51
|
Zuo H, Lyu B, Yao J, Long W, Shi Y, Li X, Hu H, Thomas A, Yuan J, Hou B, Zhang W, Liao Y. Bioinspired Gradient Covalent Organic Framework Membranes for Ultrafast and Asymmetric Solvent Transport. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305755. [PMID: 38227620 DOI: 10.1002/adma.202305755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/26/2023] [Indexed: 01/18/2024]
Abstract
Gradients play a pivotal role in membrane technologies, e.g., osmotic energy conversion, desalination, biomimetic actuation, selective separation, and more. In these applications, the compositional gradients are of great relevance for successful function implementation, ranging from solvent separation to smart devices; However, the construction of functional gradient in membranes is still challenging both in scale and directions. Inspired by the specific function-related, graded porous structures in glomerular filtration membranes, a general approach for constructing gradient covalent organic framework membranes (GCOMx) applying poly (ionic liquid)s (PILs) as template is reported here. With graded distribution of highly porous covalent organic framework (COF) crystals along the membrane, GCOMx exhibts an unprecedented asymmetric solvent transport when applying different membrane sides as the solvent feed surface during filtration, leading to a much-enhanced flux (10-18 times) of the "large-to-small" pore flow comparing to the reverse direction, verified by hydromechanical theoretical calculations. Upon systematic experiments, GCOMx achieves superior permeance in nonpolar (hexane ≈260.45 LMH bar-1) and polar (methanol ≈175.93 LMH bar-1) solvents, together with narrow molecular weight cut-off (MWCO, 472 g mol-1) and molecular weight retention onset (MWRO, <182 g mol-1). Interestingly, GCOMx shows significant filtration performance in simulated kidney dialysis, revealing great potential of GCOMx in bionic applications.
Collapse
Affiliation(s)
- Hongyu Zuo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Baokang Lyu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jiaao Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wenhua Long
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yu Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xinghao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Huawei Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Arne Thomas
- Department of Chemistry, Functional Materials, Technical University of Berlin, Sekretariat BA 2, 4010623, Hardenbergstr, Berlin, Germany
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden
| | - Bo Hou
- School of Physics and Astronomy, Cardiff University, Queen's Building, The Parade, Wales CF24 3AA, Cardiff, CF10 3AT, UK
| | - Weiyi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yaozu Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
52
|
Wang X, Mu Z, Shao P, Feng X. Hierarchically Porous Covalent Organic Frameworks: Synthesis Methods and Applications. Chemistry 2024; 30:e202303601. [PMID: 38019117 DOI: 10.1002/chem.202303601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
Covalent organic frameworks (COFs) with high porosity have garnered considerable interest for various applications owing to their robust and customizable structure. However, conventional COFs are hindered by their narrow pore size, which poses limitations for applications such as heterogeneous catalysis and guest delivery that typically involve large molecules. The development of hierarchically porous COF (HP-COF), featuring a multi-scale aperture distribution, offers a promising solution by significantly enhancing the diffusion capacity and mass transfer for larger molecules. This review focuses on the recent advances in the synthesis strategies of HP-COF materials, including topological structure design, in-situ templating, monolithic COF synthesis, defect engineering, and crystalline self-transformation. The specific operational principles and affecting factors in the synthesis process are summarized and discussed, along with the applications of HP-COFs in heterogeneous catalysis, toxic component treatment, optoelectronics, and the biomedical field. Overall, this review builds a bridge to understand HP-COFs and provides guidance for further development of them on synthesis strategies and applications.
Collapse
Affiliation(s)
- Xiao Wang
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Zhenjie Mu
- State Key Laboratory of Organic-Inorganic Composites, The College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100081, P. R. China
| | - Pengpeng Shao
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xiao Feng
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
53
|
Zuo P, Ran J, Ye C, Li X, Xu T, Yang Z. Advancing Ion Selective Membranes with Micropore Ion Channels in the Interaction Confinement Regime. ACS NANO 2024; 18:6016-6027. [PMID: 38349043 DOI: 10.1021/acsnano.3c12616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Ion exchange membranes allowing the passage of charge-carrying ions have established their critical role in water, environmental, and energy-relevant applications. The design strategies for high-performance ion exchange membranes have evolved beyond creating microphase-separated membrane morphologies, which include advanced ion exchange membranes to ion-selective membranes. The properties and functions of ion-selective membranes have been repeatedly updated by the emergence of materials with subnanometer-sized pores and the understanding of ion movement under confined micropore ion channels. These research progresses have motivated researchers to consider even greater aims in the field, i.e., replicating the functions of ion channels in living cells with exotic materials or at least targeting fast and ion-specific transmembrane conduction. To help realize such goals, we briefly outline and comment on the fundamentals of rationally designing membrane pore channels for ultrafast and specific ion conduction, pore architecture/chemistry, and membrane materials. Challenges are discussed, and perspectives and outlooks are given.
Collapse
Affiliation(s)
- Peipei Zuo
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Jin Ran
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Chunchun Ye
- EastCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Xingya Li
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Tongwen Xu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Zhengjin Yang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
54
|
Meng QW, Zhu X, Xian W, Wang S, Zhang Z, Zheng L, Dai Z, Yin H, Ma S, Sun Q. Enhancing ion selectivity by tuning solvation abilities of covalent-organic-framework membranes. Proc Natl Acad Sci U S A 2024; 121:e2316716121. [PMID: 38349874 PMCID: PMC10895279 DOI: 10.1073/pnas.2316716121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024] Open
Abstract
Understanding the molecular-level mechanisms involved in transmembrane ion selectivity is essential for optimizing membrane separation performance. In this study, we reveal our observations regarding the transmembrane behavior of Li+ and Mg2+ ions as a response to the changing pore solvation abilities of the covalent-organic-framework (COF) membranes. These abilities were manipulated by adjusting the lengths of the oligoether segments attached to the pore channels. Through comparative experiments, we were able to unravel the relationships between pore solvation ability and various ion transport properties, such as partitioning, conduction, and selectivity. We also emphasize the significance of the competition between Li+ and Mg2+ with the solvating segments in modulating selectivity. We found that increasing the length of the oligoether chain facilitated ion transport; however, it was the COF membrane with oligoether chains containing two ethylene oxide units that exhibited the most pronounced discrepancy in transmembrane energy barrier between Li+ and Mg2+, resulting in the highest separation factor among all the evaluated membranes. Remarkably, under electro-driven binary-salt conditions, this specific COF membrane achieved an exceptional Li+/Mg2+ selectivity of up to 1352, making it one of the most effective membranes available for Li+/Mg2+ separation. The insights gained from this study significantly contribute to advancing our understanding of selective ion transport within confined nanospaces and provide valuable design principles for developing highly selective COF membranes.
Collapse
Affiliation(s)
- Qing-Wei Meng
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| | - Xincheng Zhu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| | - Weipeng Xian
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| | - Sai Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| | - Zhengqing Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin300387, China
| | - Liping Zheng
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou310018, China
| | - Zhifeng Dai
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou310018, China
| | - Hong Yin
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, TX76201
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| |
Collapse
|
55
|
Asif M, Kim S, Nguyen TS, Mahmood J, Yavuz CT. Covalent Organic Framework Membranes and Water Treatment. J Am Chem Soc 2024; 146:3567-3584. [PMID: 38300989 PMCID: PMC10870710 DOI: 10.1021/jacs.3c10832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/03/2024]
Abstract
Covalent organic frameworks (COFs) are an emerging class of highly porous crystalline organic polymers comprised entirely of organic linkers connected by strong covalent bonds. Due to their excellent physicochemical properties (e.g., ordered structure, porosity, and stability), COFs are considered ideal materials for developing state-of-the-art separation membranes. In fact, significant advances have been made in the last six years regarding the fabrication and functionalization of COF membranes. In particular, COFs have been utilized to obtain thin-film, composite, and mixed matrix membranes that could achieve effective rejection (mostly above 80%) of organic dyes and model organic foulants (e.g., humic acid). COF-based membranes, especially those prepared by embedding into polyamide thin-films, obtained adequate rejection of salts in desalination applications. However, the claims of ordered structure and separation mechanisms remain unclear and debatable. In this perspective, we analyze critically the design and exploitation of COFs for membrane fabrication and their performance in water treatment applications. In addition, technological challenges associated with COF properties, fabrication methods, and treatment efficacy are highlighted to redirect future research efforts in realizing highly selective separation membranes for scale-up and industrial applications.
Collapse
Affiliation(s)
- Muhammad
Bilal Asif
- Oxide
& Organic Nanomaterials for Energy & Environment (ONE) Laboratory,
Chemistry Program, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
- Advanced
Membranes & Porous Materials (AMPM) Center, Physical Science &
Engineering (PSE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- KAUST
Catalysis Center (KCC), Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| | - Seokjin Kim
- Oxide
& Organic Nanomaterials for Energy & Environment (ONE) Laboratory,
Chemistry Program, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
- Advanced
Membranes & Porous Materials (AMPM) Center, Physical Science &
Engineering (PSE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- KAUST
Catalysis Center (KCC), Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| | - Thien S. Nguyen
- Oxide
& Organic Nanomaterials for Energy & Environment (ONE) Laboratory,
Chemistry Program, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
- Advanced
Membranes & Porous Materials (AMPM) Center, Physical Science &
Engineering (PSE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- KAUST
Catalysis Center (KCC), Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| | - Javeed Mahmood
- Oxide
& Organic Nanomaterials for Energy & Environment (ONE) Laboratory,
Chemistry Program, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
- Advanced
Membranes & Porous Materials (AMPM) Center, Physical Science &
Engineering (PSE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- KAUST
Catalysis Center (KCC), Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| | - Cafer T. Yavuz
- Oxide
& Organic Nanomaterials for Energy & Environment (ONE) Laboratory,
Chemistry Program, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
- Advanced
Membranes & Porous Materials (AMPM) Center, Physical Science &
Engineering (PSE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- KAUST
Catalysis Center (KCC), Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
56
|
Gong D, Wen B, Wang L, Zhang H, Chen H, Fan J, Li Z, Guo L, Shi G, Zhu Z, Liu X, Zeng G. Alkadiyne-Pyrene Conjugated Frameworks with Surface Exclusion Effect for Ultrafast Seawater Desalination. J Am Chem Soc 2024; 146:3075-3085. [PMID: 38174850 DOI: 10.1021/jacs.3c10051] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Billions of populations are suffering from the supply-demand imbalance of clean water, resulting in a global sustainability crisis. Membrane desalination is a promising method to produce fresh water from saline waters. However, conventional membranes often encounter challenges related to low water permeation, negatively impacting energy efficiency and water productivity. Herein, we achieve ultrafast desalination over the newly developed alkadiyne-pyrene conjugated frameworks membrane supported on a porous copper hollow fiber. With membrane distillation, the membrane exhibits nearly complete NaCl rejection (>99.9%) and ultrahigh fluxes (∼500 L m-2 h-1) from the seawater salinity-level NaCl solutions, which surpass the commercial polymeric membranes with at least 1 order of magnitude higher permeability. Experimental and theoretical investigations suggest that the large aspect ratio of membrane pores and the high evaporation area contribute to the high flux, and the graphene-like hydrophobic surface of conjugated frameworks exhibits complete salt exclusion. The simulations also confirm that the intraplanar pores of frameworks are impermeable for water and ions.
Collapse
Affiliation(s)
- Dian Gong
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Binghai Wen
- Key Lab of Education Blockchain and Intelligent Technology of Ministry of Education, Guangxi Normal University, Guilin 541004, China
| | - Lu Wang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxuan Zhang
- Key Lab of Education Blockchain and Intelligent Technology of Ministry of Education, Guangxi Normal University, Guilin 541004, China
| | - Huiling Chen
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingrui Fan
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Long Guo
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Guosheng Shi
- Shanghai Applied Radiation Institute and State Key Lab, Advanced Special Steel, Shanghai University, Shanghai 200444, China
| | - Zhigao Zhu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xing Liu
- Shanghai Applied Radiation Institute and State Key Lab, Advanced Special Steel, Shanghai University, Shanghai 200444, China
| | - Gaofeng Zeng
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
57
|
Kong X, Wu Z, Strømme M, Xu C. Ambient Aqueous Synthesis of Imine-Linked Covalent Organic Frameworks (COFs) and Fabrication of Freestanding Cellulose Nanofiber@COF Nanopapers. J Am Chem Soc 2024; 146:742-751. [PMID: 38112524 PMCID: PMC10785817 DOI: 10.1021/jacs.3c10691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Covalent organic frameworks (COFs) are usually synthesized under solvothermal conditions that require the use of toxic organic solvents, high reaction temperatures, and complicated procedures. Additionally, their insolubility and infusibility present substantial challenges in the processing of COFs. Herein, we report a facile, green approach for the synthesis of imine-linked COFs in an aqueous solution at room temperature. The key behind the synthesis is the regulation of the reaction rate. The preactivation of aldehyde monomers using acetic acid significantly enhances their reactivity in aqueous solutions. Meanwhile, the still somewhat lower imine formation rate and higher imine breaking rates in aqueous solution, in contrast to conventional solvothermal synthesis, allow for the modulation of the reaction equilibrium and the crystallization of the products. As a result, highly crystalline COFs with large surface areas can be formed in relatively high yields in a few minutes. In total, 16 COFs are successfully synthesized from monomers with different molecular sizes, geometries, pendant groups, and core structures, demonstrating the versatility of this approach. Notably, this method works well on the gram scale synthesis of COFs. Furthermore, the aqueous synthesis facilitates the interfacial growth of COF nanolayers on the surface of cellulose nanofibers (CNFs). The resulting CNF@COF hybrid nanofibers can be easily processed into freestanding nanopapers, demonstrating high efficiency in removing trace amounts of antibiotics from wastewater. This study provides a route to the green synthesis and processing of various COFs, paving the way for practical applications in diverse fields.
Collapse
Affiliation(s)
- Xueying Kong
- Division
of Nanotechnology and Functional Materials, Department of Materials
Science and Engineering, Uppsala University, Uppsala SE-75121, Sweden
| | - Zhongqi Wu
- Institute
of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma’anshan 243002, P. R. China
| | - Maria Strømme
- Division
of Nanotechnology and Functional Materials, Department of Materials
Science and Engineering, Uppsala University, Uppsala SE-75121, Sweden
| | - Chao Xu
- Division
of Nanotechnology and Functional Materials, Department of Materials
Science and Engineering, Uppsala University, Uppsala SE-75121, Sweden
- Institute
of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma’anshan 243002, P. R. China
| |
Collapse
|
58
|
Liu H, Huang X, Wang Y, Kuang B, Li W. Nanowire-assisted electrochemical perforation of graphene oxide nanosheets for molecular separation. Nat Commun 2024; 15:164. [PMID: 38167389 PMCID: PMC10762124 DOI: 10.1038/s41467-023-44626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Two-dimensional nanosheets, e.g., graphene oxide (GO), have been widely used to fabricate efficient membranes for molecular separation. However, because of poor transport across nanosheets and high width-to-thickness ratio, the permeation pathway length and tortuosity of these membranes are extremely large, which limit their separation performance. Here we report a facile, scalable, and controllable nanowire electrochemical concept for perforating and modifying nanosheets to shorten permeation pathway and adjust transport property. It is found that confinement effects with locally enhanced charge density, electric field, and hydroxyl radical generation over nanowire tips on anode can be executed under low voltage, thereby inducing confined direct electron loss and indirect oxidation to reform configuration and composition of GO nanosheets. We demonstrate that the porous GO nanosheets with a lot of holes are suitable for assembling separation membranes with tuned accessibility, tortuosity, interlayer space, electronegativity, and hydrophilicity. For molecular separation, the prepared membranes exhibit quadruple water permeance and higher rejections for salts (>91%) and small molecules (>96%) as/than original ones. This nanowire electrochemical perforation concept offers a feasible strategy to reconstruct two-dimensional materials and tune their transport property for separation.
Collapse
Affiliation(s)
- Hai Liu
- School of Environment, Jinan University, Guangzhou, 511443, China
| | - Xinxi Huang
- School of Environment, Jinan University, Guangzhou, 511443, China
| | - Yang Wang
- School of Environment, Jinan University, Guangzhou, 511443, China
| | - Baian Kuang
- School of Environment, Jinan University, Guangzhou, 511443, China
| | - Wanbin Li
- School of Environment, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
59
|
Yu B, Lin RB, Xu G, Fu ZH, Wu H, Zhou W, Lu S, Li QW, Jin Y, Li JH, Zhang Z, Wang H, Yan Z, Liu X, Wang K, Chen B, Jiang J. Linkage conversions in single-crystalline covalent organic frameworks. Nat Chem 2024; 16:114-121. [PMID: 37723258 DOI: 10.1038/s41557-023-01334-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/18/2023] [Indexed: 09/20/2023]
Abstract
Single-crystal X-ray diffraction is a powerful characterization technique that enables the determination of atomic arrangements in crystalline materials. Growing or retaining large single crystals amenable to it has, however, remained challenging with covalent organic frameworks (COFs), especially suffering from post-synthetic modifications. Here we show the synthesis of a flexible COF with interpenetrated qtz topology by polymerization of tetra(phenyl)bimesityl-based tetraaldehyde and tetraamine building blocks. The material is shown to be flexible through its large, anisotropic positive thermal expansion along the c axis (αc = +491 × 10-6 K-1), as well as through a structural transformation on the removal of solvent molecules from its pores. The as-synthesized and desolvated materials undergo single-crystal-to-single-crystal transformation by reduction and oxidation of its imine linkages to amine and amide ones, respectively. These redox-induced linkage conversions endow the resulting COFs with improved stability towards strong acid; loading of phosphoric acid leads to anhydrous proton conductivity up to ca. 6.0 × 10-2 S cm-1.
Collapse
Affiliation(s)
- Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Rui-Biao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Zhi-Hua Fu
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Hui Wu
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Wei Zhou
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Shanfu Lu
- Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, School of Space and Environment, Beihang University, Beijing, China
| | - Qian-Wen Li
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Jing-Hong Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, China
| | - Zhenguo Zhang
- Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, School of Space and Environment, Beihang University, Beijing, China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.
| | - Zier Yan
- Rigaku Beijing Corporation, Beijing, China
| | - Xiaolin Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China.
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.
| |
Collapse
|
60
|
Li J, Liu L, Tang X, Bai X, Liu Y, Wang D, Tao S, Liu R, Jiang D. Covalent Organic Frameworks: Reversible 3D Coalesce via Interlocked Skeleton-Pore Actions and Impacts on π Electronic Structures. J Am Chem Soc 2023; 145:26383-26392. [PMID: 37983008 DOI: 10.1021/jacs.3c10280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Covalent organic frameworks (COFs) create extended two-dimensional (2D) skeletons and aligned one-dimensional (1D) channels, constituting a class of novel π architectures with predesignable structural ordering. A distinct feature is that stacks of π building units in skeletons shape the pore walls, onto which a diversity of different units can be assembled to form various pore interfaces, opening a great potential to trigger a strong structural correlation between the skeleton and the pore. However, such a possibility has not yet been explored. Herein, we report reversible three-dimensional (3D) coalescence and interlocked actions between the skeleton and pore in COFs by controlling hydrogen-bonding networks in the pores. Introducing carboxylic acid units to the pore walls develops COFs that can confine water molecular networks, which are locked by the surface carboxylic acid units on the pore walls via multipoint, multichain, and multidirectional hydrogen-bonding interactions. As a result, the skeleton undergoes an interlocked action with pores to shrink over the x-y plane and to stack closer along the z direction upon water uptake. Remarkably, this interlocked action between the skeleton and pore is reversibly driven by water adsorption and desorption and triggers profound effects on π electronic structures and functions, including band gap, light absorption, and emission.
Collapse
Affiliation(s)
- Juan Li
- Institute of Crystalline Materials, Shanxi University, Taiyuan 03006, China
| | - Lili Liu
- Institute of Crystalline Materials, Shanxi University, Taiyuan 03006, China
| | - Xuan Tang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Xi Bai
- Pharmaceutical Department, Changzhi Medical College, Changzhi 046000, China
| | - Yukun Liu
- Institute of Crystalline Materials, Shanxi University, Taiyuan 03006, China
| | - Dongsheng Wang
- Institute of Crystalline Materials, Shanxi University, Taiyuan 03006, China
| | - Shanshan Tao
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Ruoyang Liu
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Donglin Jiang
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
61
|
Yi Q, Qiu M, Sun X, Wu H, Huang Y, Xu H, Wang T, Nimmo W, Tang T, Shi L, Zeng H. Water-Assisted Programmable Assembly of Flexible and Self-Standing Janus Membranes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305239. [PMID: 37875393 PMCID: PMC10724425 DOI: 10.1002/advs.202305239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/12/2023] [Indexed: 10/26/2023]
Abstract
Janus membranes with asymmetric wettability have been considered cutting-edge for energy/environmental-sustainable applications like water/fog harvester, breathable skin, and smart sensor; however, technical challenges in fabrication and accurate regulation of asymmetric wettability limit their development. Herein, by using water-assisted hydrogen-bonded (H-bonded) assembly of small molecules at water/oil interface, a facile strategy is proposed for one-step fabrication of membranes with well-regulable asymmetric wettability. Asymmetric orderly patterns, beneficial for mass transport based on abundant high-permeability sites and large surface area, are constructed on opposite membrane surfaces. Upon tuning water-assisted H-bonding via H-sites/configuration design and temperature/pH modulation, double-hydrophobic, double-hydrophilic, and hydrophobic-hydrophilic membranes are facilely fabricated. The Janus membranes show smart vapor-responsive curling and unidirectional water transport with promising flux of 1158±25 L m-2 h-1 under natural gravity and 31500±670 L·(m-2 h-1 bar-1 ) at negative pressure. This bottom-up approach offers a feasible-to-scalable avenue to precise-manipulation of Janus membranes for advanced applications, providing an effective pathway for developing tailor-made self-assembled nanomaterials.
Collapse
Affiliation(s)
- Qun Yi
- School of Chemical Engineering and PharmacyHubei Key Lab of Novel Reactor & Green Chemical TechnologyKey Laboratory of Green Chemical Engineering Process of Ministry of EducationWuhan Institute of TechnologyNo.206 Guanggu Road, East Lake New Technology Development ZoneWuhan430072China
| | - Mingyue Qiu
- School of Chemical Engineering and PharmacyHubei Key Lab of Novel Reactor & Green Chemical TechnologyKey Laboratory of Green Chemical Engineering Process of Ministry of EducationWuhan Institute of TechnologyNo.206 Guanggu Road, East Lake New Technology Development ZoneWuhan430072China
| | - Xiaoyu Sun
- Department of Chemical and Materials EngineeringUniversity of Alberta9211‐116 Street NWEdmontonAlbertaT6G 1H9Canada
| | - Haonan Wu
- School of Chemical Engineering and PharmacyHubei Key Lab of Novel Reactor & Green Chemical TechnologyKey Laboratory of Green Chemical Engineering Process of Ministry of EducationWuhan Institute of TechnologyNo.206 Guanggu Road, East Lake New Technology Development ZoneWuhan430072China
| | - Yi Huang
- School of Chemical Engineering and PharmacyHubei Key Lab of Novel Reactor & Green Chemical TechnologyKey Laboratory of Green Chemical Engineering Process of Ministry of EducationWuhan Institute of TechnologyNo.206 Guanggu Road, East Lake New Technology Development ZoneWuhan430072China
| | - Hongxue Xu
- School of Chemical Engineering and PharmacyHubei Key Lab of Novel Reactor & Green Chemical TechnologyKey Laboratory of Green Chemical Engineering Process of Ministry of EducationWuhan Institute of TechnologyNo.206 Guanggu Road, East Lake New Technology Development ZoneWuhan430072China
| | - Tielin Wang
- School of Chemical Engineering and PharmacyHubei Key Lab of Novel Reactor & Green Chemical TechnologyKey Laboratory of Green Chemical Engineering Process of Ministry of EducationWuhan Institute of TechnologyNo.206 Guanggu Road, East Lake New Technology Development ZoneWuhan430072China
| | - William Nimmo
- Energy Engineering GroupEnergy 2050University of SheffieldWestern BankSheffieldS3 7RDUK
| | - Tian Tang
- Department of Mechanical EngineeringUniversity of Alberta9211‐116 Street NWEdmontonAlbertaT6G 1H9Canada
| | - Lijuan Shi
- School of Chemical Engineering and PharmacyHubei Key Lab of Novel Reactor & Green Chemical TechnologyKey Laboratory of Green Chemical Engineering Process of Ministry of EducationWuhan Institute of TechnologyNo.206 Guanggu Road, East Lake New Technology Development ZoneWuhan430072China
| | - Hongbo Zeng
- Department of Chemical and Materials EngineeringUniversity of Alberta9211‐116 Street NWEdmontonAlbertaT6G 1H9Canada
| |
Collapse
|
62
|
Wang L, Zhang H, Fatima Z, Ge J, Zhang X, Zou Y, Yu C, Li D. Highly sensitive analysis of photoregulation and dynamic distribution of phytohormones based on nanoconfined liquid phase nanoextraction. Anal Chim Acta 2023; 1283:341907. [PMID: 37977798 DOI: 10.1016/j.aca.2023.341907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/20/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND As a vital energy source, light is one of the most significant environmental signals for plants' growth and development. The crosstalk amongst phytohormones regulated by light exhibits quantitative dynamic changes, but methodologies to analyze their distribution during plant growth are still limited. Rapid, highly sensitive, low-invasive detection and simultaneous assessment of the levels of multiple classes of phytohormones have important phytology applications, however the existing sample pretreatment strategies remain intricate, laborious, and far from being developed for in vivo high-sensitivity testing. (81) RESULTS: We applied a nanoconfined liquid phase nanoextraction (NLPNE) technique based on acidified carbon nanofibers (ACNFs) in combination with LC-ESI-MS/MS for highly sensitive analysis of acidic phytohormones' photoregulation and dynamic distribution. In this system, the mass transfer ability of analytes entering the nanoconfined space is significantly improved given the nanoconfined effect. In particular, the accelerated and strong adsorption of alkaline compounds to the ACNFs surface provide minimum interference for acidic compounds (photosensitive phytohormones), which facilitates their simple, fast, and selective quantification with improved sensitivity. The ACNFs-NLPNE strategy achieved quantitative enrichment of multi-class phytohormones in less than 5 min, and detection limits down to 0.49 fg mL-1. Moreover, we monitored the phytohormone changes under red and blue monochromatic light with relative standard deviations <13.4 %. The results further indicated that short-time red light regulation promoted Lepidium sativum L. growth while blue light inhibited it. (141) SIGNIFICANCE: A nanoconfinement effect-based sample pretreatment platform was developed for monitoring photoregulation phytohormones dynamic distribution with higher sensitivity and stability. Our findings highlighted the importance of the NLPNE approach in providing an accurate plant crosstalk information at the molecular level, which opens a promising avenue for investigating internal hormonal responses to external stimuli. (52).
Collapse
Affiliation(s)
- Liyuan Wang
- Department of Chemistry, Yanbian University, Park Road 977, Yanji, 133002, Jilin Province, PR China
| | - Haijing Zhang
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Park Road 977, Yanji City, Jilin Province, 133002, PR China
| | - Zakia Fatima
- Department of Chemistry, Yanbian University, Park Road 977, Yanji, 133002, Jilin Province, PR China
| | - Jiahui Ge
- Department of Chemistry, Yanbian University, Park Road 977, Yanji, 133002, Jilin Province, PR China
| | - Xinyang Zhang
- Department of Chemistry, Yanbian University, Park Road 977, Yanji, 133002, Jilin Province, PR China
| | - Yilin Zou
- Department of Chemistry, Yanbian University, Park Road 977, Yanji, 133002, Jilin Province, PR China
| | - Chunyu Yu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Park Road 977, Yanji City, Jilin Province, 133002, PR China
| | - Donghao Li
- Department of Chemistry, Yanbian University, Park Road 977, Yanji, 133002, Jilin Province, PR China.
| |
Collapse
|
63
|
Tao X, Wang Z, Zhang QP, Liu N, Sun YL, Niu RX, Sun R, Wang X, Tan B, Zhang C. Covalent Organic Framework Nanohydrogels. J Am Chem Soc 2023; 145:25471-25477. [PMID: 37939354 DOI: 10.1021/jacs.3c10296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Nanohydrogelation of covalent organic frameworks (COFs) will undoubtedly open up new applications for them in water, such as aqueous catalysis and biomedicine. It is currently a great challenge to achieve water dispersion of COFs through either bottom-up construction strategies or top-down exfoliating technologies. Herein, poly(N-isopropylacrylamide) (PNIPAM)-postmodified COF nanohydrogels (COF-NHGs) are successfully designed and synthesized via in situ atom-transfer radical polymerization (ATRP) on a scaffold of COFs. During the polymer growth process, the bulk COFs are exfoliated into nanosheets with a lateral size of ∼500 nm and a thickness of ∼6.5 nm. Moreover, their size can be precisely controlled by the degree of polymerization of PNIPAMs. In aqueous solution, the obtained COF-NHGs are assembled into nanohydrogels retaining intra-plane crystallinity and exhibit a temperature-sensitive sol-gel phase transition. With excellent solubility in organic solvents, the COF-NHGs' intrinsic physical properties in the solution state can be characterized through their solution nuclear magnetic resonance and ultraviolet absorption spectra. These results put forward new opportunities for regulating the solution processability of COFs and building an intelligent, stimuli-response platform of COF-polymer composite nanohydrogels for device applications.
Collapse
Affiliation(s)
- Xin Tao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhen Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Technology Institute, Wuhan Textile University, Wuhan, Hubei 430200, China
| | - Qing-Pu Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ningning Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu-Ling Sun
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ruo-Xin Niu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ruixue Sun
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoyan Wang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bien Tan
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chun Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
64
|
Li MH, Yang Z, Hui H, Yang B, Wang Y, Yang YW. Superstructure-Induced Hierarchical Assemblies for Nanoconfined Photocatalysis. Angew Chem Int Ed Engl 2023; 62:e202313358. [PMID: 37798254 DOI: 10.1002/anie.202313358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/07/2023]
Abstract
Most attempts to synthesize supramolecular nanosystems are limited to a single mechanism, often resulting in the formation of nanomaterials that lack diversity in properties. Herein, hierarchical assemblies with appropriate variety are fabricated in bulk via a superstructure-induced organic-inorganic hybrid strategy. The dynamic balance between substructures and superstructures is managed using covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) as dual building blocks to regulate the performances of hierarchical assemblies. Significantly, the superstructures resulting from the controlled cascade between COFs and MOFs create highly active photocatalytic systems through multiple topologies. Our designed tandem photocatalysis can precisely and efficiently regulate the conversion rates of bioactive molecules (benzo[d]imidazoles) through competing redox pathways. Furthermore, benzo[d]imidazoles catalyzed by such supramolecular nanosystems can be isolated in yields ranging from 70 % to 93 % within tens of minutes. The multilayered structural states within the supramolecular systems demonstrate the importance of hierarchical assemblies in facilitating photocatalytic propagation and expanding the structural repertoire of supramolecular hybrids.
Collapse
Affiliation(s)
- Meng-Hao Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Zhiqiang Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Hui Hui
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Yan Wang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
65
|
Meng QW, Wu D, Wang S, Sun Q. Function-Led Design of Covalent-Organic-Framework Membranes for Precise Ion Separation. Chemistry 2023; 29:e202302460. [PMID: 37605607 DOI: 10.1002/chem.202302460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/23/2023]
Abstract
Insufficient access to clean water and resources has emerged as one of the most pressing issues affecting people globally. Membrane-based ion separation has become a focal point of research for the generation of fresh water and the extraction of energy elements. This Review encapsulates recent advancements in the selective ion transport of covalent organic framework (COF) membranes, accomplished by strategically pairing diverse monomers to create membranes with various pore sizes and environments for specific purposes. We first discuss the merits of using COF materials as a basis for fabricating membranes for ion separation. We then explore the development of COF membranes in areas such as desalination, acid recovery, and energy element extraction, with a particular emphasis on the fundamental principles of membrane design. Lastly, we address both theoretical and practical challenges, as well as potential opportunities in the targeted design of ion-selective membranes. The goal of this Review is to stimulate future investigative efforts in this field, which is of significant scientific and strategic importance.
Collapse
Affiliation(s)
- Qing-Wei Meng
- Zhejiang Provincial Key Laboratory of, Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Di Wu
- Zhejiang Provincial Key Laboratory of, Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Sai Wang
- Zhejiang Provincial Key Laboratory of, Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of, Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
| |
Collapse
|
66
|
Yang H, Li D, Zheng X, Zuo J, Zhao B, Li D, Zhang J, Liang Z, Jin J, Ju S, Peng M, Sun Y, Jiang L. High Freshwater Flux Solar Desalination via a 3D Plasmonic Evaporator with an Efficient Heat-Mass Evaporation Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304699. [PMID: 37524107 DOI: 10.1002/adma.202304699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/29/2023] [Indexed: 08/02/2023]
Abstract
Passive solar desalination with interfacial heating is a promising technique to utilize solar energy to convert seawater into fresh water through evaporation and condensation. However, the current freshwater flux of solar desalination is much below industrial requirements (> 20 L m-2 h-1 ). Herein, it is demonstrated that a 3D plasmonic evaporator with an efficient heat-mass evaporation interface (HM-EI) achieves a freshwater flux of 29.1 L m-2 h-1 for 3.5 wt.% NaCl, which surpasses the previous solar evaporators and approaches the level of reverse osmosis (the highest installed capacity in industrial seawater desalination technology). The realization of high freshwater flux solar desalination comes from the efficient HM-EI comprising a grid-like plasmonic macrostructure for enhanced energy utilization in heat properties and a large-pore microstructure for accelerated ion transport in mass properties. This work provides a new direction for designing next-generation solar evaporators with high freshwater flux for industrial requirements.
Collapse
Affiliation(s)
- He Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Dong Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Xiaodong Zheng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Jianyu Zuo
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Bo Zhao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Dan Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Jianwei Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Zhiqiang Liang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Jian Jin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Sheng Ju
- College of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China
| | - Meiwen Peng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yinghui Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Lin Jiang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
67
|
Sun X, Di M, Liu J, Gao L, Yan X, He G. Continuous Covalent Organic Frameworks Membranes: From Preparation Strategies to Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303757. [PMID: 37381640 DOI: 10.1002/smll.202303757] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Indexed: 06/30/2023]
Abstract
Covalent organic frameworks (COFs) are porous crystalline polymeric materials formed by the covalent bonding of organic units. The abundant organic units library gives the COFs species diversity, easily tuned pore channels, and pore sizes. In addition, the periodic arrangement of organic units endows COFs regular and highly connected pore channels, which has led to the rapid development of COFs in membrane separations. Continuous defect-free and high crystallinity of COF membranes is the key to their application in separations, which is the most important issue to be addressed in the research. This review article describes the linkage types of covalent bonds, synthesis methods, and pore size regulation strategies of COFs materials. Further, the preparation strategies of continuous COFs membranes are highlighted, including layer-by-layer (LBL) stacking, in situ growth, interfacial polymerization (IP), and solvent casting. The applications in separation fields of continuous COFs membranes are also discussed, including gas separation, water treatment, organic solvent nanofiltration, ion conduction, and energy battery membranes. Finally, the research results are summarized and the future prospect for the development of COFs membranes are outlined. More attention may be paid to the large-scale preparation of COFs membranes and the development of conductive COFs membranes in future research.
Collapse
Affiliation(s)
- Xiaojun Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116023, China
| | - Mengting Di
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116023, China
| | - Jie Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116023, China
| | - Li Gao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116023, China
| | - Xiaoming Yan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116023, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116023, China
| |
Collapse
|
68
|
Si L, Wu Y, Xiao H, Xing W, Song R, Li Y, Wang S, Liang X, Yu W, Song J, Shen S. A superstable, flexible, and scalable nanofluidic ion regulation composite membrane. Sci Bull (Beijing) 2023; 68:2344-2353. [PMID: 37684133 DOI: 10.1016/j.scib.2023.08.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/25/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
Two-dimensional layered membranes with high and stable ion transport properties have various applications in nanofluidic devices; however, their construction remains a considerable challenge. Herein, we develop a superstable aramid nanofiber/graphite composite membrane with numerous one-dimensional and two-dimensional nano-confined interspaces for ultrafast ion transport. The fabricated flexible and scalable membrane exhibits high tensile strength (∼115.3 MPa) even after immersion in water for 90 days. Further, the aramid nanofiber/graphite conductor features the surface-charge-governed ion transport behavior. The ionic conductivity of the membrane at a low potassium chloride concentration of 10-4 mol/L can be enhanced by 16 times that of the bulk counterpart. More importantly, its structure and ionic conductivity remain unchanged even after immersion in different harsh solutions (e.g., acid, base, and ethanol) for over 30 days. Molecular dynamics simulations reveal that the superstability of the membrane is attributable to the robust interchain interactions within the aramid nanofibers and the strong interfacial interactions between the aramid nanofibers and graphite nanosheets. This study highlights the superior structural stability of the proposed flexible and scalable aramid nanofiber/graphite composite membrane, which could be employed in advanced nanofluidic devices for application under extreme working environments.
Collapse
Affiliation(s)
- Lianmeng Si
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yihan Wu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hong Xiao
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wensi Xing
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Rui Song
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yiju Li
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Sha Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Xu Liang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wenshan Yu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jianwei Song
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shengping Shen
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
69
|
Yang X, Zhang N, Zhang J, Liu W, Zhao M, Lin S, Wang Z. Nanocomposite Hydrogel Engineered Janus Membrane for Membrane Distillation with Robust Fouling, Wetting, and Scaling Resistance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15725-15735. [PMID: 37787747 DOI: 10.1021/acs.est.3c04540] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Membrane distillation (MD) is considered to be rather promising for high-salinity wastewater reclamation. However, its practical viability is seriously challenged by membrane wetting, fouling, and scaling issues arising from the complex components of hypersaline wastewater. It remains extremely difficult to overcome all three challenges at the same time. Herein, a nanocomposite hydrogel engineered Janus membrane has been facilely constructed for desired wetting/fouling/scaling-free properties, where a cellulose nanocrystal (CNC) composite hydrogel layer is formed in situ atop a microporous hydrophobic polytetrafluoroethylene (PTFE) substrate intermediated by an adhesive layer. By the synergies of the elevated membrane liquid entry pressure, inhibited surfactant diffusion, and highly hydratable surface imparted by the hydrogel/CNC (HC) layer, the resultant HC-PTFE membrane exhibits robust resistance to surfactant-induced wetting and oil fouling during 120 h of MD operation. Meanwhile, owing to the dense and hydroxyl-abundant surface, it is capable of mitigating gypsum scaling and scaling-induced wetting, resulting in a high normalized flux and low distillate conductivity at a concentration factor of 5.2. Importantly, the HC-PTFE membrane enables direct desalination of real hypersaline wastewater containing broad-spectrum foulants with stable vapor flux and robust salt rejection (99.90%) during long-term operation, demonstrating its great potential for wastewater management in industrial scenarios.
Collapse
Affiliation(s)
- Xin Yang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Na Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Jiaojiao Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Weifan Liu
- Department of Civil and Environmental Engineering and Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Mingwei Zhao
- Key Laboratory of Unconventional Oil & Gas Development, Ministry of Education, School of Petroleum Engineering, China University of Petro1eum (East China), Qingdao 266580, People's Republic of China
| | - Shihong Lin
- Department of Civil and Environmental Engineering and Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| |
Collapse
|
70
|
Wang Z, Zhang Y, Lin E, Geng S, Wang M, Liu J, Chen Y, Cheng P, Zhang Z. Kilogram-Scale Fabrication of a Robust Olefin-Linked Covalent Organic Framework for Separating Ethylene from a Ternary C 2 Hydrocarbon Mixture. J Am Chem Soc 2023; 145:21483-21490. [PMID: 37736678 DOI: 10.1021/jacs.3c07224] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
One-step adsorptive purification of ethylene (C2H4) from a ternary mixture of acetylene (C2H2), C2H4, and ethane (C2H6) by a single material is of great importance but challenging in the petrochemical industry. Herein, a chemically robust olefin-linked covalent organic framework (COF), NKCOF-62, is designed and synthesized by a melt polymerization method employing tetramethylpyrazine and terephthalaldehyde as cheap monomers. This method avoids most of the disadvantages of classical solvothermal methods, which enable the cost-effective kilogram fabrication of olefin-linked COFs in one pot. Furthermore, NKCOF-62 shows remarkably selective adsorption of C2H2 and C2H6 over C2H4 thanks to its unique pore environments and suitable pore size. Breakthrough experiments demonstrate that polymer-grade C2H4 can be directly obtained from C2H2/C2H6/C2H4 (1/1/1) ternary mixtures through a single separation process. Notably, NKCOF-62 is the first demonstration of the potential to use COFs for C2H2/C2H6/C2H4 separation, which provides a blueprint for the design and construction of robust COFs for industrial gas separations.
Collapse
Affiliation(s)
- Zhifang Wang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yushu Zhang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - En Lin
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Shubo Geng
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Mengjin Wang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Jinjin Liu
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yao Chen
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Peng Cheng
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Zhenjie Zhang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
| |
Collapse
|
71
|
Kim J, Tijing L, Shon HK, Hong S. Electrically conductive membrane distillation via an alternating current operation for zero liquid discharge. WATER RESEARCH 2023; 244:120510. [PMID: 37634460 DOI: 10.1016/j.watres.2023.120510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
Membrane distillation (MD) shows promise for achieving high salinity treatment and zero liquid discharge (ZLD) compared to conventional water treatment processes due to its unique characteristics, including low energy consumption and high resulting water quality. However, performance degradation due to fouling and scaling under high recovery conditions remains a challenge, particularly considering the need to control both cations and anions for maximum scaling mitigation. Accordingly, in this study, alternating current (AC) operation for electrically conductive membrane distillation (ECMD) is newly proposed, based on its potential for controlling both cations and anions, in contrast to conventional direct current (DC) operation. Systematic experiments and theoretical analysis show that water recovery in ECMD can be increased by 27% through AC operation. The proposed modification and effective AC operation of ECMD increase the practicality of using MD in desalination for a high recovery rate, perhaps even for ZLD.
Collapse
Affiliation(s)
- Junghyun Kim
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), 15 Broadway, NSW 2007, Australia; Department of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Leonard Tijing
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), 15 Broadway, NSW 2007, Australia; ARC Research Hub for Nutrients in a Circular Economy, University of Technology Sydney (UTS), 15 Broadway, NSW 2007, Australia
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), 15 Broadway, NSW 2007, Australia; ARC Research Hub for Nutrients in a Circular Economy, University of Technology Sydney (UTS), 15 Broadway, NSW 2007, Australia.
| | - Seungkwan Hong
- Department of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
72
|
Jing X, Zhang M, Mu Z, Shao P, Zhu Y, Li J, Wang B, Feng X. Gradient Channel Segmentation in Covalent Organic Framework Membranes with Highly Oriented Nanochannels. J Am Chem Soc 2023; 145:21077-21085. [PMID: 37699243 DOI: 10.1021/jacs.3c07393] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Covalent organic frameworks (COFs) offer an exceptional platform for constructing membrane nanochannels with tunable pore sizes and tailored functionalities, making them promising candidates for separation, catalysis, and sensing applications. However, the synthesis of COF membranes with highly oriented nanochannels remains challenging, and there is a lack of systematic studies on the influence of postsynthetic modification reactions on functionality distribution along the nanochannels. Herein, we introduced a "prenucleation and slow growth" approach to synthesize a COF membrane featuring highly oriented mesoporous channels and a high Brunauer-Emmett-Teller surface area of 2230 m2 g-1. Functional moieties were anchored to the pore walls via "click" reactions and coordinated with Cu ions to serve as segmentation functions. This led to a remarkable H2/CO2 separation performance that surpassed the Robeson upper bound. Moreover, we found that the functionalities distributed along the nanochannels could be influenced by functionality flexibility and postsynthetic reaction rate. This strategy paved the way for the accurate design and construction of COF-based artificial solid-state nanochannels with high orientation and precisely controlled channel environments.
Collapse
Affiliation(s)
- Xuechun Jing
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Mengxi Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zhenjie Mu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Pengpeng Shao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yuhao Zhu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jie Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiao Feng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
73
|
Wang Y, Ma J, Cao X, Chen S, Dai L, Zhang J. Bionic Mineralization toward Scalable MOF Films for Ampere-Level Biomass Upgrading. J Am Chem Soc 2023; 145:20624-20633. [PMID: 37695570 DOI: 10.1021/jacs.3c07790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
With significant advances in metal-organic framework (MOF) nanostructure preparation, however, the facile synthesis of large-scale MOF films with precise control of the interface structure and surface chemistry is still challenging to achieve with satisfactory performance. Herein, we introduce a universal strategy bridging metal corrosion chemistry and bionic mineralization to synthesize 16 MOF films on 7 metal supports under ambient conditions. The robustness to explore unlimited libraries of MOF films (e.g., carboxylate-, N-heterocycle-, phenolic-, and phosphonate-MOFs) on supports is evoked by independently regulating the metal redox behavior, electrolyte properties, and organic ligands along with hydrogen evolution or oxygen reduction, which offers the basic guidelines for regulating the microstructure and composition of MOFs on the Pourbaix diagram. In conjunction with multiple manufacturing methods, we demonstrated proof of concept for "printing" a large variety of MOF patterns from micrometer to meter scales. Furthermore, a large-area electrolyzer (64 cm2) devised enables 5-hydroxymethylfurfural oxidation to achieve a record-breaking current of 3.0 A at 1.63 V with 2,5-furandicarboxylic acid production, leading to the simultaneous production of H2 gas and valuable feedstocks. The improved electrocatalytic activity for significantly boosting the 5-hydroxymethylfurfural oxidation exemplifies one of the functional MOF films for given applications beyond biomass upgrading.
Collapse
Affiliation(s)
- Yueqing Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jizhen Ma
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xueying Cao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Song Chen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Liming Dai
- ARC Centre of Excellence for Carbon Science and Innovation, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jintao Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
74
|
Yan H, Kou Z, Li S, Zhang T. Synthesis of sp 2 Carbon-Conjugated Covalent Organic Framework Thin-Films via Copper-Surface-Mediated Knoevenagel Polycondensation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207972. [PMID: 37129557 DOI: 10.1002/smll.202207972] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/04/2023] [Indexed: 05/03/2023]
Abstract
sp2 carbon-conjugated covalent organic framework (sp2 c-COF) featured with high π-conjugation, high chemical stabilities, and designable chemical structures, are thus promising for applications including adsorption and separation, optoelectronic devices, and catalysis. For the most of these applications, large-area and continuous films are required. However, due to the needs of harsh conditions in the formation of CC bonds, classical interfacial methodologies are challenged in the synthesis of sp2 c-COFs films. Herein, a novel and robust interfacial method namely copper-surface-mediated Knoevenagel polycondensation (Cu-SMKP), is shown for scalable synthesis of sp2 c-COF films on various Cu substrates. Using this approach, large-area and continuous sp2 c-COF films could be prepared on various complicated Cu surfaces with thickness from tens to hundreds of nanometers. The resultant sp2 c-COF films on Cu substrate could be used directly as functional electrode for extraction of uranium from spiked seawater, which gives an exceptionally uptake capacity of 2475 mg g-1 . These results delineate significant synthetic advances in sp2 c-COF films and implemented them as functional electrodes for uranyl capture.
Collapse
Affiliation(s)
- Haokai Yan
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Zhenhui Kou
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Shengxu Li
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
75
|
Chang JN, Shi JW, Li Q, Li S, Wang YR, Chen Y, Yu F, Li SL, Lan YQ. Regulation of Redox Molecular Junctions in Covalent Organic Frameworks for H 2 O 2 Photosynthesis Coupled with Biomass Valorization. Angew Chem Int Ed Engl 2023; 62:e202303606. [PMID: 37277319 DOI: 10.1002/anie.202303606] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/15/2023] [Accepted: 06/05/2023] [Indexed: 06/07/2023]
Abstract
H2 O2 photosynthesis coupled with biomass valorization can not only maximize the energy utilization but also realize the production of value-added products. Here, a series of COFs (i.e. Cu3 -BT-COF, Cu3 -pT-COF and TFP-BT-COF) with regulated redox molecular junctions have been prepared to study H2 O2 photosynthesis coupled with furfuryl alcohol (FFA) photo-oxidation to furoic acid (FA). The FA generation efficiency of Cu3 -BT-COF was found to be 575 mM g-1 (conversion ≈100 % and selectivity >99 %) and the H2 O2 production rate can reach up to 187 000 μM g-1 , which is much higher than Cu3 -pT-COF, TFP-BT-COF and its monomers. As shown by theoretical calculations, the covalent coupling of the Cu cluster and the thiazole group can promote charge transfer, substrate activation and FFA dehydrogenation, thus boosting both the kinetics of H2 O2 production and FFA photo-oxidation to increase the efficiency. This is the first report about COFs for H2 O2 photosynthesis coupled with biomass valorization, which might facilitate the exploration of porous-crystalline catalysts in this field.
Collapse
Affiliation(s)
- Jia-Nan Chang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China
| | - Jing-Wen Shi
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China
| | - Qi Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China
| | - Shan Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China
| | - Yi-Rong Wang
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Yifa Chen
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Fei Yu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China
| | - Shun-Li Li
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| |
Collapse
|
76
|
Nguyen DT, Lee S, Lopez KP, Lee J, Straub AP. Pressure-driven distillation using air-trapping membranes for fast and selective water purification. SCIENCE ADVANCES 2023; 9:eadg6638. [PMID: 37450594 PMCID: PMC10348675 DOI: 10.1126/sciadv.adg6638] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Membrane technologies that enable the efficient purification of impaired water sources are needed to address growing water scarcity. However, state-of-the-art engineered membranes are constrained by a universal, deleterious trade-off where membranes with high water permeability lack selectivity. Current membranes also poorly remove low-molecular weight neutral solutes and are vulnerable to degradation from oxidants used in water treatment. We report a water desalination technology that uses applied pressure to drive vapor transport through membranes with an entrapped air layer. Since separation occurs due to a gas-liquid phase change, near-complete rejection of dissolved solutes including sodium chloride, boron, urea, and N-nitrosodimethylamine is observed. Membranes fabricated with sub-200-nm-thick air layers showed water permeabilities that exceed those of commercial membranes without sacrificing salt rejection. We also find the air-trapping membranes tolerate exposure to chlorine and ozone oxidants. The results advance our understanding of evaporation behavior and facilitate high-throughput ultraselective separations.
Collapse
Affiliation(s)
- Duong T. Nguyen
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Sangsuk Lee
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kian P. Lopez
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Jongho Lee
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Anthony P. Straub
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
77
|
Wang M, Fu S, Petkov P, Fu Y, Zhang Z, Liu Y, Ma J, Chen G, Gali SM, Gao L, Lu Y, Paasch S, Zhong H, Steinrück HP, Cánovas E, Brunner E, Beljonne D, Bonn M, Wang HI, Dong R, Feng X. Exceptionally high charge mobility in phthalocyanine-based poly(benzimidazobenzophenanthroline)-ladder-type two-dimensional conjugated polymers. NATURE MATERIALS 2023; 22:880-887. [PMID: 37337069 PMCID: PMC10313522 DOI: 10.1038/s41563-023-01581-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 05/17/2023] [Indexed: 06/21/2023]
Abstract
Two-dimensional conjugated polymers (2DCPs), composed of multiple strands of linear conjugated polymers with extended in-plane π-conjugation, are emerging crystalline semiconducting polymers for organic (opto)electronics. They are represented by two-dimensional π-conjugated covalent organic frameworks, which typically suffer from poor π-conjugation and thus low charge carrier mobilities. Here we overcome this limitation by demonstrating two semiconducting phthalocyanine-based poly(benzimidazobenzophenanthroline)-ladder-type 2DCPs (2DCP-MPc, with M = Cu or Ni), which are constructed from octaaminophthalocyaninato metal(II) and naphthalenetetracarboxylic dianhydride by polycondensation under solvothermal conditions. The 2DCP-MPcs exhibit optical bandgaps of ~1.3 eV with highly delocalized π-electrons. Density functional theory calculations unveil strongly dispersive energy bands with small electron-hole reduced effective masses of ~0.15m0 for the layer-stacked 2DCP-MPcs. Terahertz spectroscopy reveals the band transport of Drude-type free carriers in 2DCP-MPcs with exceptionally high sum mobility of electrons and holes of ~970 cm2 V-1 s-1 at room temperature, surpassing that of the reported linear conjugated polymers and 2DCPs. This work highlights the critical role of effective conjugation in enhancing the charge transport properties of 2DCPs and the great potential of high-mobility 2DCPs for future (opto)electronics.
Collapse
Affiliation(s)
- Mingchao Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Shuai Fu
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Petko Petkov
- Faculty of Chemistry and Pharmacy, University of Sofia, Sofia, Bulgaria
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Halle, Germany
| | - Zhitao Zhang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, China
| | - Yannan Liu
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Halle, Germany
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Halle, Germany
| | - Guangbo Chen
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Sai Manoj Gali
- Laboratory for Chemistry of Novel Materials, University of Mons, Mons, Belgium
| | - Lei Gao
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Yang Lu
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Halle, Germany
| | - Silvia Paasch
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Haixia Zhong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Hans-Peter Steinrück
- Institute of Physical Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Enrique Cánovas
- Max Planck Institute for Polymer Research, Mainz, Germany
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Eike Brunner
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, University of Mons, Mons, Belgium
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Hai I Wang
- Max Planck Institute for Polymer Research, Mainz, Germany.
| | - Renhao Dong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany.
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China.
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany.
- Max Planck Institute of Microstructure Physics, Halle, Germany.
| |
Collapse
|
78
|
Meng QW, Wu S, Liu M, Guo Q, Xian W, Zuo X, Wang S, Yin H, Ma S, Sun Q. Guanidinium-based covalent organic framework membrane for single-acid recovery. SCIENCE ADVANCES 2023; 9:eadh0207. [PMID: 37343103 DOI: 10.1126/sciadv.adh0207] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023]
Abstract
Acids are extensively used in contemporary industries. However, time-consuming and environmentally unfriendly processes hinder single-acid recovery from wastes containing various ionic species. Although membrane technology can overcome these challenges by efficiently extracting analytes of interest, the associated processes typically exhibit inadequate ion-specific selectivity. In this regard, we rationally designed a membrane with uniform angstrom-sized pore channels and built-in charge-assisted hydrogen bond donors that preferentially conducted HCl while exhibiting negligible conductance for other compounds. The selectivity originates from the size-screening ability of angstrom-sized channels between protons and other hydrated cations. The built-in charge-assisted hydrogen bond donor enables the screening of acids by exerting host-guest interactions to varying extents, thus acting as an anion filter. The resulting membrane exhibited exceptional permeation for protons over other cations and for Cl- over SO42- and HnPO4(3-n)- with selectivities up to 4334 and 183, respectively, demonstrating prospects for HCl extraction from waste streams. These findings will aid in designing advanced multifunctional membranes for sophisticated separation.
Collapse
Affiliation(s)
- Qing-Wei Meng
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shaochun Wu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mingjie Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Qing Guo
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weipeng Xian
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiuhui Zuo
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sai Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hong Yin
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX 76201, USA
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
79
|
Sheng D, Bu L, Zhu S, Wu R, Shi Z, Zhou S. Pre-oxidation coupled with charged covalent organic framework membranes for highly efficient removal of organic chloramines precursors in algae-containing water treatment. CHEMOSPHERE 2023; 333:138982. [PMID: 37207898 DOI: 10.1016/j.chemosphere.2023.138982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/10/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
Organic chloramines in water would pose both chemical and microbiological risks. It is essential to remove the precursors of organic chloramine (amino acids and decomposed peptides/proteins) to limit its formation in disinfection. In our work, nanofiltration was chosen to remove organic chloramines precursors. To solve the "trade-off" effect and low rejection of small molecules in algae organic matter, we synthesized a thin film composite (TFC) nanofiltration (NF) membrane with a crumpled polyamide (PA) layer via interfacial polymerization on polyacrylonitrile (PAN) composite support loaded with covalent organic framework (COF) nanoparticles (TpPa-SO3H). The obtained NF membrane (PA-TpPa-SO3H/PAN) increased the permeance from 10.2 to 28.2 L m-2 h-1 bar-1 and the amino acid rejection from 24% to 69% compared to the control NF membrane. The addition of TpPa-SO3H nanoparticles decreased the thickness of PA layers, increased the hydrophilicity of the membrane, and increased the transition energy barrier for amino acids transferring through the membrane, which was identified by scanning electron microscope, contact angle test, and density functional theory computations, respectively. Finally, pre-oxidation coupled with PA-TpPa-SO3H/PAN membrane nanofiltration on the limitation of organic chloramines formation was evaluated. We found that the combined application of KMnO4 pre-oxidation and PA-TpPa-SO3H/PAN membranes nanofiltration in algae-containing water treatment could minimize the formation of organic chloramines in subsequent chlorination and maintain a high flux during filtration. Our work provides an effective way for algae-containing water treatment and organic chloramines control.
Collapse
Affiliation(s)
- Da Sheng
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Lingjun Bu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Shumin Zhu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Ruoxi Wu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Zhou Shi
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Shiqing Zhou
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
80
|
Zhu Z, Liu Z, Tan G, Qi J, Zhou Y, Li J. Interlayered Interface of a Thin Film Composite Janus Membrane for Sieving Volatile Substances in Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7612-7623. [PMID: 37104662 DOI: 10.1021/acs.est.3c00093] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Hypersaline wastewater treatment using membrane distillation (MD) has gained significant attention due to its ability to completely reject nonvolatile substances. However, a critical limitation of current MD membranes is their inability to intercept volatile substances owing to their large membrane pores. Additionally, the strong interaction between volatile substances and MD membranes underwater tends to cause membrane wetting. To overcome these challenges, we developed a dual-layer thin film composite (TFC) Janus membrane through electrospinning and sequential interfacial polymerization of a polyamide (PA) layer and cross-linking a polyvinyl alcohol/polyacrylic acid (PP) layer. The resulting Janus membrane exhibited high flux (>27 L m-2 h-1), salt rejection of ∼100%, phenol rejection of ∼90%, and excellent resistance to wetting and fouling. The interlayered interface between the PA and PP layer allowed the sieve of volatile substances by limiting their dissolution-diffusion, with the increasing hydrogen bond network formation preventing their transport. In contrast, small water molecules with powerful dynamics were permeable through the TFC membrane. Both experimental and molecular dynamics simulation results elucidated the sieving mechanism. Our findings demonstrate that this type of TFC Janus membrane can serve as a novel strategy to design next-generation MD membranes against volatile and non-volatile contaminants, which can have significant implications in the treatment of complex hypersaline wastewater.
Collapse
Affiliation(s)
- Zhigao Zhu
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhu Liu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Guangming Tan
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junwen Qi
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yujun Zhou
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiansheng Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
81
|
Yang Z, Belmabkhout Y, McHugh LN, Ao D, Sun Y, Li S, Qiao Z, Bennett TD, Guiver MD, Zhong C. ZIF-62 glass foam self-supported membranes to address CH 4/N 2 separations. NATURE MATERIALS 2023:10.1038/s41563-023-01545-w. [PMID: 37169976 DOI: 10.1038/s41563-023-01545-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 03/28/2023] [Indexed: 05/13/2023]
Abstract
Membranes with ultrahigh permeance and practical selectivity could greatly decrease the cost of difficult industrial gas separations, such as CH4/N2 separation. Advanced membranes made from porous materials, such as metal-organic frameworks, can achieve a good gas separation performance, although they are typically formed on support layers or mixed with polymeric matrices, placing limitations on gas permeance. Here an amorphous glass foam, agfZIF-62, wherein a, g and f denote amorphous, glass and foam, respectively, was synthesized by a polymer-thermal-decomposition-assisted melting strategy, starting from a crystalline zeolitic imidazolate framework, ZIF-62. The thermal decomposition of incorporated low-molecular-weight polyethyleneimine evolves CO2, NH3 and H2O gases, creating a large number and variety of pores. This greatly increases pore interconnectivity but maintains the crystalline ZIF-62 ultramicropores, allowing ultrahigh gas permeance and good selectivity. A self-supported circular agfZIF-62 with a thickness of 200-330 µm and area of 8.55 cm2 was used for membrane separation. The membranes perform well, showing a CH4 permeance of 30,000-50,000 gas permeance units, approximately two orders of magnitude higher than that of other reported membranes, with good CH4/N2 selectivity (4-6).
Collapse
Affiliation(s)
- Zibo Yang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, China
| | - Youssef Belmabkhout
- Applied Chemistry and Engineering Research Centre of Excellence (ACER CoE) and Technology Development Cell (TechCell), Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Lauren N McHugh
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - De Ao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, China
| | - Yuxiu Sun
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, China
| | - Shichun Li
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, China
| | - Zhihua Qiao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, China.
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Michael D Guiver
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, China.
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, China.
| | - Chongli Zhong
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, China.
| |
Collapse
|
82
|
Gui B, Xin J, Cheng Y, Zhang Y, Lin G, Chen P, Ma JX, Zhou X, Sun J, Wang C. Crystallization of Dimensional Isomers in Covalent Organic Frameworks. J Am Chem Soc 2023; 145:11276-11281. [PMID: 37167629 DOI: 10.1021/jacs.3c01729] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Dimensional isomers, defined in reticular chemistry as frameworks consisting of identical molecular building blocks but extended in two or three dimensions (2D or 3D), are an important type of framework isomers that have never been isolated. Herein, we report the crystallization of dimensional isomers in covalent organic frameworks (COFs) for the first time. By polymerization of the same molecular building blocks at different temperatures, both 2D and 3D COFs were successfully constructed due to the temperature-induced conformational changes of precursors from planar to tetrahedral. In addition, the non-fluorescent 2D COF can be gradually converted into the fluorescent 3D COF by increasing the temperature under solvothermal conditions. Therefore, it is reasonable to crystallize the dimensional isomers of reticular materials by controlling the conformation of molecular building blocks, and more examples can be expected. Since the obtained dimensional isomers show different properties and functions, this work will definitely motivate us to design reticular materials for target applications in the future.
Collapse
Affiliation(s)
- Bo Gui
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Junjie Xin
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Yuanpeng Cheng
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yufei Zhang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Guiqing Lin
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Pohua Chen
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Jian-Xin Ma
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Xu Zhou
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Cheng Wang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
83
|
Wang L, Qi L, Zhang Q, Xue B, Zheng Z, Yin P, Xue Y, Yang W, Li Y. Scalable synthesis of soluble crystalline ionic-graphdiyne by controlled ion expansion. Chem Sci 2023; 14:4612-4619. [PMID: 37152260 PMCID: PMC10155916 DOI: 10.1039/d3sc01393f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Graphdiyne (GDY) is a promising material possessing extensive electronic tunability, high π conjugacy, and ordered porosity at a molecular level for the sp/sp2-hybridized periodic structures. Despite these advantages, the preparation of soluble and crystalline graphdiyne is limited by the relatively compact stacking interactions, mostly existing in thick-layer and insoluble solids. Herein, we proposed a strategy of "framework charge-induced intercalation (FCII)" for the synthesis of a soluble (4.3 mg ml-1) and yet interlayer-expanded (∼0.6 Å) crystalline ionic graphdiyne, named as N+-GDY, through regulating the interlayer interactions. The skeleton of such a sample is positively charged, and then the negative ions migrate to the interlayer to expand the space, endowing the N+-GDY with solution processability. The crystal structure of N+-GDY is proved through analysis of HR-TEM images under different axes of observation and theoretical simulations. The resulting N+-GDY possesses high dispersity in organic solvents to produce a pure-solution phase which is conducive to the formation of oriented N+-GDY films, accompanied by exfoliation-nanosheet restacking. The film exhibits a conductivity of 0.014 S m-1, enabling its applications in electronic devices.
Collapse
Affiliation(s)
- Lingling Wang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 P. R. China
| | - Lu Qi
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 P. R. China
| | - Qinglei Zhang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology Guangzhou 510640 P. R. China
| | - Binghui Xue
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology Guangzhou 510640 P. R. China
| | - Zhiqiang Zheng
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 P. R. China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology Guangzhou 510640 P. R. China
| | - Yurui Xue
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 P. R. China
| | - Wenlong Yang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 P. R. China
| | - Yuliang Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 P. R. China
- Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
84
|
Fan H, Wang H, Peng M, Meng H, Mundstock A, Knebel A, Caro J. Pore-in-Pore Engineering in a Covalent Organic Framework Membrane for Gas Separation. ACS NANO 2023; 17:7584-7594. [PMID: 37026681 PMCID: PMC10134499 DOI: 10.1021/acsnano.2c12774] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Covalent organic framework (COF) membranes have emerged as a promising candidate for energy-efficient separations, but the angstrom-precision control of the channel size in the subnanometer region remains a challenge that has so far restricted their potential for gas separation. Herein, we report an ultramicropore-in-nanopore concept of engineering matreshka-like pore-channels inside a COF membrane. In this concept, α-cyclodextrin (α-CD) is in situ encapsulated during the interfacial polymerization which presumably results in a linear assembly (LA) of α-CDs in the 1D nanochannels of COF. The LA-α-CD-in-TpPa-1 membrane shows a high H2 permeance (∼3000 GPU) together with an enhanced selectivity (>30) of H2 over CO2 and CH4 due to the formation of fast and selective H2-transport pathways. The overall performance for H2/CO2 and H2/CH4 separation transcends the Robeson upper bounds and ranks among the most powerful H2-selective membranes. The versatility of this strategy is demonstrated by synthesizing different types of LA-α-CD-in-COF membranes.
Collapse
Affiliation(s)
- Hongwei Fan
- College
of Chemical Engineering, Beijing University
of Chemical Technology, Beijing 100029, PR China
- Institute
of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany
| | - Haoran Wang
- College
of Chemical Engineering, Beijing University
of Chemical Technology, Beijing 100029, PR China
| | - Manhua Peng
- Key
Laboratory of Power Station Energy Transfer Conversion and System,
Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Hong Meng
- College
of Chemical Engineering, Beijing University
of Chemical Technology, Beijing 100029, PR China
| | - Alexander Mundstock
- Institute
of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany
| | - Alexander Knebel
- Otto Schott
Institute of Materials Research, Friedrich
Schiller University Jena, Fraunhoferstraße 6, 07743 Jena, Germany
| | - Jürgen Caro
- Institute
of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany
| |
Collapse
|
85
|
Maity T, Malik P, Bawari S, Ghosh S, Mondal J, Haldar R. Chemically routed interpore molecular diffusion in metal-organic framework thin films. Nat Commun 2023; 14:2212. [PMID: 37072404 PMCID: PMC10113335 DOI: 10.1038/s41467-023-37739-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/27/2023] [Indexed: 04/20/2023] Open
Abstract
Transport diffusivity of molecules in a porous solid is constricted by the rate at which molecules move from one pore to the other, along the concentration gradient, i.e. by following Fickian diffusion. In heterogeneous porous materials, i.e. in the presence of pores of different sizes and chemical environments, diffusion rate and directionality remain tricky to estimate and adjust. In such a porous system, we have realized that molecular diffusion direction can be orthogonal to the concentration gradient. To experimentally determine this complex diffusion rate dependency and get insight of the microscopic diffusion pathway, we have designed a model nanoporous structure, metal-organic framework (MOF). In this model two chemically and geometrically distinct pore windows are spatially oriented by an epitaxial, layer-by-layer growth method. The specific design of the nanoporous channels and quantitative mass uptake rate measurements have indicated that the mass uptake is governed by the interpore diffusion along the direction orthogonal to the concentration gradient. This revelation allows chemically carving the nanopores, and accelerating the interpore diffusion and kinetic diffusion selectivity.
Collapse
Affiliation(s)
- Tanmoy Maity
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, Telangana, India
| | - Pratibha Malik
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, Telangana, India
| | - Sumit Bawari
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, Telangana, India
| | - Soumya Ghosh
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, Telangana, India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, Telangana, India
| | - Ritesh Haldar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
86
|
Ye W, Zhao L, Lin HZ, Ding L, Cao Q, Chen ZK, Wang J, Sun QM, He JH, Lu JM. Halide Perovskite glues activate two-dimensional covalent organic framework crystallites for selective NO 2 sensing. Nat Commun 2023; 14:2133. [PMID: 37069153 PMCID: PMC10110523 DOI: 10.1038/s41467-023-37296-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 03/01/2023] [Indexed: 04/19/2023] Open
Abstract
Two-dimensional covalent organic frameworks (2D COFs) are promising for gas sensing owing to the large surface area, abundant active sites, and their semiconducting nature. However, 2D COFs are usually produced in the form of insoluble micro-crystallites. Their poor contacts between grain boundaries severely suppress the conductivity, which are too low for chemresistive gas sensing. Here, we demonstrate that halide perovskites can be employed as electric glues to bond 2D COF crystallites to improve their conductivity by two orders of magnitude, activating them to detect NO2 with high selectivity and sensitivity. Resonant microcantilever, grand canonical Monte Carlo, density functional theory and sum-frequency generation analyses prove that 2D COFs can enrich and transfer electrons to NO2 molecules, leading to increased device conductivity. This work provides a facile approach for improving the conductivity of polycrystalline 2D COF films and may expand their applications in semiconductor devices, such as sensors, resistors, memristors and field-emission transistors.
Collapse
Affiliation(s)
- Wen Ye
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Liangdan Zhao
- Department of Chemistry, Xi'an Jiao Tong-Liverpool University, Suzhou, China
| | - Hong-Zhen Lin
- Department i-LAB, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| | - Lifeng Ding
- Department of Chemistry, Xi'an Jiao Tong-Liverpool University, Suzhou, China
| | - Qiang Cao
- College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, China
| | - Ze-Kun Chen
- College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, China
| | - Jia Wang
- College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, China
| | - Qi-Meng Sun
- College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, China
| | - Jing-Hui He
- College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, China
| | - Jian-Mei Lu
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.
- College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, China.
| |
Collapse
|
87
|
An S, Li X, Shang S, Xu T, Yang S, Cui CX, Peng C, Liu H, Xu Q, Jiang Z, Hu J. One-Dimensional Covalent Organic Frameworks for the 2e - Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2023; 62:e202218742. [PMID: 36655733 DOI: 10.1002/anie.202218742] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 01/20/2023]
Abstract
Two-dimensional covalent organic frameworks (2D COFs) are often employed for electrocatalytic systems because of their structural diversity. However, the efficiency of atom utilization is still in need of improvement, because the catalytic centers are located in the basal layers and it is difficult for the electrolytes to access them. Herein, we demonstrate the use of 1D COFs for the 2e- oxygen reduction reaction (ORR). The use of different four-connectivity blocks resulted in the prepared 1D COFs displaying good crystallinity, high surface areas, and excellent chemical stability. The more exposed catalytic sites resulted in the 1D COFs showing large electrochemically active surface areas, 4.8-fold of that of a control 2D COF, and thus enabled catalysis of the ORR with a higher H2 O2 selectivity of 85.8 % and activity, with a TOF value of 0.051 s-1 at 0.2 V, than a 2D COF (72.9 % and 0.032 s-1 ). This work paves the way for the development of COFs with low dimensions for electrocatalysis.
Collapse
Affiliation(s)
- Shuhao An
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Xuewen Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), 201210, Shanghai, P. R. China.,School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China.,Shanghai Institute of Applied Physics, Chinese Academy of Science, 201210, Shanghai, P. R. China
| | - Shuaishuai Shang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Ting Xu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Shuai Yang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), 201210, Shanghai, P. R. China.,School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Cheng-Xing Cui
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, 453003, Xinxiang, P. R. China
| | - Changjun Peng
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Honglai Liu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), 201210, Shanghai, P. R. China.,School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Zheng Jiang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), 201210, Shanghai, P. R. China.,School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China.,Shanghai Institute of Applied Physics, Chinese Academy of Science, 201210, Shanghai, P. R. China
| | - Jun Hu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| |
Collapse
|
88
|
Qian Y, Wu Y, Qiu S, He X, Liu Y, Kong X, Tian W, Jiang L, Wen L. A Bioinspired Free‐Standing 2D Crown‐Ether‐Based Polyimine Membrane for Selective Proton Transport. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202300167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
89
|
Wang K, Yang H, Liao Z, Li S, Hambsch M, Fu G, Mannsfeld SCB, Sun Q, Zhang T. Monolayer-Assisted Surface-Initiated Schiff-Base-Mediated Aldol Polycondensation for the Synthesis of Crystalline sp 2 Carbon-Conjugated Covalent Organic Framework Thin Films. J Am Chem Soc 2023; 145:5203-5210. [PMID: 36779889 DOI: 10.1021/jacs.2c12186] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
sp2 carbon-conjugated covalent organic frameworks (sp2c-COFs) with superb in-plane π-conjugations, high chemical stability, and robust framework structure are expected to be ideal films/membranes for a wide range of applications including energy-related devices and optoelectronics. However, so far, sp2c-COFs have been mainly limited to microcrystalline powders, and this consequently hampered their performances in devices. Herein, we report a simple and robust methodology to fabricate large-area, free-standing, and crystalline sp2c-COF films (TFPT-TMT and TB-TMT) on various solid substrates (e.g., fluorine-doped tin oxide, aluminum sheet, polyacrylonitrile membrane) by self-assembly monolayer-assisted surface-initiated Schiff-base-mediated aldol polycondensation (namely, SI-SBMAP). The resultant sp2c-COF films show lateral sizes up to 120 cm2 and tunable thickness from tens of nanometers to a few micrometers. Owing to the robust framework and highly ordered quasi-1D channels, the sp2c-COF membrane-based osmotic power generator presents an output power density of 14.1 W m-2 under harsh conditions, outperforming most reported COF membranes as well as commercialized benchmark devices (5 W m-2). This work demonstrates a simple and robust interfacial methodology for the fabrication of sp2c-COF films/membranes for green energy applications and potential optoelectronics.
Collapse
Affiliation(s)
- Ke Wang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Haoyong Yang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongquan Liao
- Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), Maria-Reiche-Strasse 2, 01109 Dresden, Germany
| | - Shengxu Li
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Mike Hambsch
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Electrical and Computer Engineering Technische Universität Dresden, 01062 Dresden, Germany
| | - Guangen Fu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Stefan C B Mannsfeld
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Electrical and Computer Engineering Technische Universität Dresden, 01062 Dresden, Germany
| | - Qi Sun
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
90
|
Sun C, Zhu Y, Shao P, Chen L, Huang X, Zhao S, Ma D, Jing X, Wang B, Feng X. 2D Covalent Organic Framework for Water Harvesting with Fast Kinetics and Low Regeneration Temperature. Angew Chem Int Ed Engl 2023; 62:e202217103. [PMID: 36640156 DOI: 10.1002/anie.202217103] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Atmospheric water harvesting represents a promising technique to address water stress. Advanced adsorbents have been rationally designed to achieve high water uptake, yet their water sorption kinetics and regeneration temperature greatly limit water production efficiency. Herein, we demonstrated that 2D covalent organic frameworks (COFs), featuring hydrophobic skeleton, proper hydrophilic site density, and 1D open channels significantly lowered the water diffusion and desorption energy barrier. DHTA-Pa COF showed a high water uptake of 0.48 g/g at 30 % R.H. with a remarkable adsorption rate of 0.72 L/Kg/h (298 K) and a desorption rate of 2.58 L/Kg/h (333 K). Moreover, more than 90 % adsorbed water could be released within 20 min at 313 K. This kinetic performance surpassed the reported porous materials and boosted the efficiency for multiple water extraction cycles. It may shed light on the material design strategy to achieve high daily water production with low-energy input.
Collapse
Affiliation(s)
- Chao Sun
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yuhao Zhu
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Pengpeng Shao
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Liwei Chen
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xin Huang
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Shuang Zhao
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Dou Ma
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xuechun Jing
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Bo Wang
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xiao Feng
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
91
|
Kim S, Lee YM. Two-dimensional nanosheets and membranes for their emerging technologies. Curr Opin Chem Eng 2023. [DOI: 10.1016/j.coche.2022.100893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
92
|
Song H, Peng Y, Wang C, Shu L, Zhu C, Wang Y, He H, Yang W. Structure Regulation of MOF Nanosheet Membrane for Accurate H 2 /CO 2 Separation. Angew Chem Int Ed Engl 2023; 62:e202218472. [PMID: 36854948 DOI: 10.1002/anie.202218472] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/02/2023]
Abstract
High-purity H2 production accompanied with a precise decarbonization opens an avenue to approach a carbon-neutral society. Metal-organic framework nanosheet membranes provide great opportunities for an accurate and fast H2 /CO2 separation, CO2 leakage through the membrane interlayer galleries decided the ultimate separation accuracy. Here we introduce low dose amino side groups into the Zn2 (benzimidazolate)4 conformation. Physisorbed CO2 served as interlayer linkers, gently regulated and stabilized the interlayer spacing. These evoked a synergistic effect of CO2 adsorption-assisted molecular sieving and steric hinderance, whilst exquisitely preserving apertures for high-speed H2 transport. The optimized amino membranes set a new record for ultrathin nanosheet membranes in H2 /CO2 separation (mixture separation factor: 1158, H2 permeance: 1417 gas permeation unit). This strategy provides an effective way to customize ultrathin nanosheet membranes with desirable molecular sieving ability.
Collapse
Affiliation(s)
- Hongling Song
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
| | - Yuan Peng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
| | - Chenlu Wang
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lun Shu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Chenyu Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
| | - Yanlei Wang
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongyan He
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weishen Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
93
|
Porous organic polymers: a progress report in China. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
94
|
Wu C, Xia L, Xia S, Van der Bruggen B, Zhao Y. Advanced Covalent Organic Framework-Based Membranes for Recovery of Ionic Resources. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206041. [PMID: 36446638 DOI: 10.1002/smll.202206041] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Membrane technology has shown a viable potential in conversion of liquid-waste or high-salt streams to fresh waters and resources. However, the non-adjustability pore size of traditional membranes limits the application of ion capture due to their low selectivity for target ions. Recently, covalent organic frameworks (COFs) have become a promising candidate for construction of advanced ion separation membranes for ion resource recovery due to their low density, large surface area, tunable channel structure, and tailored functionality. This tutorial review aims to analyze and summarize the progress in understanding ion capture mechanisms, preparation processes, and applications of COF-based membranes. First, the design principles for target ion selectivity are illustrated in terms of theoretical simulation of ions transport in COFs, and key properties for ion selectivity of COFs and COF-based membranes. Next, the fabrication methods of diverse COF-based membranes are classified into pure COF membranes, COF continuous membranes, and COF mixed matrix membranes. Finally, current applications of COF-based membranes are highlighted: desalination, extraction, removal of toxic metal ions, radionuclides and lithium, and acid recovery. This review presents promising approaches for design, preparation, and application of COF-based membranes in ion selectivity for recovery of ionic resources.
Collapse
Affiliation(s)
- Chao Wu
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium
- Department of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Lei Xia
- Department of Earth and Environmental Sciences, KU Leuven, Kasteelpark Arenberg 20 bus 2459, Leuven, B-3001, Belgium
| | - Shengji Xia
- Department of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium
| | - Yan Zhao
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium
| |
Collapse
|
95
|
A self-standing three-dimensional covalent organic framework film. Nat Commun 2023; 14:220. [PMID: 36639394 PMCID: PMC9839775 DOI: 10.1038/s41467-023-35931-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Covalent crystals such as diamonds are a class of fascinating materials that are challenging to fabricate in the form of thin films. This is because spatial kinetic control of bond formation is required to create covalently bonded crystal films. Directional crystal growth is commonly achieved by chemical vapor deposition, an approach that is hampered by technical complexity and associated high cost. Here we report on a liquid-liquid interfacial approach based on physical-organic considerations to synthesize an ultrathin covalent crystal film. By distributing reactants into separate phases using hydrophobicity, the chemical reaction is confined to an interface that orients the crystal growth. A molecular-smooth interface combined with in-plane isotropic conditions enables the synthesis of films on a centimeter size scale with a uniform thickness of 13 nm. The film exhibits considerable mechanical robustness enabling a free-standing length of 37 µm, as well as a clearly anisotropic chemical structure and crystal lattice alignment.
Collapse
|
96
|
Lopez KP, Wang R, Hjelvik EA, Lin S, Straub AP. Toward a universal framework for evaluating transport resistances and driving forces in membrane-based desalination processes. SCIENCE ADVANCES 2023; 9:eade0413. [PMID: 36598997 PMCID: PMC9812388 DOI: 10.1126/sciadv.ade0413] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Desalination technologies using salt-rejecting membranes are a highly efficient tool to provide fresh water and augment existing water supplies. In recent years, numerous studies have worked to advance a variety of membrane processes with different membrane types and driving forces, but direct quantitative comparisons of these different technologies have led to confusing and contradictory conclusions in the literature. In this Review, we critically assess different membrane-based desalination technologies and provide a universal framework for comparing various driving forces and membrane types. To accomplish this, we first quantify the thermodynamic driving forces resulting from pressure, concentration, and temperature gradients. We then examine the resistances experienced by water molecules as they traverse liquid- and air-filled membranes. Last, we quantify water fluxes in each process for differing desalination scenarios. We conclude by synthesizing results from the literature and our quantitative analyses to compare desalination processes, identifying specific scenarios where each process has fundamental advantages.
Collapse
Affiliation(s)
- Kian P. Lopez
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309-0428, USA
| | - Ruoyu Wang
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235-1831, USA
| | - Elizabeth A. Hjelvik
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO 80309-0428, USA
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235-1831, USA
| | - Anthony P. Straub
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309-0428, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO 80309-0428, USA
| |
Collapse
|
97
|
Lan Y, Zhou D, Lai L, Qi H, Xia L, Depuydt S, Van der Bruggen B, Zhao Y. A monovalent selective anion exchange membrane made by poly(2,6-dimethyl-1,4-phenyl oxide) for bromide recovery. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
98
|
Gong YN, Guan X, Jiang HL. Covalent organic frameworks for photocatalysis: Synthesis, structural features, fundamentals and performance. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
99
|
Engineering omniphobic corrugated membranes for scaling mitigation in membrane distillation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
100
|
Karak S, Dey K, Banerjee R. Maneuvering Applications of Covalent Organic Frameworks via Framework-Morphology Modulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202751. [PMID: 35760553 DOI: 10.1002/adma.202202751] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Translating the performance of covalent organic frameworks (COFs) from laboratory to macroscopic reality demands specific morphologies. Thus, the advancement in morphological modulation has recently gained some momentum. A clear understanding of nano- to macroscopic architecture is critical to determine, optimize, and improve performances of this atomically precise porous material. Along with their chemical compositions and molecular frameworks, the prospect of morphology in various applications should be discussed and highlighted. A thorough insight into morphology versus application will help produce better-engineered COFs for practical implications. 2D and 3D frameworks can be transformed into various solids such as nanospheres, thin films, membranes, monoliths, foams, etc., for numerous applications in adsorption, separation photocatalysis, the carbon dioxide reduction, supercapacitors, and fuel cells. However, the research on COF chemistry mainly focuses on correlating structure to property, structure to morphology, and structure to applications. Here, critical insights on various morphological evolution and associated applications are provided. In each case, the underlying role of morphology is unveiled. Toward the end, a correlation between morphology and application is provided for the future development of COFs.
Collapse
Affiliation(s)
- Suvendu Karak
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, 97074, Würzburg, Germany
| | - Kaushik Dey
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Rahul Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| |
Collapse
|