51
|
Bray AS, Smith RD, Hudson AW, Hernandez GE, Young TM, George HE, Ernst RK, Zafar MA. MgrB-Dependent Colistin Resistance in Klebsiella pneumoniae Is Associated with an Increase in Host-to-Host Transmission. mBio 2022; 13:e0359521. [PMID: 35311534 PMCID: PMC9040857 DOI: 10.1128/mbio.03595-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/08/2022] [Indexed: 12/22/2022] Open
Abstract
Due to its high transmissibility, Klebsiella pneumoniae is one of the leading causes of nosocomial infections. Here, we studied the biological cost of colistin resistance, an antibiotic of last resort, in this opportunistic pathogen using a murine model of gut colonization and transmission. Colistin resistance in K. pneumoniae is commonly the result of the inactivation of the small regulatory protein MgrB. Without a functional MgrB, the two-component system PhoPQ is constitutively active, leading to an increase in lipid A modifications and subsequent colistin resistance. Using an isogenic mgrB deletion mutant (MgrB-), we demonstrate that the mutant's colistin resistance is not associated with a fitness defect under in vitro growth conditions. However, in our murine model of K. pneumoniae gastrointestinal (GI) colonization, the MgrB- colonizes the gut poorly, allowing us to identify a fitness cost. Moreover, the MgrB- mutant has higher survival outside the host compared with the parental strain. We attribute this enhanced survivability to dysregulation of the PhoPQ two-component system and accumulation of the master stress regulator RpoS. The enhanced survival of MgrB- may be critical for its rapid host-to-host transmission observed in our model. Together, our data using multiple clinical isolates demonstrate that MgrB-dependent colistin resistance in K. pneumoniae comes with a biological cost in gut colonization. However, this cost is mitigated by enhanced survival outside the host and consequently increases its host-to-host transmission. Additionally, it underscores the importance of considering the entire life cycle of a pathogen to determine the actual biological cost associated with antibiotic resistance. IMPORTANCE The biological cost associated with colistin resistance in Klebsiella pneumoniae was examined using a murine model of K. pneumoniae gut colonization and fecal-oral transmission. A common mutation resulting in colistin resistance in K. pneumoniae is a loss-of-function mutation of the small regulatory protein MgrB that regulates the two-component system PhoPQ. Even though colistin resistance in K. pneumoniae comes with a fitness defect in gut colonization, it increases bacterial survival outside the host enabling it to transmit more effectively to a new host. The enhanced survival is dependent upon the accumulation of RpoS and dysregulation of the PhoPQ. Hence, our study expands our understanding of the underlying molecular mechanism contributing to the transmission of colistin-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Andrew S. Bray
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Richard D. Smith
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, Maryland, USA
- Department of Pathology, University of Maryland, Baltimore, Baltimore, Maryland, USA
| | - Andrew W. Hudson
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Giovanna E. Hernandez
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Taylor M. Young
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | | | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, Maryland, USA
| | - M. Ammar Zafar
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| |
Collapse
|
52
|
Oda Y, Shapiro MM, Lewis NM, Zhong X, Huse HK, Zhong W, Bruce JE, Manoil C, Harwood CS. CsrA-Controlled Proteins Reveal New Dimensions of Acinetobacter baumannii Desiccation Tolerance. J Bacteriol 2022; 204:e0047921. [PMID: 35285725 PMCID: PMC9017300 DOI: 10.1128/jb.00479-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
Hospital environments are excellent reservoirs for the opportunistic pathogen Acinetobacter baumannii in part because it is exceptionally tolerant to desiccation. We found that relative to other A. baumannii strains, the virulent strain AB5075 was strikingly desiccation resistant at 2% relative humidity (RH), suggesting that it is a good model for studies of the functional basis of this trait. Consistent with results from other A. baumannii strains at 40% RH, we found the global posttranscriptional regulator CsrA to be critically important for desiccation tolerance of AB5075 at 2% RH. Proteomics experiments identified proteins that were differentially present in wild-type and csrA mutant cells. Subsequent analysis of mutants in genes encoding some of these proteins revealed six genes that were required for wild-type levels of desiccation tolerance. These include genes for catalase, a universal stress protein, a hypothetical protein, and a biofilm-associated protein. Two genes of unknown function had very strong desiccation phenotypes, with one of the two genes predicting an intrinsically disordered protein (IDP) that binds to DNA. Intrinsically disordered proteins are widespread in eukaryotes but less so in prokaryotes. Our results suggest there are new mechanisms underlying desiccation tolerance in bacteria and identify several key functions involved. IMPORTANCE Acinetobacter baumannii is found in terrestrial environments but can cause nosocomial infections in very sick patients. A factor that contributes to the prevalence of A. baumannii in hospital settings is that it is intrinsically resistant to dry conditions. Here, we established the virulent strain A. baumannii AB5075 as a model for studies of desiccation tolerance at very low relative humidity. Our results show that this trait depends on two proteins of unknown function, one of which is predicted to be an intrinsically disordered protein. This category of protein is critical for the small animals named tardigrades to survive desiccation. Our results suggest that A. baumannii may have novel strategies to survive desiccation that have not previously been seen in bacteria.
Collapse
Affiliation(s)
- Yasuhiro Oda
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Madelyn M. Shapiro
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, Washington, USA
| | - Nathan M. Lewis
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Xuefei Zhong
- Analytical Chemistry Group, Regeneron Pharmaceuticals, Tarrytown, New York, USA
| | - Holly K. Huse
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Weizhi Zhong
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - James E. Bruce
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Colin Manoil
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Caroline S. Harwood
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
53
|
Bacterial hydrophilins promote pathogen desiccation tolerance. Cell Host Microbe 2022; 30:975-987.e7. [PMID: 35413266 DOI: 10.1016/j.chom.2022.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/14/2022] [Accepted: 03/17/2022] [Indexed: 11/21/2022]
Abstract
Acinetobacter baumannii is a leading cause of hospital-acquired infections, where outbreaks are driven by its ability to persist on surfaces in a desiccated state. Here, we show that A. baumannii causes more virulent pneumonia following desiccation and profile the genetic requirements for desiccation. We find that desiccation tolerance is enhanced upon the disruption of Lon protease, which targets unfolded and aggregated proteins for degradation. Notably, two bacterial hydrophilins, DtpA and DtpB, are transcriptionally upregulated in Δlon via the two-component regulator, BfmR. These proteins, both hydrophilic and intrinsically disordered, promote desiccation tolerance in A. baumannii. Additionally, recombinant DtpA protects purified enzymes from inactivation and improves the desiccation tolerance of a probiotic bacterium when heterologously expressed. These results demonstrate a connection between environmental persistence and pathogenicity in A. baumannii, provide insight into the mechanisms of extreme desiccation tolerance, and reveal potential applications for bacterial hydrophilins in the preservation of protein- and live bacteria-based pharmaceuticals.
Collapse
|
54
|
Akoolo L, Pires S, Kim J, Parker D. The Capsule of Acinetobacter baumannii Protects against the Innate Immune Response. J Innate Immun 2022; 14:543-554. [PMID: 35320810 PMCID: PMC9485954 DOI: 10.1159/000522232] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/24/2022] [Indexed: 11/19/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen that has recently emerged as a global threat associated with high morbidity, mortality, and antibiotic resistance. We determined the role of type I interferon (IFN) signaling in A. baumannii infection. We report that A. baumannii can induce a type I IFN response that is dependent upon TLR4-TRIF-IRF3 and phagocytosis of the bacterium. Phase variants of A. baumannii that have a reduced capsule, lead to enhanced TLR4-dependent type I IFN induction. This was also observed in a capsule-deficient strain. However, we did not observe a role for this pathway in vivo. The enhanced signaling could be accounted for by increased phagocytosis in capsule-deficient strains that also lead to enhanced host cell-mediated killing. The increased cytokine response in the absence of the capsule was not exclusive to type I IFN signaling. Several cytokines, including the proinflammatory IL-6, were increased in cells stimulated with the capsule-deficient strain, also observed in vivo. After 4 h in our acute pneumonia model, the burden of a capsule-null strain was significantly reduced, yet we observed increases in innate immune cells and inflammatory markers compared to wild-type A. baumannii. This study underscores the role of phase variation in the modulation of host immune responses and indicates that the capsule of A. baumannii plays an important role in protection against host cell killing and evasion from activation of the innate immune response.
Collapse
Affiliation(s)
- Lavoisier Akoolo
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Silvia Pires
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Jisun Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
55
|
Abstract
Small molecule adjuvants that enhance the activity of established antibiotics represent promising agents in the battle against antibiotic resistance. Adjuvants generally act by inhibiting antibiotic resistance processes, and specifying the process acted on is a critical step in defining an adjuvant's mechanism of action. This step is typically carried out biochemically by identifying molecules that bind adjuvants and then inferring their roles in resistance. Here, we present a complementary genetic strategy based on identifying mutations that both sensitize cells to antibiotic and make them "adjuvant blind." We tested the approach in Acinetobacter baumannii AB5075 using two adjuvants: a well-characterized β-lactamase inhibitor (avibactam) and a compound enhancing outer membrane permeability (aryl 2-aminoimidazole AI-1). The avibactam studies showed that the adjuvant potentiated one β-lactam (ceftazidime) through action on a single β-lactamase (GES-14) and a second (meropenem) by targeting two different enzymes (GES-14 and OXA-23). Mutations impairing disulfide bond formation (DsbAB) also reduced potentiation, possibly by impairing β-lactamase folding. Mutations reducing AI-1 potentiation of canonical Gram-positive antibiotics (vancomycin and clarithromycin) blocked lipooligosaccharide (LOS/LPS) synthesis or its acyl modification. The results indicate that LOS-mediated outer membrane impermeability is targeted by the adjuvant and show the importance of acylation in the resistance. As part of the study, we employed Acinetobacter baylyi as a model to verify the generality of the A. baumannii results and identified the principal resistance genes for ceftazidime, meropenem, vancomycin, and clarithromycin in A. baumannii AB5075. Overall, the work provides a foundation for analyzing adjuvant action using a comprehensive genetic approach. IMPORTANCE One strategy to confront the antibiotic resistance crisis is through the development of adjuvant compounds that increase the efficacy of established drugs. A key step in the development of a natural product adjuvant as a drug is identifying the resistance process it undermines to enhance antibiotic activity. Previous procedures designed to accomplish this have relied on biochemical identification of cell components that bind adjuvant. Here, we present a complementary strategy based on identifying mutations that eliminate adjuvant activity.
Collapse
|
56
|
Breine A, Van Gysel M, Elsocht M, Whiteway C, Philippe C, Quinet T, Valcek A, Wouters J, Ballet S, Van der Henst C. Antimicrobial Activity of a Repurposed Harmine-Derived Compound on Carbapenem-Resistant Acinetobacter baumannii Clinical Isolates. Front Cell Infect Microbiol 2022; 11:789672. [PMID: 35141168 PMCID: PMC8819726 DOI: 10.3389/fcimb.2021.789672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/15/2021] [Indexed: 11/18/2022] Open
Abstract
Objectives The spread of antibiotic resistant bacteria is an important threat for human health. Acinetobacter baumannii bacteria impose such a major issue, as multidrug- to pandrug-resistant strains have been isolated, rendering some infections untreatable. In this context, carbapenem-resistant A. baumannii bacteria were ranked as top priority by both WHO and CDC. In addition, A. baumannii bacteria survive in harsh environments, being capable of resisting to disinfectants and to persist prolonged periods of desiccation. Due to the high degree of variability found in A. baumannii isolates, the search for new antibacterials is very challenging because of the requirement of drug target conservation amongst the different strains. Here, we screened a chemical library to identify compounds active against several reference strains and carbapenem-resistant A. baumannii bacteria. Methods A repurposing drug screen was undertaken to identify A. baumannii growth inhibitors. One hit was further characterized by determining the IC50 and testing the activity on 43 modern clinical A. baumannii isolates, amongst which 40 are carbapenem-resistant. Results The repurposing screen led to the identification of a harmine-derived compound, called HDC1, which proves to have bactericidal activity on the multidrug-resistant AB5075-VUB reference strain with an IC50 of 48.23 µM. In addition, HDC1 impairs growth of 43 clinical A. baumannii isolates. Conclusions We identified a compound with inhibitory activity on all tested strains, including carbapenem-resistant clinical A. baumannii isolates.
Collapse
Affiliation(s)
- Anke Breine
- Microbial Resistance and Drug Discovery, Vlaams Instituut voor Biotechnologie-Vrije Universiteit Brussel (VIB-VUB) Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Flanders Institute for Biotechnology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Mégane Van Gysel
- Namur Medicine and Drug Innovation Center (NAMEDIC), University of Namur (UNamur), Namur, Belgium
| | - Mathias Elsocht
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Clémence Whiteway
- Microbial Resistance and Drug Discovery, Vlaams Instituut voor Biotechnologie-Vrije Universiteit Brussel (VIB-VUB) Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Flanders Institute for Biotechnology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Chantal Philippe
- Research Unit in the Biology of Microorganisms (URBM), NARILIS, University of Namur (UNamur), Namur, Belgium
| | - Théo Quinet
- Laboratory of Evolutionary Genetics and Ecology, URBE, University of Namur (UNamur), Namur, Belgium
- Molecular Biology and Evolution, Universite´ Libre de Bruxelles (ULB), Brussels, Belgium
| | - Adam Valcek
- Microbial Resistance and Drug Discovery, Vlaams Instituut voor Biotechnologie-Vrije Universiteit Brussel (VIB-VUB) Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Flanders Institute for Biotechnology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Johan Wouters
- Namur Medicine and Drug Innovation Center (NAMEDIC), University of Namur (UNamur), Namur, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Charles Van der Henst
- Microbial Resistance and Drug Discovery, Vlaams Instituut voor Biotechnologie-Vrije Universiteit Brussel (VIB-VUB) Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Flanders Institute for Biotechnology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- *Correspondence: Charles Van der Henst,
| |
Collapse
|
57
|
Fonseca ÉL, Vicente AC. Integron Functionality and Genome Innovation: An Update on the Subtle and Smart Strategy of Integrase and Gene Cassette Expression Regulation. Microorganisms 2022; 10:microorganisms10020224. [PMID: 35208680 PMCID: PMC8876359 DOI: 10.3390/microorganisms10020224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/22/2022] Open
Abstract
Integrons are considered hot spots for bacterial evolution, since these platforms allow one-step genomic innovation by capturing and expressing genes that provide advantageous novelties, such as antibiotic resistance. The acquisition and shuffling of gene cassettes featured by integrons enable the population to rapidly respond to changing selective pressures. However, in order to avoid deleterious effects and fitness burden, the integron activity must be tightly controlled, which happens in an elegant and elaborate fashion, as discussed in detail in the present review. Here, we aimed to provide an up-to-date overview of the complex regulatory networks that permeate the expression and functionality of integrons at both transcriptional and translational levels. It was possible to compile strong shreds of evidence clearly proving that these versatile platforms include functions other than acquiring and expressing gene cassettes. The well-balanced mechanism of integron expression is intricately related with environmental signals, host cell physiology, fitness, and survival, ultimately leading to adaptation on the demand.
Collapse
|
58
|
Trzilova D, Warren MAH, Gadda NC, Williams CL, Tamayo R. Flagellum and toxin phase variation impacts intestinal colonization and disease development in a mouse model of Clostridioides difficile infection. Gut Microbes 2022; 14:2038854. [PMID: 35192433 PMCID: PMC8890394 DOI: 10.1080/19490976.2022.2038854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
Clostridioides difficile is a major nosocomial pathogen that can cause severe, toxin-mediated diarrhea and pseudomembranous colitis. Recent work has shown that C. difficile exhibits heterogeneity in swimming motility and toxin production in vitro through phase variation by site-specific DNA recombination. The recombinase RecV reversibly inverts the flagellar switch sequence upstream of the flgB operon, leading to the ON/OFF expression of flagellum and toxin genes. How this phenomenon impacts C. difficile virulence in vivo remains unknown. We identified mutations in the right inverted repeat that reduced or prevented flagellar switch inversion by RecV. We introduced these mutations into C. difficile R20291 to create strains with the flagellar switch "locked" in either the ON or OFF orientation. These mutants exhibited a loss of flagellum and toxin phase variation during growth in vitro, yielding precisely modified mutants suitable for assessing virulence in vivo. In a hamster model of acute C. difficile infection, the phase-locked ON mutant caused greater toxin accumulation than the phase-locked OFF mutant but did not differ significantly in the ability to cause acute disease symptoms. In contrast, in a mouse model, preventing flagellum and toxin phase variation affected the ability of C. difficile to colonize the intestinal tract and to elicit weight loss, which is attributable to differences in toxin production during infection. These results show that the ability of C. difficile to phase vary flagella and toxins influences colonization and disease development and suggest that the phenotypic variants generated by flagellar switch inversion have distinct capacities for causing disease.
Collapse
Affiliation(s)
- Dominika Trzilova
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Mercedes A. H. Warren
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Nicole C. Gadda
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Caitlin L. Williams
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
59
|
OXA-23 β-Lactamase Overexpression in Acinetobacter baumannii Drives Physiological Changes Resulting in New Genetic Vulnerabilities. mBio 2021; 12:e0313721. [PMID: 34872351 PMCID: PMC8649759 DOI: 10.1128/mbio.03137-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
β-Lactamase expression is the major mechanism of resistance to penicillins, cephalosporins, and carbapenems in the multidrug-resistant (MDR) bacterium Acinetobacter baumannii. In fact, stable high-level expression of at least one β-lactamase has been rapidly increasing and reported to occur in up to 98.5% of modern A. baumannii isolates recovered in the clinic. Moreover, the OXA-51 β-lactamase is universally present in the A. baumannii chromosome, suggesting it may have a cellular function beyond antibiotic resistance. However, the consequences associated with OXA β-lactamase overexpression on A. baumannii physiology are not well understood. Using peptidoglycan composition analysis, we show that overexpressing the OXA-23 β-lactamase in A. baumannii drives significant collateral changes with alterations consistent with increased amidase activity. Consequently, we predicted that these changes create new cellular vulnerabilities. As proof of principle, a small screen of random transposon insertions revealed three genes, where mutations resulted in a greater than 19-fold loss of viability when OXA-23 was overexpressed. The identified genes remained conditionally essential even when a catalytically inactive OXA-23 β-lactamase was overexpressed. In addition, we demonstrated a synergistic lethal relationship between OXA-23 overexpression and a CRISPR interference (CRISPRi) knockdown of the essential peptidoglycan synthesis enzyme MurA. Last, OXA-23 overexpression sensitized cells to two inhibitors of peptidoglycan synthesis, d-cycloserine and fosfomycin. Our results highlight the impact of OXA-23 hyperexpression on peptidoglycan integrity and reveal new genetic vulnerabilities, which may represent novel targets for antimicrobial agents specific to MDR A. baumannii and other OXA β-lactamase-overexpressing Enterobacteriaceae, while having no impact on the normal flora. IMPORTANCE Acinetobacter baumannii has become a serious pathogen in both hospital and community settings. The β-lactam class of antibiotics is a primary treatment option for A. baumannii infections, and expression of β-lactamases is the most frequent mechanism of resistance in this bacterium. New approaches to treating multidrug-resistant A. baumannii strains are needed. In this study, we demonstrate that overexpressing the OXA-23 β-lactamase leads to significant collateral changes, where peptidoglycan structure is altered. We have identified genes that become selectively essential in OXA-23-expressing strains and confirmed the relationship between altered peptidoglycan and OXA-23 expression by demonstrating that OXA-23 overexpression sensitizes cells to genetic and chemical inhibition of peptidoglycan synthesis. This work paves the way for the identification of new antimicrobial targets, where inhibitors would selectively kill β-lactamase-expressing strains.
Collapse
|
60
|
Acinetobacter baumannii regulates its stress responses via the BfmRS two-component regulatory system. J Bacteriol 2021; 204:e0049421. [PMID: 34871031 DOI: 10.1128/jb.00494-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter baumannii is a common nosocomial pathogen that utilizes numerous mechanisms to aid its survival in both the environment and in the host. Coordination of such mechanisms requires an intricate regulatory network. We report here that A. baumannii can directly regulate several stress-related pathways via the two-component regulatory system, BfmRS. Similar to previous studies, results from transcriptomic analysis showed that mutation of the BfmR response regulator causes dysregulation of genes required for the oxidative stress response, the osmotic stress response, the misfolded protein/heat shock response, Csu pili/fimbriae production, and capsular polysaccharide biosynthesis. We also found that the BfmRS system is involved in controlling siderophore biosynthesis and transport, and type IV pili production. We provide evidence that BfmR binds to various stress-related promoter regions and show that BfmR alone can directly activate transcription of some stress-related genes. Additionally, we show that the BfmS sensor kinase acts as a BfmR phosphatase to negatively regulate BfmR activity. This work highlights the importance of the BfmRS system in promoting survival of A. baumannii. Importance Acinetobacter baumannii is a nosocomial pathogen that has extremely high rates of multidrug resistance. This organism's ability to endure stressful conditions is a key part of its ability to spread in the hospital environment and cause infections. Unlike other members of the γ-proteobacteria, A. baumannii does not encode a homolog of the RpoS sigma factor to coordinate its stress response. Here, we demonstrate that the BfmRS two-component system directly controls the expression of multiple stress resistance genes. Our findings suggest that BfmRS is central to a unique scheme of general stress response regulation by A. baumannii.
Collapse
|
61
|
Whiteway C, Breine A, Philippe C, Van der Henst C. Acinetobacter baumannii. Trends Microbiol 2021; 30:199-200. [PMID: 34836792 DOI: 10.1016/j.tim.2021.11.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/25/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022]
Affiliation(s)
- Clémence Whiteway
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Anke Breine
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Chantal Philippe
- Research Unit in the Biology of Microorganisms (URBM), NARILIS, University of Namur (UNamur), Namur, Belgium
| | - Charles Van der Henst
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| |
Collapse
|
62
|
Tierney ARP, Chin CY, Weiss DS, Rather PN. A LysR-Type Transcriptional Regulator Controls Multiple Phenotypes in Acinetobacter baumannii. Front Cell Infect Microbiol 2021; 11:778331. [PMID: 34805000 PMCID: PMC8601201 DOI: 10.3389/fcimb.2021.778331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/14/2021] [Indexed: 12/03/2022] Open
Abstract
Acinetobacter baumannii is a multidrug-resistant, Gram-negative nosocomial pathogen that exhibits phenotypic heterogeneity resulting in virulent opaque (VIR-O) and avirulent translucent (AV-T) colony variants. Each variant has a distinct gene expression profile resulting in multiple phenotypic differences. Cells interconvert between the VIR-O and AV-T variants at high frequency under laboratory conditions, suggesting that the genetic mechanism underlying the phenotypic switch could be manipulated to attenuate virulence. Therefore, our group has focused on identifying and characterizing genes that regulate this switch, which led to the investigation of ABUW_1132 (1132), a highly conserved gene predicted to encode a LysR-type transcriptional regulator. ABUW_1132 was shown to be a global regulator as the expression of 74 genes was altered ≥ 2-fold in an 1132 deletion mutant. The 1132 deletion also resulted in a 16-fold decrease in VIR-O to AV-T switching, loss of 3-OH-C12-HSL secretion, and reduced surface-associated motility. Further, the deletion of 1132 in the AV-T background caused elevated capsule production, which increased colony opacity and altered the typical avirulent phenotype of translucent cells. These findings distinguish 1132 as a global regulatory gene and advance our understanding of A. baumannii’s opacity-virulence switch.
Collapse
Affiliation(s)
- Aimee R P Tierney
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Chui Yoke Chin
- Emory Vaccine Center, Atlanta, GA, United States.,Yerkes National Primate Research Center, Atlanta, GA, United States.,Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States.,Emory Antibiotic Resistance Center, Atlanta, GA, United States
| | - David S Weiss
- Emory Vaccine Center, Atlanta, GA, United States.,Yerkes National Primate Research Center, Atlanta, GA, United States.,Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States.,Emory Antibiotic Resistance Center, Atlanta, GA, United States.,Research Service, Department of Veterans Affairs, Atlanta Veterans Affairs (VA) Medical Center, Decatur, GA, United States
| | - Philip N Rather
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States.,Research Service, Department of Veterans Affairs, Atlanta Veterans Affairs (VA) Medical Center, Decatur, GA, United States
| |
Collapse
|
63
|
Co-Occurrence of blaOXA-23 in the Chromosome and Plasmid: Increased Fitness in Carbapenem-Resistant Acinetobacter baumannii. Antibiotics (Basel) 2021; 10:antibiotics10101196. [PMID: 34680777 PMCID: PMC8532878 DOI: 10.3390/antibiotics10101196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
This study aims to explore the co-occurrence of chromosomal and plasmid blaOXA-23 in carbapenem-resistant A. baumannii (CRAB) and its influence on phenotypes. A total of 11 CRAB isolates containing copies of blaOXA-23 on the chromosome and plasmid (CO), as well as 18 closely related isolates with blaOXA-23, located on either the chromosome or plasmid (SI), were selected for the determination of antibiotic susceptibility, virulence phenotype, and characteristic genomic differences. The co-occurrence of blaOXA-23 on the CRAB chromosome and plasmids did not enhance carbapenem resistance, but trimethoprim/sulfamethoxazole exhibited significantly reduced minimum inhibitory concentrations in CO. CO demonstrated a higher degree of fitness compared to SI. An increased biofilm formation ability and serum tolerance were also identified in CO, which may be associated with virulence genes, which include csuD, entE, pgaA, and plc. blaOXA-23-carrying transposons were found at different insertion sites on the chromosome. The most common site was AbaR-type genomic islands (50%). Two types of plasmids were found in CO. The co-occurrence of blaOXA-23 on the chromosome and a plasmid in CRAB had little effect on carbapenem susceptibility but was accompanied by increased fitness and virulence. Different origins and independent insertions of blaOXA-23-carrying transposons were identified in both the chromosomal and plasmid sequences.
Collapse
|
64
|
Rakovitsky N, Lellouche J, Ben David D, Frenk S, Elmalih P, Weber G, Kon H, Schwartz D, Wolfhart L, Temkin E, Carmeli Y. Increased Capsule Thickness and Hypermotility Are Traits of Carbapenem-Resistant Acinetobacter baumannii ST3 Strains Causing Fulminant Infection. Open Forum Infect Dis 2021; 8:ofab386. [PMID: 34514017 PMCID: PMC8423469 DOI: 10.1093/ofid/ofab386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/18/2021] [Indexed: 12/13/2022] Open
Abstract
Background Acinetobacter baumannii is a successful nosocomial pathogen, causing severe, life-threatening infections in hospitalized patients, including pneumonia and bloodstream infections. The spread of carbapenem-resistant Acinetobacter baumannii (CRAB) strains is a major health threat worldwide. The successful spread of CRAB is mostly due to its highly plastic genome. Although some virulence factors associated with CRAB have been uncovered, many mechanisms contributing to its success are not fully understood. Methods Here we describe strains of CRAB that were isolated from fulminant cases in 2 hospitals in Israel. These isolates show a rare hypermucoid (HM) phenotype and were investigated using phenotypic assays, comparative genomics, and an in vivo Galleria mellonella model. Results The 3 isolates belonged to the ST3 international clonal type and were closely related to each other, as shown by Fourier-transform infrared spectroscopy and phylogenetic analyses. These isolates possessed thickened capsules and a dense filamentous extracellular polysaccharides matrix as shown by transmission electron microscopy (TEM), and overexpressed the capsule polysaccharide synthesis pathway-related wzc gene. Conclusions The HM isolates possessed a unique combination of virulence genes involved in iron metabolism, protein secretion, adherence, and membrane glycosylation. HM strains were more virulent than control strains in 2 G. mellonella infection models. In conclusion, our findings demonstrated several virulence factors, all present in 3 CRAB isolates with rare hypermucoid phenotypes.
Collapse
Affiliation(s)
- Nadya Rakovitsky
- National Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel-Aviv, Israel
| | - Jonathan Lellouche
- National Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel-Aviv, Israel
| | - Debby Ben David
- National Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel-Aviv, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Sammy Frenk
- National Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel-Aviv, Israel
| | - Polet Elmalih
- National Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel-Aviv, Israel
| | - Gabriel Weber
- The B. Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.,Infectious Disease and Infection Control Unit, Carmel Medical Center, Haifa, Israel
| | - Hadas Kon
- National Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel-Aviv, Israel
| | - David Schwartz
- National Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel-Aviv, Israel
| | - Liat Wolfhart
- National Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel-Aviv, Israel
| | - Elizabeth Temkin
- National Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel-Aviv, Israel
| | - Yehuda Carmeli
- National Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel-Aviv, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
65
|
Crippen CS, Glushka J, Vinogradov E, Szymanski CM. Trehalose-deficient Acinetobacter baumannii exhibits reduced virulence by losing capsular polysaccharide and altering membrane integrity. Glycobiology 2021; 31:1520-1530. [PMID: 34473830 DOI: 10.1093/glycob/cwab096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 12/20/2022] Open
Abstract
A. baumannii has become the leading cause of bacterial nosocomial infections in part due to its ability to resist desiccation, disinfection and antibiotics. Several factors contribute to the tenacity and virulence of this pathogen, including production of a broad range of surface glycoconjugates, secretory systems and efflux pumps. We became interested in examining the importance of trehalose in A. baumannii after comparing intact bacterial cells by high resolution magic angle spinning NMR and noting high levels of this disaccharide obscuring all other resonances in the spectrum. Since this was observed under normal growth conditions, we speculated that trehalose must serve additional functions beyond osmolyte homeostasis. Using the virulent isolate A. baumannii AB5075 and mutants in the trehalose synthesis pathway, ∆otsA and ∆otsB, we found that the trehalose-deficient ∆otsA showed increased sensitivity to desiccation, colistin, serum complement and peripheral blood mononuclear cells while trehalose-6-phosphate producing ∆otsB behaved similar to the wildtype. The ∆otsA mutant also demonstrated increased membrane permeability and loss of capsular polysaccharide. These findings demonstrate that trehalose deficiency leads to loss of virulence in A. baumannii AB5075.
Collapse
Affiliation(s)
- Clay S Crippen
- Department of Microbiology, University of Georgia, Athens, GA, USA.,Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - John Glushka
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Evgeny Vinogradov
- Human Health Therapeutics, National Research Council, Ottawa, ON, Canada
| | - Christine M Szymanski
- Department of Microbiology, University of Georgia, Athens, GA, USA.,Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
66
|
Belisario JC, Lee HH, Luknauth H, Rigel NW, Martinez LR. Acinetobacter baumannii Strains Deficient in the Clp Chaperone-Protease Genes Have Reduced Virulence in a Murine Model of Pneumonia. Pathogens 2021; 10:pathogens10020204. [PMID: 33668542 PMCID: PMC7917692 DOI: 10.3390/pathogens10020204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/05/2023] Open
Abstract
Acinetobacter baumannii has emerged as a significant opportunistic Gram-negative pathogen and causative agent of nosocomial pneumonia especially in immunocompromised individuals in intensive care units. Recent advances to understand the contribution and function of A. baumannii virulence factors in its pathogenesis have begun to elucidate how this bacterium interacts with immune cells and its interesting mechanisms for multi-antibiotic resistance. Taking advantage of the availability of the A. baumannii AB5075 transposon mutant library, we investigated the impact of the A. baumannii Clp genes, which encode for a chaperone-protease responsible for the degradation of misfolded proteins, on bacterial virulence in a model of pneumonia using C57BL/6 mice and survival within J774.16 macrophage-like cells. Clp-protease A. baumannii mutants exhibit decreased virulence in rodents, high phagocytic cell-mediated killing and reduced biofilm formation. Capsular staining showed evidence of encapsulation in A. baumannii AB5075 and Clp-mutant strains. Surprisingly, clpA and clpS mutants displayed irregular cell morphology, which may be important in the biofilm structural deficiencies observed in these strains. Interestingly, clpA showed apical-like growth, proliferation normally observed in filamentous fungi. These findings provide new information regarding A. baumannii pathogenesis and may be important for the development of therapies intended at reducing morbidity and mortality associated with this remarkable pathogen.
Collapse
Affiliation(s)
- J Christian Belisario
- Department of Physical Medicine and Rehabilitation, University of Pennsylvania, Philadelphia, PA 19146, USA;
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA;
| | - Hiu Ham Lee
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA;
| | - Harshani Luknauth
- Department of Biology, Hofstra University, Hempstead, NY 11549, USA; (H.L.); (N.W.R.)
| | - Nathan W. Rigel
- Department of Biology, Hofstra University, Hempstead, NY 11549, USA; (H.L.); (N.W.R.)
| | - Luis R. Martinez
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA;
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
67
|
Persistence of Pathogens on Inanimate Surfaces: A Narrative Review. Microorganisms 2021; 9:microorganisms9020343. [PMID: 33572303 PMCID: PMC7916105 DOI: 10.3390/microorganisms9020343] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
For the prevention of infectious diseases, knowledge about transmission routes is essential. In addition to respiratory, fecal-oral, and sexual transmission, the transfer of pathogens via surfaces plays a vital role for human pathogenic infections-especially nosocomial pathogens. Therefore, information about the survival of pathogens on surfaces can have direct implications on clinical measures, including hygiene guidelines and disinfection strategies. In this review, we reviewed the existing literature regarding viral, bacterial, and fungal persistence on inanimate surfaces. In particular, the current knowledge of the survival time and conditions of clinically relevant pathogens is summarized. While many pathogens persist only for hours, common nosocomial pathogens can survive for days to weeks under laboratory conditions and thereby potentially form a continuous source of transmission if no adequate inactivation procedures are performed.
Collapse
|
68
|
Dollery SJ, Zurawski DV, Gaidamakova EK, Matrosova VY, Tobin JK, Wiggins TJ, Bushnell RV, MacLeod DA, Alamneh YA, Abu-Taleb R, Escatte MG, Meeks HN, Daly MJ, Tobin GJ. Radiation-Inactivated Acinetobacter baumannii Vaccine Candidates. Vaccines (Basel) 2021; 9:vaccines9020096. [PMID: 33514059 PMCID: PMC7912630 DOI: 10.3390/vaccines9020096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/20/2022] Open
Abstract
Acinetobacter baumannii is a bacterial pathogen that is often multidrug-resistant (MDR) and causes a range of life-threatening illnesses, including pneumonia, septicemia, and wound infections. Some antibiotic treatments can reduce mortality if dosed early enough before an infection progresses, but there are few other treatment options when it comes to MDR-infection. Although several prophylactic strategies have been assessed, no vaccine candidates have advanced to clinical trials or have been approved. Herein, we rapidly produced protective whole-cell immunogens from planktonic and biofilm-like cultures of A. baumannii, strain AB5075 grown using a variety of methods. After selecting a panel of five cultures based on distinct protein profiles, replicative activity was extinguished by exposure to 10 kGy gamma radiation in the presence of a Deinococcus antioxidant complex composed of manganous (Mn2+) ions, a decapeptide, and orthophosphate. Mn2+ antioxidants prevent hydroxylation and carbonylation of irradiated proteins, but do not protect nucleic acids, yielding replication-deficient immunogenic A. baumannii vaccine candidates. Mice were immunized and boosted twice with 1.0 × 107 irradiated bacterial cells and then challenged intranasally with AB5075 using two mouse models. Planktonic cultures grown for 16 h in rich media and biofilm cultures grown in static cultures underneath minimal (M9) media stimulated immunity that led to 80–100% protection.
Collapse
Affiliation(s)
- Stephen J. Dollery
- Biological Mimetics, Inc., 124 Byte Drive, Frederick, MD 21702, USA; (J.K.T.); (T.J.W.); (R.V.B.); (D.A.M.); (G.J.T.)
- Correspondence:
| | - Daniel V. Zurawski
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (D.V.Z.); (Y.A.A.); (R.A.-T.); (M.G.E.)
| | - Elena K. Gaidamakova
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (E.K.G.); (V.Y.M.); (M.J.D.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Vera Y. Matrosova
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (E.K.G.); (V.Y.M.); (M.J.D.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - John K. Tobin
- Biological Mimetics, Inc., 124 Byte Drive, Frederick, MD 21702, USA; (J.K.T.); (T.J.W.); (R.V.B.); (D.A.M.); (G.J.T.)
| | - Taralyn J. Wiggins
- Biological Mimetics, Inc., 124 Byte Drive, Frederick, MD 21702, USA; (J.K.T.); (T.J.W.); (R.V.B.); (D.A.M.); (G.J.T.)
| | - Ruth V. Bushnell
- Biological Mimetics, Inc., 124 Byte Drive, Frederick, MD 21702, USA; (J.K.T.); (T.J.W.); (R.V.B.); (D.A.M.); (G.J.T.)
| | - David A. MacLeod
- Biological Mimetics, Inc., 124 Byte Drive, Frederick, MD 21702, USA; (J.K.T.); (T.J.W.); (R.V.B.); (D.A.M.); (G.J.T.)
| | - Yonas A. Alamneh
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (D.V.Z.); (Y.A.A.); (R.A.-T.); (M.G.E.)
| | - Rania Abu-Taleb
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (D.V.Z.); (Y.A.A.); (R.A.-T.); (M.G.E.)
| | - Mariel G. Escatte
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (D.V.Z.); (Y.A.A.); (R.A.-T.); (M.G.E.)
| | | | - Michael J. Daly
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (E.K.G.); (V.Y.M.); (M.J.D.)
| | - Gregory J. Tobin
- Biological Mimetics, Inc., 124 Byte Drive, Frederick, MD 21702, USA; (J.K.T.); (T.J.W.); (R.V.B.); (D.A.M.); (G.J.T.)
| |
Collapse
|
69
|
Sykes EME, Deo S, Kumar A. Recent Advances in Genetic Tools for Acinetobacter baumannii. Front Genet 2020; 11:601380. [PMID: 33414809 PMCID: PMC7783400 DOI: 10.3389/fgene.2020.601380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022] Open
Abstract
Acinetobacter baumannii is classified as a top priority pathogen by the World Health Organization (WHO) because of its widespread resistance to all classes of antibiotics. This makes the need for understanding the mechanisms of resistance and virulence critical. Therefore, tools that allow genetic manipulations are vital to unravel the mechanisms of multidrug resistance (MDR) and virulence in A. baumannii. A host of current strategies are available for genetic manipulations of A. baumannii laboratory-strains, including ATCC® 17978TM and ATCC® 19606T, but depending on susceptibility profiles, these strategies may not be sufficient when targeting strains newly obtained from clinic, primarily due to the latter's high resistance to antibiotics that are commonly used for selection during genetic manipulations. This review highlights the most recent methods for genetic manipulation of A. baumannii including CRISPR based approaches, transposon mutagenesis, homologous recombination strategies, reporter systems and complementation techniques with the spotlight on those that can be applied to MDR clinical isolates.
Collapse
Affiliation(s)
| | | | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
70
|
Leus IV, Adamiak J, Trinh AN, Smith RD, Smith L, Richardson S, Ernst RK, Zgurskaya HI. Inactivation of AdeABC and AdeIJK efflux pumps elicits specific nonoverlapping transcriptional and phenotypic responses in Acinetobacter baumannii. Mol Microbiol 2020; 114:1049-1065. [PMID: 32858760 DOI: 10.1111/mmi.14594] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/17/2020] [Indexed: 12/24/2022]
Abstract
Multidrug resistant (MDR) strains of Acinetobacter baumannii present a serious clinical challenge. The development of antibiotic resistance in this species is enabled by efflux pumps of the Resistance-Nodulation-Division (RND) superfamily of proteins creating an efficient permeability barrier for antibiotics. At least three RND pumps, AdeABC, AdeIJK, and AdeFGH are encoded in the A. baumannii genome and are reported to contribute to antibiotic resistance in clinical isolates. In this study, we analyzed the contributions of AdeABC and AdeIJK in antibiotic resistance and growth physiology of the two MDR strains, AYE and AB5075. We found that not only the two pumps have nonoverlapping substrate specificities, their inactivation leads to specific nonoverlapping changes in gene expression as determined by RNA sequencing and confirmed by gene knockouts and growth phenotypes. Our results suggest that inactivation of AdeIJK elicits broader changes in the abundances of mRNAs and this response is modified in the absence of AdeB. In contrast, inactivation of AdeB leads to a focused cellular response, which is not sensitive to the activity of AdeIJK. We identified additional efflux pumps and transcriptional regulators that contribute to MDR phenotype of clinical A. baumannii isolates.
Collapse
Affiliation(s)
- Inga V Leus
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Justyna Adamiak
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Anhthu N Trinh
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Richard D Smith
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Lauren Smith
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Sophie Richardson
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
71
|
Wozniak JE, Chande AT, Burd EM, Band VI, Satola SW, Farley MM, Jacob JT, Jordan IK, Weiss DS. Absence of mgrB Alleviates Negative Growth Effects of Colistin Resistance in Enterobacter cloacae. Antibiotics (Basel) 2020; 9:antibiotics9110825. [PMID: 33227907 PMCID: PMC7699182 DOI: 10.3390/antibiotics9110825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 11/21/2022] Open
Abstract
Colistin is an important last-line antibiotic to treat highly resistant Enterobacter infections. Resistance to colistin has emerged among clinical isolates but has been associated with a significant growth defect. Here, we describe a clinical Enterobacter isolate with a deletion of mgrB, a regulator of colistin resistance, leading to high-level resistance in the absence of a growth defect. The identification of a path to resistance unrestrained by growth defects suggests colistin resistance could become more common in Enterobacter.
Collapse
Affiliation(s)
- Jessie E. Wozniak
- Emory Vaccine Center, Atlanta, GA 30317, USA; (J.E.W.); (V.I.B.)
- School of Medicine, Emory University, Atlanta, GA 30322, USA; (E.M.B.); (S.W.S.); (M.M.F.); (J.T.J.)
- Emory Antibiotic Resistance Center, Atlanta, GA 30329, USA
| | - Aroon T. Chande
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Applied Bioinformatics Laboratory, Atlanta, GA 30346, USA
- PanAmerican Bioinformatics Institute, Cali 760043, Valle del Cauca, Colombia
| | - Eileen M. Burd
- School of Medicine, Emory University, Atlanta, GA 30322, USA; (E.M.B.); (S.W.S.); (M.M.F.); (J.T.J.)
- Emory Antibiotic Resistance Center, Atlanta, GA 30329, USA
| | - Victor I. Band
- Emory Vaccine Center, Atlanta, GA 30317, USA; (J.E.W.); (V.I.B.)
- School of Medicine, Emory University, Atlanta, GA 30322, USA; (E.M.B.); (S.W.S.); (M.M.F.); (J.T.J.)
- Emory Antibiotic Resistance Center, Atlanta, GA 30329, USA
| | - Sarah W. Satola
- School of Medicine, Emory University, Atlanta, GA 30322, USA; (E.M.B.); (S.W.S.); (M.M.F.); (J.T.J.)
- Emory Antibiotic Resistance Center, Atlanta, GA 30329, USA
| | - Monica M. Farley
- School of Medicine, Emory University, Atlanta, GA 30322, USA; (E.M.B.); (S.W.S.); (M.M.F.); (J.T.J.)
- Emory Antibiotic Resistance Center, Atlanta, GA 30329, USA
- Atlanta VA Medical Center, Decatur, GA 30033, USA
| | - Jesse T. Jacob
- School of Medicine, Emory University, Atlanta, GA 30322, USA; (E.M.B.); (S.W.S.); (M.M.F.); (J.T.J.)
- Emory Antibiotic Resistance Center, Atlanta, GA 30329, USA
| | - I. King Jordan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- IHRC Applied Bioinformatics Laboratory, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - David S. Weiss
- Emory Vaccine Center, Atlanta, GA 30317, USA; (J.E.W.); (V.I.B.)
- School of Medicine, Emory University, Atlanta, GA 30322, USA; (E.M.B.); (S.W.S.); (M.M.F.); (J.T.J.)
- Emory Antibiotic Resistance Center, Atlanta, GA 30329, USA
- Atlanta VA Medical Center, Decatur, GA 30033, USA
- Correspondence:
| |
Collapse
|
72
|
CsrA Supports both Environmental Persistence and Host-Associated Growth of Acinetobacter baumannii. Infect Immun 2020; 88:IAI.00259-20. [PMID: 32989034 DOI: 10.1128/iai.00259-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/18/2020] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic and frequently multidrug-resistant Gram-negative bacterial pathogen that primarily infects critically ill individuals. Indirect transmission from patient to patient in hospitals can drive infections, supported by this organism's abilities to persist on dry surfaces and rapidly colonize susceptible individuals. To investigate how A. baumannii survives on surfaces, we cultured A. baumannii in liquid media for several days and then analyzed isolates that lost the ability to survive drying. One of these isolates carried a mutation that affected the gene encoding the carbon storage regulator CsrA. As we began to examine the role of CsrA in A. baumannii, we observed that the growth of ΔcsrA mutant strains was inhibited in the presence of amino acids. The ΔcsrA mutant strains had a reduced ability to survive drying and to form biofilms but an improved ability to tolerate increased osmolarity compared with the wild type. We also examined the importance of CsrA for A. baumannii virulence. The ΔcsrA mutant strains had a greatly reduced ability to kill Galleria mellonella larvae, could not replicate in G. mellonella hemolymph, and also had a growth defect in human serum. Together, these results show that CsrA is essential for the growth of A. baumannii on host-derived substrates and is involved in desiccation tolerance, implying that CsrA controls key functions involved in the transmission of A. baumannii in hospitals.
Collapse
|
73
|
Copy Number of an Integron-Encoded Antibiotic Resistance Locus Regulates a Virulence and Opacity Switch in Acinetobacter baumannii AB5075. mBio 2020; 11:mBio.02338-20. [PMID: 33024041 PMCID: PMC7542366 DOI: 10.1128/mbio.02338-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acinetobacter baumannii remains a leading cause of hospital-acquired infections. Widespread multidrug resistance in this species has prompted the WHO to name carbapenem-resistant A. baumannii as its top priority for research and development of new antibiotics. Many strains of A. baumannii undergo a high-frequency virulence switch, which is an attractive target for new therapeutics targeting this pathogen. This study reports a novel mechanism controlling the frequency of switching in strain AB5075. The rate of switching from the virulent opaque (VIR-O) to the avirulent translucent (AV-T) variant is positively influenced by the copy number of an antibiotic resistance locus encoded on a plasmid-borne composite integron. Our data suggest that this locus encodes a small RNA that regulates opacity switching. Low-switching opaque variants, which harbor a single copy of this locus, also exhibit decreased virulence. This study increases our understanding of this critical phenotypic switch, while also identifying potential targets for virulence-based A. baumannii treatments. We describe a novel genetic mechanism in which tandem amplification of a plasmid-borne integron regulates virulence, opacity variation, and global gene expression by altering levels of a putative small RNA (sRNA) in Acinetobacter baumannii AB5075. Copy number of this amplified locus correlated with the rate of switching between virulent opaque (VIR-O) and avirulent translucent (AV-T) cells. We found that prototypical VIR-O colonies, which exhibit high levels of switching and visible sectoring with AV-T cells by 24 h of growth, harbor two copies of this locus. However, a subset of opaque colonies that did not form AV-T sectors within 24 h were found to harbor only one copy. The colonies with decreased sectoring to AV-T were designated low-switching opaque (LSO) variants and were found to exhibit a 3-log decrease in switching relative to that of the VIR-O. Overexpression studies revealed that the element regulating switching was localized to the 5′ end of the aadB gene within the amplified locus. Northern blotting indicated that an sRNA of approximately 300 nucleotides (nt) is encoded in this region and is likely responsible for regulating switching to AV-T. Copy number of the ∼300-nt sRNA was also found to affect virulence, as the LSO variant exhibited decreased virulence during murine lung infections. Global transcriptional profiling revealed that >100 genes were differentially expressed between VIR-O and LSO variants, suggesting that the ∼300-nt sRNA may act as a global regulator. Several virulence genes exhibited decreased expression in LSO cells, potentially explaining their decreased virulence.
Collapse
|
74
|
Klimkaitė L, Armalytė J, Skerniškytė J, Sužiedėlienė E. The Toxin-Antitoxin Systems of the Opportunistic Pathogen Stenotrophomonas maltophilia of Environmental and Clinical Origin. Toxins (Basel) 2020; 12:E635. [PMID: 33019620 PMCID: PMC7650669 DOI: 10.3390/toxins12100635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022] Open
Abstract
Stenotrophomonas maltophilia is a ubiquitous environmental bacterium that has recently emerged as a multidrug-resistant opportunistic pathogen causing bloodstream, respiratory, and urinary tract infections. The connection between the commensal environmental S. maltophilia and the opportunistic pathogen strains is still under investigation. Bacterial toxin-antitoxin (TA) systems have been previously associated with pathogenic traits, such as biofilm formation and resistance to antibiotics, which are important in clinical settings. The same species of the bacterium can possess various sets of TAs, possibly influencing their overall stress response. While the TA systems of other important opportunistic pathogens have been researched, nothing is known about the TA systems of S. maltophilia. Here, we report the identification and characterization of S. maltophilia type II TA systems and their prevalence in the isolates of clinical and environmental origins. We found 49 putative TA systems by bioinformatic analysis in S. maltophilia genomes. Despite their even spread in sequenced S. maltophilia genomes, we observed that relBE, hicAB, and previously undescribed COG3832-ArsR operons were present solely in clinical S. maltophilia isolates collected in Lithuania, while hipBA was more frequent in the environmental ones. The kill-rescue experiments in Escherichia coli proved higBA, hicAB, and relBE systems to be functional TA modules. Together with different TA profiles, the clinical S. maltophilia isolates exhibited stronger biofilm formation, increased antibiotic, and serum resistance compared to environmental isolates. Such tendencies suggest that certain TA systems could be used as indicators of virulence traits.
Collapse
Affiliation(s)
| | - Julija Armalytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, LT-1025 Vilnius, Lithuania; (L.K.); (J.S.)
| | | | - Edita Sužiedėlienė
- Institute of Biosciences, Life Sciences Center, Vilnius University, LT-1025 Vilnius, Lithuania; (L.K.); (J.S.)
| |
Collapse
|
75
|
Chen W. Host Innate Immune Responses to Acinetobacter baumannii Infection. Front Cell Infect Microbiol 2020; 10:486. [PMID: 33042864 PMCID: PMC7521131 DOI: 10.3389/fcimb.2020.00486] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/05/2020] [Indexed: 12/23/2022] Open
Abstract
Acinetobacter baumannii has emerged as a major threat to global public health and is one of the key human pathogens in healthcare (nosocomial and community-acquired)-associated infections. Moreover, A. baumannii rapidly develops resistance to multiple antibiotics and is now globally regarded as a serious multidrug resistant pathogen. There is an urgent need to develop novel vaccines and immunotherapeutics as alternatives to antibiotics for clinical management of A. baumannii infection. However, our knowledge of host immune responses to A. baumannii infection and the identification of novel therapeutic targets are significantly lacking. This review highlights the recent advances and critical gaps in our understanding how A. baumannii interacts with the host innate pattern-recognition receptors, induces a cascade of inflammatory cytokine and chemokine responses, and recruits innate immune effectors (such as neutrophils and macrophages) to the site of infection for effective control of the infection. Such knowledge will facilitate the identification of new targets for the design and development of effective therapeutics and vaccines to fight this emerging threat.
Collapse
Affiliation(s)
- Wangxue Chen
- Human Health and Therapeutics (HHT) Research Center, National Research Council Canada, Ottawa, ON, Canada.,Department of Biology, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
76
|
Monem S, Furmanek-Blaszk B, Łupkowska A, Kuczyńska-Wiśnik D, Stojowska-Swędrzyńska K, Laskowska E. Mechanisms Protecting Acinetobacter baumannii against Multiple Stresses Triggered by the Host Immune Response, Antibiotics and Outside-Host Environment. Int J Mol Sci 2020; 21:E5498. [PMID: 32752093 PMCID: PMC7432025 DOI: 10.3390/ijms21155498] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Acinetobacter baumannii is considered one of the most persistent pathogens responsible for nosocomial infections. Due to the emergence of multidrug resistant strains, as well as high morbidity and mortality caused by this pathogen, A. baumannii was placed on the World Health Organization (WHO) drug-resistant bacteria and antimicrobial resistance research priority list. This review summarizes current studies on mechanisms that protect A. baumannii against multiple stresses caused by the host immune response, outside host environment, and antibiotic treatment. We particularly focus on the ability of A. baumannii to survive long-term desiccation on abiotic surfaces and the population heterogeneity in A. baumannii biofilms. Insight into these protective mechanisms may provide clues for the development of new strategies to fight multidrug resistant strains of A. baumannii.
Collapse
Affiliation(s)
- Soroosh Monem
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (S.M.); (A.Ł.); (D.K.-W.); (K.S.-S.)
| | - Beata Furmanek-Blaszk
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Adrianna Łupkowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (S.M.); (A.Ł.); (D.K.-W.); (K.S.-S.)
| | - Dorota Kuczyńska-Wiśnik
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (S.M.); (A.Ł.); (D.K.-W.); (K.S.-S.)
| | - Karolina Stojowska-Swędrzyńska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (S.M.); (A.Ł.); (D.K.-W.); (K.S.-S.)
| | - Ewa Laskowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (S.M.); (A.Ł.); (D.K.-W.); (K.S.-S.)
| |
Collapse
|
77
|
Carraro N, Richard X, Sulser S, Delavat F, Mazza C, van der Meer JR. An analog to digital converter controls bistable transfer competence development of a widespread bacterial integrative and conjugative element. eLife 2020; 9:57915. [PMID: 32720896 PMCID: PMC7423338 DOI: 10.7554/elife.57915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/24/2020] [Indexed: 01/08/2023] Open
Abstract
Conjugative transfer of the integrative and conjugative element ICEclc in Pseudomonas requires development of a transfer competence state in stationary phase, which arises only in 3–5% of individual cells. The mechanisms controlling this bistable switch between non-active and transfer competent cells have long remained enigmatic. Using a variety of genetic tools and epistasis experiments in P. putida, we uncovered an ‘upstream’ cascade of three consecutive transcription factor-nodes, which controls transfer competence initiation. One of the uncovered transcription factors (named BisR) is representative for a new regulator family. Initiation activates a feedback loop, controlled by a second hitherto unrecognized heteromeric transcription factor named BisDC. Stochastic modelling and experimental data demonstrated the feedback loop to act as a scalable converter of unimodal (population-wide or ‘analog’) input to bistable (subpopulation-specific or ‘digital’) output. The feedback loop further enables prolonged production of BisDC, which ensures expression of the ‘downstream’ functions mediating ICE transfer competence in activated cells. Phylogenetic analyses showed that the ICEclc regulatory constellation with BisR and BisDC is widespread among Gamma- and Beta-proteobacteria, including various pathogenic strains, highlighting its evolutionary conservation and prime importance to control the behaviour of this wide family of conjugative elements. Mobile DNA elements are pieces of genetic material that can jump from one bacterium to another, and even across species. They are often useful to their host, for example carrying genes that allow bacteria to resist antibiotics. One example of bacterial mobile DNA is the ICEclc element. Usually, ICEclc sits passively within the bacterium’s own DNA, but in a small number of cells, it takes over, hijacking its host to multiply and to get transferred to other bacteria. Cells that can pass on the elements cannot divide, and so this ability is ultimately harmful to individual bacteria. Carrying ICEclc can therefore be positive for a bacterium but passing it on is not in the cell’s best interest. On the other hand, mobile DNAs like ICEclc have evolved to be disseminated as efficiently as possible. To shed more light on this tense relationship, Carraro et al. set out to identify the molecular mechanisms ICEclc deploys to control its host. Experiments using mutant bacteria revealed that for ICEclc to successfully take over the cell, a number of proteins needed to be produced in the correct order. In particular, a protein called BisDC triggers a mechanism to make more of itself, creating a self-reinforcing ‘feedback loop’. Mathematical simulations of the feedback loop showed that it could result in two potential outcomes for the cell. In most of the ‘virtual cells’, ICEclc ultimately remained passive; however, in a few, ICEclc managed to take over its hosts. In this case, the feedback loop ensured that there was always enough BisDC to maintain ICEclc’s control over the cell. Further analyses suggested that this feedback mechanism is also common in many other mobile DNA elements, including some that help bacteria to resist drugs. These results are an important contribution to understand how mobile DNAs manipulate their bacterial host in order to propagate and disperse. In the future, this knowledge could help develop new strategies to combat the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Nicolas Carraro
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Xavier Richard
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.,Department of Mathematics, University of Fribourg, Fribourg, Switzerland
| | - Sandra Sulser
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - François Delavat
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.,UMR CNRS 6286 UFIP, University of Nantes, Nantes, France
| | - Christian Mazza
- Department of Mathematics, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
78
|
Krasauskas R, Skerniškytė J, Martinkus J, Armalytė J, Sužiedėlienė E. Capsule Protects Acinetobacter baumannii From Inter-Bacterial Competition Mediated by CdiA Toxin. Front Microbiol 2020; 11:1493. [PMID: 32849318 PMCID: PMC7396552 DOI: 10.3389/fmicb.2020.01493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022] Open
Abstract
Currently, Acinetobacter baumannii is considered as one of the most important infectious agents causing hospital acquired infections worldwide. It has been observed that many clinically important pathogens express contact-dependent growth inhibition (CDI) phenomenon, which modulates cell–cell and cell–environment interactions, potentially allowing bacteria to adapt to ever-changing conditions. Mainly, these systems are used for the inhibition of the growth of genetically different individuals within the same species. In this work, by performing cell competition assays with three genotypically different (as determined by pulse-field gel electrophoresis) clinical A. baumannii isolates II-c, II-a, and II-a1, we show that A. baumannii capsule is the main feature protecting from CDI-mediated inhibition. We also observed that for one clinical isolate, the two-component BfmRS system, contributed to the resistance against CDI-mediated inhibition. Moreover, we were able to demonstrate, that the effector protein CdiA is released into the growth media and exhibits its inhibitory activity without the requirement of a cell–cell contact. Lastly, by evaluating the remaining number of the cells pre-mixed with the CdiA and performing live/dead assay, we demonstrate that purified CdiA protein causes a rapid cell growth arrest. Our results indicate, that capsule efficiently protects A. baumannii from a CDI-mediated inhibition by a clinical A. baumannii V15 strain, which is able to secrete CdiA effector into the growth media and cause target cell growth arrest without a cell–cell contact.
Collapse
Affiliation(s)
- Renatas Krasauskas
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Jūratė Skerniškytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Julius Martinkus
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Julija Armalytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Edita Sužiedėlienė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
79
|
Chen W. Host-pathogen interactions in Acinetobacter baumannii infection: recent advances and future challenges. Future Microbiol 2020; 15:841-845. [PMID: 32657617 DOI: 10.2217/fmb-2020-0032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Wangxue Chen
- National Research Council Canada, Human Health & Therapeutics (HHT) Research Center, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada.,Department of Biology, Brock University, St. Catharines, ON, L2S 3A1, Canada
| |
Collapse
|
80
|
Colquhoun JM, Rather PN. Insights Into Mechanisms of Biofilm Formation in Acinetobacter baumannii and Implications for Uropathogenesis. Front Cell Infect Microbiol 2020; 10:253. [PMID: 32547965 PMCID: PMC7273844 DOI: 10.3389/fcimb.2020.00253] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 04/30/2020] [Indexed: 01/10/2023] Open
Abstract
Multidrug resistant Acinetobacter baumannii is a serious healthcare threat. In fact, the Center for Disease Control recently reported that carbapenem-resistant A. baumannii is responsible for more than 8,500 infections, 700 deaths, and $281 million in healthcare costs annually in the United States with few, if any, treatment options available, leading to its designation as a pathogen of urgent concern and a priority for novel antimicrobial development. It is hypothesized that biofilms are, at least in part, responsible for the high prevalence of A. baumannii nosocomial and recurrent infections because they frequently contaminate hospital surfaces and patient indwelling devices; therefore, there has been a recent push for mechanistic understanding of biofilm formation, maturation and dispersal. However, most research has focused on A. baumannii pneumonia and bloodstream infections, despite a recent retrospective study showing that 17.1% of A. baumannii isolates compiled from clinical studies over the last two decades were obtained from urinary samples. This highlights that A. baumannii is an underappreciated uropathogen. The following minireview will examine our current understanding of A. baumannii biofilm formation and how this influences urinary tract colonization and pathogenesis.
Collapse
Affiliation(s)
- Jennifer M Colquhoun
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States
| | - Philip N Rather
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States.,Research Service, Atlanta VA Healthcare System, Decatur, GA, United States
| |
Collapse
|
81
|
Characterization of RelA in Acinetobacter baumannii. J Bacteriol 2020; 202:JB.00045-20. [PMID: 32229531 DOI: 10.1128/jb.00045-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/26/2020] [Indexed: 12/21/2022] Open
Abstract
In response to nutrient depletion, the RelA and SpoT proteins generate the signaling molecule (p)ppGpp, which then controls a number of downstream effectors to modulate cell physiology. In Acinetobacter baumannii strain AB5075, a relA ortholog (ABUW_3302) was identified by a transposon insertion that conferred an unusual colony phenotype. An in-frame deletion in relA (ΔrelA) failed to produce detectable levels of ppGpp when amino acid starvation was induced with serine hydroxamate. The ΔrelA mutant was blocked from switching from the virulent opaque colony variant (VIR-O) to the avirulent translucent colony variant (AV-T), but the rate of AV-T to VIR-O switching was unchanged. In addition, the ΔrelA mutation resulted in a pronounced hypermotile phenotype on 0.35% agar plates. This hypermotility was dependent on the activation of a LysR regulator ABUW_1132, which was required for expression of AbaR, a LuxR family quorum-sensing regulator. In the ΔrelA mutant, ABUW_1132 was also required for the increased expression of an operon composed of the ABUW_3766-ABUW_3773 genes required for production of the surfactant-like lipopeptide acinetin 505. Additional phenotypes identified in the ΔrelA mutant included (i) cell elongation at high density, (ii) reduced formation of persister cells tolerant to colistin and rifampin, and (iii) decreased virulence in a Galleria mellonella model.IMPORTANCE Acinetobacter baumannii is a pathogen of worldwide importance. Due to the increasing prevalence of antibiotic resistance, these infections are becoming increasingly difficult to treat. New therapies are required to combat multidrug-resistant isolates. The role of RelA in A. baumannii is largely unknown. This study demonstrates that like in other bacteria, RelA controls a variety of functions, including virulence. Strategies to inhibit the activity of RelA and the resulting production of ppGpp could inhibit virulence and may represent a new therapeutic approach.
Collapse
|
82
|
Affiliation(s)
- Leila M. Reyes Ruiz
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Caitlin L. Williams
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
83
|
Ramirez MS, Bonomo RA, Tolmasky ME. Carbapenemases: Transforming Acinetobacter baumannii into a Yet More Dangerous Menace. Biomolecules 2020; 10:biom10050720. [PMID: 32384624 PMCID: PMC7277208 DOI: 10.3390/biom10050720] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
Acinetobacter baumannii is a common cause of serious nosocomial infections. Although community-acquired infections are observed, the vast majority occur in people with preexisting comorbidities. A. baumannii emerged as a problematic pathogen in the 1980s when an increase in virulence, difficulty in treatment due to drug resistance, and opportunities for infection turned it into one of the most important threats to human health. Some of the clinical manifestations of A. baumannii nosocomial infection are pneumonia; bloodstream infections; lower respiratory tract, urinary tract, and wound infections; burn infections; skin and soft tissue infections (including necrotizing fasciitis); meningitis; osteomyelitis; and endocarditis. A. baumannii has an extraordinary genetic plasticity that results in a high capacity to acquire antimicrobial resistance traits. In particular, acquisition of resistance to carbapenems, which are among the antimicrobials of last resort for treatment of multidrug infections, is increasing among A. baumannii strains compounding the problem of nosocomial infections caused by this pathogen. It is not uncommon to find multidrug-resistant (MDR, resistance to at least three classes of antimicrobials), extensively drug-resistant (XDR, MDR plus resistance to carbapenems), and pan-drug-resistant (PDR, XDR plus resistance to polymyxins) nosocomial isolates that are hard to treat with the currently available drugs. In this article we review the acquired resistance to carbapenems by A. baumannii. We describe the enzymes within the OXA, NDM, VIM, IMP, and KPC groups of carbapenemases and the coding genes found in A. baumannii clinical isolates.
Collapse
Affiliation(s)
- Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA;
| | - Robert A. Bonomo
- Medical Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA;
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics; Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- WRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH 44106, USA
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA;
- Correspondence: ; Tel.: +657-278-5263
| |
Collapse
|
84
|
Allen JL, Tomlinson BR, Casella LG, Shaw LN. Regulatory networks important for survival of Acinetobacter baumannii within the host. Curr Opin Microbiol 2020; 55:74-80. [PMID: 32388085 DOI: 10.1016/j.mib.2020.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/25/2022]
Abstract
Acinetobacter baumannii is known for its intrinsic resistance to conventional antibiotic treatment and hypervirulence during infection. This coupled with its extraordinary capacity to survive in myriad harsh environments has led to increasing rates of infection in clinical settings. Numerous studies have characterized the virulence factors and resistance genes in A. baumannii responsible for the detrimental outcomes seen in patients; however, the role of regulatory factors in controlling the expression of these genes remains less well explored. Herein we discuss the latest and most influential findings on the regulatory network of A. baumannii, focusing on the transcription factors, two-component systems, and sRNAs. We place particular focus on those identified as being crucial for sensing and responding to continually changing environments, and influencing survival and virulence when engaging with the human host.
Collapse
Affiliation(s)
- Jessie L Allen
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL 33620-5150, USA
| | - Brooke R Tomlinson
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL 33620-5150, USA
| | - Leila G Casella
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL 33620-5150, USA
| | - Lindsey N Shaw
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL 33620-5150, USA.
| |
Collapse
|
85
|
Crépin S, Ottosen EN, Chandler CE, Sintsova A, Ernst RK, Mobley HLT. The UDP-GalNAcA biosynthesis genes gna-gne2 are required to maintain cell envelope integrity and in vivo fitness in multi-drug resistant Acinetobacter baumannii. Mol Microbiol 2020; 113:153-172. [PMID: 31680352 PMCID: PMC7007346 DOI: 10.1111/mmi.14407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acinetobacter baumannii infects a wide range of anatomic sites including the respiratory tract and bloodstream. Despite its clinical importance, little is known about the molecular basis of A. baumannii pathogenesis. We previously identified the UDP-N-acetyl-d-galactosaminuronic acid (UDP-GalNAcA) biosynthesis genes, gna-gne2, as being critical for survival in vivo. Herein, we demonstrate that Gna-Gne2 are part of a complex network connecting in vivo fitness, cell envelope homeostasis and resistance to antibiotics. The ∆gna-gne2 mutant exhibits a severe fitness defect during bloodstream infection. Capsule production is abolished in the mutant strain, which is concomitant with its inability to survive in human serum. In addition, the ∆gna-gne2 mutant was more susceptible to vancomycin and unable to grow on MacConkey plates, indicating an alteration in cell envelope integrity. Analysis of lipid A by mass spectrometry showed that the hexa- and hepta-acylated species were affected in the gna-gne2 mutant. Finally, the ∆gna-gne2 mutant was more susceptible to several classes of antibiotics. Together, this study demonstrates the importance of UDP-GalNAcA in the pathobiology of A. baumannii. By interrupting its biosynthesis, we showed that this molecule plays a critical role in capsule biosynthesis and maintaining the cell envelope homeostasis.
Collapse
Affiliation(s)
- Sébastien Crépin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Elizabeth N Ottosen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Courtney E Chandler
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Anna Sintsova
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Harry L T Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
86
|
Desai SK, Kenney LJ. Switching Lifestyles Is an in vivo Adaptive Strategy of Bacterial Pathogens. Front Cell Infect Microbiol 2019; 9:421. [PMID: 31921700 PMCID: PMC6917575 DOI: 10.3389/fcimb.2019.00421] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/28/2019] [Indexed: 01/05/2023] Open
Abstract
Gram-positive and Gram-negative pathogens exist as planktonic cells only at limited times during their life cycle. In response to environmental signals such as temperature, pH, osmolality, and nutrient availability, pathogenic bacteria can adopt varied cellular fates, which involves the activation of virulence gene programs and/or the induction of a sessile lifestyle to form multicellular surface-attached communities. In Salmonella, SsrB is the response regulator which governs the lifestyle switch from an intracellular virulent state to form dormant biofilms in chronically infected hosts. Using the Salmonella lifestyle switch as a paradigm, we herein compare how other pathogens alter their lifestyles to enable survival, colonization and persistence in response to different environmental cues. It is evident that lifestyle switching often involves transcriptional regulators and their modification as highlighted here. Phenotypic heterogeneity resulting from stochastic cellular processes can also drive lifestyle variation among members of a population, although this subject is not considered in the present review.
Collapse
Affiliation(s)
- Stuti K. Desai
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Linda J. Kenney
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
87
|
Human pleural fluid triggers global changes in the transcriptional landscape of Acinetobacter baumannii as an adaptive response to stress. Sci Rep 2019; 9:17251. [PMID: 31754169 PMCID: PMC6872806 DOI: 10.1038/s41598-019-53847-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022] Open
Abstract
Acinetobacter baumannii is a feared, drug-resistant pathogen, characterized by its ability to resist extreme environmental and nutrient-deprived conditions. Previously, we showed that human serum albumin (HSA) can increase foreign DNA acquisition specifically and alter the expression of genes associated with pathogenicity. Moreover, in a recent genome-wide transcriptomic study, we observed that pleural fluid (PF), an HSA-containing fluid, increases DNA acquisition, can modulate cytotoxicity, and control immune responses by eliciting changes in the A. baumannii metabolic profile. In the present work, using more stringent criteria and focusing on the analysis of genes related to pathogenicity and response to stress, we analyzed our previous RNA-seq data and performed phenotypic assays to further explore the impact of PF on A. baumannii's microbial behavior and the strategies used to overcome environmental stress. We observed that PF triggered differential expression of genes associated with motility, efflux pumps, antimicrobial resistance, biofilm formation, two-component systems (TCSs), capsule synthesis, osmotic stress, and DNA-damage response, among other categories. Phenotypic assays of A. baumannii A118 and two other clinical A. baumannii strains, revealed differences in their responses to PF in motility, biofilm formation, antibiotic susceptibility, osmotic stress, and outer membrane vesicle (OMV) production, suggesting that these changes are strain specific. We conclude that A. baumannii's pathoadaptive responses is induced by HSA-containing fluids and must be part of this bacterium armamentarium to persist in hostile environments.
Collapse
|
88
|
Garrett EM, Sekulovic O, Wetzel D, Jones JB, Edwards AN, Vargas-Cuebas G, McBride SM, Tamayo R. Phase variation of a signal transduction system controls Clostridioides difficile colony morphology, motility, and virulence. PLoS Biol 2019; 17:e3000379. [PMID: 31658249 PMCID: PMC6837544 DOI: 10.1371/journal.pbio.3000379] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 11/07/2019] [Accepted: 10/15/2019] [Indexed: 12/20/2022] Open
Abstract
Recent work has revealed that Clostridioides difficile, a major cause of nosocomial diarrheal disease, exhibits phenotypic heterogeneity within a clonal population as a result of phase variation. Many C. difficile strains representing multiple ribotypes develop two colony morphotypes, termed rough and smooth, but the biological implications of this phenomenon have not been explored. Here, we examine the molecular basis and physiological relevance of the distinct colony morphotypes produced by this bacterium. We show that C. difficile reversibly differentiates into rough and smooth colony morphologies and that bacteria derived from the isolates display discrete motility behaviors. We identified an atypical phase-variable signal transduction system consisting of a histidine kinase and two response regulators, named herein colony morphology regulators RST (CmrRST), which mediates the switch in colony morphology and motility behaviors. The CmrRST-regulated surface motility is independent of flagella and type IV pili, suggesting a novel mechanism of cell migration in C. difficile. Microscopic analysis of cell and colony structure indicates that CmrRST promotes the formation of elongated bacteria arranged in bundled chains, which may contribute to bacterial migration on surfaces. In a hamster model of acute C. difficile disease, the CmrRST system is required for disease development. Furthermore, we provide evidence that CmrRST phase varies during infection, suggesting that the intestinal environment impacts the proportion of CmrRST-expressing C. difficile. Our findings indicate that C. difficile employs phase variation of the CmrRST signal transduction system to generate phenotypic heterogeneity during infection, with concomitant effects on bacterial physiology and pathogenesis.
Collapse
Affiliation(s)
- Elizabeth M. Garrett
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ognjen Sekulovic
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Daniela Wetzel
- Department of Microbiology and Immunology, Emory University, Rollins Research Center, Atlanta, Georgia, United States of America
| | - Joshua B. Jones
- Department of Microbiology and Immunology, Emory University, Rollins Research Center, Atlanta, Georgia, United States of America
| | - Adrianne N. Edwards
- Department of Microbiology and Immunology, Emory University, Rollins Research Center, Atlanta, Georgia, United States of America
| | - Germán Vargas-Cuebas
- Department of Microbiology and Immunology, Emory University, Rollins Research Center, Atlanta, Georgia, United States of America
| | - Shonna M. McBride
- Department of Microbiology and Immunology, Emory University, Rollins Research Center, Atlanta, Georgia, United States of America
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
89
|
Geisinger E, Huo W, Hernandez-Bird J, Isberg RR. Acinetobacter baumannii: Envelope Determinants That Control Drug Resistance, Virulence, and Surface Variability. Annu Rev Microbiol 2019; 73:481-506. [DOI: 10.1146/annurev-micro-020518-115714] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acinetobacter baumannii has emerged as an important nosocomial pathogen, particularly for patients in intensive care units and with invasive indwelling devices. The most recent clinical isolates are resistant to several classes of clinically important antibiotics, greatly restricting the ability to effectively treat critically ill patients. The bacterial envelope is an important driver of A. baumannii disease, both at the level of battling against antibiotic therapy and at the level of protecting from host innate immune function. This review provides a comprehensive overview of key features of the envelope that interface with both the host and antimicrobial therapies. Carbohydrate structures that contribute to protecting from the host are detailed, and mutations that alter these structures, resulting in increased antimicrobial resistance, are explored. In addition, protein complexes involved in both intermicrobial and host-microbe interactions are described. Finally we discuss regulatory mechanisms that control the nature of the cell envelope and its impact on host innate immune function.
Collapse
Affiliation(s)
- Edward Geisinger
- Department of Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Wenwen Huo
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Juan Hernandez-Bird
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Ralph R. Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|
90
|
Abstract
Many strains of Acinetobacter baumannii, including the highly virulent strain AB5075, undergo a high-frequency switch that results in two cell types that are distinguished by their opaque or translucent colony opacities when viewed by oblique lighting. Opaque (VIR-O) and translucent (AV-T) colonies exhibit multiple phenotypic differences, including virulence. Here we describe how to distinguish between VIR-O and AV-T colony variants and how to generate highly pure stocks of each variant. We also describe methods for measuring opacity switching frequencies of cells grown on agar plates and in liquid cultures.
Collapse
|
91
|
Morris FC, Dexter C, Kostoulias X, Uddin MI, Peleg AY. The Mechanisms of Disease Caused by Acinetobacter baumannii. Front Microbiol 2019; 10:1601. [PMID: 31379771 PMCID: PMC6650576 DOI: 10.3389/fmicb.2019.01601] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/26/2019] [Indexed: 01/29/2023] Open
Abstract
Acinetobacter baumannii is a Gram negative opportunistic pathogen that has demonstrated a significant insurgence in the prevalence of infections over recent decades. With only a limited number of “traditional” virulence factors, the mechanisms underlying the success of this pathogen remain of great interest. Major advances have been made in the tools, reagents, and models to study A. baumannii pathogenesis, and this has resulted in a substantial increase in knowledge. This article provides a comprehensive review of the bacterial virulence factors, the host immune responses, and animal models applicable for the study of this important human pathogen. Collating the most recent evidence characterizing bacterial virulence factors, their cellular targets and genetic regulation, we have encompassed numerous aspects important to the success of this pathogen, including membrane proteins and cell surface adaptations promoting immune evasion, mechanisms for nutrient acquisition and community interactions. The role of innate and adaptive immune responses is reviewed and areas of paucity in our understanding are highlighted. Finally, with the vast expansion of available animal models over recent years, we have evaluated those suitable for use in the study of Acinetobacter disease, discussing their advantages and limitations.
Collapse
Affiliation(s)
- Faye C Morris
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Carina Dexter
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Xenia Kostoulias
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Muhammad Ikhtear Uddin
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Anton Y Peleg
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
92
|
Perrier A, Barlet X, Rengel D, Prior P, Poussier S, Genin S, Guidot A. Spontaneous mutations in a regulatory gene induce phenotypic heterogeneity and adaptation of Ralstonia solanacearum to changing environments. Environ Microbiol 2019; 21:3140-3152. [PMID: 31209989 DOI: 10.1111/1462-2920.14717] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 11/28/2022]
Abstract
An evolution experiment with the bacterial plant pathogen Ralstonia solanacearum revealed that several adaptive mutations conferring enhanced fitness in plants arose in the efpR gene encoding a regulator of virulence and metabolic functions. In this study, we found that an efpR mutant systematically displays colonies with two morphotypes: the type S ('smooth', similar to the wild type) and the type EV ('efpR variant'). We demonstrated that the efpH gene, a homologue of efpR, plays a key role in the control of phenotypic heterogeneity, the ΔefpR-ΔefpH double mutant being stably locked into the EV type. Using mixed infection assays, we demonstrated that the type EV is metabolically more proficient than the type S and displays fitness gain in specific environments, whereas the type S has a better fitness into the plant environment. We provide evidence that this efpR-dependent phenotypic heterogeneity is a general feature of strains of the R. solanacearum species complex and could occur in natural conditions. This study highlights the potential role of phenotypic heterogeneity in this plant pathogen as an adaptive trait to changing environments.
Collapse
Affiliation(s)
- Anthony Perrier
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Xavier Barlet
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - David Rengel
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Philippe Prior
- UMR, Peuplements Végétaux et Bioagresseurs en Milieu Tropical, INRA, Saint-Pierre, Réunion, France
| | - Stéphane Poussier
- UMR, Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Université de la Réunion, Saint-Pierre, Réunion, France
| | - Stéphane Genin
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Alice Guidot
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| |
Collapse
|
93
|
MacKenzie KD, Wang Y, Musicha P, Hansen EG, Palmer MB, Herman DJ, Feasey NA, White AP. Parallel evolution leading to impaired biofilm formation in invasive Salmonella strains. PLoS Genet 2019; 15:e1008233. [PMID: 31233504 PMCID: PMC6611641 DOI: 10.1371/journal.pgen.1008233] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/05/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022] Open
Abstract
Pathogenic Salmonella strains that cause gastroenteritis are able to colonize and replicate within the intestines of multiple host species. In general, these strains have retained an ability to form the rdar morphotype, a resistant biofilm physiology hypothesized to be important for Salmonella transmission. In contrast, Salmonella strains that are host-adapted or even host-restricted like Salmonella enterica serovar Typhi, tend to cause systemic infections and have lost the ability to form the rdar morphotype. Here, we investigated the rdar morphotype and CsgD-regulated biofilm formation in two non-typhoidal Salmonella (NTS) strains that caused invasive disease in Malawian children, S. Typhimurium D23580 and S. Enteritidis D7795, and compared them to a panel of NTS strains associated with gastroenteritis, as well as S. Typhi strains. Sequence comparisons combined with luciferase reporter technology identified key SNPs in the promoter region of csgD that either shut off biofilm formation completely (D7795) or reduced transcription of this key biofilm regulator (D23580). Phylogenetic analysis showed that these SNPs are conserved throughout the African clades of invasive isolates, dating as far back as 80 years ago. S. Typhi isolates were negative for the rdar morphotype due to truncation of eight amino acids from the C-terminus of CsgD. We present new evidence in support of parallel evolution between lineages of nontyphoidal Salmonella associated with invasive disease in Africa and the archetypal host-restricted invasive serovar; S. Typhi. We hypothesize that the African invasive isolates are becoming human-adapted and 'niche specialized' with less reliance on environmental survival, as compared to gastroenteritis-causing isolates.
Collapse
Affiliation(s)
- Keith D. MacKenzie
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK., Canada
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK., Canada
| | - Yejun Wang
- Department of Cell Biology and Genetics, Shenzhen University Health Science Center, Guangdong, China
| | - Patrick Musicha
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
- Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Elizabeth G. Hansen
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK., Canada
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK., Canada
| | - Melissa B. Palmer
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK., Canada
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK., Canada
| | - Dakoda J. Herman
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK., Canada
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK., Canada
| | - Nicholas A. Feasey
- Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Aaron P. White
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK., Canada
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK., Canada
| |
Collapse
|
94
|
Li FJ, Starrs L, Burgio G. Tug of war between Acinetobacter baumannii and host immune responses. Pathog Dis 2019; 76:5290314. [PMID: 30657912 DOI: 10.1093/femspd/ftz004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/16/2019] [Indexed: 02/06/2023] Open
Abstract
Acinetobacter baumannii is an emerging nosocomial, opportunistic pathogen with growing clinical significance. Acinetobacter baumannii has an exceptional ability to rapidly develop drug resistance and to adhere to abiotic surfaces, including medical equipment, significantly promoting bacterial spread and also limiting our ability to control A. baumannii infections. Consequently, A. baumannii is frequently responsible for ventilator-associated pneumonia in clinical settings. In order to develop an effective treatment strategy, understanding host-pathogen interactions during A. baumannii infection is crucial. Various A. baumannii virulence factors have been identified as targets of host innate pattern-recognition receptors, which leads to activation of downstream inflammasomes to develop inflammatory responses, and the recruitment of innate immune effectors against A. baumannii infection. To counteract host immune attack, A. baumannii regulates its expression of different virulence factors. This review summarizes the significance of mechanisms of host-bacteria interaction, as well as different bacteria and host defense mechanisms during A. baumannii infection.
Collapse
Affiliation(s)
- Fei-Ju Li
- Department of Immunology and infectious Diseases, John Curtin School of Medical Research, Australian National University, 131 Garran Road, Acton, ACT 2601, Australia
| | - Lora Starrs
- Department of Immunology and infectious Diseases, John Curtin School of Medical Research, Australian National University, 131 Garran Road, Acton, ACT 2601, Australia
| | - Gaetan Burgio
- Department of Immunology and infectious Diseases, John Curtin School of Medical Research, Australian National University, 131 Garran Road, Acton, ACT 2601, Australia
| |
Collapse
|
95
|
Zeidler S, Müller V. Coping with low water activities and osmotic stress in Acinetobacter baumannii: significance, current status and perspectives. Environ Microbiol 2019; 21:2212-2230. [PMID: 30773801 DOI: 10.1111/1462-2920.14565] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 01/26/2023]
Abstract
Multidrug resistant (MDR) pathogens are one of the most pressing challenges of contemporary health care. Acinetobacter baumannii takes a predominant position, emphasized in 2017 by the World Health Organization. The increasing emergence of MDR strains strengthens the demand for new antimicrobials. Possible targets for such compounds might be proteins involved in resistance against low water activity environments, since A. baumannii is known for its pronounced resistance against desiccation stress. Despite the importance of desiccation resistance for persistence of this pathogen in hospitals, comparable studies and precise data on this topic are rare and the mechanisms involved are largely unknown. This review aims to give an overview of the studies performed so far and the current knowledge on genes and proteins important for desiccation survival. 'Osmotic stress' is not identical to 'desiccation stress', but the two share the response of bacteria to low water activities. Osmotic stress resistance is in general studied much better, and in recent years it turned out that accumulation of compatible solutes in A. baumannii comprises some special features such as the bifunctional enzyme MtlD synthesizing the unusual solute mannitol. Furthermore, the regulatory pathways, as understood today, will be discussed.
Collapse
Affiliation(s)
- Sabine Zeidler
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Volker Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
96
|
Forbes S, Morgan N, Humphreys GJ, Amézquita A, Mistry H, McBain AJ. Loss of Function in Escherichia coli Exposed to Environmentally Relevant Concentrations of Benzalkonium Chloride. Appl Environ Microbiol 2019; 85:e02417-18. [PMID: 30530708 PMCID: PMC6365820 DOI: 10.1128/aem.02417-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/28/2018] [Indexed: 01/09/2023] Open
Abstract
Assessing the risk of resistance associated with biocide exposure commonly involves exposing microorganisms to biocides at concentrations close to the MIC. With the aim of representing exposure to environmental biocide residues, Escherichia coli MG1655 was grown for 20 passages in the presence or absence of benzalkonium chloride (BAC) at 100 ng/liter and 1,000 ng/liter (0.0002% and 0.002% of the MIC, respectively). BAC susceptibility, planktonic growth rates, motility, and biofilm formation were assessed, and differentially expressed genes were determined via transcriptome sequencing. Planktonic growth rate and biofilm formation were significantly reduced (P < 0.001) following BAC adaptation, while BAC minimum bactericidal concentration increased 2-fold. Transcriptomic analysis identified 289 upregulated and 391 downregulated genes after long-term BAC adaptation compared with the respective control organism passaged in BAC-free medium. When the BAC-adapted bacterium was grown in BAC-free medium, 1,052 genes were upregulated and 753 were downregulated. Repeated passage solely in biocide-free medium resulted in 460 upregulated and 476 downregulated genes compared with unexposed bacteria. Long-term exposure to environmentally relevant BAC concentrations increased the expression of genes associated with efflux and reduced the expression of genes associated with outer-membrane porins, motility, and chemotaxis. This was manifested phenotypically through the loss of function (motility). Repeated passage in a BAC-free environment resulted in the upregulation of multiple respiration-associated genes, which was reflected by increased growth rate. In summary, repeated exposure of E. coli to BAC residues resulted in significant alterations in global gene expression that were associated with minor decreases in biocide susceptibility, reductions in growth rate and biofilm formation, and loss of motility.IMPORTANCE Exposure to very low concentrations of biocides in the environment is a poorly understood risk factor for antimicrobial resistance. Repeated exposure to trace levels of the biocide benzalkonium chloride (BAC) resulted in loss of function (motility) and a general reduction in bacterial fitness but relatively minor decreases in susceptibility. These changes were accompanied by widespread changes in the Escherichia coli transcriptome. These results demonstrate the importance of including phenotypic characterization in studies designed to assess the risks of biocide exposure.
Collapse
Affiliation(s)
- Sarah Forbes
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Nicola Morgan
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Gavin J Humphreys
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Alejandro Amézquita
- Unilever, Safety and Environmental Assurance Centre, Sharnbrook, Bedfordshire, United Kingdom
| | - Hitesh Mistry
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
97
|
Singh JK, Adams FG, Brown MH. Diversity and Function of Capsular Polysaccharide in Acinetobacter baumannii. Front Microbiol 2019; 9:3301. [PMID: 30687280 PMCID: PMC6333632 DOI: 10.3389/fmicb.2018.03301] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/18/2018] [Indexed: 11/30/2022] Open
Abstract
The Gram-negative opportunistic bacterium Acinetobacter baumannii is a significant cause of hospital-borne infections worldwide. Alarmingly, the rapid development of antimicrobial resistance coupled with the remarkable ability of isolates to persist on surfaces for extended periods of time has led to infiltration of A. baumannii into our healthcare environments. A major virulence determinant of A. baumannii is the presence of a capsule that surrounds the bacterial surface. This capsule is comprised of tightly packed repeating polysaccharide units which forms a barrier around the bacterial cell wall, providing protection from environmental pressures including desiccation and disinfection regimes as well as host immune responses such as serum complement. Additionally, capsule has been shown to confer resistance to a range of clinically relevant antimicrobial compounds. Distressingly, treatment options for A. baumannii infections are becoming increasingly limited, and the urgency to develop effective infection control strategies and therapies to combat infections is apparent. An increased understanding of the contribution of capsule to the pathobiology of A. baumannii is required to determine its feasibility as a target for new strategies to combat drug resistant infections. Significant variation in capsular polysaccharide structures between A. baumannii isolates has been identified, with over 100 distinct capsule types, incorporating a vast variety of sugars. This review examines the studies undertaken to elucidate capsule diversity and advance our understanding of the role of capsule in A. baumannii pathogenesis.
Collapse
Affiliation(s)
- Jennifer K Singh
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Felise G Adams
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Melissa H Brown
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
98
|
Skerniškytė J, Krasauskas R, Péchoux C, Kulakauskas S, Armalytė J, Sužiedėlienė E. Surface-Related Features and Virulence Among Acinetobacter baumannii Clinical Isolates Belonging to International Clones I and II. Front Microbiol 2019; 9:3116. [PMID: 30671029 PMCID: PMC6331429 DOI: 10.3389/fmicb.2018.03116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/03/2018] [Indexed: 01/07/2023] Open
Abstract
Acinetobacter baumannii currently represents one of the most important nosocomial infection agent due to its multidrug-resistance and a propensity for the epidemic spread. The A. baumannii strains belonging to the international clonal lineages I (IC I) and II (IC II) are associated with the hospital outbreaks and a high virulence. However, the intra and inter lineage-specific features of strains belonging to these most worldwide spread A. baumannii clones are not thoroughly explored. In this study we have investigated a set of cell surface-related features of A. baumannii IC I (n = 20) and IC II (n = 16) lineage strains, representing 30 distinct pulsed-field gel electrophoresis types in the collection of clinical isolates obtained in Lithuanian tertiary care hospitals. We show that A. baumannii IC II strains are non-motile, do not form pellicle and display distinct capsular polysaccharide profile compared with the IC I strains. Moreover, in contrast to the overall highly hydrophobic IC I strains, IC II strains showed a greater variation in cell surface hydrophobicity. Within the IC II lineage, hydrophilic strains demonstrated reduced ability to form biofilm and adhere to the abiotic surfaces, also possessed twofold thicker cell wall and exhibited higher resistance to desiccation. Furthermore, these strains showed increased adherence to the lung epithelial cells and were more virulent in nematode and mouse infection model compared with the hydrophobic IC II strains. According to the polymerase chain reaction-based locus-typing, the reduction in hydrophobicity of IC II strains was not capsule or lipooligosaccharide locus type-dependent. Hence, this study shows that the most widespread A. baumannii clonal lineages I and II markedly differ in the series of cell surface-related phenotypes including the considerable phenotypic diversification of IC II strains at the intra-lineage level. These findings suggest that the genotypically related A. baumannii strains might evolve the features which could provide an advantage at the specific conditions outside or within the host.
Collapse
Affiliation(s)
- Jūratė Skerniškytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Renatas Krasauskas
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Saulius Kulakauskas
- INRA, MICALIS Institute, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Julija Armalytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Edita Sužiedėlienė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
99
|
Ahmad I, Karah N, Nadeem A, Wai SN, Uhlin BE. Analysis of colony phase variation switch in Acinetobacter baumannii clinical isolates. PLoS One 2019; 14:e0210082. [PMID: 30608966 PMCID: PMC6319719 DOI: 10.1371/journal.pone.0210082] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/17/2018] [Indexed: 11/19/2022] Open
Abstract
Reversible switching between opaque and translucent colony formation is a novel feature of Acinetobacter baumannii that has been associated with variations in the cell morphology, surface motility, biofilm formation, antibiotic resistance and virulence. Here, we assessed a number of phenotypic alterations related to colony switching in A. baumannii clinical isolates belonging to different multi-locus sequence types. Our findings demonstrated that these phenotypic alterations were mostly strain-specific. In general, the translucent subpopulations of A. baumannii produced more dense biofilms, were more piliated, and released larger amounts of outer membrane vesicles (OMVs). In addition, the translucent subpopulations caused reduced fertility of Caenorhabditis elegans. When assessed for effects on the immune response in RAW 264.7 macrophages, the OMVs isolated from opaque subpopulations of A. baumannii appeared to be more immunogenic than the OMVs from the translucent form. However, also the OMVs from the translucent subpopulations had the potential to evoke an immune response. Therefore, we suggest that OMVs may be considered for development of new immunotherapeutic treatments against A. baumannii infections.
Collapse
Affiliation(s)
- Irfan Ahmad
- The Laboratory for Molecular Infection Medicine Sweden (MIMS) and The Department of Molecular Biology, Umeå University, Umeå, Sweden
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Nabil Karah
- The Laboratory for Molecular Infection Medicine Sweden (MIMS) and The Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Aftab Nadeem
- The Laboratory for Molecular Infection Medicine Sweden (MIMS) and The Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Sun Nyunt Wai
- The Laboratory for Molecular Infection Medicine Sweden (MIMS) and The Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Bernt Eric Uhlin
- The Laboratory for Molecular Infection Medicine Sweden (MIMS) and The Department of Molecular Biology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
100
|
Zurawski DV, Black CC, Alamneh YA, Biggemann L, Banerjee J, Thompson MG, Wise MC, Honnold CL, Kim RK, Paranavitana C, Shearer JP, Tyner SD, Demons ST. A Porcine Wound Model of Acinetobacter baumannii Infection. Adv Wound Care (New Rochelle) 2019; 8:14-27. [PMID: 30705786 PMCID: PMC6350066 DOI: 10.1089/wound.2018.0786] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/24/2018] [Indexed: 01/25/2023] Open
Abstract
Objective: To better understand Acinetobacter baumannii pathogenesis and to advance drug discovery against this pathogen, we developed a porcine, full-thickness, excisional, monospecies infection wound model. Approach: The research was facilitated with AB5075, a previously characterized, extensively drug-resistant A. baumannii isolate. The model requires cyclophosphamide-induced neutropenia to establish a skin and soft tissue infection (SSTI) that persists beyond 7 days. Multiple, 12-mm-diameter full-thickness wounds were created in the skin overlying the cervical and thoracic dorsum. Wound beds were inoculated with 5.0 × 104 colony-forming units (CFU) and covered with dressing. Results:A. baumannii was observed in the wound bed and on the dressing in what appeared to be biofilm. When bacterial burdens were measured, proliferation to at least 106 CFU/g (log106) wound tissue was observed. Infection was further characterized by scanning electron microscopy (SEM) and peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) staining. To validate as a treatment model, polymyxin B was applied topically to a subset of infected wounds every 2 days. Then, the treated and untreated wounds were compared using multiple quantitative and qualitative techniques to include gross pathology, CFU burden, histopathology, PNA-FISH, and SEM. Innovation: This is the first study to use A. baumannii in a porcine model as the sole infectious agent. Conclusion: The porcine model allows for an additional preclinical assessment of antibacterial candidates that show promise against A. baumannii in rodent models, further evaluating safety and efficacy, and serve as a large animal in preclinical assessment for the treatment of SSTI.
Collapse
Affiliation(s)
- Daniel V. Zurawski
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Chad C. Black
- Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Yonas A. Alamneh
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Lionel Biggemann
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Jaideep Banerjee
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Mitchell G. Thompson
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Matthew C. Wise
- Veterinary Services Program, Department of Pathology, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Cary L. Honnold
- Veterinary Services Program, Department of Pathology, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Robert K. Kim
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Chrysanthi Paranavitana
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Jonathan P. Shearer
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Stuart D. Tyner
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Samandra T. Demons
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| |
Collapse
|