminate) adult growth evolved several times within squamates. Although traditionally associated with endotherms, determinate growth is coupled with ectothermy in this lineage. These findings combined with existing literature suggest that determinate growth predominates in both extant and extinct amniotes.
Collapse
Affiliation(s)
- Petra Frýdlová
- Department of Zoology, Faculty of Science, Charles University, Prague 12844, Czech Republic.,Department of Anatomy, Third Faculty of Medicine, Charles University, Prague 100 00, Czech Republic
| | - Jana Mrzílková
- Specialized Laboratory of Experimental Imaging, Third Faculty of Medicine of Charles University, Institute of Technical and Applied Physics and Faculty of Bioengineering, Prague 100 00, Czech Republic.,Department of Anatomy, Third Faculty of Medicine, Charles University, Prague 100 00, Czech Republic
| | - Martin Šeremeta
- Specialized Laboratory of Experimental Imaging, Third Faculty of Medicine of Charles University, Institute of Technical and Applied Physics and Faculty of Bioengineering, Prague 100 00, Czech Republic.,Department of Anatomy, Third Faculty of Medicine, Charles University, Prague 100 00, Czech Republic
| | - Jan Křemen
- Specialized Laboratory of Experimental Imaging, Third Faculty of Medicine of Charles University, Institute of Technical and Applied Physics and Faculty of Bioengineering, Prague 100 00, Czech Republic.,Department of Anatomy, Third Faculty of Medicine, Charles University, Prague 100 00, Czech Republic
| | - Jan Dudák
- Institute of Experimental and Applied Physics, Czech Technical University in Prague, Prague 110 00, Czech Republic
| | - Jan Žemlička
- Institute of Experimental and Applied Physics, Czech Technical University in Prague, Prague 110 00, Czech Republic
| | - Bernd Minnich
- Department of Biosciences, University of Salzburg, Hellbrunnerstrasse 34, Salzburg 5020, Austria
| | - Kristina Kverková
- Department of Zoology, Faculty of Science, Charles University, Prague 12844, Czech Republic
| | - Pavel Němec
- Department of Zoology, Faculty of Science, Charles University, Prague 12844, Czech Republic
| | - Petr Zach
- Specialized Laboratory of Experimental Imaging, Third Faculty of Medicine of Charles University, Institute of Technical and Applied Physics and Faculty of Bioengineering, Prague 100 00, Czech Republic.,Department of Anatomy, Third Faculty of Medicine, Charles University, Prague 100 00, Czech Republic
| | - Daniel Frynta
- Department of Zoology, Faculty of Science, Charles University, Prague 12844, Czech Republic
| |
Collapse
|
85
|
Triki Z, Emery Y, Teles MC, Oliveira RF, Bshary R. Brain morphology predicts social intelligence in wild cleaner fish. Nat Commun 2020; 11:6423. [PMID: 33349638 PMCID: PMC7752907 DOI: 10.1038/s41467-020-20130-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/12/2020] [Indexed: 11/08/2022] Open
Abstract
It is generally agreed that variation in social and/or environmental complexity yields variation in selective pressures on brain anatomy, where more complex brains should yield increased intelligence. While these insights are based on many evolutionary studies, it remains unclear how ecology impacts brain plasticity and subsequently cognitive performance within a species. Here, we show that in wild cleaner fish (Labroides dimidiatus), forebrain size of high-performing individuals tested in an ephemeral reward task covaried positively with cleaner density, while cerebellum size covaried negatively with cleaner density. This unexpected relationship may be explained if we consider that performance in this task reflects the decision rules that individuals use in nature rather than learning abilities: cleaners with relatively larger forebrains used decision-rules that appeared to be locally optimal. Thus, social competence seems to be a suitable proxy of intelligence to understand individual differences under natural conditions.
Collapse
Affiliation(s)
- Zegni Triki
- Institute of Biology, University of Neuchâtel, Emile-Argand 11, 2000, Neuchâtel, Switzerland.
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, Stockholm, Sweden.
| | - Yasmin Emery
- Institute of Biology, University of Neuchâtel, Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Magda C Teles
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal
| | - Rui F Oliveira
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal
- ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041, Lisboa, Portugal
| | - Redouan Bshary
- Institute of Biology, University of Neuchâtel, Emile-Argand 11, 2000, Neuchâtel, Switzerland
| |
Collapse
|
86
|
Laforest K, Peele E, Yopak K. Ontogenetic Shifts in Brain Size and Brain Organization of the Atlantic Sharpnose Shark, Rhizoprionodon terraenovae. BRAIN, BEHAVIOR AND EVOLUTION 2020; 95:162-180. [DOI: 10.1159/000511304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/31/2020] [Indexed: 11/19/2022]
Abstract
Throughout an animal’s life, species may occupy different environments and exhibit distinct life stages, known as ontogenetic shifts. The life histories of most sharks (class: Chondrichthyes) are characterized by these ontogenetic shifts, which can be defined by changes in habitat and diet as well as behavioral changes at the onset of sexual maturity. In addition, fishes experience indeterminate growth, whereby the brain and body grow throughout the organism’s life. Despite a presupposed lifelong neurogenesis in sharks, very little work has been done on ontogenetic changes in the brain, which may be informative about functional shifts in sensory and behavioral specializations. This study quantified changes in brain-body scaling and the scaling of six major brain regions (olfactory bulbs, telencephalon, diencephalon, optic tectum, cerebellum, and medulla oblongata) throughout ontogeny in the Atlantic sharpnose shark, <i>Rhizoprionodon terraenovae</i>. As documented in other fishes, brain size increased significantly with body mass throughout ontogeny in this species, with the steepest period of growth in early life. The telencephalon, diencephalon, optic tectum, and medulla oblongata scaled with negative allometry against the rest of the brain throughout ontogeny. However, notably, the olfactory bulbs and cerebellum scaled hyperallometrically to the rest of the brain, whereby these structures enlarged disproportionately as this species matured. Changes in the relative size of the olfactory bulbs throughout ontogeny may reflect an increased reliance on olfaction at later life history stages in <i>R. terraenovae</i>, while changes in the relative size of the cerebellum throughout ontogeny may be indicative of the ability to capture faster prey or an increase in migratory nature as this species moves to offshore habitats, associated with the onset of sexual maturity.
Collapse
|
87
|
Czeibert K, Sommese A, Petneházy Ö, Csörgő T, Kubinyi E. Digital Endocasting in Comparative Canine Brain Morphology. Front Vet Sci 2020; 7:565315. [PMID: 33134351 PMCID: PMC7572857 DOI: 10.3389/fvets.2020.565315] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/03/2020] [Indexed: 12/03/2022] Open
Abstract
Computed tomography (CT) is one of the most useful techniques for digitizing bone structures and making endocranial models from the neurocranium. The resulting digital endocasts reflect the morphology of the brain and the associated structures. Our first aim was to document the methodology behind creating detailed digital endocasts of canine skulls. We created digital endocasts of the skulls of 24 different dog breeds and 4 wild canids for visualization and teaching purposes. We used CT scanning with 0.323 mm × 0.322 mm × 0.6 mm resolution. The imaging data were segmented with 3D Slicer software and refined with Autodesk Meshmixer. Images were visualized in 3D Slicer and surface models were converted to 3D PDFs to provide easier interactive access, and 3D prints were also generated for visualization purposes. Our second aim was to analyze how skull length and width relate to the surface areas of the prepiriform rhinencephalic, prefrontal, and non-prefrontal cerebral convexity areas of the endocasts. The rhinencephalic area ratio decreased with a larger skull index. Our results open the possibility to analyze the relationship between the skull and brain morphology, and to link certain features to behavior, and cognition in dogs.
Collapse
Affiliation(s)
- Kálmán Czeibert
- Department of Ethology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Andrea Sommese
- Department of Ethology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Örs Petneházy
- University of Kaposvár, Kaposvár, Hungary.,Medicopus Nonprofit Ltd., Kaposvár, Hungary
| | - Tibor Csörgő
- Department of Anatomy, Cell and Developmental Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Enikő Kubinyi
- Department of Ethology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
88
|
Packard GC. Allometric growth in mass by the brain of mammals. Anat Rec (Hoboken) 2020; 304:1551-1561. [PMID: 33103327 DOI: 10.1002/ar.24555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/02/2020] [Accepted: 09/21/2020] [Indexed: 11/07/2022]
Abstract
I re-examined published data for ontogenetic change in relative mass of the brain in six species of mammal (i.e., sheep, pig, cow, horse, rat, cat) to illustrate an insidious problem with conventional analyses of brain-body allometry. Graphical displays of logarithmic transformations of the original data for each species give the appearance of two discrete mathematical distributions, but untransformed observations nonetheless conform to a single distribution that is well described by a single, nonlinear equation. The concept of biphasic, allometric growth by the brain consequently is an artifact of transformation. The notion of Rapid and Slow phases in relative growth by the brain also is an artifact, because the notion is based explicitly on the concept of biphasic growth allometry. Relative growth by the brain in sheep, pigs, cows, and horses follows the path of a power curve with an exponent less than 1, so relative growth declines progressively as animals grow to their maximum size, at which point growth effectively ends for both brain and body. Relative growth by the brain in rats and cats follows the path of an exponential curve and consequently is more like relative growth by the brain of odontocoete cetaceans and primates, with the brain growing rapidly relative to the body early in ontogeny and attaining maximum (cats) or near-maximum (rats) mass well before the body reaches its maximum. An exponential pattern of relative growth by the brain appears to have evolved independently in rodents, carnivores, odontocoetes, and primates.
Collapse
Affiliation(s)
- Gary C Packard
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
89
|
Marcy AE, Guillerme T, Sherratt E, Rowe KC, Phillips MJ, Weisbecker V. Australian Rodents Reveal Conserved Cranial Evolutionary Allometry across 10 Million Years of Murid Evolution. Am Nat 2020; 196:755-768. [PMID: 33211559 DOI: 10.1086/711398] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractAmong vertebrates, placental mammals are particularly variable in the covariance between cranial shape and body size (allometry), with rodents being a major exception. Australian murid rodents allow an assessment of the cause of this anomaly because they radiated on an ecologically diverse continent notably lacking other terrestrial placentals. Here, we use 3D geometric morphometrics to quantify species-level and evolutionary allometries in 38 species (317 crania) from all Australian murid genera. We ask whether ecological opportunity resulted in greater allometric diversity compared with other rodents or whether conserved allometry suggests intrinsic constraints and/or stabilizing selection. We also assess whether cranial shape variation follows the proposed rule of craniofacial evolutionary allometry (CREA), whereby larger species have relatively longer snouts and smaller braincases. To ensure we could differentiate parallel versus nonparallel species-level allometric slopes, we compared the slopes of rarefied samples across all clades. We found exceedingly conserved allometry and CREA-like patterns across the 10-million-year split between Mus and Australian murids. This could support both intrinsic-constraint and stabilizing-selection hypotheses for conserved allometry. Large-bodied frugivores evolved faster than other species along the allometric trajectory, which could suggest stabilizing selection on the shape of the masticatory apparatus as body size changes.
Collapse
|
90
|
Storks L, Powell BJ, Leal M. Peeking Inside the Lizard Brain: Neuron Numbers in Anolis and Its Implications for Cognitive Performance and Vertebrate Brain Evolution. Integr Comp Biol 2020; 63:icaa129. [PMID: 33175153 DOI: 10.1093/icb/icaa129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Studies of vertebrate brain evolution have mainly focused on measures of brain size, particularly relative mass and its allometric scaling across lineages, commonly with the goal of identifying the substrates that underly differences in cognition. However, recent studies on birds and mammals have demonstrated that brain size is an imperfect proxy for neuronal parameters that underly function, such as the number of neurons that make up a given brain region. Here we present estimates of neuron numbers and density in two species of lizard, Anolis cristatellus and A. evermanni, representing the first such data from squamate species, and explore its implications for differences in cognitive performance and vertebrate brain evolution. The isotropic fractionator protocol outlined in this article is optimized for the unique challenges that arise when using this technique with lineages having nucleated erythrocytes and relatively small brains. The number and density of neurons and other cells we find in Anolis for the telencephalon, cerebellum, and the rest of the brain (ROB) follow similar patterns as published data from other vertebrate species. Anolis cristatellus and A. evermanni exhibited differences in their performance in a motor task frequently used to evaluate behavioral flexibility, which was not mirrored by differences in the number, density, or proportion of neurons in either the cerebellum, telencephalon, or ROB. However, the brain of A. evermanni had a significantly higher number of nonneurons and a higher nonneuron to neuron ratio across the whole brain, which could contribute to the observed differences in problem solving between A. cristatellus and A. evermanni. Although limited to two species, our findings suggest that neuron number and density in lizard brains scale similarly to endothermic vertebrates in contrast to the differences observed in brain to body mass relationships. Data from a wider range of species are necessary before we can fully understand vertebrate brain evolution at the neuronal level.
Collapse
Affiliation(s)
- Levi Storks
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | | | | |
Collapse
|
91
|
Ksepka DT, Balanoff AM, Smith NA, Bever GS, Bhullar BAS, Bourdon E, Braun EL, Burleigh JG, Clarke JA, Colbert MW, Corfield JR, Degrange FJ, De Pietri VL, Early CM, Field DJ, Gignac PM, Gold MEL, Kimball RT, Kawabe S, Lefebvre L, Marugán-Lobón J, Mongle CS, Morhardt A, Norell MA, Ridgely RC, Rothman RS, Scofield RP, Tambussi CP, Torres CR, van Tuinen M, Walsh SA, Watanabe A, Witmer LM, Wright AK, Zanno LE, Jarvis ED, Smaers JB. Tempo and Pattern of Avian Brain Size Evolution. Curr Biol 2020; 30:2026-2036.e3. [DOI: 10.1016/j.cub.2020.03.060] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/05/2020] [Accepted: 03/23/2020] [Indexed: 11/25/2022]
|
92
|
García‐Navas V, Sattler T, Schmid H, Ozgul A. Temporal homogenization of functional and beta diversity in bird communities of the Swiss Alps. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13076] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Vicente García‐Navas
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | | | - Hans Schmid
- Swiss Ornithological Institute Sempach Switzerland
| | - Arpat Ozgul
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| |
Collapse
|
93
|
Mull CG, Yopak KE, Dulvy NK. Maternal Investment, Ecological Lifestyle, and Brain Evolution in Sharks and Rays. Am Nat 2020; 195:1056-1069. [PMID: 32469656 DOI: 10.1086/708531] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Across vertebrates increased maternal investment (via increased pre- and postnatal provisioning) is associated with larger relative brain size, yet it remains unclear how brain organization is shaped by life history and ecology. Here, we tested whether maternal investment and ecological lifestyle are related to variation in brain size and organization across 100 chondrichthyans. We hypothesized that brain size and organization would vary with the level of maternal investment and habitat depth and complexity. We found that chondrichthyan brain organization varies along four main axes according to (1) absolute brain size, (2) relative diencephalon and mesencephalon size, (3) relative telencephalon and medulla size, and (4) relative cerebellum size. Increased maternal investment is associated with larger relative brain size, while ecological lifestyle is informative for variation between relative telencephalon and medulla size and relative cerebellum size after accounting for the independent effects of reproductive mode. Deepwater chondrichthyans generally provide low levels of yolk-only (lecithotrophic) maternal investment and have relatively small brains, predominantly composed of medulla (a major portion of the hindbrain), whereas matrotrophic chondrichthyans-which provide maternal provisioning beyond the initial yolk sac-found in coastal, reef, or shallow oceanic habitats have relatively large brains, predominantly composed of telencephalon (a major portion of the forebrain). We have demonstrated, for the first time, that both ecological lifestyle and maternal investment are independently associated with brain organization in a lineage with diverse life-history strategies and reproductive modes.
Collapse
|
94
|
Echavarria-Heras HA, Castro-Rodriguez JR, Leal-Ramirez C, Villa-Diharce E. Assessment of a Takagi-Sugeno-Kang fuzzy model assembly for examination of polyphasic loglinear allometry. PeerJ 2020; 8:e8173. [PMID: 31934498 PMCID: PMC6951296 DOI: 10.7717/peerj.8173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/06/2019] [Indexed: 11/29/2022] Open
Abstract
Background The traditional allometric analysis relies on log- transformation to contemplate linear regression in geometrical space then retransforming to get Huxley’s model of simple allometry. Views assert this induces bias endorsing multi-parameter complex allometry forms and nonlinear regression in arithmetical scales. Defenders of traditional approach deem it necessary since generally organismal growth is essentially multiplicative. Then keeping allometry as originally envisioned by Huxley requires a paradigm of polyphasic loglinear allometry. A Takagi-Sugeno-Kang fuzzy model assembles a mixture of weighted sub models. This allows direct identification of break points for transition between phases. Then, this paradigm is seamlessly appropriate for efficient allometric examination of polyphasic loglinear allometry patterns. Here, we explore its suitability. Methods Present fuzzy model embraces firing strength weights from Gaussian membership functions and linear consequents. Weights are identified by subtractive clustering and consequents through recursive least squares or maximum likelihood. Intersection of firing strength factors set criterion to estimate breakpoints. A multi-parameter complex allometry model follows by adapting firing strengths by composite membership functions and linear consequents in arithmetical space. Results Takagi-Sugeno-Kang surrogates adapted complexity depending on analyzed data set. Retransformation results conveyed reproducibility strength of similar proxies identified in arithmetical space. Breakpoints were straightforwardly identified. Retransformed form implies complex allometry as a generalization of Huxley’s power model involving covariate depending parameters. Huxley reported a breakpoint in the log–log plot of chela mass vs. body mass of fiddler crabs (Uca pugnax), attributed to a sudden change in relative growth of the chela approximately when crabs reach sexual maturity. G.C. Packard implied this breakpoint as putative. However, according to present fuzzy methods existence of a break point in Huxley’s data could be validated. Conclusions Offered scheme bears reliable analysis of zero intercept allometries based on geometrical space protocols. Endorsed affine structure accommodates either polyphasic or simple allometry if whatever turns required. Interpretation of break points characterizing heterogeneity is intuitive. Analysis can be achieved in an interactive way. This could not have been obtained by relying on customary approaches. Besides, identification of break points in arithmetical scale is straightforward. Present Takagi-Sugeno-Kang arrangement offers a way to overcome the controversy between a school considering a log-transformation necessary and their critics claiming that consistent results can be only obtained through complex allometry models fitted by direct nonlinear regression in the original scales.
Collapse
Affiliation(s)
- Hector A Echavarria-Heras
- Departamento de Ecología, Centro de Investigación Científica y de Estudios Superiores de Ensenada, Ensenada, Baja California, México
| | - Juan R Castro-Rodriguez
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana, Baja California, México
| | - Cecilia Leal-Ramirez
- Departamento de Ecología, Centro de Investigación Científica y de Estudios Superiores de Ensenada, Ensenada, Baja California, México
| | - Enrique Villa-Diharce
- Departamento de Estadística Aplicada, Centro de Investigacion en Matematicas, Guanajuato, Guanajuato, México
| |
Collapse
|
95
|
Rogell B, Dowling DK, Husby A. Controlling for body size leads to inferential biases in the biological sciences. Evol Lett 2019; 4:73-82. [PMID: 32055413 PMCID: PMC7006466 DOI: 10.1002/evl3.151] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 10/14/2019] [Accepted: 10/20/2019] [Indexed: 01/15/2023] Open
Abstract
Many traits correlate with body size. Studies that seek to uncover the ecological factors that drive evolutionary responses in traits typically examine these responses relative to associated changes in body size using multiple regression analysis. However, it is not well appreciated that in the presence of strongly correlated variables, the partial (i.e., relative) regression coefficients often change sign compared to the original coefficients. Such sign reversals are difficult to interpret in a biologically meaningful way, and could lead to erroneous evolutionary inferences if the true mechanism underlying the sign reversal differed from the proposed mechanism. Here, we use simulations to demonstrate that sign reversal occurs over a wide range of parameter values common in the biological sciences. Further, as a case‐in‐point, we review the literature on brain size evolution; a field that explores how ecological traits relate to the evolution of relative brain size (brain size relative to body size). We find that most studies show sign reversals and thus that the inferences of many studies in this field may be inconclusive. Finally, we propose some approaches to mitigating this issue.
Collapse
Affiliation(s)
- Björn Rogell
- Department of Zoology Stockholm University Svante Arrhenius väg 18 Stockholm Sweden.,Department of Aquatic Resources, Institute of Freshwater Research Swedish University of Agricultural Sciences Drottningholm 17893 Sweden
| | - Damian K Dowling
- School of Biological Sciences Monash University Clayton Victoria 3800 Australia
| | - Arild Husby
- Centre for Biodiversity Dynamics Norwegian University of Science and Technology 7491 Trondheim Norway.,Evolutionary Biology, Department of Ecology and Genetics Uppsala University 75236 Uppsala Sweden
| |
Collapse
|
96
|
Triki Z, Levorato E, McNeely W, Marshall J, Bshary R. Population densities predict forebrain size variation in the cleaner fish Labroides dimidiatus. Proc Biol Sci 2019; 286:20192108. [PMID: 31744435 PMCID: PMC6892052 DOI: 10.1098/rspb.2019.2108] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/28/2019] [Indexed: 12/22/2022] Open
Abstract
The 'social brain hypothesis' proposes a causal link between social complexity and either brain size or the size of key brain parts known to be involved in cognitive processing and decision-making. While previous work has focused on comparisons between species, how social complexity affects plasticity in brain morphology at the intraspecific level remains mostly unexplored. A suitable study model is the mutualist 'cleaner' fish Labroides dimidiatus, a species that removes ectoparasites from a variety of 'client' fishes in iterative social interactions. Here, we report a positive relationship between the local density of cleaners, as a proxy of both intra- and interspecific sociality, and the size of the cleaner's brain parts suggested to be associated with cognitive functions, such as the diencephalon and telencephalon (that together form the forebrain). In contrast, the size of the mesencephalon, rhombencephalon, and brain stem, assumed more basal in function, were independent of local fish densities. Selective enlargement of brain parts, that is mosaic brain adjustment, appears to be driven by population density in cleaner fish.
Collapse
Affiliation(s)
- Zegni Triki
- Institute of Biology, University of Neuchâtel, Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Elena Levorato
- Institute of Biology, University of Neuchâtel, Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - William McNeely
- Institute of Biology, University of Neuchâtel, Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Justin Marshall
- Queensland Brain Institute, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Redouan Bshary
- Institute of Biology, University of Neuchâtel, Emile-Argand 11, 2000 Neuchâtel, Switzerland
| |
Collapse
|
97
|
Garamszegi LZ, Temrin H, Kubinyi E, Miklósi Á, Kolm N. The role of common ancestry and gene flow in the evolution of human-directed play behaviour in dogs. J Evol Biol 2019; 33:318-328. [PMID: 31705702 DOI: 10.1111/jeb.13567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 11/04/2019] [Indexed: 11/29/2022]
Abstract
Among-population variance of phenotypic traits is of high relevance for understanding evolutionary mechanisms that operate in relatively short timescales, but various sources of nonindependence, such as common ancestry and gene flow, can hamper the interpretations. In this comparative analysis of 138 dog breeds, we demonstrate how such confounders can independently shape the evolution of a behavioural trait (human-directed play behaviour from the Dog Mentality Assessment project). We combined information on genetic relatedness and haplotype sharing to reflect common ancestry and gene flow, respectively, and entered these into a phylogenetic mixed model to partition the among-breed variance of human-directed play behaviour while also accounting for within-breed variance. We found that 75% of the among-breed variance was explained by overall genetic relatedness among breeds, whereas 15% could be attributed to haplotype sharing that arises from gene flow. Therefore, most of the differences in human-directed play behaviour among breeds have likely been caused by constraints of common ancestry as a likely consequence of past selection regimes. On the other hand, gene flow caused by crosses among breeds has played a minor, but not negligible role. Our study serves as an example of an analytical approach that can be applied to comparative situations where the effects of shared origin and gene flow require quantification and appropriate statistical control in a within-species/among-population framework. Altogether, our results suggest that the evolutionary history of dog breeds has left remarkable signatures on the among-breed variation of a behavioural phenotype.
Collapse
Affiliation(s)
- László Zsolt Garamszegi
- Centre for Ecological Research, Institute of Ecology and Botany, Vácrátót, Hungary.,MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest, Hungary.,Department of Evolutionary Ecology, Estación Biológica de Doñana-CSIC, Seville, Spain
| | - Hans Temrin
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Enikő Kubinyi
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - Ádám Miklósi
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Comparative Ethology Research Group, Budapest, Hungary
| | - Niclas Kolm
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
98
|
The Skull Integration Pattern and Internal Constraints in Myotis myotis–Myotis blythii Species Group (Vespertilionidae, Chiroptera) Might be Shaped by Natural Selection During Evolution Along the Genetic Line of Least Resistance. Evol Biol 2019. [DOI: 10.1007/s11692-019-09488-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
99
|
Tsuboi M. Biological interpretations of the biphasic model of ontogenetic brain–body allometry: a reply to Packard. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Allometry is a description of organismal growth. Historically, a simple power law has been used most widely to describe the rate of growth in phenotypic traits relative to the rate of growth in overall size. However, the validity of this standard practice has repeatedly been criticized. In an accompanying opinion piece, Packard reanalysed data from a recent study on brain–body ontogenetic allometry and claimed that the biphasic growth model suggested in that study was an artefact of logarithmic transformation. Based on the model selection, Packard proposed alternative hypotheses for brain–body ontogenetic allometry. Here, I examine the validity of these models by comparing empirical data on body sizes at two critical neurodevelopmental events in mammals, i.e. at birth and at the time of the peak rate of brain growth, with statistically inferred body sizes that are supposed to characterize neurodevelopmental processes. These analyses support the existence of two distinct phases of brain growth and provide weak support for Packard's uniphasic model of brain growth. This study demonstrates the importance of considering alternative models in studies of allometry, but also highlights that such models need to respect the biological theoretical context of allometry.
Collapse
Affiliation(s)
- Masahito Tsuboi
- Department of Biology, Lund University, Lund, Sweden
- Department of Biology, University of Oslo, Oslo, Norway
| |
Collapse
|
100
|
Tsuboi M, van der Bijl W, Kopperud BT, Erritzøe J, Voje KL, Kotrschal A, Yopak KE, Collin SP, Iwaniuk A, Kolm N. Reply to: Comparisons of static brain-body allometries across vertebrates must distinguish between indeterminate and determinate growth. Nat Ecol Evol 2019; 3:1405-1406. [PMID: 31548650 DOI: 10.1038/s41559-019-0986-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/14/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Masahito Tsuboi
- Centre for Ecological and Evolutionary Synthesis and Evogene, Department of Biology, University of Oslo, Oslo, Norway. .,Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden. .,Department of Evolutionary Studies of Biosystems, The Graduate University of Advanced Studies, Hayama, Japan.
| | | | - Bjørn Tore Kopperud
- Centre for Ecological and Evolutionary Synthesis and Evogene, Department of Biology, University of Oslo, Oslo, Norway
| | | | - Kjetil L Voje
- Centre for Ecological and Evolutionary Synthesis and Evogene, Department of Biology, University of Oslo, Oslo, Norway
| | | | - Kara E Yopak
- Department of Biology and Marine Biology, UNCW Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, USA.,Oceans Graduate School and the Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
| | - Shaun P Collin
- Oceans Graduate School and the Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia.,School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Andrew Iwaniuk
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Niclas Kolm
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden
| |
Collapse
|