51
|
Dai R, Jang H, Hudetz AG, Huang Z, Mashour GA. Neural Correlates of Psychedelic, Sleep, and Sedated States Support Global Theories of Consciousness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619731. [PMID: 39484478 PMCID: PMC11526930 DOI: 10.1101/2024.10.23.619731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Understanding neural mechanisms of consciousness remains a challenging question in neuroscience. A central debate in the field concerns whether consciousness arises from global interactions that involve multiple brain regions or focal neural activity, such as in sensory cortex. Additionally, global theories diverge between the Global Neuronal Workspace (GNW) hypothesis, which emphasizes frontal and parietal areas, and the Integrated Information Theory (IIT), which focuses on information integration within posterior cortical regions. To disentangle the global vs. local and frontoparietal vs. posterior dilemmas, we measured global functional connectivity and local neural synchrony with functional magnetic resonance imaging (fMRI) data across a spectrum of conscious states in humans induced by psychedelics, sleep, and deep sedation. We found that psychedelic states are associated with increased global functional connectivity and decreased local neural synchrony. In contrast, non-REM sleep and deep sedation displayed the opposite pattern, suggesting that consciousness arises from global brain network interactions rather than localized activity. This mirror-image pattern between enhanced and diminished states was observed in both anterior-posterior (A-P) and posterior-posterior (P-P) brain regions but not within the anterior part of the brain alone. Moreover, anterior transmodal regions played a key role in A-P connectivity, while both posterior transmodal and posterior unimodal regions were critical for P-P connectivity. Overall, these findings provide empirical evidence supporting global theories of consciousness in relation to varying states of consciousness. They also bridge the gap between two prominent theories, GNW and IIT, by demonstrating how different theories can converge on shared neuronal mechanisms.
Collapse
Affiliation(s)
- Rui Dai
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Hyunwoo Jang
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anthony G. Hudetz
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zirui Huang
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - George A. Mashour
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
52
|
Cea I, Negro N, Signorelli CM. Only consciousness truly exists? Two problems for IIT 4.0's ontology. Front Psychol 2024; 15:1485433. [PMID: 39507083 PMCID: PMC11537854 DOI: 10.3389/fpsyg.2024.1485433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
In this article we present two ontological problems for the Integrated Information Theory of Consciousness 4.0: what we call the (i) the intrinsicality 2.0 problem, and (ii) the engineering problem. These problems entail that truly existing, conscious entities can depend on, and be engineered from, entities that do not objectively exist, which is problematic: if something does not exist in objective reality (i.e., in itself, independently of another entity's consciousness), then it seems that it cannot be part of the material basis and determinants of other entities that do exist on their own. We argue that the core origin of these problems lies in IIT's equation between true existence and phenomenal existence (consciousness), and the corresponding ontological exclusion of non-conscious physical entities (i.e., extrinsic entities) from objective reality. In short, these two problems seem to show that IIT should reconsider the ontological status of these extrinsic entities, because they need to exist objectively to account for the ontological implications of the scenarios we present here, which are permitted by the operational framework of the theory.
Collapse
Affiliation(s)
- Ignacio Cea
- Center for Research, Innovation and Creation, and Faculty of Religious Sciences and Philosophy, Temuco Catholic University, Temuco, Chile
- Department of Philosophy, Faculty of Philosophy and Humanities, Universidad Alberto Hurtado, Santiago, Chile
| | - Niccolo Negro
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Camilo Miguel Signorelli
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
- Center for Philosophy of Artificial Intelligence, University of Copenhagen, Copenhagen, Denmark
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
53
|
Solé R, Kempes CP, Corominas-Murtra B, De Domenico M, Kolchinsky A, Lachmann M, Libby E, Saavedra S, Smith E, Wolpert D. Fundamental constraints to the logic of living systems. Interface Focus 2024; 14:20240010. [PMID: 39464646 PMCID: PMC11503024 DOI: 10.1098/rsfs.2024.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/12/2024] [Accepted: 08/21/2024] [Indexed: 10/29/2024] Open
Abstract
It has been argued that the historical nature of evolution makes it a highly path-dependent process. Under this view, the outcome of evolutionary dynamics could have resulted in organisms with different forms and functions. At the same time, there is ample evidence that convergence and constraints strongly limit the domain of the potential design principles that evolution can achieve. Are these limitations relevant in shaping the fabric of the possible? Here, we argue that fundamental constraints are associated with the logic of living matter. We illustrate this idea by considering the thermodynamic properties of living systems, the linear nature of molecular information, the cellular nature of the building blocks of life, multicellularity and development, the threshold nature of computations in cognitive systems and the discrete nature of the architecture of ecosystems. In all these examples, we present available evidence and suggest potential avenues towards a well-defined theoretical formulation.
Collapse
Affiliation(s)
- Ricard Solé
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, Barcelona08003, Spain
- Institut de Biologia Evolutiva, CSIC-UPF, Pg Maritim de la Barceloneta 37, Barcelona08003, Spain
- European Centre for Living Technology, Sestiere Dorsoduro, 3911, Venezia VE30123, Italy
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM87501, USA
| | | | | | - Manlio De Domenico
- Complex Multilayer Networks Lab, Department of Physics and Astronomy ‘Galileo Galilei’, University of Padua, Via Marzolo 8, Padova35131, Italy
- Padua Center for Network Medicine, University of Padua, Via Marzolo 8, Padova35131, Italy
| | - Artemy Kolchinsky
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, Barcelona08003, Spain
- Universal Biology Institute, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | | | - Eric Libby
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM87501, USA
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå90187, Sweden
| | - Serguei Saavedra
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM87501, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eric Smith
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM87501, USA
- Department of Biology, Georgia Institute of Technology, Atlanta, GA30332, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo152-8550, Japan
| | - David Wolpert
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM87501, USA
| |
Collapse
|
54
|
Altehenger H, Menges L, Schulte P. How AI Systems Can Be Blameworthy. PHILOSOPHIA (RAMAT-GAN, ISRAEL) 2024; 52:1083-1106. [PMID: 39583153 PMCID: PMC11579044 DOI: 10.1007/s11406-024-00779-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/12/2024] [Accepted: 09/02/2024] [Indexed: 11/26/2024]
Abstract
AI systems, like self-driving cars, healthcare robots, or Autonomous Weapon Systems, already play an increasingly important role in our lives and will do so to an even greater extent in the near future. This raises a fundamental philosophical question: who is morally responsible when such systems cause unjustified harm? In the paper, we argue for the admittedly surprising claim that some of these systems can themselves be morally responsible for their conduct in an important and everyday sense of the term-the attributability sense. More specifically, relying on work by Nomy Arpaly and Timothy Schroeder (In Praise of Desire, OUP 2014), we propose that the behavior of these systems can manifest their 'quality of will' and thus be regarded as something they can be blameworthy for. We develop this position in detail, justify some of its crucial presuppositions, and defend it against potential objections.
Collapse
Affiliation(s)
- Hannah Altehenger
- Department of Philosophy, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Leonhard Menges
- Department of Philosophy (Faculty of Social Sciences), University of Salzburg, Franziskanergasse 1, 5020 Salzburg, Austria
| | - Peter Schulte
- Department of Historical, Philosophical and Religious Studies, Umeå University, Universitetstorget 4, 901 87 Umeå, Sweden
| |
Collapse
|
55
|
Pardo-Valencia J, Moreno-Gomez M, Mercado N, Pro B, Ammann C, Humanes-Valera D, Foffani G. Local wakefulness-like activity of layer 5 cortex under general anaesthesia. J Physiol 2024; 602:5289-5307. [PMID: 39316039 DOI: 10.1113/jp286417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/08/2024] [Indexed: 09/25/2024] Open
Abstract
Consciousness, defined as being aware of and responsive to one's surroundings, is characteristic of normal waking life and typically is lost during sleep and general anaesthesia. The traditional view of consciousness as a global brain state has evolved toward a more sophisticated interplay between global and local states, with the presence of local sleep in the awake brain and local wakefulness in the sleeping brain. However, this interplay is not clear for general anaesthesia, where loss of consciousness was recently suggested to be associated with a global state of brain-wide synchrony that selectively involves layer 5 cortical pyramidal neurons across sensory, motor and associative areas. According to this global view, local wakefulness of layer 5 cortex should be incompatible with deep anaesthesia, a hypothesis that deserves to be scrutinised with causal manipulations. Here, we show that unilateral chemogenetic activation of layer 5 pyramidal neurons in the sensorimotor cortex of isoflurane-anaesthetised mice induces a local state transition from slow-wave activity to tonic firing in the transfected hemisphere. This wakefulness-like activity dramatically disrupts layer 5 interhemispheric synchrony with mirror-image locations in the contralateral hemisphere, but does not reduce the level of unconsciousness under deep anaesthesia, nor in the transitions to/from anaesthesia. Global layer 5 synchrony may thus be a sufficient condition for anaesthesia-induced unconsciousness, but is not a necessary one, at least under isoflurane anaesthesia. Local wakefulness-like activity of layer 5 cortex can be induced and maintained under deep anaesthesia, encouraging further investigation into the local vs. global aspects of anaesthesia-induced unconsciousness. KEY POINTS: The neural correlates of consciousness have evolved from global brain states to a nuanced interplay between global and local states, evident in terms of local sleep in awake brains and local wakefulness in sleeping brains. The concept of local wakefulness remains unclear for general anaesthesia, where the loss of consciousness has been recently suggested to involve brain-wide synchrony of layer 5 cortical neurons. We found that local wakefulness-like activity of layer 5 cortical can be chemogenetically induced in anaesthetised mice without affecting the depth of anaesthesia or the transitions to and from unconsciousness. Global layer 5 synchrony may thus be a sufficient but not necessary feature for the unconsciousness induced by general anaesthesia. Local wakefulness-like activity of layer 5 neurons is compatible with general anaesthesia, thus promoting further investigation into the local vs. global aspects of anaesthesia-induced unconsciousness.
Collapse
Affiliation(s)
- Jesús Pardo-Valencia
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
| | - Miryam Moreno-Gomez
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
- PhD Program in Neuroscience, Universidad Autonoma de Madrid-Cajal Institute, Madrid, Spain
| | - Noelia Mercado
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
| | - Beatriz Pro
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
| | - Claudia Ammann
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
- Facultad HM de Ciencias de la Salud, Universidad Camilo José Cela, Madrid, Spain
| | - Desire Humanes-Valera
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
| | - Guglielmo Foffani
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
- Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
56
|
Fleming SM, Shea N. Quality space computations for consciousness. Trends Cogn Sci 2024; 28:896-906. [PMID: 39025769 DOI: 10.1016/j.tics.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024]
Abstract
The quality space hypothesis about conscious experience proposes that conscious sensory states are experienced in relation to other possible sensory states. For instance, the colour red is experienced as being more like orange, and less like green or blue. Recent empirical findings suggest that subjective similarity space can be explained in terms of similarities in neural activation patterns. Here, we consider how localist, workspace, and higher-order theories of consciousness can accommodate claims about the qualitative character of experience and functionally support a quality space. We review existing empirical evidence for each of these positions, and highlight novel experimental tools, such as altering local activation spaces via brain stimulation or behavioural training, that can distinguish these accounts.
Collapse
Affiliation(s)
- Stephen M Fleming
- Wellcome Centre for Human Neuroimaging, University College London, London, UK; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK; Department of Experimental Psychology, University College London, London, UK; Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada.
| | - Nicholas Shea
- Institute of Philosophy, School of Advanced Study, University of London, London, UK; Faculty of Philosophy, University of Oxford, Oxford, UK.
| |
Collapse
|
57
|
Yurchenko SB. Panpsychism and dualism in the science of consciousness. Neurosci Biobehav Rev 2024; 165:105845. [PMID: 39106941 DOI: 10.1016/j.neubiorev.2024.105845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024]
Abstract
A resurgence of panpsychism and dualism is a matter of ongoing debate in modern neuroscience. Although metaphysically hostile, panpsychism and dualism both persist in the science of consciousness because the former is proposed as a straightforward answer to the problem of integrating consciousness into the fabric of physical reality, whereas the latter proposes a simple solution to the problem of free will by endowing consciousness with causal power as a prerequisite for moral responsibility. I take the Integrated Information Theory (IIT) as a paradigmatic exemplar of a theory of consciousness (ToC) that makes its commitments to panpsychism and dualism within a unified framework. These features are not, however, unique for IIT. Many ToCs are implicitly prone to some degree of panpsychism whenever they strive to propose a universal definition of consciousness, associated with one or another known phenomenon. Yet, those ToCs that can be characterized as strongly emergent are at risk of being dualist. A remedy against both covert dualism and uncomfortable corollaries of panpsychism can be found in the evolutionary theory of life, called here "bioprotopsychism" and generalized in terms of autopoiesis and the free energy principle. Bioprotopsychism provides a biologically inspired basis for a minimalist approach to consciousness via the triad "chemotaxis-efference copy mechanism-counterfactual active inference" by associating the stream of weakly emergent conscious states with an amount of information (best guesses) of the brain, engaged in unconscious predictive processing.
Collapse
Affiliation(s)
- Sergey B Yurchenko
- Brain and Consciousness Independent Research Center, Andijan 710132, Uzbekistan.
| |
Collapse
|
58
|
Ruan Z, Li H. Two Levels of Integrated Information Theory: From Autonomous Systems to Conscious Life. ENTROPY (BASEL, SWITZERLAND) 2024; 26:761. [PMID: 39330094 PMCID: PMC11431274 DOI: 10.3390/e26090761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/03/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
Integrated Information Theory (IIT) is one of the most prominent candidates for a theory of consciousness, although it has received much criticism for trying to live up to expectations. Based on the relevance of three issues generalized from the developments of IITs, we have summarized the main ideas of IIT into two levels. At the second level, IIT claims to be strictly anchoring consciousness, but the first level on which it is based is more about autonomous systems or systems that have reached some other critical complexity. In this paper, we argue that the clear gap between the two levels of explanation of IIT has led to these criticisms and that its panpsychist tendency plays a crucial role in this. We suggest that the problems of IIT are far from being "pseudoscience", and by adding more necessary elements, when the first level is combined with the second level, IIT can genuinely move toward an appropriate theory of consciousness that can provide necessary and sufficient interpretations.
Collapse
Affiliation(s)
- Zenan Ruan
- Department of Public Administration, Hangzhou Institute of Administration, Hangzhou 310024, China
| | - Hengwei Li
- School of Philosophy, Zhejiang University, Hangzhou 310058, China
- Center for the Study of Language and Cognition, Zhejiang University, Hangzhou 310058, China
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
59
|
Ciceri S, Oude Lohuis MN, Rottschäfer V, Pennartz CMA, Avitabile D, van Gaal S, Olcese U. The Neural and Computational Architecture of Feedback Dynamics in Mouse Cortex during Stimulus Report. eNeuro 2024; 11:ENEURO.0191-24.2024. [PMID: 39260892 PMCID: PMC11444237 DOI: 10.1523/eneuro.0191-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 09/13/2024] Open
Abstract
Conscious reportability of visual input is associated with a bimodal neural response in the primary visual cortex (V1): an early-latency response coupled to stimulus features and a late-latency response coupled to stimulus report or detection. This late wave of activity, central to major theories of consciousness, is thought to be driven by the prefrontal cortex (PFC), responsible for "igniting" it. Here we analyzed two electrophysiological studies in mice performing different stimulus detection tasks and characterized neural activity profiles in three key cortical regions: V1, posterior parietal cortex (PPC), and PFC. We then developed a minimal network model, constrained by known connectivity between these regions, reproducing the spatiotemporal propagation of visual- and report-related activity. Remarkably, while PFC was indeed necessary to generate report-related activity in V1, this occurred only through the mediation of PPC. PPC, and not PFC, had the final veto in enabling the report-related late wave of V1 activity.
Collapse
Affiliation(s)
- Simone Ciceri
- Institute for Theoretical Physics, Utrecht University, Utrecht 3584CC, Netherlands
| | - Matthijs N Oude Lohuis
- Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098XH, Netherlands
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam 1098XH, Netherlands
| | - Vivi Rottschäfer
- Mathematical Institute, Leiden University, Leiden 2333CA, Netherlands
- Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam 1098XG, Netherlands
| | - Cyriel M A Pennartz
- Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098XH, Netherlands
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam 1098XH, Netherlands
| | - Daniele Avitabile
- Amsterdam Center for Dynamics and Computation, Mathematics Department, Vrije Universiteit Amsterdam, Amsterdam 1081HV, Netherlands
- Mathneuro Team, Inria Centre at Université Côte d'Azur, Sophia Antipolis 06902, France
- Amsterdam Neuroscience, Systems and Network Neuroscience, Amsterdam 1081HV, Netherlands
| | - Simon van Gaal
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam 1098XH, Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam 1018WT, Netherlands
| | - Umberto Olcese
- Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098XH, Netherlands
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam 1098XH, Netherlands
| |
Collapse
|
60
|
Grinde B. Consciousness makes sense in the light of evolution. Neurosci Biobehav Rev 2024; 164:105824. [PMID: 39047928 DOI: 10.1016/j.neubiorev.2024.105824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
I believe consciousness is a property of advanced nervous systems, and as such a product of evolution. Thus, to understand consciousness we need to describe the trajectory leading to its evolution and the selective advantages conferred. A deeper understanding of the neurology would be a significant contribution, but other advanced functions, such as hearing and vision, are explained with a comparable lack of detailed knowledge of the brain processes responsible. In this paper, I try to add details and credence to a previously suggested, evolution-based model of consciousness. According to this model, the feature started to evolve in early amniotes (reptiles, birds, and mammals) some 320 million years ago. The reason was the introduction of feelings as a strategy for making behavioral decisions.
Collapse
Affiliation(s)
- Bjørn Grinde
- Professor Emeritus, University of Oslo, Problemveien 11, Oslo 0313, Norway.
| |
Collapse
|
61
|
Grünbaum T, Christensen MS. The functional role of conscious sensation of movement. Neurosci Biobehav Rev 2024; 164:105813. [PMID: 39019245 DOI: 10.1016/j.neubiorev.2024.105813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/25/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
This paper proposes a new framework for investigating neural signals sufficient for a conscious sensation of movement and their role in motor control. We focus on signals sufficient for proprioceptive awareness, particularly from muscle spindle activation and from primary motor cortex (M1). Our review of muscle vibration studies reveals that afferent signals alone can induce conscious sensations of movement. Similarly, studies employing peripheral nerve blocks suggest that efferent signals from M1 are sufficient for sensations of movement. On this basis, we show that competing theories of motor control assign different roles to sensation of movement. According to motor command theories, sensation of movement corresponds to an estimation of the current state based on afferent signals, efferent signals, and predictions. In contrast, within active inference architectures, sensations correspond to proprioceptive predictions driven by efferent signals from M1. The focus on sensation of movement provides a way to critically compare and evaluate the two theories. Our analysis offers new insights into the functional roles of movement sensations in motor control and consciousness.
Collapse
Affiliation(s)
- Thor Grünbaum
- Department of Psychology, University of Copenhagen, Denmark; CoInAct Research Group, University of Copenhagen, Denmark; Section for Philosophy, University of Copenhagen, Denmark.
| | - Mark Schram Christensen
- Department of Psychology, University of Copenhagen, Denmark; CoInAct Research Group, University of Copenhagen, Denmark
| |
Collapse
|
62
|
Neisser J. Studies in spatiotemporal neuroscience: Comment on "Beyond task response: Pre-stimulus activity modulates contents of consciousness" by G. Northoff, F. Zilio, & J. Zhang. Phys Life Rev 2024; 50:59-60. [PMID: 38944918 DOI: 10.1016/j.plrev.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 07/02/2024]
Affiliation(s)
- Joseph Neisser
- Department of Philosophy, Grinnell College, 1120 Park St, Grinnell, IA, 50112, USA.
| |
Collapse
|
63
|
Cavicchioli M, Santoni A, Chiappetta F, Deodato M, Di Dona G, Scalabrini A, Galli F, Ronconi L. Psychological dissociation and temporal integration/segregation across the senses: An experimental study. Conscious Cogn 2024; 124:103731. [PMID: 39096823 DOI: 10.1016/j.concog.2024.103731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
There are no studies that have experimentally tested how temporal integration/segregation of sensory inputs might be linked to the emergence of dissociative experiences and alterations of emotional functioning. Thirty-six participants completed 3 sensory integration tasks. Psychometric thresholds were estimated as indexes of temporal integration/segregation processes. We collected self-report measures of pre-task trait levels of dissociation, as well as pre- post-task changes in both dissociation and emotionality. An independent sample of 21 subjects completed a control experiment administering the Attention Network Test. Results showed: (i) a significant increase of dissociative experiences after the completion of sensory integration tasks, but not after the ANT task; (ii) that subjective thresholds predicted the emergence of dissociative states; (iii) temporal integration efforts affected positive emotionality, which was explained by the extent of task-dependent dissociative states. The present findings reveal that dissociation could be understood in terms of an imbalance between "hyper-segregation" and "hyper-integration" processes.
Collapse
Affiliation(s)
- Marco Cavicchioli
- Department of Dynamic and Clinical Psychology, and Health Studies, Faculty of Medicine and Psychology, SAPIENZA University of Rome, Italy; Faculty of Psychology, Sigmund Freud University, Ripa di Porta Ticinese 77, Milan, Italy.
| | - Alessia Santoni
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Michele Deodato
- Psychology Program, Division of Science, New York University Abu Dhabi, United Arab Emirates
| | - Giuseppe Di Dona
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Scalabrini
- Department of Human and Social Science, University of Bergamo, Mental Health, Bergamo, Italy
| | - Federica Galli
- Department of Dynamic and Clinical Psychology, and Health Studies, Faculty of Medicine and Psychology, SAPIENZA University of Rome, Italy
| | - Luca Ronconi
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
64
|
Lawrence DW, DiBattista AP, Timmermann C. N, N-Dimethyltryptamine (DMT)-Occasioned Familiarity and the Sense of Familiarity Questionnaire (SOF-Q). J Psychoactive Drugs 2024; 56:443-455. [PMID: 37428989 DOI: 10.1080/02791072.2023.2230568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 07/12/2023]
Abstract
This study investigated the sense of familiarity attributed to N, N-dimethyltryptamine (DMT) experiences. 227 naturalistic inhaled-DMT experiences reporting a sense of familiarity were included. No experiences referenced a previous DMT or psychedelic experience as the source of the familiarity. A high prevalence of concomitant features discordant from ordinary consciousness were identified: features of a mystical experience (97.4%), ego-dissolution (16.3%), and a "profound experience of death" (11.0%). The Sense of Familiarity Questionnaire (SOF-Q) was developed assessing 19 features of familiarity across 5 themes: (1) Familiarity with the Feeling, Emotion, or Knowledge Gained; (2) Familiarity with the Place, Space, State, or Environment; (3) Familiarity with the Act of Going Through the Experience; (4) Familiarity with Transcendent Features; and (5) Familiarity Imparted by an Entity Encounter. Bayesian latent class modeling yielded two stable classes of participants who shared similar SOF-Q responses. Class 1 participants responded, "yes" more often for items within "Familiarity Imparted by an Entity Encounter" and "Familiarity with the Feeling, Emotion, or Knowledge Gained." Results catalogued features of the sense of familiarity imparted by DMT, which appears to be non-referential to a previous psychedelic experience. Findings provide insights into the unique and enigmatic familiarity reported during DMT experiences and offer a foundation for further exploration into this intriguing phenomenon.
Collapse
Affiliation(s)
- David Wyndham Lawrence
- Department of Family & Community Medicine, Faculty of Medicine, University of Toronto, Toronto, Canada
- Mount Sinai Hospital, Sinai Health System, Toronto, Canada
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Canada
| | - Alex P DiBattista
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Canada
| | - Christopher Timmermann
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
65
|
Eisen AJ, Kozachkov L, Bastos AM, Donoghue JA, Mahnke MK, Brincat SL, Chandra S, Tauber J, Brown EN, Fiete IR, Miller EK. Propofol anesthesia destabilizes neural dynamics across cortex. Neuron 2024; 112:2799-2813.e9. [PMID: 39013467 PMCID: PMC11923585 DOI: 10.1016/j.neuron.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/13/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024]
Abstract
Every day, hundreds of thousands of people undergo general anesthesia. One hypothesis is that anesthesia disrupts dynamic stability-the ability of the brain to balance excitability with the need to be stable and controllable. To test this hypothesis, we developed a method for quantifying changes in population-level dynamic stability in complex systems: delayed linear analysis for stability estimation (DeLASE). Propofol was used to transition animals between the awake state and anesthetized unconsciousness. DeLASE was applied to macaque cortex local field potentials (LFPs). We found that neural dynamics were more unstable in unconsciousness compared with the awake state. Cortical trajectories mirrored predictions from destabilized linear systems. We mimicked the effect of propofol in simulated neural networks by increasing inhibitory tone. This in turn destabilized the networks, as observed in the neural data. Our results suggest that anesthesia disrupts dynamical stability that is required for consciousness.
Collapse
Affiliation(s)
- Adam J Eisen
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The K. Lisa Yang Integrative Computational Neuroscience Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leo Kozachkov
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The K. Lisa Yang Integrative Computational Neuroscience Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - André M Bastos
- Department of Psychology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA
| | - Jacob A Donoghue
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Beacon Biosignals, Boston, MA 02114, USA
| | - Meredith K Mahnke
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Scott L Brincat
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sarthak Chandra
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The K. Lisa Yang Integrative Computational Neuroscience Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John Tauber
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA
| | - Emery N Brown
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ila R Fiete
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The K. Lisa Yang Integrative Computational Neuroscience Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Earl K Miller
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
66
|
Fang Z, Dang Y, Li X, Zhao Q, Zhang M, Zhao H. Intracranial neural representation of phenomenal and access consciousness in the human brain. Neuroimage 2024; 297:120699. [PMID: 38944172 DOI: 10.1016/j.neuroimage.2024.120699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024] Open
Abstract
After more than 30 years of extensive investigation, impressive progress has been made in identifying the neural correlates of consciousness (NCC). However, the functional role of spatiotemporally distinct consciousness-related neural activity in conscious perception is debated. An influential framework proposed that consciousness-related neural activities could be dissociated into two distinct processes: phenomenal and access consciousness. However, though hotly debated, its authenticity has not been examined in a single paradigm with more informative intracranial recordings. In the present study, we employed a visual awareness task and recorded the local field potential (LFP) of patients with electrodes implanted in cortical and subcortical regions. Overall, we found that the latency of visual awareness-related activity exhibited a bimodal distribution, and the recording sites with short and long latencies were largely separated in location, except in the lateral prefrontal cortex (lPFC). The mixture of short and long latencies in the lPFC indicates that it plays a critical role in linking phenomenal and access consciousness. However, the division between the two is not as simple as the central sulcus, as proposed previously. Moreover, in 4 patients with electrodes implanted in the bilateral prefrontal cortex, early awareness-related activity was confined to the contralateral side, while late awareness-related activity appeared on both sides. Finally, Granger causality analysis showed that awareness-related information flowed from the early sites to the late sites. These results provide the first LFP evidence of neural correlates of phenomenal and access consciousness, which sheds light on the spatiotemporal dynamics of NCC in the human brain.
Collapse
Affiliation(s)
- Zepeng Fang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Division of Psychology, Beijing Normal University, Beijing 100875, China
| | - Yuanyuan Dang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Division of Psychology, Beijing Normal University, Beijing 100875, China
| | - Qianchuan Zhao
- Center for Intelligent and Networked Systems, Department of Automation, TNLIST, Tsinghua University, Beijing 100084, China
| | - Mingsha Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Division of Psychology, Beijing Normal University, Beijing 100875, China.
| | - Hulin Zhao
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
67
|
Kosik KS. Why brain organoids are not conscious yet. PATTERNS (NEW YORK, N.Y.) 2024; 5:101011. [PMID: 39233695 PMCID: PMC11368692 DOI: 10.1016/j.patter.2024.101011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Rapid advances in human brain organoid technologies have prompted the question of their consciousness. Although brain organoids resemble many facets of the brain, their shortcomings strongly suggest that they do not fit any of the operational definitions of consciousness. As organoids gain internal processing systems through statistical learning and closed loop algorithms, interact with the external world, and become embodied through fusion with other organ systems, questions of biosynthetic consciousness will arise.
Collapse
Affiliation(s)
- Kenneth S. Kosik
- Neuroscience Research Institute and Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
68
|
Nikolić M, di Plinio S, Sauter D, Keysers C, Gazzola V. The blushing brain: neural substrates of cheek temperature increase in response to self-observation. Proc Biol Sci 2024; 291:20240958. [PMID: 39013420 PMCID: PMC11251765 DOI: 10.1098/rspb.2024.0958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 07/18/2024] Open
Abstract
Darwin proposed that blushing-the reddening of the face owing to heightened self-awareness-is 'the most human of all expressions'. Yet, relatively little is known about the underlying mechanisms of blushing. Theories diverge on whether it is a rapid, spontaneous emotional response that does not involve reflection upon the self or whether it results from higher-order socio-cognitive processes. Investigating the neural substrates of blushing can shed light on the mental processes underlying blushing and the mechanisms involved in self-awareness. To reveal neural activity associated with blushing, 16-20 year-old participants (n = 40) watched pre-recorded videos of themselves (versus other people as a control condition) singing karaoke in a magnetic resonance imaging scanner. We measured participants' cheek temperature increase-an indicator of blushing-and their brain activity. The results showed that blushing is higher when watching oneself versus others sing. Those who blushed more while watching themselves sing had, on average, higher activation in the cerebellum (lobule V) and the left paracentral lobe and exhibited more time-locked processing of the videos in early visual cortices. These findings show that blushing is associated with the activation of brain areas involved in emotional arousal, suggesting that it may occur independently of higher-order socio-cognitive processes. Our results provide new avenues for future research on self-awareness in infants and non-human animals.
Collapse
Affiliation(s)
- Milica Nikolić
- Institute for Child Development and Education, University of Amsterdam, Amsterdam1018 WS, The Netherlands
| | - Simone di Plinio
- Department of Neuroscience, Imaging, and Clinical Sciences, D'Annunzio University of Chieti–Pescara, Pescara66100, Italy
| | - Disa Sauter
- Psychology Institute, University of Amsterdam, Amsterdam1018 WS, The Netherlands
| | - Christian Keysers
- Psychology Institute, University of Amsterdam, Amsterdam1018 WS, The Netherlands
- Netherlands Institute for Neuroscience, KNAW, Amsterdam1105 BA, The Netherlands
| | - Valeria Gazzola
- Psychology Institute, University of Amsterdam, Amsterdam1018 WS, The Netherlands
- Netherlands Institute for Neuroscience, KNAW, Amsterdam1105 BA, The Netherlands
| |
Collapse
|
69
|
Mestre R, Astobiza AM, Webster-Wood VA, Ryan M, Saif MTA. Ethics and responsibility in biohybrid robotics research. Proc Natl Acad Sci U S A 2024; 121:e2310458121. [PMID: 39042690 PMCID: PMC11294997 DOI: 10.1073/pnas.2310458121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
The industrial revolution of the 19th century marked the onset of an era of machines and robots that transformed societies. Since the beginning of the 21st century, a new generation of robots envisions similar societal transformation. These robots are biohybrid: part living and part engineered. They may self-assemble and emerge from complex interactions between living cells. While this new era of living robots presents unprecedented opportunities for positive societal impact, it also poses a host of ethical challenges. A systematic, nuanced examination of these ethical issues is of paramount importance to guide the evolution of this nascent field. Multidisciplinary fields face the challenge that inertia around collective action to address ethical boundaries may result in unexpected consequences for researchers and societies alike. In this Perspective, we i) clarify the ethical challenges associated with biohybrid robotics, ii) discuss the need for and elements of a potential governance framework tailored to this technology; and iii) propose tangible steps toward ethical compliance and policy formation in the field of biohybrid robotics.
Collapse
Affiliation(s)
- Rafael Mestre
- Agents, Interaction and Complexity Group, School of Electronics and Computer Science, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
- Politics and International Relations Department, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
- Centre for Democratic Futures, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
- Centre for Robotics, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
- Institute for Life Sciences, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
| | - Aníbal M. Astobiza
- Department of Public Law, University of the Basque Country/Euskal Herriko Unibertsitatea, Donostia20018, Spain
| | - Victoria A. Webster-Wood
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh15213, Pennsylvania
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh15213, Pennsylvania
- The Robotics Institute, Carnegie Mellon University, Pittsburgh15213, Pennsylvania
- The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh15213, Pennsylvania
| | - Matt Ryan
- Politics and International Relations Department, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
- Centre for Democratic Futures, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
- Democratic Innovations Research Unit, Goethe-Universität, Frankfurt am Main60323, Germany
| | - M. Taher A. Saif
- Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana61801, Illinois
| |
Collapse
|
70
|
Perez Velazquez JL, Mateos DM, Guevara R, Wennberg R. Unifying biophysical consciousness theories with MaxCon: maximizing configurations of brain connectivity. Front Syst Neurosci 2024; 18:1426986. [PMID: 39135560 PMCID: PMC11317472 DOI: 10.3389/fnsys.2024.1426986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
There is such a vast proliferation of scientific theories of consciousness that it is worrying some scholars. There are even competitions to test different theories, and the results are inconclusive. Consciousness research, far from converging toward a unifying framework, is becoming more discordant than ever, especially with respect to theoretical elements that do not have a clear neurobiological basis. Rather than dueling theories, an integration across theories is needed to facilitate a comprehensive view on consciousness and on how normal nervous system dynamics can develop into pathological states. In dealing with what is considered an extremely complex matter, we try to adopt a perspective from which the subject appears in relative simplicity. Grounded in experimental and theoretical observations, we advance an encompassing biophysical theory, MaxCon, which incorporates aspects of several of the main existing neuroscientific consciousness theories, finding convergence points in an attempt to simplify and to understand how cellular collective activity is organized to fulfill the dynamic requirements of the diverse theories our proposal comprises. Moreover, a computable index indicating consciousness level is presented. Derived from the level of description of the interactions among cell networks, our proposal highlights the association of consciousness with maximization of the number of configurations of neural network connections -constrained by neuroanatomy, biophysics and the environment- that is common to all consciousness theories.
Collapse
Affiliation(s)
- Jose Luis Perez Velazquez
- The Ronin Institute, Montclair, NJ, United States
- Institute for Globally Distributed Open Research and Education, Gothenburg, Sweden
| | - Diego Martin Mateos
- Institute for Globally Distributed Open Research and Education, Gothenburg, Sweden
- Achucarro Basque Centre for Neuroscience, Leioa, Spain
| | - Ramon Guevara
- Department of Physics and Astronomy, Department of Developmental Psychology and Socialization, University of Padua, Padova, Italy
| | - Richard Wennberg
- University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
71
|
Martín-Signes M, Chica AB, Bartolomeo P, Thiebaut de Schotten M. Streams of conscious visual experience. Commun Biol 2024; 7:908. [PMID: 39068236 PMCID: PMC11283449 DOI: 10.1038/s42003-024-06593-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Consciousness, a cornerstone of human cognition, is believed to arise from complex neural interactions. Traditional views have focused on localized fronto-parietal networks or broader inter-regional dynamics. In our study, we leverage advanced fMRI techniques, including the novel Functionnectome framework, to unravel the intricate relationship between brain circuits and functional activity shaping visual consciousness. Our findings underscore the importance of the superior longitudinal fasciculus within the fronto-parietal fibers, linking conscious perception with spatial neglect. Additionally, our data reveal the critical contribution of the temporo-parietal fibers and the splenium of the corpus callosum in connecting visual information with conscious representation and their verbalization. Central to these networks is the thalamus, posited as a conductor in synchronizing these interactive processes. Contrasting traditional fMRI analyses with the Functionnectome approach, our results emphasize the important explanatory power of interactive mechanisms over localized activations for visual consciousness. This research paves the way for a comprehensive understanding of consciousness, highlighting the complex network of neural connections that lead to awareness.
Collapse
Affiliation(s)
- Mar Martín-Signes
- Experimental Psychology Department, and Brain, Mind, and Behavior Research Center (CIMCYC-UGR), University of Granada, Granada, Spain.
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France.
| | - Ana B Chica
- Experimental Psychology Department, and Brain, Mind, and Behavior Research Center (CIMCYC-UGR), University of Granada, Granada, Spain
| | - Paolo Bartolomeo
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Michel Thiebaut de Schotten
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France.
- Brain Connectivity and Behaviour Laboratory, Sorbonne Université, Paris, France.
| |
Collapse
|
72
|
Altmayer V, Sangare A, Calligaris C, Puybasset L, Perlbarg V, Naccache L, Sitt JD, Rohaut B. Functional and structural brain connectivity in disorders of consciousness. Brain Struct Funct 2024:10.1007/s00429-024-02839-8. [PMID: 39052096 DOI: 10.1007/s00429-024-02839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Brain connectivity, allowing information to be shared between distinct cortical areas and thus to be processed in an integrated way, has long been considered critical for consciousness. However, the relationship between functional intercortical interactions and the structural connections thought to underlie them is poorly understood. In the present work, we explore both functional (with an EEG-based metric: the median weighted symbolic mutual information in the theta band) and structural (with a brain MRI-based metric: fractional anisotropy) connectivities in a cohort of 78 patients with disorders of consciousness. Both metrics could distinguish patients in a vegetative state from patients in minimally conscious state. Crucially, we discovered a significant positive correlation between functional and structural connectivities. Furthermore, we showed that this structure-function relationship is more specifically observed when considering structural connectivity within the intra- and inter-hemispheric long-distance cortico-cortical bundles involved in the Global Neuronal Workspace (GNW) theory of consciousness, thus supporting predictions of this model. Altogether, these results support the interest of multimodal assessments of brain connectivity in refining the diagnostic evaluation of patients with disorders of consciousness.
Collapse
Affiliation(s)
- Victor Altmayer
- Sorbonne University, Paris, F-75013, France
- Department of Neurology, AP-HP, Pitié-Salpêtrière Hospital, Neuro-ICU, Paris, F-75013, France
| | - Aude Sangare
- Sorbonne University, Paris, F-75013, France
- Department of Neurophysiology, AP-HP, Pitié-Salpêtrière Hospital, Paris, F-75013, France
- PICNIC-Lab, Paris Brain Institute, (ICM), INSERM, CNRS, Hôpital Pitié Salpêtrière, 47 bvd de l'hôpital, Paris, F-75013, France
| | - Charlotte Calligaris
- Sorbonne University, Paris, F-75013, France
- Department of Neurology, AP-HP, Pitié-Salpêtrière Hospital, Neuro-ICU, Paris, F-75013, France
| | - Louis Puybasset
- Sorbonne University, Paris, F-75013, France
- Department of Neuro-anesthesiology and Neurocritical Care, AP-HP, Pitié-Salpêtrière Hospital, Paris, F-75013, France
| | | | - Lionel Naccache
- Sorbonne University, Paris, F-75013, France
- Department of Neurophysiology, AP-HP, Pitié-Salpêtrière Hospital, Paris, F-75013, France
- PICNIC-Lab, Paris Brain Institute, (ICM), INSERM, CNRS, Hôpital Pitié Salpêtrière, 47 bvd de l'hôpital, Paris, F-75013, France
| | - Jacobo Diego Sitt
- PICNIC-Lab, Paris Brain Institute, (ICM), INSERM, CNRS, Hôpital Pitié Salpêtrière, 47 bvd de l'hôpital, Paris, F-75013, France
| | - Benjamin Rohaut
- Sorbonne University, Paris, F-75013, France.
- Department of Neurology, AP-HP, Pitié-Salpêtrière Hospital, Neuro-ICU, Paris, F-75013, France.
- PICNIC-Lab, Paris Brain Institute, (ICM), INSERM, CNRS, Hôpital Pitié Salpêtrière, 47 bvd de l'hôpital, Paris, F-75013, France.
| |
Collapse
|
73
|
Frumento S, Preatoni G, Chee L, Gemignani A, Ciotti F, Menicucci D, Raspopovic S. Unconscious multisensory integration: behavioral and neural evidence from subliminal stimuli. Front Psychol 2024; 15:1396946. [PMID: 39091706 PMCID: PMC11291458 DOI: 10.3389/fpsyg.2024.1396946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction The prevailing theories of consciousness consider the integration of different sensory stimuli as a key component for this phenomenon to rise on the brain level. Despite many theories and models have been proposed for multisensory integration between supraliminal stimuli (e.g., the optimal integration model), we do not know if multisensory integration occurs also for subliminal stimuli and what psychophysical mechanisms it follows. Methods To investigate this, subjects were exposed to visual (Virtual Reality) and/or haptic stimuli (Electro-Cutaneous Stimulation) above or below their perceptual threshold. They had to discriminate, in a two-Alternative Forced Choice Task, the intensity of unimodal and/or bimodal stimuli. They were then asked to discriminate the sensory modality while recording their EEG responses. Results We found evidence of multisensory integration for supraliminal condition, following the classical optimal model. Importantly, even for subliminal trials participant's performances in the bimodal condition were significantly more accurate when discriminating the intensity of the stimulation. Moreover, significant differences emerged between unimodal and bimodal activity templates in parieto-temporal areas known for their integrative role. Discussion These converging evidences - even if preliminary and needing confirmation from the collection of further data - suggest that subliminal multimodal stimuli can be integrated, thus filling a meaningful gap in the debate about the relationship between consciousness and multisensory integration.
Collapse
Affiliation(s)
- Sergio Frumento
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Greta Preatoni
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| | - Lauren Chee
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| | - Angelo Gemignani
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
- Clinical Psychology Branch, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Federico Ciotti
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| | - Danilo Menicucci
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Stanisa Raspopovic
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
74
|
Luppi AI, Mediano PAM, Rosas FE, Allanson J, Pickard J, Carhart-Harris RL, Williams GB, Craig MM, Finoia P, Owen AM, Naci L, Menon DK, Bor D, Stamatakis EA. A synergistic workspace for human consciousness revealed by Integrated Information Decomposition. eLife 2024; 12:RP88173. [PMID: 39022924 PMCID: PMC11257694 DOI: 10.7554/elife.88173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
How is the information-processing architecture of the human brain organised, and how does its organisation support consciousness? Here, we combine network science and a rigorous information-theoretic notion of synergy to delineate a 'synergistic global workspace', comprising gateway regions that gather synergistic information from specialised modules across the human brain. This information is then integrated within the workspace and widely distributed via broadcaster regions. Through functional MRI analysis, we show that gateway regions of the synergistic workspace correspond to the human brain's default mode network, whereas broadcasters coincide with the executive control network. We find that loss of consciousness due to general anaesthesia or disorders of consciousness corresponds to diminished ability of the synergistic workspace to integrate information, which is restored upon recovery. Thus, loss of consciousness coincides with a breakdown of information integration within the synergistic workspace of the human brain. This work contributes to conceptual and empirical reconciliation between two prominent scientific theories of consciousness, the Global Neuronal Workspace and Integrated Information Theory, while also advancing our understanding of how the human brain supports consciousness through the synergistic integration of information.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Pedro AM Mediano
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Fernando E Rosas
- Center for Psychedelic Research, Department of Brain Science, Imperial College LondonLondonUnited Kingdom
- Center for Complexity Science, Imperial College LondonLondonUnited Kingdom
- Data Science Institute, Imperial College LondonLondonUnited Kingdom
| | - Judith Allanson
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Department of Neurosciences, Cambridge University Hospitals NHS Foundation, Addenbrooke's HospitalCambridgeUnited Kingdom
| | - John Pickard
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
- Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Addenbrooke's HospitalCambridgeUnited Kingdom
| | - Robin L Carhart-Harris
- Center for Psychedelic Research, Department of Brain Science, Imperial College LondonLondonUnited Kingdom
- Psychedelics Division - Neuroscape, Department of Neurology, University of CaliforniaSan FranciscoUnited States
| | - Guy B Williams
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
| | - Michael M Craig
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Paola Finoia
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | - Adrian M Owen
- Department of Psychology and Department of Physiology and Pharmacology, The Brain and Mind Institute, University of Western OntarioLondonCanada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Lloyd Building, Trinity CollegeDublinIreland
| | - David K Menon
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
| | - Daniel Bor
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Emmanuel A Stamatakis
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
75
|
Prentner R, Hoffman DD. Interfacing consciousness. Front Psychol 2024; 15:1429376. [PMID: 39077200 PMCID: PMC11284140 DOI: 10.3389/fpsyg.2024.1429376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/19/2024] [Indexed: 07/31/2024] Open
Abstract
The current stage of consciousness science has reached an impasse. We blame the physicalist worldview for this and propose a new perspective to make progress on the problems of consciousness. Our perspective is rooted in the theory of conscious agents. We thereby stress the fundamentality of consciousness outside of spacetime, the importance of agency, and the mathematical character of the theory. For conscious agent theory (CAT) to achieve the status of a robust scientific framework, it needs to be integrated with a good explanation of perception and cognition. We argue that this role is played by the interface theory of perception (ITP), an evolutionary-based model of perception that has been previously formulated and defended by the authors. We are specifically interested in what this tells us about the possibility of AI consciousness and conclude with a somewhat counter-intuitive proposal: we live inside a simulation instantiated, not digitally, but in consciousness. Such a simulation is just an interface representation of the dynamics of conscious agents for a conscious agent. This paves the way for employing AI in consciousness science through customizing our interface.
Collapse
Affiliation(s)
- Robert Prentner
- Institute of Humanities, ShanghaiTech University, Shanghai, China
- Association for Mathematical Consciousness Science, Munich, Germany
| | - Donald D. Hoffman
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
76
|
Watanabe R, Moriguchi Y. Development of emergent processes and threshold of consciousness with levels of processing. Front Psychol 2024; 15:1337589. [PMID: 39077199 PMCID: PMC11285099 DOI: 10.3389/fpsyg.2024.1337589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/24/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction The transition of experience from unconscious to conscious, the emergent process, is a crucial topic in consciousness studies. Three frameworks exist to explain the process: (1) consciousness arises in an all-or-none manner; (2) consciousness arises gradually; (3) consciousness arises either all at once or gradually, depending on the level of stimulus processing (low- vs. high-level). However, the development of emergent processes of consciousness remains unclear. This study examines the development of emergent processes of consciousness based on the level of stimulus processing framework. Methods Ninety-nine children (5-12 year-olds) and adults participated in two online discrimination tasks. These tasks involved color discrimination as lower-level processing and number magnitude discrimination as higher-level processing, as well as backward masking with stimulus onset asynchronies (SOAs) varying from 16.7 to 266.7 ms. We measured objective discrimination accuracy and used a 4-scale Perceptual Awareness Scale (PAS) to assess subjective awareness. We fit the data to a four-parameter nonlinear function to estimate the center of the slope (threshold) and the range of the slope (gradualness, the measure of emergent process of consciousness) of the model. Results The results showed the threshold of objective discrimination was significantly higher in 5-6 year-olds than in 7-12 year-olds, but not of subjective awareness. The emergent process of objective discrimination in the number task was more gradual than in the color task. Discussion The findings suggest that the thresholds of subjective awareness in 5-6 year-olds and objective discrimination in 7-9 year-olds are similar to those in adults. Moreover, the emergent processes of subjective awareness and objective discrimination in 5-6 year-olds are also similar to those in adults. Our results support the level of processing hypothesis but suggest that its effects may differ across developmental stages.
Collapse
|
77
|
Onoda K, Akama H. Exploring complex and integrated information during sleep. Neurosci Conscious 2024; 2024:niae029. [PMID: 38974800 PMCID: PMC11227102 DOI: 10.1093/nc/niae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024] Open
Abstract
The Integrated Information Theory is a theoretical framework that aims to elucidate the nature of consciousness by postulating that it emerges from the integration of information within a system, and that the degree of consciousness depends on the extent of information integration within the system. When consciousness is lost, the core complex of consciousness proposed by the Integrated Information Theory disintegrates, and Φ measures, which reflect the level of integrated information, are expected to diminish. This study examined the predictions of the Integrated Information Theory using the global brain network acquired via functional magnetic resonance imaging during various tasks and sleep. We discovered that the complex located within the frontoparietal network remained constant regardless of task content, while the regional distribution of the complex collapsed in the initial stages of sleep. Furthermore, Φ measures decreased as sleep progressed under limited analysis conditions. These findings align with predictions made by the Integrated Information Theory and support its postulates.
Collapse
Affiliation(s)
- Keiichi Onoda
- Department of Psychology, Otemon Gakuin University, 2-1-15, Nishiai, Ibaraki, Osaka 567-8502, Japan
| | - Hiroyuki Akama
- Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro, Tokyo 152-8550, Japan
| |
Collapse
|
78
|
Lissak IA, Young MJ. Limitation of life sustaining therapy in disorders of consciousness: ethics and practice. Brain 2024; 147:2274-2288. [PMID: 38387081 PMCID: PMC11224617 DOI: 10.1093/brain/awae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Clinical conversations surrounding the continuation or limitation of life-sustaining therapies (LLST) are both challenging and tragically necessary for patients with disorders of consciousness (DoC) following severe brain injury. Divergent cultural, philosophical and religious perspectives contribute to vast heterogeneity in clinical approaches to LLST-as reflected in regional differences and inter-clinician variability. Here we provide an ethical analysis of factors that inform LLST decisions among patients with DoC. We begin by introducing the clinical and ethical challenge and clarifying the distinction between withdrawing and withholding life-sustaining therapy. We then describe relevant factors that influence LLST decision-making including diagnostic and prognostic uncertainty, perception of pain, defining a 'good' outcome, and the role of clinicians. In concluding sections, we explore global variation in LLST practices as they pertain to patients with DoC and examine the impact of cultural and religious perspectives on approaches to LLST. Understanding and respecting the cultural and religious perspectives of patients and surrogates is essential to protecting patient autonomy and advancing goal-concordant care during critical moments of medical decision-making involving patients with DoC.
Collapse
Affiliation(s)
- India A Lissak
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Michael J Young
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
79
|
Pathak A, Menon SN, Sinha S. A hierarchy index for networks in the brain reveals a complex entangled organizational structure. Proc Natl Acad Sci U S A 2024; 121:e2314291121. [PMID: 38923990 PMCID: PMC11228506 DOI: 10.1073/pnas.2314291121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Networks involved in information processing often have their nodes arranged hierarchically, with the majority of connections occurring in adjacent levels. However, despite being an intuitively appealing concept, the hierarchical organization of large networks, such as those in the brain, is difficult to identify, especially in absence of additional information beyond that provided by the connectome. In this paper, we propose a framework to uncover the hierarchical structure of a given network, that identifies the nodes occupying each level as well as the sequential order of the levels. It involves optimizing a metric that we use to quantify the extent of hierarchy present in a network. Applying this measure to various brain networks, ranging from the nervous system of the nematode Caenorhabditis elegans to the human connectome, we unexpectedly find that they exhibit a common network architectural motif intertwining hierarchy and modularity. This suggests that brain networks may have evolved to simultaneously exploit the functional advantages of these two types of organizations, viz., relatively independent modules performing distributed processing in parallel and a hierarchical structure that allows sequential pooling of these multiple processing streams. An intriguing possibility is that this property we report may be common to information processing networks in general.
Collapse
Affiliation(s)
- Anand Pathak
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai600113, India
- Homi Bhabha National Institute, Mumbai400 094, India
| | - Shakti N. Menon
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai600113, India
| | - Sitabhra Sinha
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai600113, India
- Homi Bhabha National Institute, Mumbai400 094, India
| |
Collapse
|
80
|
Northoff G, Zilio F, Zhang J. Beyond task response-Pre-stimulus activity modulates contents of consciousness. Phys Life Rev 2024; 49:19-37. [PMID: 38492473 DOI: 10.1016/j.plrev.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/18/2024]
Abstract
The current discussion on the neural correlates of the contents of consciousness (NCCc) focuses mainly on the post-stimulus period of task-related activity. This neglects the substantial impact of the spontaneous or ongoing activity of the brain as manifest in pre-stimulus activity. Does the interaction of pre- and post-stimulus activity shape the contents of consciousness? Addressing this gap in our knowledge, we review and converge two recent lines of findings, that is, pre-stimulus alpha power and pre- and post-stimulus alpha trial-to-trial variability (TTV). The data show that pre-stimulus alpha power modulates post-stimulus activity including specifically the subjective features of conscious contents like confidence and vividness. At the same time, alpha pre-stimulus variability shapes post-stimulus TTV reduction including the associated contents of consciousness. We propose that non-additive rather than merely additive interaction of the internal pre-stimulus activity with the external stimulus in the alpha band is key for contents to become conscious. This is mediated by mechanisms on different levels including neurophysiological, neurocomputational, neurodynamic, neuropsychological and neurophenomenal levels. Overall, considering the interplay of pre-stimulus intrinsic and post-stimulus extrinsic activity across wider timescales, not just evoked responses in the post-stimulus period, is critical for identifying neural correlates of consciousness. This is well in line with both processing and especially the Temporo-spatial theory of consciousness (TTC).
Collapse
Affiliation(s)
- Georg Northoff
- University of Ottawa, Institute of Mental Health Research at the Royal Ottawa Hospital, Ottawa, Canada.
| | - Federico Zilio
- Department of Philosophy, Sociology, Education and Applied Psychology, University of Padua, Padua, Italy
| | - Jianfeng Zhang
- Center for Brain Disorders and Cognitive Sciences, School of Psychology, Shenzhen University, Shenzhen, China.
| |
Collapse
|
81
|
Cohen MA, Sung S, Alaoui Z. Familiarity Alters the Bandwidth of Perceptual Awareness. J Cogn Neurosci 2024; 36:1546-1556. [PMID: 38527082 DOI: 10.1162/jocn_a_02140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Results from paradigms like change blindness and inattentional blindness indicate that observers are unaware of numerous aspects of the visual world. However, intuition suggests that perceptual experience is richer than these results indicate. Why does it feel like we see so much when the data suggests we see so little? One possibility stems from the fact that experimental studies always present observers with stimuli that they have never seen before. Meanwhile, when forming intuitions about perceptual experience, observers reflect on their experiences with scenes with which they are highly familiar (e.g., their office). Does prior experience with a scene change the bandwidth of perceptual awareness? Here, we asked if observers were better at noticing alterations to the periphery in familiar scenes compared with unfamiliar scenes. We found that observers noticed changes to the periphery more frequently with familiar stimuli. Signal detection theoretic analyses revealed that when observers are unfamiliar with a stimulus, they are less sensitive at noticing (d') and are more conservative in their response criterion (c). Taken together, these results suggest that prior knowledge expands the bandwidth of perceptual awareness. It should be stressed that these results challenge the widely held idea that prior knowledge fills in perception. Overall, these findings highlight how prior knowledge plays an important role in determining the limits of perceptual experience and is an important factor to consider when attempting to reconcile the tension between empirical observation and personal introspection.
Collapse
|
82
|
Verdonk C, Teed AR, White EJ, Ren X, Stewart JL, Paulus MP, Khalsa SS. Heartbeat-evoked neural response abnormalities in generalized anxiety disorder during peripheral adrenergic stimulation. Neuropsychopharmacology 2024; 49:1246-1254. [PMID: 38291167 PMCID: PMC11224228 DOI: 10.1038/s41386-024-01806-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/22/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Hyperarousal symptoms in generalized anxiety disorder (GAD) are often incongruent with the observed physiological state, suggesting that abnormal processing of interoceptive signals is a characteristic feature of the disorder. To examine the neural mechanisms underlying interoceptive dysfunction in GAD, we evaluated whether adrenergic modulation of cardiovascular signaling differentially affects the heartbeat-evoked potential (HEP), an electrophysiological marker of cardiac interoception, during concurrent electroencephalogram and functional magnetic resonance imaging (EEG-fMRI) scanning. Intravenous infusions of the peripheral adrenergic agonist isoproterenol (0.5 and 2.0 micrograms, μg) were administered in a randomized, double-blinded and placebo-controlled fashion to dynamically perturb the cardiovascular system while recording the associated EEG-fMRI responses. During the 0.5 μg isoproterenol infusion, the GAD group (n = 24) exhibited significantly larger changes in HEP amplitude in an opposite direction than the healthy comparison (HC) group (n = 24). In addition, the GAD group showed significantly larger absolute HEP amplitudes than the HC group during saline infusions, when cardiovascular tone did not increase. No significant group differences in HEP amplitude were identified during the 2.0 μg isoproterenol infusion. Using analyzable blood oxygenation level-dependent fMRI data from participants with concurrent EEG-fMRI data (21 GAD and 21 HC), we found that the aforementioned HEP effects were uncorrelated with fMRI signals in the insula, ventromedial prefrontal cortex, dorsal anterior cingulate cortex, amygdala, and somatosensory cortex, brain regions implicated in cardiac signal processing in prior fMRI studies. These findings provide additional evidence of dysfunctional cardiac interoception in GAD and identify neural processes at the electrophysiological level that may be independent from blood oxygen level-dependent responses during peripheral adrenergic stimulation.
Collapse
Affiliation(s)
- Charles Verdonk
- Laureate Institute for Brain Research, Tulsa, OK, USA
- VIFASOM (EA 7330 Vigilance Fatigue, Sommeil et Santé Publique), Université Paris Cité, Paris, France
- French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Adam R Teed
- Laureate Institute for Brain Research, Tulsa, OK, USA
| | - Evan J White
- Laureate Institute for Brain Research, Tulsa, OK, USA
| | - Xi Ren
- Laureate Institute for Brain Research, Tulsa, OK, USA
| | - Jennifer L Stewart
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health Sciences, University of Tulsa, Tulsa, OK, USA
| | - Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health Sciences, University of Tulsa, Tulsa, OK, USA
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, Tulsa, OK, USA.
- Oxley College of Health Sciences, University of Tulsa, Tulsa, OK, USA.
| |
Collapse
|
83
|
Xiao Q, Zheng X, Wen Y, Yuan Z, Chen Z, Lan Y, Li S, Huang X, Zhong H, Xu C, Zhan C, Pan J, Xie Q. Individualized music induces theta-gamma phase-amplitude coupling in patients with disorders of consciousness. Front Neurosci 2024; 18:1395627. [PMID: 39010944 PMCID: PMC11248187 DOI: 10.3389/fnins.2024.1395627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Objective This study aimed to determine whether patients with disorders of consciousness (DoC) could experience neural entrainment to individualized music, which explored the cross-modal influences of music on patients with DoC through phase-amplitude coupling (PAC). Furthermore, the study assessed the efficacy of individualized music or preferred music (PM) versus relaxing music (RM) in impacting patient outcomes, and examined the role of cross-modal influences in determining these outcomes. Methods Thirty-two patients with DoC [17 with vegetative state/unresponsive wakefulness syndrome (VS/UWS) and 15 with minimally conscious state (MCS)], alongside 16 healthy controls (HCs), were recruited for this study. Neural activities in the frontal-parietal network were recorded using scalp electroencephalography (EEG) during baseline (BL), RM and PM. Cerebral-acoustic coherence (CACoh) was explored to investigate participants' abilitiy to track music, meanwhile, the phase-amplitude coupling (PAC) was utilized to evaluate the cross-modal influences of music. Three months post-intervention, the outcomes of patients with DoC were followed up using the Coma Recovery Scale-Revised (CRS-R). Results HCs and patients with MCS showed higher CACoh compared to VS/UWS patients within musical pulse frequency (p = 0.016, p = 0.045; p < 0.001, p = 0.048, for RM and PM, respectively, following Bonferroni correction). Only theta-gamma PAC demonstrated a significant interaction effect between groups and music conditions (F (2,44) = 2.685, p = 0.036). For HCs, the theta-gamma PAC in the frontal-parietal network was stronger in the PM condition compared to the RM (p = 0.016) and BL condition (p < 0.001). For patients with MCS, the theta-gamma PAC was stronger in the PM than in the BL (p = 0.040), while no difference was observed among the three music conditions in patients with VS/UWS. Additionally, we found that MCS patients who showed improved outcomes after 3 months exhibited evident neural responses to preferred music (p = 0.019). Furthermore, the ratio of theta-gamma coupling changes in PM relative to BL could predict clinical outcomes in MCS patients (r = 0.992, p < 0.001). Conclusion Individualized music may serve as a potential therapeutic method for patients with DoC through cross-modal influences, which rely on enhanced theta-gamma PAC within the consciousness-related network.
Collapse
Affiliation(s)
- Qiuyi Xiao
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaochun Zheng
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yun Wen
- Music and Reflection Incorporated, Guangzhou, Guangdong, China
| | - Zhanxing Yuan
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zerong Chen
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yue Lan
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuiyan Li
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiyan Huang
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Haili Zhong
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chengwei Xu
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chang'an Zhan
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiahui Pan
- School of Software, South China Normal University, Guangzhou, Guangdong, China
| | - Qiuyou Xie
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
- Department of Hyperbaric Oxygen, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
84
|
Gonçalves ÓF, Sayal J, Lisboa F, Palhares P. The experimental study of consciousness: Is psychology travelling back to the future? Int J Clin Health Psychol 2024; 24:100475. [PMID: 39021679 PMCID: PMC11253270 DOI: 10.1016/j.ijchp.2024.100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/29/2024] [Indexed: 07/20/2024] Open
Abstract
It was with the promise of rendering an experimental approach to consciousness that psychology started its trajectory as an independent science more than 150 years ago. Here, we will posit that the neurosciences were instrumental in leading psychology to resume the study of consciousness by projecting an empirical agenda for the future. First, we will start by showing how scientists were able to venture into the consciousness of supposedly unconscious patients, opening the door for the identification of important neural correlates of distinct consciousness states. Then, we will describe how different technological advances and elegant experimental paradigms helped in establishing important neuronal correlates of global consciousness (i.e., being conscious at all), perceptual consciousness (i.e., being conscious of something), and self-consciousness (i.e., being conscious of itself). Finally, we will illustrate how the study of complex consciousness experiences may contribute to the clarification of the mechanisms associated with global consciousness, the relationship between perceptual and self-consciousness, and the interface among distinct self-consciousness domains. In closing, we will elaborate on the road ahead of us for re-establishing psychology as a science of consciousness.
Collapse
Affiliation(s)
| | - Joana Sayal
- Proaction Lab – CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Colégio de Jesus, R. Inácio Duarte 65, Coimbra 3000-481, Portugal
| | - Fábio Lisboa
- Proaction Lab – CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Colégio de Jesus, R. Inácio Duarte 65, Coimbra 3000-481, Portugal
| | - Pedro Palhares
- Proaction Lab – CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Colégio de Jesus, R. Inácio Duarte 65, Coimbra 3000-481, Portugal
| |
Collapse
|
85
|
Chen R, Nie P, Wang J, Wang GZ. Deciphering brain cellular and behavioral mechanisms: Insights from single-cell and spatial RNA sequencing. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1865. [PMID: 38972934 DOI: 10.1002/wrna.1865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 07/09/2024]
Abstract
The brain is a complex computing system composed of a multitude of interacting neurons. The computational outputs of this system determine the behavior and perception of every individual. Each brain cell expresses thousands of genes that dictate the cell's function and physiological properties. Therefore, deciphering the molecular expression of each cell is of great significance for understanding its characteristics and role in brain function. Additionally, the positional information of each cell can provide crucial insights into their involvement in local brain circuits. In this review, we briefly overview the principles of single-cell RNA sequencing and spatial transcriptomics, the potential issues and challenges in their data processing, and their applications in brain research. We further outline several promising directions in neuroscience that could be integrated with single-cell RNA sequencing, including neurodevelopment, the identification of novel brain microstructures, cognition and behavior, neuronal cell positioning, molecules and cells related to advanced brain functions, sleep-wake cycles/circadian rhythms, and computational modeling of brain function. We believe that the deep integration of these directions with single-cell and spatial RNA sequencing can contribute significantly to understanding the roles of individual cells or cell types in these specific functions, thereby making important contributions to addressing critical questions in those fields. This article is categorized under: RNA Evolution and Genomics > Computational Analyses of RNA RNA in Disease and Development > RNA in Development RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Renrui Chen
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pengxing Nie
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
86
|
Avila J, Marco J, Plascencia-Villa G, Bajic VP, Perry G. Could there be an experimental way to link consciousness and quantum computations of brain microtubules? Front Neurosci 2024; 18:1430432. [PMID: 38979125 PMCID: PMC11228156 DOI: 10.3389/fnins.2024.1430432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 07/10/2024] Open
Affiliation(s)
- Jesús Avila
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Jesús Marco
- Instituto de Física de Cantabria (CSIC-UC), Santander, Spain
| | - Germán Plascencia-Villa
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Vladan P. Bajic
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environment, “VINČA” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
87
|
Riganello F, Sannita WG. Scientific publication rate in disorders of consciousness research. Front Psychol 2024; 15:1389376. [PMID: 38903460 PMCID: PMC11188381 DOI: 10.3389/fpsyg.2024.1389376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Affiliation(s)
| | - Walter G. Sannita
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother/Child Sciences (DINOGMI), University of Genova, Genova, Italy
| |
Collapse
|
88
|
Parnia S, Patel J, Bloom BM, Kulstad E, Deakin CD, Spiegel R. Recalled experience of death: Disinhibition not degeneration in relation to death facilitates inner states of lucid hyperconsciousness with novel cognitive insights. Resuscitation 2024; 199:110205. [PMID: 38609063 DOI: 10.1016/j.resuscitation.2024.110205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Affiliation(s)
- Sam Parnia
- Critical Care and Resuscitation Research Program, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA.
| | - Jignesh Patel
- Division of Pulmonary, Critical Care and Sleep Medicine, Stony Brook University Hospital, Long Island, NY, USA
| | - Benjamin M Bloom
- Department of Emergency Medicine, Royal London Hospital, Barts Health NHS Trust, London, U.K; Department of Emergency Medicine, Whipps Cross Hospital, Barts Health NHS Trust, London, UK; Department of Emergency Medicine, Newham Hospital, Barts Health NHS Trust, London, UK
| | - Erik Kulstad
- Department of Emergency Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Charles D Deakin
- University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Rebecca Spiegel
- Department of Neurology, Stony Brook Level 4 Epilepsy Center at the School of Medicine Stony Brook University, Long Island, NY, USA
| |
Collapse
|
89
|
Chis-Ciure R, Melloni L, Northoff G. A measure centrality index for systematic empirical comparison of consciousness theories. Neurosci Biobehav Rev 2024; 161:105670. [PMID: 38615851 DOI: 10.1016/j.neubiorev.2024.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Consciousness science is marred by disparate constructs and methodologies, making it challenging to systematically compare theories. This foundational crisis casts doubts on the scientific character of the field itself. Addressing it, we propose a framework for systematically comparing consciousness theories by introducing a novel inter-theory classification interface, the Measure Centrality Index (MCI). Recognizing its gradient distribution, the MCI assesses the degree of importance a specific empirical measure has for a given consciousness theory. We apply the MCI to probe how the empirical measures of the Global Neuronal Workspace Theory (GNW), Integrated Information Theory (IIT), and Temporospatial Theory of Consciousness (TTC) would fare within the context of the other two. We demonstrate that direct comparison of IIT, GNW, and TTC is meaningful and valid for some measures like Lempel-Ziv Complexity (LZC), Autocorrelation Window (ACW), and possibly Mutual Information (MI). In contrast, it is problematic for others like the anatomical and physiological neural correlates of consciousness (NCC) due to their MCI-based differential weightings within the structure of the theories. In sum, we introduce and provide proof-of-principle of a novel systematic method for direct inter-theory empirical comparisons, thereby addressing isolated evolution of theories and confirmatory bias issues in the state-of-the-art neuroscience of consciousness.
Collapse
Affiliation(s)
- Robert Chis-Ciure
- New York University (NYU), New York, USA; International Center for Neuroscience and Ethics (CINET), Tatiana Foundation, Madrid, Spain; Wolfram Physics Project, USA.
| | - Lucia Melloni
- Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
| | - Georg Northoff
- University of Ottawa, Institute of Mental Health Research at the Royal Ottawa Hospital, Ottawa, Canada
| |
Collapse
|
90
|
Mashour GA, Lee U, Pal D, Li D. Consciousness and the Dying Brain. Anesthesiology 2024; 140:1221-1231. [PMID: 38603803 PMCID: PMC11096058 DOI: 10.1097/aln.0000000000004970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/26/2024] [Indexed: 04/13/2024]
Abstract
The near-death experience has been reported since antiquity and is often characterized by the perception of light, interactions with other entities, and life recall. Near-death experiences can occur in a variety of situations, but they have been studied systematically after in-hospital cardiac arrest, with an incidence of 10 to 20%. Long attributed to metaphysical or supernatural causes, there have been recent advances in understanding the neurophysiologic basis of this unique category of conscious experience. This article reviews the epidemiology and neurobiology of near-death experiences, with a focus on clinical and laboratory evidence for a surge of neurophysiologic gamma oscillations and cortical connectivity after cardiac and respiratory arrest.
Collapse
Affiliation(s)
- George A. Mashour
- Department of Anesthesiology, Center for Consciousness Science, Neuroscience Graduate Program, Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan
| | - UnCheol Lee
- Department of Anesthesiology, Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, Michigan
| | - Dinesh Pal
- Department of Anesthesiology, Center for Consciousness Science and Neuroscience Graduate Program, Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Duan Li
- Department of Anesthesiology, Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
91
|
Kanai R, Fujisawa I. Toward a universal theory of consciousness. Neurosci Conscious 2024; 2024:niae022. [PMID: 38826771 PMCID: PMC11141593 DOI: 10.1093/nc/niae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 06/04/2024] Open
Abstract
While falsifiability has been broadly discussed as a desirable property of a theory of consciousness, in this paper, we introduce the meta-theoretic concept of "Universality" as an additional desirable property for a theory of consciousness. The concept of universality, often assumed in physics, posits that the fundamental laws of nature are consistent and apply equally everywhere in the universe and remain constant over time. This assumption is crucial in science, acting as a guiding principle for developing and testing theories. When applied to theories of consciousness, universality can be defined as the ability of a theory to determine whether any fully described dynamical system is conscious or non-conscious. Importantly, for a theory to be universal, the determinant of consciousness needs to be defined as an intrinsic property of a system as opposed to replying on the interpretation of the external observer. The importance of universality originates from the consideration that given that consciousness is a natural phenomenon, it could in principle manifest in any physical system that satisfies a certain set of conditions whether it is biological or non-biological. To date, apart from a few exceptions, most existing theories do not possess this property. Instead, they tend to make predictions as to the neural correlates of consciousness based on the interpretations of brain functions, which makes those theories only applicable to brain-centric systems. While current functionalist theories of consciousness tend to be heavily reliant on our interpretations of brain functions, we argue that functionalist theories could be converted to a universal theory by specifying mathematical formulations of the constituent concepts. While neurobiological and functionalist theories retain their utility in practice, we will eventually need a universal theory to fully explain why certain types of systems possess consciousness.
Collapse
Affiliation(s)
- Ryota Kanai
- President Office, Araya, Inc., Sanpo Sakuma Building, 1-11 Kanda Sakuma-cho, Chiyoda-ku, Tokyo 101-0025, Japan
| | - Ippei Fujisawa
- President Office, Araya, Inc., Sanpo Sakuma Building, 1-11 Kanda Sakuma-cho, Chiyoda-ku, Tokyo 101-0025, Japan
| |
Collapse
|
92
|
Poyo Solanas M, Zhan M, de Gelder B. Ultrahigh Field fMRI Reveals Different Roles of the Temporal and Frontoparietal Cortices in Subjective Awareness. J Neurosci 2024; 44:e0425232023. [PMID: 38531633 PMCID: PMC11097282 DOI: 10.1523/jneurosci.0425-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 03/28/2024] Open
Abstract
A central question in consciousness theories is whether one is dealing with a dichotomous ("all-or-none") or a gradual phenomenon. In this 7T fMRI study, we investigated whether dichotomy or gradualness in fact depends on the brain region associated with perceptual awareness reports. Both male and female human subjects performed an emotion discrimination task (fear vs neutral bodies) presented under continuous flash suppression with trial-based perceptual awareness measures. Behaviorally, recognition sensitivity increased linearly with increased stimuli awareness and was at chance level during perceptual unawareness. Physiologically, threat stimuli triggered a slower heart rate than neutral ones during "almost clear" stimulus experience, indicating freezing behavior. Brain results showed that activity in the occipitotemporal, parietal, and frontal regions as well as in the amygdala increased with increased stimulus awareness while early visual areas showed the opposite pattern. The relationship between temporal area activity and perceptual awareness best fitted a gradual model while the activity in frontoparietal areas fitted a dichotomous model. Furthermore, our findings illustrate that specific experimental decisions, such as stimulus type or the approach used to evaluate awareness, play pivotal roles in consciousness studies and warrant careful consideration.
Collapse
Affiliation(s)
- Marta Poyo Solanas
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht 6229 EV, The Netherlands
| | - Minye Zhan
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht 6229 EV, The Netherlands
| | - Beatrice de Gelder
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht 6229 EV, The Netherlands
| |
Collapse
|
93
|
Panagiotaropoulos TI. An integrative view of the role of prefrontal cortex in consciousness. Neuron 2024; 112:1626-1641. [PMID: 38754374 DOI: 10.1016/j.neuron.2024.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
The involvement of the prefrontal cortex (PFC) in consciousness is an ongoing focus of intense investigation. An important question is whether representations of conscious contents and experiences in the PFC are confounded by post-perceptual processes related to cognitive functions. Here, I review recent findings suggesting that neuronal representations of consciously perceived contents-in the absence of post-perceptual processes-can indeed be observed in the PFC. Slower ongoing fluctuations in the electrophysiological state of the PFC seem to control the stability and updates of these prefrontal representations of conscious awareness. In addition to conscious perception, the PFC has been shown to play a critical role in controlling the levels of consciousness as observed during anesthesia, while prefrontal lesions can result in severe loss of perceptual awareness. Together, the convergence of these processes in the PFC suggests its integrative role in consciousness and highlights the complex nature of consciousness itself.
Collapse
|
94
|
Whyte CJ, Redinbaugh MJ, Shine JM, Saalmann YB. Thalamic contributions to the state and contents of consciousness. Neuron 2024; 112:1611-1625. [PMID: 38754373 PMCID: PMC11537458 DOI: 10.1016/j.neuron.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024]
Abstract
Consciousness can be conceptualized as varying along at least two dimensions: the global state of consciousness and the content of conscious experience. Here, we highlight the cellular and systems-level contributions of the thalamus to conscious state and then argue for thalamic contributions to conscious content, including the integrated, segregated, and continuous nature of our experience. We underscore vital, yet distinct roles for core- and matrix-type thalamic neurons. Through reciprocal interactions with deep-layer cortical neurons, matrix neurons support wakefulness and determine perceptual thresholds, whereas the cortical interactions of core neurons maintain content and enable perceptual constancy. We further propose that conscious integration, segregation, and continuity depend on the convergent nature of corticothalamic projections enabling dimensionality reduction, a thalamic reticular nucleus-mediated divisive normalization-like process, and sustained coherent activity in thalamocortical loops, respectively. Overall, we conclude that the thalamus plays a central topological role in brain structures controlling conscious experience.
Collapse
Affiliation(s)
- Christopher J Whyte
- Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | | | - James M Shine
- Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Yuri B Saalmann
- Department of Psychology, University of Wisconsin - Madison, Madison, WI, USA; Wisconsin National Primate Research Center, Madison, WI, USA
| |
Collapse
|
95
|
Mashour GA. Anesthesia and the neurobiology of consciousness. Neuron 2024; 112:1553-1567. [PMID: 38579714 PMCID: PMC11098701 DOI: 10.1016/j.neuron.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
In the 19th century, the discovery of general anesthesia revolutionized medical care. In the 21st century, anesthetics have become indispensable tools to study consciousness. Here, I review key aspects of the relationship between anesthesia and the neurobiology of consciousness, including interfaces of sleep and anesthetic mechanisms, anesthesia and primary sensory processing, the effects of anesthetics on large-scale functional brain networks, and mechanisms of arousal from anesthesia. I discuss the implications of the data derived from the anesthetized state for the science of consciousness and then conclude with outstanding questions, reflections, and future directions.
Collapse
Affiliation(s)
- George A Mashour
- Center for Consciousness Science, Department of Anesthesiology, Department of Pharmacology, Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
96
|
Storm JF, Klink PC, Aru J, Senn W, Goebel R, Pigorini A, Avanzini P, Vanduffel W, Roelfsema PR, Massimini M, Larkum ME, Pennartz CMA. An integrative, multiscale view on neural theories of consciousness. Neuron 2024; 112:1531-1552. [PMID: 38447578 DOI: 10.1016/j.neuron.2024.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/20/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
How is conscious experience related to material brain processes? A variety of theories aiming to answer this age-old question have emerged from the recent surge in consciousness research, and some are now hotly debated. Although most researchers have so far focused on the development and validation of their preferred theory in relative isolation, this article, written by a group of scientists representing different theories, takes an alternative approach. Noting that various theories often try to explain different aspects or mechanistic levels of consciousness, we argue that the theories do not necessarily contradict each other. Instead, several of them may converge on fundamental neuronal mechanisms and be partly compatible and complementary, so that multiple theories can simultaneously contribute to our understanding. Here, we consider unifying, integration-oriented approaches that have so far been largely neglected, seeking to combine valuable elements from various theories.
Collapse
Affiliation(s)
- Johan F Storm
- The Brain Signaling Group, Division of Physiology, IMB, Faculty of Medicine, University of Oslo, Domus Medica, Sognsvannsveien 9, Blindern, 0317 Oslo, Norway.
| | - P Christiaan Klink
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS Utrecht, the Netherlands; Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris 75012, France
| | - Jaan Aru
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Walter Senn
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands
| | - Andrea Pigorini
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan 20122, Italy
| | - Pietro Avanzini
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, 43125 Parma, Italy
| | - Wim Vanduffel
- Department of Neurosciences, Laboratory of Neuro and Psychophysiology, KU Leuven Medical School, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Boston, MA 02144, USA
| | - Pieter R Roelfsema
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris 75012, France; Department of Integrative Neurophysiology, VU University, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands; Department of Neurosurgery, Academisch Medisch Centrum, Postbus 22660, 1100 DD Amsterdam, the Netherlands
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli Studi di Milano, Milan 20157, Italy; Istituto di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan 20122, Italy; Azrieli Program in Brain, Mind and Consciousness, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada
| | - Matthew E Larkum
- Institute of Biology, Humboldt University Berlin, Berlin, Germany; Neurocure Center for Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Cyriel M A Pennartz
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, Sciencepark 904, Amsterdam 1098 XH, the Netherlands; Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
97
|
Maffei A, Gambarota F, Liotti M, Dell'Acqua R, Tsuchiya N, Sessa P. Conscious perception of fear in faces: Insights from high-density EEG and perceptual awareness scale with threshold stimuli. Cortex 2024; 174:93-109. [PMID: 38493568 DOI: 10.1016/j.cortex.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/12/2023] [Accepted: 02/08/2024] [Indexed: 03/19/2024]
Abstract
Contrary to the extensive research on processing subliminal and/or unattended emotional facial expressions, only a minority of studies have investigated the neural correlates of consciousness (NCCs) of emotions conveyed by faces. In the present high-density electroencephalography (EEG) study, we first employed a staircase procedure to identify each participant's perceptual threshold of the emotion expressed by the face and then compared the EEG signals elicited in trials where the participants were aware with the activity elicited in trials where participants were unaware of the emotions expressed by these, otherwise identical, faces. Drawing on existing knowledge of the neural mechanisms of face processing and NCCs, we hypothesized that activity in frontal electrodes would be modulated in relation to participants' awareness of facial emotional content. More specifically, we hypothesized that the NCC of fear seen on someone else's face could be detected as a modulation of a later and more anterior (i.e., at frontal sites) event-related potential (ERP) than the face-sensitive N170. By adopting a data-driven approach and cluster-based statistics to the analysis of EEG signals, the results were clear-cut in showing that visual awareness of fear was associated with the modulation of a frontal ERP component in a 150-300 msec interval. These insights are dissected and contextualized in relation to prevailing theories of visual consciousness and their proposed NCC benchmarks.
Collapse
Affiliation(s)
- Antonio Maffei
- Department of Developmental and Social Psychology (DPSS), University of Padova, Padova, Italy; Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Filippo Gambarota
- Department of Developmental and Social Psychology (DPSS), University of Padova, Padova, Italy; Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Mario Liotti
- Department of Developmental and Social Psychology (DPSS), University of Padova, Padova, Italy; Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Roberto Dell'Acqua
- Department of Developmental and Social Psychology (DPSS), University of Padova, Padova, Italy; Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Naotsugu Tsuchiya
- Turner Institute for Brain and Mental Health & School of Psychological Sciences, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Melbourne, Victoria, Australia; Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita-shi, Osaka, Japan; Laboratory Head, Laboratory of Qualia Structure, ATR Computational Neuroscience Laboratories, Seika-cho, Soraku-gun, Kyoto, Japan.
| | - Paola Sessa
- Department of Developmental and Social Psychology (DPSS), University of Padova, Padova, Italy; Padova Neuroscience Center (PNC), University of Padova, Padova, Italy.
| |
Collapse
|
98
|
Bai Y, Yang L, Meng X, Huang Y, Wang Q, Gong A, Feng Z, Ziemann U. Breakdown of effective information flow in disorders of consciousness: Insights from TMS-EEG. Brain Stimul 2024; 17:533-542. [PMID: 38641169 DOI: 10.1016/j.brs.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/29/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND The complexity of the neurophysiological mechanisms underlying human consciousness is widely acknowledged, with information processing and flow originating in cortex conceived as a core mechanism of consciousness emergence. Combination of transcranial magnetic stimulation and electroencephalography (TMS-EEG) is considered as a promising technique to understand the effective information flow associated with consciousness. OBJECTIVES To investigate information flow with TMS-EEG and its relationship to different consciousness states. METHODS We applied an effective information flow analysis by combining time-varying multivariate adaptive autoregressive model and adaptive directed transfer function on TMS-EEG data of frontal, motor and parietal cortex in patients with disorder of consciousness (DOC), including 14 vegetative state/unresponsive wakefulness syndrome (VS/UWS) patients, 21 minimally conscious state (MCS) patients, and 22 healthy subjects. RESULTS TMS in DOC patients, particularly VS/UWS, induced a significantly weaker effective information flow compared to healthy subjects. The bidirectional directed information flow was lost in DOC patients with TMS of frontal, motor and parietal cortex. The interactive ROI rate of the information flow network induced by TMS of frontal and parietal cortex was significantly lower in VS/UWS than in MCS. The interactive ROI rate correlated with DOC clinical scales. CONCLUSIONS TMS-EEG revealed a physiologically relevant correlation between TMS-induced information flow and levels of consciousness. This suggests that breakdown of effective cortical information flow serves as a viable marker of human consciousness. SIGNIFICANCE Findings offer a unique perspective on the relevance of information flow in DOC, thus providing a novel way of understanding the physiological basis of human consciousness.
Collapse
Affiliation(s)
- Yang Bai
- Center of Disorders of Consciousness Rehabilitation, Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China; Rehabilitation Medicine Clinical Research Center of Jiangxi Province, 330006, Jiangxi, China; Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Li Yang
- Center of Disorders of Consciousness Rehabilitation, Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China; Rehabilitation Medicine Clinical Research Center of Jiangxi Province, 330006, Jiangxi, China
| | - Xiangqiang Meng
- Center of Disorders of Consciousness Rehabilitation, Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China; Rehabilitation Medicine Clinical Research Center of Jiangxi Province, 330006, Jiangxi, China
| | - Ying Huang
- Center of Disorders of Consciousness Rehabilitation, Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China; Rehabilitation Medicine Clinical Research Center of Jiangxi Province, 330006, Jiangxi, China
| | - Qijun Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Anjuan Gong
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Zhen Feng
- Center of Disorders of Consciousness Rehabilitation, Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China; Rehabilitation Medicine Clinical Research Center of Jiangxi Province, 330006, Jiangxi, China
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
99
|
Bayne T, Seth AK, Massimini M, Shepherd J, Cleeremans A, Fleming SM, Malach R, Mattingley JB, Menon DK, Owen AM, Peters MAK, Razi A, Mudrik L. Tests for consciousness in humans and beyond. Trends Cogn Sci 2024; 28:454-466. [PMID: 38485576 DOI: 10.1016/j.tics.2024.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 05/12/2024]
Abstract
Which systems/organisms are conscious? New tests for consciousness ('C-tests') are urgently needed. There is persisting uncertainty about when consciousness arises in human development, when it is lost due to neurological disorders and brain injury, and how it is distributed in nonhuman species. This need is amplified by recent and rapid developments in artificial intelligence (AI), neural organoids, and xenobot technology. Although a number of C-tests have been proposed in recent years, most are of limited use, and currently we have no C-tests for many of the populations for which they are most critical. Here, we identify challenges facing any attempt to develop C-tests, propose a multidimensional classification of such tests, and identify strategies that might be used to validate them.
Collapse
Affiliation(s)
- Tim Bayne
- Department of Philosophy, Monash University, Melbourne, VIC, Australia; Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada.
| | - Anil K Seth
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada; Sussex Centre for Consciousness Science and School of Engineering and Informatics, University of Sussex, Brighton, UK
| | - Marcello Massimini
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada; Department of Biomedical and Clinical Science, University of Milan, Milan, Italy; IRCCS Fondazione Don Gnocchi
| | - Joshua Shepherd
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada; Universitat Autònoma de Barcelona, Belleterra, Spain; ICREA, Barcelona, Spain
| | - Axel Cleeremans
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada; Center for Research in Cognition and Neuroscience, ULB Institute of Neuroscience, Université libre de Bruxelles, Brussels, Belgium
| | - Stephen M Fleming
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada; Department of Experimental Psychology, University College London, London, UK; Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Rafael Malach
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada; The Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jason B Mattingley
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada; Queensland Brain Institute and School of Psychology, The University of Queensland, Brisbane, QLD, Australia
| | - David K Menon
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada; University of Cambridge, Cambridge, UK
| | - Adrian M Owen
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada; University of Western Ontario, London, ON, Canada
| | - Megan A K Peters
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada; University of California, Irvine, Irvine, CA, USA
| | - Adeel Razi
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada; Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia; Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Liad Mudrik
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada; School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
100
|
Lacalli T. Mental causation: an evolutionary perspective. Front Psychol 2024; 15:1394669. [PMID: 38741757 PMCID: PMC11089241 DOI: 10.3389/fpsyg.2024.1394669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
The relationship between consciousness and individual agency is examined from a bottom-up evolutionary perspective, an approach somewhat different from other ways of dealing with the issue, but one relevant to the question of animal consciousness. Two ways are identified that would decouple the two, allowing consciousness of a limited kind to exist without agency: (1) reflex pathways that incorporate conscious sensations as an intrinsic component (InCs), and (2) reflexes that are consciously conditioned and dependent on synaptic plasticity but not memory (CCRs). Whether InCs and CCRs exist as more than hypothetical constructs is not clear, and InCs are in any case limited to theories where consciousness depends directly on EM field-based effects. Consciousness with agency, as we experience it, then belongs in a third category that allows for deliberate choice of alternative actions (DCs), where the key difference between this and CCR-level pathways is that DCs require access to explicit memory systems whereas CCRs do not. CCRs are nevertheless useful from a heuristic standpoint as a conceptual model for how conscious inputs could act to refine routine behaviors while allowing evolution to optimize phenomenal experience (i.e., qualia) in the absence of individual agency, a somewhat counterintuitive result. However, so long as CCRs are not a required precondition for the evolution of memory-dependent DC-level processes, the later could have evolved first. If so, the adaptive benefit of consciousness when it first evolved may be linked as much to the role it plays in encoding memories as to any other function. The possibility that CCRs are more than a theoretical construct, and have played a role in the evolution of consciousness, argues against theories of consciousness focussed exclusively on higher-order functions as the appropriate way to deal with consciousness as it first evolved, as it develops in the early postnatal period of life, or with the conscious experiences of animals other than ourselves. An evolutionary perspective also resolves the problem of free will, that it is best treated as a property of a species rather than the individuals belonging to that species whereas, in contrast, agency is an attribute of individuals.
Collapse
Affiliation(s)
- Thurston Lacalli
- Department of Biology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|