51
|
Aiello A, Najafi-Fard S, Goletti D. Initial immune response after exposure to Mycobacterium tuberculosis or to SARS-COV-2: similarities and differences. Front Immunol 2023; 14:1244556. [PMID: 37662901 PMCID: PMC10470049 DOI: 10.3389/fimmu.2023.1244556] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) and Coronavirus disease-2019 (COVID-19), whose etiologic agent is severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), are currently the two deadliest infectious diseases in humans, which together have caused about more than 11 million deaths worldwide in the past 3 years. TB and COVID-19 share several aspects including the droplet- and aerosol-borne transmissibility, the lungs as primary target, some symptoms, and diagnostic tools. However, these two infectious diseases differ in other aspects as their incubation period, immune cells involved, persistence and the immunopathological response. In this review, we highlight the similarities and differences between TB and COVID-19 focusing on the innate and adaptive immune response induced after the exposure to Mtb and SARS-CoV-2 and the pathological pathways linking the two infections. Moreover, we provide a brief overview of the immune response in case of TB-COVID-19 co-infection highlighting the similarities and differences of each individual infection. A comprehensive understanding of the immune response involved in TB and COVID-19 is of utmost importance for the design of effective therapeutic strategies and vaccines for both diseases.
Collapse
Affiliation(s)
| | | | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
52
|
Strobl J, Haniffa M. Functional heterogeneity of human skin-resident memory T cells in health and disease. Immunol Rev 2023; 316:104-119. [PMID: 37144705 PMCID: PMC10952320 DOI: 10.1111/imr.13213] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/06/2023]
Abstract
The human skin is populated by a diverse pool of memory T cells, which can act rapidly in response to pathogens and cancer antigens. Tissue-resident memory T cells (TRM ) have been implicated in range of allergic, autoimmune and inflammatory skin diseases. Clonal expansion of cells with TRM properties is also known to contribute to cutaneous T-cell lymphoma. Here, we review the heterogeneous phenotypes, transcriptional programs, and effector functions of skin TRM . We summarize recent studies on TRM formation, longevity, plasticity, and retrograde migration and contextualize the findings to skin TRM and their role in maintaining skin homeostasis and altered functions in skin disease.
Collapse
Affiliation(s)
- Johanna Strobl
- Department of DermatologyMedical University of ViennaViennaAustria
- CeMM Research Center for Molecular MedicineViennaAustria
| | - Muzlifah Haniffa
- Wellcome Sanger InstituteCambridgeUK
- Department of Dermatology and NIHR Newcastle Biomedical Research CentreNewcastle Hospitals NHS Foundation TrustNewcastle upon TyneUK
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
53
|
Buggert M, Price DA, Mackay LK, Betts MR. Human circulating and tissue-resident memory CD8 + T cells. Nat Immunol 2023:10.1038/s41590-023-01538-6. [PMID: 37349380 DOI: 10.1038/s41590-023-01538-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/04/2023] [Indexed: 06/24/2023]
Abstract
Our current knowledge of human memory CD8+ T cells is derived largely from studies of the intravascular space. However, emerging data are starting to challenge some of the dogmas based on this work, suggesting that a conceptual revision may be necessary. In this review, we provide a brief history of the field and summarize the biology of circulating and tissue-resident memory CD8+ T cells, which are ultimately responsible for effective immune surveillance. We also incorporate recent findings into a biologically integrated model of human memory CD8+ T cell differentiation. Finally, we address how future innovative human studies could improve our understanding of anatomically localized CD8+ T cells to inform the development of more effective immunotherapies and vaccines, the need for which has been emphasized by the global struggle to contain severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Michael R Betts
- Institute for Immunology and Center for AIDS Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
54
|
Woodworth JS, Contreras V, Christensen D, Naninck T, Kahlaoui N, Gallouët AS, Langlois S, Burban E, Joly C, Gros W, Dereuddre-Bosquet N, Morin J, Olsen ML, Rosenkrands I, Stein AK, Wood GK, Follmann F, Lindenstrøm T, LeGrand R, Pedersen GK, Mortensen R. A novel adjuvant formulation induces robust Th1/Th17 memory and mucosal recall responses in Non-Human Primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529651. [PMID: 36865310 PMCID: PMC9980079 DOI: 10.1101/2023.02.23.529651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
After clean drinking water, vaccination is the most impactful global health intervention. However, development of new vaccines against difficult-to-target diseases is hampered by the lack of diverse adjuvants for human use. Of particular interest, none of the currently available adjuvants induce Th17 cells. Here, we develop and test an improved liposomal adjuvant, termed CAF®10b, that incorporates a TLR-9 agonist. In a head-to-head study in non-human primates (NHPs), immunization with antigen adjuvanted with CAF®10b induced significantly increased antibody and cellular immune responses compared to previous CAF® adjuvants, already in clinical trials. This was not seen in the mouse model, demonstrating that adjuvant effects can be highly species specific. Importantly, intramuscular immunization of NHPs with CAF®10b induced robust Th17 responses that were observed in circulation half a year after vaccination. Furthermore, subsequent instillation of unadjuvanted antigen into the skin and lungs of these memory animals led to significant recall responses including transient local lung inflammation observed by Positron Emission Tomography-Computed Tomography (PET-CT), elevated antibody titers, and expanded systemic and local Th1 and Th17 responses, including >20% antigen-specific T cells in the bronchoalveolar lavage. Overall, CAF®10b demonstrated an adjuvant able to drive true memory antibody, Th1 and Th17 vaccine-responses across rodent and primate species, supporting its translational potential.
Collapse
Affiliation(s)
- Joshua S Woodworth
- Department of Infectious Disease Immunology, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| | - Vanessa Contreras
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Dennis Christensen
- Department of Infectious Disease Immunology, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| | - Thibaut Naninck
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Nidhal Kahlaoui
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Anne-Sophie Gallouët
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Sébastien Langlois
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Emma Burban
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Candie Joly
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Wesley Gros
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Julie Morin
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Ming Liu Olsen
- Department of Infectious Disease Immunology, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| | - Ida Rosenkrands
- Department of Infectious Disease Immunology, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| | - Ann-Kathrin Stein
- Department of Vaccine Development, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| | - Grith Krøyer Wood
- Department of Vaccine Development, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| | - Frank Follmann
- Department of Infectious Disease Immunology, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| | - Thomas Lindenstrøm
- Department of Infectious Disease Immunology, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| | - Roger LeGrand
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Gabriel Kristian Pedersen
- Department of Infectious Disease Immunology, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| | - Rasmus Mortensen
- Department of Infectious Disease Immunology, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| |
Collapse
|
55
|
Hermens JM, Kesmir C. Role of T cells in severe COVID-19 disease, protection, and long term immunity. Immunogenetics 2023; 75:295-307. [PMID: 36752852 PMCID: PMC9905767 DOI: 10.1007/s00251-023-01294-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 02/09/2023]
Abstract
Infection with SARS-CoV-2 causes wide range of disease severities from asymptomatic to life-threatening disease. Understanding the contribution of immunological traits in immunity against SARS-CoV-2 and in protection against severe COVID-19 could result in effective measures to prevent development of severe disease. While the role of cytokines and antibodies has been thoroughly studied, this is not the case for T cells. In this review, the association between T cells and COVID-19 disease severity and protection upon reexposure is discussed. While infiltration of overactivated cytotoxic T cells might be harmful in the infected tissue, fast responding T cells are important in the protection against severe COVID-19. This protection could even be viable in the long term as long-living memory T cells seem to be stabilized and mutations do not appear to have a large impact on T cell responses. Thus, after vaccination and infections, memory T cells should be able to help prevent onset of severe disease for most cases. Considering this, it would be useful to add N or M proteins in vaccinations, alongside the S protein which is currently used, as this results in a broader T cell response.
Collapse
Affiliation(s)
- Julia Maret Hermens
- Theoretical Biology and Bioinformatics, Biology Department, Science Faculty, Utrecht University, Utrecht, Netherlands
| | - Can Kesmir
- Theoretical Biology and Bioinformatics, Biology Department, Science Faculty, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
56
|
Tang J, Sun J. Lung tissue-resident memory T cells: the gatekeeper to respiratory viral (re)-infection. Curr Opin Immunol 2023; 80:102278. [PMID: 36565508 PMCID: PMC9911367 DOI: 10.1016/j.coi.2022.102278] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
The discovery of lung tissue-resident memory T (TRM) cells and the elucidation of their function in antiviral immunity have inspired considerable efforts to leverage the power of TRM cells, in defense to the infections and reinfections by respiratory viruses. Here, we have reviewed lung TRM cell identification, molecular regulation, and function after influenza and SARS-CoV-2 infections. Furthermore, we have discussed emerging data on TRM responses induced by systemic and mucosal vaccination strategies. We hope that our current outstanding of TRM cells in this review could provide insights toward the development of vaccines capable of inducing highly efficacious mucosal TRM responses for protection against respiratory viral infections.
Collapse
Affiliation(s)
- Jinyi Tang
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA; Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA; Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
57
|
Tavassolifar MJ, Aghdaei HA, Sadatpour O, Maleknia S, Fayazzadeh S, Mohebbi SR, Montazer F, Rabbani A, Zali MR, Izad M, Meyfour A. New insights into extracellular and intracellular redox status in COVID-19 patients. Redox Biol 2023; 59:102563. [PMID: 36493512 PMCID: PMC9715463 DOI: 10.1016/j.redox.2022.102563] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/12/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The imbalance of redox homeostasis induces hyper-inflammation in viral infections. In this study, we explored the redox system signature in response to SARS-COV-2 infection and examined the status of these extracellular and intracellular signatures in COVID-19 patients. METHOD The multi-level network was constructed using multi-level data of oxidative stress-related biological processes, protein-protein interactions, transcription factors, and co-expression coefficients obtained from GSE164805, which included gene expression profiles of peripheral blood mononuclear cells (PBMCs) from COVID-19 patients and healthy controls. Top genes were designated based on the degree and closeness centralities. The expression of high-ranked genes was evaluated in PBMCs and nasopharyngeal (NP) samples of 30 COVID-19 patients and 30 healthy controls. The intracellular levels of GSH and ROS/O2• - and extracellular oxidative stress markers were assayed in PBMCs and plasma samples by flow cytometry and ELISA. ELISA results were applied to construct a classification model using logistic regression to differentiate COVID-19 patients from healthy controls. RESULTS CAT, NFE2L2, SOD1, SOD2 and CYBB were 5 top genes in the network analysis. The expression of these genes and intracellular levels of ROS/O2• - were increased in PBMCs of COVID-19 patients while the GSH level decreased. The expression of high-ranked genes was lower in NP samples of COVID-19 patients compared to control group. The activity of extracellular enzymes CAT and SOD, and the total oxidant status (TOS) level were increased in plasma samples of COVID-19 patients. Also, the 2-marker panel of CAT and TOS and 3-marker panel showed the best performance. CONCLUSION SARS-COV-2 disrupts the redox equilibrium in immune cells and the upper respiratory tract, leading to exacerbated inflammation and increased replication and entrance of SARS-COV-2 into host cells. Furthermore, utilizing markers of oxidative stress as a complementary validation to discriminate COVID-19 from healthy controls, seems promising.
Collapse
Affiliation(s)
- Mohammad Javad Tavassolifar
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Sadatpour
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Maleknia
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fayazzadeh
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Montazer
- Department of Pathology, Firoozabadi Hospital, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Amirhassan Rabbani
- Department of Transplant & Hepatobiliary Surgery, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Izad
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
58
|
Fang C, Ma Y. Peripheral Blood Genes Crosstalk between COVID-19 and Sepsis. Int J Mol Sci 2023; 24:ijms24032591. [PMID: 36768914 PMCID: PMC9916586 DOI: 10.3390/ijms24032591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Severe coronavirus disease 2019 (COVID-19) has led to a rapid increase in death rates all over the world. Sepsis is a life-threatening disease associated with a dysregulated host immune response. It has been shown that COVID-19 shares many similarities with sepsis in many aspects. However, the molecular mechanisms underlying sepsis and COVID-19 are not well understood. The aim of this study was to identify common transcriptional signatures, regulators, and pathways between COVID-19 and sepsis, which may provide a new direction for the treatment of COVID-19 and sepsis. First, COVID-19 blood gene expression profile (GSE179850) data and sepsis blood expression profile (GSE134347) data were obtained from GEO. Then, we intersected the differentially expressed genes (DEG) from these two datasets to obtain common DEGs. Finally, the common DEGs were used for functional enrichment analysis, transcription factor and miRNA prediction, pathway analysis, and candidate drug analysis. A total of 307 common DEGs were identified between the sepsis and COVID-19 datasets. Protein-protein interactions (PPIs) were constructed using the STRING database. Subsequently, hub genes were identified based on PPI networks. In addition, we performed GO functional analysis and KEGG pathway analysis of common DEGs, and found a common association between sepsis and COVID-19. Finally, we identified transcription factor-gene interaction, DEGs-miRNA co-regulatory networks, and protein-drug interaction, respectively. Through ROC analysis, we identified 10 central hub genes as potential biomarkers. In this study, we identified SARS-CoV-2 infection as a high risk factor for sepsis. Our study may provide a potential therapeutic direction for the treatment of COVID-19 patients suffering from sepsis.
Collapse
|
59
|
Almendro-Vázquez P, Laguna-Goya R, Paz-Artal E. Defending against SARS-CoV-2: The T cell perspective. Front Immunol 2023; 14:1107803. [PMID: 36776863 PMCID: PMC9911802 DOI: 10.3389/fimmu.2023.1107803] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
SARS-CoV-2-specific T cell response has been proven essential for viral clearance, COVID-19 outcome and long-term memory. Impaired early T cell-driven immunity leads to a severe form of the disease associated with lymphopenia, hyperinflammation and imbalanced humoral response. Analyses of acute SARS-CoV-2 infection have revealed that mild COVID-19 course is characterized by an early induction of specific T cells within the first 7 days of symptoms, coordinately followed by antibody production for an effective control of viral infection. In contrast, patients who do not develop an early specific cellular response and initiate a humoral immune response with subsequent production of high levels of antibodies, develop severe symptoms. Yet, delayed and persistent bystander CD8+ T cell activation has been also reported in hospitalized patients and could be a driver of lung pathology. Literature supports that long-term maintenance of T cell response appears more stable than antibody titters. Up to date, virus-specific T cell memory has been detected 22 months post-symptom onset, with a predominant IL-2 memory response compared to IFN-γ. Furthermore, T cell responses are conserved against the emerging variants of concern (VoCs) while these variants are mostly able to evade humoral responses. This could be partly explained by the high HLA polymorphism whereby the viral epitope repertoire recognized could differ among individuals, greatly decreasing the likelihood of immune escape. Current COVID-19-vaccination has been shown to elicit Th1-driven spike-specific T cell response, as does natural infection, which provides substantial protection against severe COVID-19 and death. In addition, mucosal vaccination has been reported to induce strong adaptive responses both locally and systemically and to protect against VoCs in animal models. The optimization of vaccine formulations by including a variety of viral regions, innovative adjuvants or diverse administration routes could result in a desirable enhanced cellular response and memory, and help to prevent breakthrough infections. In summary, the increasing evidence highlights the relevance of monitoring SARS-CoV-2-specific cellular immune response, and not only antibody levels, as a correlate for protection after infection and/or vaccination. Moreover, it may help to better identify target populations that could benefit most from booster doses and to personalize vaccination strategies.
Collapse
Affiliation(s)
- Patricia Almendro-Vázquez
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rocío Laguna-Goya
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Estela Paz-Artal
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
| |
Collapse
|
60
|
Xu Q, Milanez-Almeida P, Martins AJ, Radtke AJ, Hoehn KB, Oguz C, Chen J, Liu C, Tang J, Grubbs G, Stein S, Ramelli S, Kabat J, Behzadpour H, Karkanitsa M, Spathies J, Kalish H, Kardava L, Kirby M, Cheung F, Preite S, Duncker PC, Kitakule MM, Romero N, Preciado D, Gitman L, Koroleva G, Smith G, Shaffer A, McBain IT, McGuire PJ, Pittaluga S, Germain RN, Apps R, Schwartz DM, Sadtler K, Moir S, Chertow DS, Kleinstein SH, Khurana S, Tsang JS, Mudd P, Schwartzberg PL, Manthiram K. Adaptive immune responses to SARS-CoV-2 persist in the pharyngeal lymphoid tissue of children. Nat Immunol 2023; 24:186-199. [PMID: 36536106 PMCID: PMC10777159 DOI: 10.1038/s41590-022-01367-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022]
Abstract
Most studies of adaptive immunity to SARS-CoV-2 infection focus on peripheral blood, which may not fully reflect immune responses at the site of infection. Using samples from 110 children undergoing tonsillectomy and adenoidectomy during the COVID-19 pandemic, we identified 24 samples with evidence of previous SARS-CoV-2 infection, including neutralizing antibodies in serum and SARS-CoV-2-specific germinal center and memory B cells in the tonsils and adenoids. Single-cell B cell receptor (BCR) sequencing indicated virus-specific BCRs were class-switched and somatically hypermutated, with overlapping clones in the two tissues. Expanded T cell clonotypes were found in tonsils, adenoids and blood post-COVID-19, some with CDR3 sequences identical to previously reported SARS-CoV-2-reactive T cell receptors (TCRs). Pharyngeal tissues from COVID-19-convalescent children showed persistent expansion of germinal center and antiviral lymphocyte populations associated with interferon (IFN)-γ-type responses, particularly in the adenoids, and viral RNA in both tissues. Our results provide evidence for persistent tissue-specific immunity to SARS-CoV-2 in the upper respiratory tract of children after infection.
Collapse
Affiliation(s)
- Qin Xu
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Andrew J Martins
- Multiscale Systems Biology Section, LISB, NIAID, NIH, Bethesda, MD, USA
| | - Andrea J Radtke
- Center for Advanced Tissue Imaging, LISB, NIAID, NIH, Bethesda, MD, USA
| | - Kenneth B Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Cihan Oguz
- NIAID Collaborative Bioinformatics Resource (NCBR), NIAID, NIH, Bethesda, MD, USA
- Axle Informatics, Bethesda, MD, USA
| | - Jinguo Chen
- Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Can Liu
- Multiscale Systems Biology Section, LISB, NIAID, NIH, Bethesda, MD, USA
| | - Juanjie Tang
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Gabrielle Grubbs
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Sydney Stein
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center (CC), NIH, Bethesda, MD, USA
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Sabrina Ramelli
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center (CC), NIH, Bethesda, MD, USA
| | - Juraj Kabat
- Center for Advanced Tissue Imaging, LISB, NIAID, NIH, Bethesda, MD, USA
| | - Hengameh Behzadpour
- Division of Pediatric Otolaryngology, Children's National Hospital, Washington, DC, USA
| | - Maria Karkanitsa
- Laboratory of Immuno-Engineering, National Institute of Biomedical Imaging and Bioengineering (NIBIB), NIH, Bethesda, MD, USA
| | - Jacquelyn Spathies
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, NIBIB, NIH, Bethesda, MD, USA
| | - Heather Kalish
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, NIBIB, NIH, Bethesda, MD, USA
| | - Lela Kardava
- B-cell Immunology Section, Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Martha Kirby
- National Human Genome Research Institute (NHGRI), NIH, Bethesda, MD, USA
| | - Foo Cheung
- Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Silvia Preite
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | | | - Nahir Romero
- Division of Otolaryngology, Department of Surgery, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Diego Preciado
- Division of Pediatric Otolaryngology, Children's National Hospital, Washington, DC, USA
- Division of Otolaryngology, Department of Surgery, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Lyuba Gitman
- Division of Pediatric Otolaryngology, Children's National Hospital, Washington, DC, USA
- Division of Otolaryngology, Department of Surgery, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | | - Grace Smith
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD, USA
| | - Arthur Shaffer
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Ian T McBain
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Peter J McGuire
- National Human Genome Research Institute (NHGRI), NIH, Bethesda, MD, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD, USA
| | - Ronald N Germain
- Center for Advanced Tissue Imaging, LISB, NIAID, NIH, Bethesda, MD, USA
- Lymphocyte Biology Section, LISB, NIAID, NIH, Bethesda, MD, USA
| | - Richard Apps
- Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | | | - Kaitlyn Sadtler
- Laboratory of Immuno-Engineering, National Institute of Biomedical Imaging and Bioengineering (NIBIB), NIH, Bethesda, MD, USA
| | - Susan Moir
- B-cell Immunology Section, Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Daniel S Chertow
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center (CC), NIH, Bethesda, MD, USA
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Steven H Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - John S Tsang
- Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
- Multiscale Systems Biology Section, LISB, NIAID, NIH, Bethesda, MD, USA
| | - Pamela Mudd
- Division of Pediatric Otolaryngology, Children's National Hospital, Washington, DC, USA
- Division of Otolaryngology, Department of Surgery, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Pamela L Schwartzberg
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
- National Human Genome Research Institute (NHGRI), NIH, Bethesda, MD, USA.
| | - Kalpana Manthiram
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
61
|
Li W, Wang T, Rajendrakumar AM, Acharya G, Miao Z, Varghese BP, Yu H, Dhakal B, LeRoith T, Tuo W, Zhu X. An FcRn-targeted mucosal vaccine against SARS-CoV-2 infection and transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.11.23.517678. [PMID: 36451890 PMCID: PMC9709799 DOI: 10.1101/2022.11.23.517678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
SARS-CoV-2 and its variants cause COVID-19, which is primarily transmitted through droplets and airborne aerosols. To prevent viral infection and reduce viral spread, vaccine strategies must elicit protective immunity in the airways. FcRn transfers IgG across epithelial barriers; we explore FcRn-mediated respiratory delivery of SARS-CoV-2 spike (S). A monomeric IgG Fc was fused to a stabilized S protein; the resulting S-Fc bound to S-specific antibodies (Ab) and FcRn. A significant increase in Ab responses was observed following the intranasal immunization of mice with S-Fc formulated in CpG as compared to the immunization with S alone or PBS. Furthermore, we intranasally immunize adult or aged mice and hamsters with S-Fc. A significant reduction of virus replication in nasal turbinate, lung, and brain was observed following nasal challenges with SARS-CoV-2, including Delta and Omicron variants. Intranasal immunization also significantly reduced viral transmission between immunized and naive hamsters. Protection was mediated by nasal IgA, serum-neutralizing Abs, tissue-resident memory T cells, and bone marrow S-specific plasma cells. Hence FcRn delivers an S-Fc antigen effectively into the airway and induces protection against SARS-CoV-2 infection and transmission. Based on these findings, FcRn-targeted non-invasive respiratory immunizations are superior strategies for preventing highly contagious respiratory viruses from spreading.
Collapse
Affiliation(s)
- Weizhong Li
- Division of Immunology, VA-MD College of Veterinary Medicine, *Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742
| | - Tao Wang
- Division of Immunology, VA-MD College of Veterinary Medicine, *Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742
| | - Arunraj M. Rajendrakumar
- Division of Immunology, VA-MD College of Veterinary Medicine, *Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742
- Animal Parasitic Diseases Laboratory, ARS, United States Department of Agriculture, Beltsville, MD 20705
| | - Gyanada Acharya
- Division of Immunology, VA-MD College of Veterinary Medicine, *Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742
| | - Zizhen Miao
- Division of Immunology, VA-MD College of Veterinary Medicine, *Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742
| | - Berin P. Varghese
- Division of Immunology, VA-MD College of Veterinary Medicine, *Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742
| | - Hailiang Yu
- Division of Immunology, VA-MD College of Veterinary Medicine, *Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742
| | - Bibek Dhakal
- Division of Immunology, VA-MD College of Veterinary Medicine, *Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech University, Blacksburg, VA, USA
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, ARS, United States Department of Agriculture, Beltsville, MD 20705
| | - Xiaoping Zhu
- Division of Immunology, VA-MD College of Veterinary Medicine, *Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742
| |
Collapse
|
62
|
Natalini A, Simonetti S, Sher C, D’Oro U, Hayday AC, Di Rosa F. Durable CD8 T Cell Memory against SARS-CoV-2 by Prime/Boost and Multi-Dose Vaccination: Considerations on Inter-Dose Time Intervals. Int J Mol Sci 2022; 23:14367. [PMID: 36430845 PMCID: PMC9698736 DOI: 10.3390/ijms232214367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Facing the COVID-19 pandemic, anti-SARS-CoV-2 vaccines were developed at unprecedented pace, productively exploiting contemporary fundamental research and prior art. Large-scale use of anti-SARS-CoV-2 vaccines has greatly limited severe morbidity and mortality. Protection has been correlated with high serum titres of neutralizing antibodies capable of blocking the interaction between the viral surface protein spike and the host SARS-CoV-2 receptor, ACE-2. Yet, vaccine-induced protection subsides over time, and breakthrough infections are commonly observed, mostly reflecting the decay of neutralizing antibodies and the emergence of variant viruses with mutant spike proteins. Memory CD8 T cells are a potent weapon against viruses, as they are against tumour cells. Anti-SARS-CoV-2 memory CD8 T cells are induced by either natural infection or vaccination and can be potentially exploited against spike-mutated viruses. We offer here an overview of current research about the induction of anti-SARS-CoV-2 memory CD8 T cells by vaccination, in the context of prior knowledge on vaccines and on fundamental mechanisms of immunological memory. We focus particularly on how vaccination by two doses (prime/boost) or more (boosters) promotes differentiation of memory CD8 T cells, and on how the time-length of inter-dose intervals may influence the magnitude and persistence of CD8 T cell memory.
Collapse
Affiliation(s)
- Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), 00161 Rome, Italy
- Immunosurveillance Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Sonia Simonetti
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), 00161 Rome, Italy
- Medical Oncology Department, Campus Bio-Medico University, 00128 Rome, Italy
| | - Carmel Sher
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), 00161 Rome, Italy
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | - Adrian C. Hayday
- Immunosurveillance Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- Peter Gorer Department of Immunobiology, King’s College London, London WC2R 2LS, UK
- National Institute for Health and Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust, King’s College London, London WC2R 2LS, UK
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), 00161 Rome, Italy
| |
Collapse
|
63
|
Bertoletti A, Le Bert N, Tan AT. SARS-CoV-2-specific T cells in the changing landscape of the COVID-19 pandemic. Immunity 2022; 55:1764-1778. [PMID: 36049482 PMCID: PMC9385766 DOI: 10.1016/j.immuni.2022.08.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/13/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022]
Abstract
Since the onset of the coronavirus disease 2019 (COVID-19) pandemic, multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with increasing ability to evade neutralizing antibodies have emerged. Thus, earlier interest in defining the correlates of protection from infection, mainly mediated by humoral immunity, has shifted to correlates of protection from disease, which require a more comprehensive analysis of both humoral and cellular immunity. In this review, we summarized the evidence that supports the role of SARS-CoV-2-specific T cells induced by infection, by vaccination or by their combination (defined as hybrid immunity) in disease protection. We then analyzed the different epidemiological and virological variables that can modify the magnitude, function, and anatomical localization of SARS-CoV-2-specific T cells and their influence in the possible ability of T cells to protect the host from severe COVID-19 development.
Collapse
Affiliation(s)
- Antonio Bertoletti
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; Singapore Immunology Network, A(∗)STAR, Singapore, Singapore.
| | - Nina Le Bert
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Anthony T Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
64
|
Lim JME, Tan AT, Le Bert N, Hang SK, Low JGH, Bertoletti A. SARS-CoV-2 breakthrough infection in vaccinees induces virus-specific nasal-resident CD8+ and CD4+ T cells of broad specificity. J Exp Med 2022; 219:e20220780. [PMID: 35972472 PMCID: PMC9386509 DOI: 10.1084/jem.20220780] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/28/2022] [Accepted: 08/03/2022] [Indexed: 01/06/2023] Open
Abstract
Rapid recognition of SARS-CoV-2-infected cells by resident T cells in the upper airway might provide an important layer of protection against COVID-19. Whether parenteral SARS-CoV-2 vaccination or infection induces nasal-resident T cells specific for distinct SARS-CoV-2 proteins is unknown. We isolated T cells from the nasal mucosa of COVID-19 vaccinees who either experienced SARS-CoV-2 infection after vaccination (n = 34) or not (n = 16) and analyzed their phenotype, SARS-CoV-2 specificity, function, and persistence. Nasal-resident SARS-CoV-2-specific CD8+ and CD4+ T cells were detected almost exclusively in vaccinees who experienced SARS-CoV-2 breakthrough infection. Importantly, the Spike-specific T cells primed by vaccination did not suppress the induction of T cells specific for other SARS-CoV-2 proteins. The nasal-resident T cell responses persisted for ≥140 d, with minimal sign of waning. These data highlight the importance of viral nasal challenge in the formation of SARS-CoV-2-specific antiviral immunity at the site of primary infection and further define the immunological features of SARS-CoV-2 hybrid immunity.
Collapse
Affiliation(s)
- Joey Ming Er Lim
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Anthony Tanoto Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Nina Le Bert
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Shou Kit Hang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Jenny Guek Hong Low
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Department of Infectious Disease, Singapore General Hospital, Singapore
| | - Antonio Bertoletti
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| |
Collapse
|
65
|
Palacios-Pedrero MÁ, Jansen JM, Blume C, Stanislawski N, Jonczyk R, Molle A, Hernandez MG, Kaiser FK, Jung K, Osterhaus ADME, Rimmelzwaan GF, Saletti G. Signs of immunosenescence correlate with poor outcome of mRNA COVID-19 vaccination in older adults. NATURE AGING 2022; 2:896-905. [PMID: 37118289 PMCID: PMC10154205 DOI: 10.1038/s43587-022-00292-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/02/2022] [Indexed: 04/30/2023]
Abstract
Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is effective in preventing COVID-19 hospitalization and fatal outcome. However, several studies indicated that there is reduced vaccine effectiveness among older individuals, which is correlated with their general health status1,2. How and to what extent age-related immunological defects are responsible for the suboptimal vaccine responses observed in older individuals receiving SARS-CoV-2 messenger RNA vaccine, is unclear and not fully investigated1,3-5. In this observational study, we investigated adaptive immune responses in adults of various ages (22-99 years old) receiving 2 doses of the BNT162b2 mRNA vaccine. Vaccine-induced Spike-specific antibody, and T and memory B cell responses decreased with increasing age. These responses positively correlated with the percentages of peripheral naïve CD4+ and CD8+ T cells and negatively with CD8+ T cells expressing signs of immunosenescence. Older adults displayed a preferred T cell response to the S2 region of the Spike protein, which is relatively conserved and a target for cross-reactive T cells induced by human 'common cold' coronaviruses. Memory T cell responses to influenza virus were not affected by age-related changes, nor the SARS-CoV-2-specific response induced by infection. Collectively, we identified signs of immunosenescence correlating with the outcome of vaccination against a new viral antigen to which older adults are immunologically naïve. This knowledge is important for the management of COVID-19 infections in older adults.
Collapse
Affiliation(s)
| | - Janina M Jansen
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hanover, Germany
| | - Cornelia Blume
- Institute of Technical Chemistry, Leibniz University, Hanover, Germany
| | - Nils Stanislawski
- Institute of Microelectronic Systems, Leibniz University, Hanover, Germany
| | - Rebecca Jonczyk
- Institute of Technical Chemistry, Leibniz University, Hanover, Germany
| | - Antonia Molle
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hanover, Germany
| | - Mariana Gonzalez Hernandez
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hanover, Germany
| | - Franziska K Kaiser
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hanover, Germany
| | - Klaus Jung
- Institute for Animal Breeding and Genetics, Genomics and Bioinformatics of Infectious Diseases, University of Veterinary Medicine, Hanover, Germany
| | - Albert D M E Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hanover, Germany
- Global Virus Network, Center of Excellence, Buffalo, NY, USA
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hanover, Germany.
| | - Giulietta Saletti
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hanover, Germany.
| |
Collapse
|
66
|
Abstract
SARS-CoV-2, the virus that causes coronavirus disease (COVID)-19, has become a persistent global health threat. Individuals who are symptomatic for COVID-19 frequently exhibit respiratory illness, which is often accompanied by neurological symptoms of anosmia and fatigue. Mounting clinical data also indicate that many COVID-19 patients display long-term neurological disorders postinfection such as cognitive decline, which emphasizes the need to further elucidate the effects of COVID-19 on the central nervous system. In this review article, we summarize an emerging body of literature describing the impact of SARS-CoV-2 infection on central nervous system (CNS) health and highlight important areas of future investigation.
Collapse
Affiliation(s)
- Nick R. Natale
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Global Biothreats Graduate Training Program, University of Virginia, Charlottesville, VA, USA
| | - John R. Lukens
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Global Biothreats Graduate Training Program, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - William A. Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Global Biothreats Graduate Training Program, University of Virginia, Charlottesville, VA, USA
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
67
|
Hastak PS, Andersen CR, Kelleher AD, Sasson SC. Frontline workers: Mediators of mucosal immunity in community acquired pneumonia and COVID-19. Front Immunol 2022; 13:983550. [PMID: 36211412 PMCID: PMC9539803 DOI: 10.3389/fimmu.2022.983550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
The current COVID-19 pandemic has highlighted a need to further understand lung mucosal immunity to reduce the burden of community acquired pneumonia, including that caused by the SARS-CoV-2 virus. Local mucosal immunity provides the first line of defence against respiratory pathogens, however very little is known about the mechanisms involved, with a majority of literature on respiratory infections based on the examination of peripheral blood. The mortality for severe community acquired pneumonia has been rising annually, even prior to the current pandemic, highlighting a significant need to increase knowledge, understanding and research in this field. In this review we profile key mediators of lung mucosal immunity, the dysfunction that occurs in the diseased lung microenvironment including the imbalance of inflammatory mediators and dysbiosis of the local microbiome. A greater understanding of lung tissue-based immunity may lead to improved diagnostic and prognostic procedures and novel treatment strategies aimed at reducing the disease burden of community acquired pneumonia, avoiding the systemic manifestations of infection and excess morbidity and mortality.
Collapse
Affiliation(s)
- Priyanka S. Hastak
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
| | - Christopher R. Andersen
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
- Intensive Care Unit, Royal North Shore Hospital, Sydney, NSW, Australia
- Critical Care and Trauma Division, The George Institute for Global Health, Sydney, NSW, Australia
| | - Anthony D. Kelleher
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
| | - Sarah C. Sasson
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
68
|
Wei X, Rong N, Liu J. Prospects of animal models and their application in studies on adaptive immunity to SARS-CoV-2. Front Immunol 2022; 13:993754. [PMID: 36189203 PMCID: PMC9523127 DOI: 10.3389/fimmu.2022.993754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/05/2022] [Indexed: 01/08/2023] Open
Abstract
The adaptive immune response induced by SARS-CoV-2 plays a key role in the antiviral process and can protect the body from the threat of infection for a certain period of time. However, owing to the limitations of clinical studies, the antiviral mechanisms, protective thresholds, and persistence of the immune memory of adaptive immune responses remain unclear. This review summarizes existing research models for SARS-CoV-2 and elaborates on the advantages of animal models in simulating the clinical symptoms of COVID-19 in humans. In addition, we systematically summarize the research progress on the SARS-CoV-2 adaptive immune response and the remaining key issues, as well as the application and prospects of animal models in this field. This paper provides direction for in-depth analysis of the anti-SARS-CoV-2 mechanism of the adaptive immune response and lays the foundation for the development and application of vaccines and drugs.
Collapse
Affiliation(s)
- Xiaohui Wei
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | | | - Jiangning Liu
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
69
|
Bertoletti A, Le Bert N, Tan AT. Act Early and at the Right Location: SARS-CoV-2 T Cell Kinetics and Tissue Localization. Int J Mol Sci 2022; 23:10679. [PMID: 36142588 PMCID: PMC9505719 DOI: 10.3390/ijms231810679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
The emergence of new SARS-CoV-2 lineages able to escape antibodies elicited by infection or vaccination based on the Spike protein of the Wuhan isolates has reduced the ability of Spike-specific antibodies to protect previously infected or vaccinated individuals from infection. Therefore, the role played by T cells in the containment of viral replication and spread after infection has taken a more central stage. In this brief review, we will discuss the role played by T cells in the protection from COVID-19, with a particular emphasis on the kinetics of the T cell response and its localization at the site of primary infection.
Collapse
Affiliation(s)
- Antonio Bertoletti
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | | | | |
Collapse
|
70
|
Zlei M, Sidorov IA, Joosten SA, Heemskerk MHM, Myeni SK, Pothast CR, de Brouwer CS, Boomaars-van der Zanden AL, van Meijgaarden KE, Morales ST, Wessels E, Janse JJ, Goeman JJ, Cobbaert CM, Kroes ACM, Cannegieter SC, Roestenberg M, Visser LG, Kikkert M, Feltkamp MCW, Arbous SM, Staal FJT, Ottenhoff THM, van Dongen JJM, Roukens AHE, de Vries JJC, in collaboration with BEAT-COVID, in collaboration with LUMC COVID . Immune Determinants of Viral Clearance in Hospitalised COVID-19 Patients: Reduced Circulating Naïve CD4+ T Cell Counts Correspond with Delayed Viral Clearance. Cells 2022; 11:2743. [PMID: 36078151 PMCID: PMC9455062 DOI: 10.3390/cells11172743] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Virus-specific cellular and humoral responses are major determinants for protection from critical illness after SARS-CoV-2 infection. However, the magnitude of the contribution of each of the components to viral clearance remains unclear. Here, we studied the timing of viral clearance in relation to 122 immune parameters in 102 hospitalised patients with moderate and severe COVID-19 in a longitudinal design. Delayed viral clearance was associated with more severe disease and was associated with higher levels of SARS-CoV-2-specific (neutralising) antibodies over time, increased numbers of neutrophils, monocytes, basophils, and a range of pro-inflammatory cyto-/chemokines illustrating ongoing, partially Th2 dominating, immune activation. In contrast, early viral clearance and less critical illness correlated with the peak of neutralising antibodies, higher levels of CD4 T cells, and in particular naïve CD4+ T cells, suggesting their role in early control of SARS-CoV-2 possibly by proving appropriate B cell help. Higher counts of naïve CD4+ T cells also correlated with lower levels of MIF, IL-9, and TNF-beta, suggesting an indirect role in averting prolonged virus-induced tissue damage. Collectively, our data show that naïve CD4+ T cell play a critical role in rapid viral T cell control, obviating aberrant antibody and cytokine profiles and disease deterioration. These data may help in guiding risk stratification for severe COVID-19.
Collapse
Affiliation(s)
- Mihaela Zlei
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Igor A. Sidorov
- Clinical Microbiological Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Simone A. Joosten
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Mirjam H. M. Heemskerk
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Sebenzile K. Myeni
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Cilia R. Pothast
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Caroline S. de Brouwer
- Clinical Microbiological Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - A. Linda Boomaars-van der Zanden
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Krista E. van Meijgaarden
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Shessy T. Morales
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Els Wessels
- Clinical Microbiological Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jacqueline J. Janse
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jelle J. Goeman
- Medical Statistics Section, Department of Biomedical Data Sciences, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Christa M. Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Aloys C. M. Kroes
- Clinical Microbiological Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Suzanne C. Cannegieter
- Department of Clinical Epidemiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Leonardus G. Visser
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Marjolein Kikkert
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Mariet C. W. Feltkamp
- Clinical Microbiological Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Sesmu M. Arbous
- Department of Clinical Epidemiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Intensive Care, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | - Anna H. E. Roukens
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jutte J. C. de Vries
- Clinical Microbiological Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | | |
Collapse
|
71
|
Qi F, Cao Y, Zhang S, Zhang Z. Single-cell analysis of the adaptive immune response to SARS-CoV-2 infection and vaccination. Front Immunol 2022; 13:964976. [PMID: 36119105 PMCID: PMC9478577 DOI: 10.3389/fimmu.2022.964976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/10/2022] [Indexed: 12/04/2022] Open
Abstract
Amid the ongoing Coronavirus Disease 2019 (COVID-19) pandemic, vaccination and early therapeutic interventions are the most effective means to combat and control the severity of the disease. Host immune responses to SARS-CoV-2 and its variants, particularly adaptive immune responses, should be fully understood to develop improved strategies to implement these measures. Single-cell multi-omic technologies, including flow cytometry, single-cell transcriptomics, and single-cell T-cell receptor (TCR) and B-cell receptor (BCR) profiling, offer a better solution to examine the protective or pathological immune responses and molecular mechanisms associated with SARS-CoV-2 infection, thus providing crucial support for the development of vaccines and therapeutics for COVID-19. Recent reviews have revealed the overall immune landscape of natural SARS-CoV-2 infection, and this review will focus on adaptive immune responses (including T cells and B cells) to SARS-CoV-2 revealed by single-cell multi-omics technologies. In addition, we explore how the single-cell analyses disclose the critical components of immune protection and pathogenesis during SARS-CoV-2 infection through the comparison between the adaptive immune responses induced by natural infection and by vaccination.
Collapse
Affiliation(s)
- Furong Qi
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Single-Cell Omics Reasearch and Application, Shenzhen, China
| | - Yingyin Cao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Shuye Zhang
- Clinical Center for BioTherapy and Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Single-Cell Omics Reasearch and Application, Shenzhen, China
- Shenzhen Research Center for Communicable Disease Diagnosis and Treatment of Chinese Academy of Medical Science, Shenzhen, China
| |
Collapse
|
72
|
Diniz MO, Mitsi E, Swadling L, Rylance J, Johnson M, Goldblatt D, Ferreira D, Maini MK. Airway-resident T cells from unexposed individuals cross-recognize SARS-CoV-2. Nat Immunol 2022; 23:1324-1329. [PMID: 36038709 PMCID: PMC9477726 DOI: 10.1038/s41590-022-01292-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/18/2022] [Indexed: 12/15/2022]
Abstract
T cells can contribute to clearance of respiratory viruses that cause acute-resolving infections such as SARS-CoV-2, helping to provide long-lived protection against disease. Recent studies have suggested an additional role for T cells in resisting overt infection: pre-existing cross-reactive responses were preferentially enriched in healthcare workers who had abortive infections1, and in household contacts protected from infection2. We hypothesize that such early viral control would require pre-existing cross-reactive memory T cells already resident at the site of infection; such airway-resident responses have been shown to be critical for mediating protection after intranasal vaccination in a murine model of SARS-CoV3. Bronchoalveolar lavage samples from the lower respiratory tract of healthy donors obtained before the COVID-19 pandemic revealed airway-resident, SARS-CoV-2-cross-reactive T cells, which correlated with the strength of human seasonal coronavirus immunity. We therefore demonstrate the potential to harness functional airway-resident SARS-CoV-2-reactive T cells in next-generation mucosal vaccines.
Collapse
Affiliation(s)
- Mariana O Diniz
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Elena Mitsi
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Leo Swadling
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Jamie Rylance
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | | | - Daniela Ferreira
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK.
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.
| | - Mala K Maini
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK.
| |
Collapse
|
73
|
Agrati C, Carsetti R, Bordoni V, Sacchi A, Quintarelli C, Locatelli F, Ippolito G, Capobianchi MR. The immune response as a double-edged sword: the lesson learnt during the COVID-19 pandemic. Immunology 2022; 167:287-302. [PMID: 35971810 PMCID: PMC9538066 DOI: 10.1111/imm.13564] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/06/2022] [Indexed: 11/29/2022] Open
Abstract
The COVID‐19 pandemic has represented an unprecedented challenge for the humanity, and scientists around the world provided a huge effort to elucidate critical aspects in the fight against the pathogen, useful in designing public health strategies, vaccines and therapeutic approaches. One of the first pieces of evidence characterizing the SARS‐CoV‐2 infection has been its breadth of clinical presentation, ranging from asymptomatic to severe/deadly disease, and the indication of the key role played by the immune response in influencing disease severity. This review is aimed at summarizing what the SARS‐CoV‐2 infection taught us about the immune response, highlighting its features of a double‐edged sword mediating both protective and pathogenic processes. We will discuss the protective role of soluble and cellular innate immunity and the detrimental power of a hyper‐inflammation‐shaped immune response, resulting in tissue injury and immunothrombotic events. We will review the importance of B‐ and T‐cell immunity in reducing the clinical severity and their ability to cross‐recognize viral variants.
Collapse
Affiliation(s)
- Chiara Agrati
- Laboratory of Cellular Immunology, INMI L. Spallanzani, IRCCS
| | - Rita Carsetti
- B cell laboratory, Immunology Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Alessandra Sacchi
- Molecular Virology and antimicrobial immunity Laboratory, Department of Science, Roma Tre University, Rome, Italy
| | - Concetta Quintarelli
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy.,Department of Hematology/Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS
| | - Franco Locatelli
- Department of Hematology/Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS.,Department of Pediatrics, Catholic University of Sacred Heart, Rome, Italy
| | - Giuseppe Ippolito
- General Directorate for Research and Health Innovation, Italian Ministry of Health
| | - Maria R Capobianchi
- Sacro Cuore Don Calabria Hospital IRCCS, Negrar di Valpolicella (Verona).,Saint Camillus International University of Health Sciences, Rome
| |
Collapse
|
74
|
Zhang M, Li N, He Y, Shi T, Jie Z. Pulmonary resident memory T cells in respiratory virus infection and their inspiration on therapeutic strategies. Front Immunol 2022; 13:943331. [PMID: 36032142 PMCID: PMC9412965 DOI: 10.3389/fimmu.2022.943331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
The immune system generates memory cells on infection with a virus for the first time. These memory cells play an essential role in protection against reinfection. Tissue-resident memory T (TRM) cells can be generated in situ once attacked by pathogens. TRM cells dominate the defense mechanism during early stages of reinfection and have gradually become one of the most popular focuses in recent years. Here, we mainly reviewed the development and regulation of various TRM cell signaling pathways in the respiratory tract. Moreover, we explored the protective roles of TRM cells in immune response against various respiratory viruses, such as Respiratory Syncytial Virus (RSV) and influenza. The complex roles of TRM cells against SARS-CoV-2 infection are also discussed. Current evidence supports the therapeutic strategies targeting TRM cells, providing more possibilities for treatment. Rational utilization of TRM cells for therapeutics is vital for defense against respiratory viruses.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Na Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Yanchao He
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Tianyun Shi
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Zhijun Jie
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
- *Correspondence: Zhijun Jie,
| |
Collapse
|
75
|
Abstract
The SARS-CoV-2 pandemic has demonstrated the importance of studying antiviral immunity within sites of infection to gain insights into mechanisms for immune protection and disease pathology. As SARS-CoV-2 is tropic to the respiratory tract, many studies of airway washes, lymph node aspirates, and postmortem lung tissue have revealed site-specific immune dynamics that are associated with the protection or immunopathology but are not readily observed in circulation. This review summarizes the growing body of work identifying immune processes in tissues and their interplay with immune responses in circulation during acute SARS-CoV-2 infection, severe disease, and memory persistence. Establishment of tissue resident immunity also may have implications for vaccination and the durability of immune memory and protection.
Collapse
Affiliation(s)
- Ksenia Rybkina
- Department of Microbiology and ImmunologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
| | - Julia Davis‐Porada
- Department of Microbiology and ImmunologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
| | - Donna L. Farber
- Department of Microbiology and ImmunologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
- Department of SurgeryColumbia University Irving Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
76
|
Zollner A, Koch R, Jukic A, Pfister A, Meyer M, Rössler A, Kimpel J, Adolph TE, Tilg H. Postacute COVID-19 is Characterized by Gut Viral Antigen Persistence in Inflammatory Bowel Diseases. Gastroenterology 2022; 163:495-506.e8. [PMID: 35508284 PMCID: PMC9057012 DOI: 10.1053/j.gastro.2022.04.037] [Citation(s) in RCA: 188] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/27/2022] [Accepted: 04/20/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The coronavirus disease 2019 (COVID-19) pandemic has affected populations, societies, and lives for more than 2 years. Long-term sequelae of COVID-19, collectively termed the postacute COVID-19 syndrome, are rapidly emerging across the globe. Here, we investigated whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen persistence underlies the postacute COVID-19 syndrome. METHODS We performed an endoscopy study with 46 patients with inflammatory bowel disease (IBD) 219 days (range, 94-257) after a confirmed COVID-19 infection. SARS-CoV-2 antigen persistence was assessed in the small and large intestine using quantitative polymerase chain reaction of 4 viral transcripts, immunofluorescence of viral nucleocapsid, and virus cultivation from biopsy tissue. Postacute COVID-19 was assessed using a standardized questionnaire, and a systemic SARS-CoV-2 immune response was evaluated using flow cytometry and enzyme-linked immunosorbent assay at endoscopy. IBD activity was evaluated using clinical, biochemical, and endoscopic means. RESULTS We report expression of SARS-CoV-2 RNA in the gut mucosa ∼7 months after mild acute COVID-19 in 32 of 46 patients with IBD. Viral nucleocapsid protein persisted in 24 of 46 patients in gut epithelium and CD8+ T cells. Expression of SARS-CoV-2 antigens was not detectable in stool and viral antigen persistence was unrelated to severity of acute COVID-19, immunosuppressive therapy, and gut inflammation. We were unable to culture SARS-CoV-2 from gut tissue of patients with viral antigen persistence. Postacute sequelae of COVID-19 were reported from the majority of patients with viral antigen persistence, but not from patients without viral antigen persistence. CONCLUSION Our results indicate that SARS-CoV-2 antigen persistence in infected tissues serves as a basis for postacute COVID-19. The concept that viral antigen persistence instigates immune perturbation and postacute COVID-19 requires validation in controlled clinical trials.
Collapse
Affiliation(s)
- Andreas Zollner
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Robert Koch
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Almina Jukic
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexandra Pfister
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Moritz Meyer
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Annika Rössler
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Medical University of Innsbruck, Innsbruck Austria
| | - Janine Kimpel
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Medical University of Innsbruck, Innsbruck Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
77
|
Seyran M. Artificial intelligence and clinical data suggest the T cell-mediated SARS-CoV-2 nonstructural protein intranasal vaccines for global COVID-19 immunity. Vaccine 2022; 40:4296-4300. [PMID: 35778279 PMCID: PMC9226295 DOI: 10.1016/j.vaccine.2022.06.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 11/11/2022]
Abstract
Advanced computational methodologies suggested SARS-CoV-2, nonstructural proteins ORF1AB, ORF3a, as the source of immunodominant peptides for T cell presentation. T cell immunity is long-lasting and compatible with COVID-19 pathology. Based on the supporting clinical data, nonstructural SARS-CoV-2 protein vaccines could provide global immunity against COVID-19.
Collapse
Affiliation(s)
- Murat Seyran
- The University of Vienna, Doctoral Studies in Natural and Technical Sciences (SPL 44), Währinger Straße, A-1090 Vienna, Austria.
| |
Collapse
|
78
|
Yasamineh S, Kalajahi HG, Yasamineh P, Gholizadeh O, Youshanlouei HR, Matloub SK, Mozafari M, Jokar E, Yazdani Y, Dadashpour M. Spotlight on therapeutic efficiency of mesenchymal stem cells in viral infections with a focus on COVID-19. Stem Cell Res Ther 2022; 13:257. [PMID: 35715852 PMCID: PMC9204679 DOI: 10.1186/s13287-022-02944-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
The SARS-COV-2 virus has infected the world at a very high rate by causing COVID-19 disease. Nearly 507 million individuals have been infected with this virus, with approximately 1.2% of these patients being dead, indicating that this virus has been out of control in many countries. While researchers are investigating how to develop efficient drugs and vaccines versus the COVID-19 pandemic, new superseded treatments have the potential to reduce mortality. The recent application of mesenchymal stem cells (MSCs) in a subgroup of COVID-19 patients with acute respiratory distress has created potential benefits as supportive therapy for this viral contagion in patients with acute conditions and aged patients with severe pneumonia. Consequently, within this overview, we discuss the role and therapeutic potential of MSCs and the challenges ahead in using them to treat viral infections, with highlighting on COVID-19 infection.
Collapse
Affiliation(s)
- Saman Yasamineh
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Pooneh Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Omid Gholizadeh
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Rahmani Youshanlouei
- Department of Internal Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Masoud Mozafari
- Cardiovascular Pharmacology Research Lab, Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Jokar
- Department of Medical Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yalda Yazdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Dadashpour
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
79
|
Ssemaganda A, Nguyen HM, Nuhu F, Jahan N, Card CM, Kiazyk S, Severini G, Keynan Y, Su RC, Ji H, Abrenica B, McLaren PJ, Ball TB, Bullard J, Van Caeseele P, Stein D, McKinnon LR. Expansion of cytotoxic tissue-resident CD8 + T cells and CCR6 +CD161 + CD4 + T cells in the nasal mucosa following mRNA COVID-19 vaccination. Nat Commun 2022; 13:3357. [PMID: 35688805 PMCID: PMC9186487 DOI: 10.1038/s41467-022-30913-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 05/06/2022] [Indexed: 12/20/2022] Open
Abstract
Vaccines against SARS-CoV-2 have shown high efficacy in clinical trials, yet a full immunologic characterization of these vaccines, particularly within the human upper respiratory tract, is less well known. Here, we enumerate and phenotype T cells in nasal mucosa and blood using flow cytometry before and after vaccination with the Pfizer-BioNTech COVID-19 vaccine (n = 21). Tissue-resident memory (Trm) CD8+ T cells expressing CD69+CD103+ increase in number ~12 days following the first and second doses, by 0.31 and 0.43 log10 cells per swab respectively (p = 0.058 and p = 0.009 in adjusted linear mixed models). CD69+CD103+CD8+ T cells in the blood decrease post-vaccination. Similar increases in nasal CD8+CD69+CD103- T cells are observed, particularly following the second dose. CD4+ cells co-expressing CCR6 and CD161 are also increased in abundance following both doses. Stimulation of nasal CD8+ T cells with SARS-CoV-2 spike peptides elevates expression of CD107a at 2- and 6-months (p = 0.0096) post second vaccine dose, with a subset of donors also expressing increased cytokines. These data suggest that nasal T cells may be induced and contribute to the protective immunity afforded by this vaccine.
Collapse
Affiliation(s)
- Aloysious Ssemaganda
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Huong Mai Nguyen
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Faisal Nuhu
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Naima Jahan
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Catherine M Card
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Sandra Kiazyk
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Giulia Severini
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Yoav Keynan
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Ruey-Chyi Su
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Hezhao Ji
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Bernard Abrenica
- JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Paul J McLaren
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - T Blake Ball
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Jared Bullard
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Cadham Provincial Laboratory, Winnipeg, MB, Canada
- Department of Pediatrics & Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Paul Van Caeseele
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Cadham Provincial Laboratory, Winnipeg, MB, Canada
| | - Derek Stein
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Cadham Provincial Laboratory, Winnipeg, MB, Canada
| | - Lyle R McKinnon
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.
- JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa.
| |
Collapse
|
80
|
Innate and Adaptive Immune Responses in the Upper Respiratory Tract and the Infectivity of SARS-CoV-2. Viruses 2022; 14:v14050933. [PMID: 35632675 PMCID: PMC9143801 DOI: 10.3390/v14050933] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Increasing evidence shows the nasal epithelium to be the initial site of SARS-CoV-2 infection, and that early and effective immune responses in the upper respiratory tract (URT) limit and eliminate the infection in the URT, thereby preventing infection of the lower respiratory tract and the development of severe COVID-19. SARS-CoV-2 interferes with innate immunity signaling and evolves mutants that can reduce antibody-mediated immunity in the URT. Recent genetic and immunological advances in understanding innate immunity to SARS-CoV-2 in the URT, and the ability of prior infections as well as currently available injectable and potential intranasal COVID-19 vaccines to generate anamnestic adaptive immunity in the URT, are reviewed. It is suggested that the more detailed investigation of URT immune responses to all types of COVID-19 vaccines, and the development of safe and effective COVID-19 vaccines for intranasal administration, are important needs.
Collapse
|
81
|
Hu H, Tang N, Zhang F, Li L, Li L. Bioinformatics and System Biology Approach to Identify the Influences of COVID-19 on Rheumatoid Arthritis. Front Immunol 2022; 13:860676. [PMID: 35464423 PMCID: PMC9021444 DOI: 10.3389/fimmu.2022.860676] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Background Severe coronavirus disease 2019 (COVID -19) has led to a rapid increase in mortality worldwide. Rheumatoid arthritis (RA) was a high-risk factor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, whereas the molecular mechanisms underlying RA and CVOID-19 are not well understood. The objectives of this study were to analyze potential molecular mechanisms and identify potential drugs for the treatment of COVID-19 and RA using bioinformatics and a systems biology approach. Methods Two Differentially expressed genes (DEGs) sets extracted from GSE171110 and GSE1775544 datasets were intersected to generate common DEGs, which were used for functional enrichment, pathway analysis, and candidate drugs analysis. Results A total of 103 common DEGs were identified in the two datasets between RA and COVID-19. A protein-protein interaction (PPI) was constructed using various combinatorial statistical methods and bioinformatics tools. Subsequently, hub genes and essential modules were identified from the PPI network. In addition, we performed functional analysis and pathway analysis under ontological conditions and found that there was common association between RA and progression of COVID-19 infection. Finally, transcription factor-gene interactions, protein-drug interactions, and DEGs-miRNAs coregulatory networks with common DEGs were also identified in the datasets. Conclusion We successfully identified the top 10 hub genes that could serve as novel targeted therapy for COVID-19 and screened out some potential drugs useful for COVID-19 patients with RA.
Collapse
Affiliation(s)
- Huan Hu
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Nana Tang
- Medical Intensive Care Unit, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Facai Zhang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Medical Intensive Care Unit, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Long Li
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
82
|
Xu Q, Milanez-Almeida P, Martins AJ, Radtke AJ, Hoehn KB, Chen J, Liu C, Tang J, Grubbs G, Stein S, Ramelli S, Kabat J, Behzadpour H, Karkanitsa M, Spathies J, Kalish H, Kardava L, Kirby M, Cheung F, Preite S, Duncker PC, Romero N, Preciado D, Gitman L, Koroleva G, Smith G, Shaffer A, McBain IT, Pittaluga S, Germain RN, Apps R, Sadtler K, Moir S, Chertow DS, Kleinstein SH, Khurana S, Tsang JS, Mudd P, Schwartzberg PL, Manthiram K. Robust, persistent adaptive immune responses to SARS-CoV-2 in the oropharyngeal lymphoid tissue of children. RESEARCH SQUARE 2022:rs.3.rs-1276578. [PMID: 35350206 PMCID: PMC8963700 DOI: 10.21203/rs.3.rs-1276578/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SARS-CoV-2 infection triggers adaptive immune responses from both T and B cells. However, most studies focus on peripheral blood, which may not fully reflect immune responses in lymphoid tissues at the site of infection. To evaluate both local and systemic adaptive immune responses to SARS-CoV-2, we collected peripheral blood, tonsils, and adenoids from 110 children undergoing tonsillectomy/adenoidectomy during the COVID-19 pandemic and found 24 with evidence of prior SARS-CoV-2 infection, including detectable neutralizing antibodies against multiple viral variants. We identified SARS-CoV-2-specific germinal center (GC) and memory B cells; single cell BCR sequencing showed that these virus-specific B cells were class-switched and somatically hypermutated, with overlapping clones in the adenoids and tonsils. Oropharyngeal tissues from COVID-19-convalescent children showed persistent expansion of GC and anti-viral lymphocyte populations associated with an IFN-γ-type response, with particularly prominent changes in the adenoids, as well as evidence of persistent viral RNA in both tonsil and adenoid tissues of many participants. Our results show robust, tissue-specific adaptive immune responses to SARS-CoV-2 in the upper respiratory tract of children weeks to months after acute infection, providing evidence of persistent localized immunity to this respiratory virus.
Collapse
Affiliation(s)
- Qin Xu
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | | | | | - Andrea J. Radtke
- Center for Advanced Tissue Imaging, LISB, NIAID, NIH Bethesda, MD
| | | | - Jinguo Chen
- Center for Human Immunology, NIAID, NIH, Bethesda, MD
| | - Can Liu
- Multiscale Systems Biology Section, LISB, NIAID, NIH, Bethesda, MD
| | - Juanjie Tang
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD
| | - Gabrielle Grubbs
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD
| | - Sydney Stein
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center (CC), NIH, Bethesda, MD
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD
| | - Sabrina Ramelli
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center (CC), NIH, Bethesda, MD
| | - Juraj Kabat
- Center for Advanced Tissue Imaging, LISB, NIAID, NIH Bethesda, MD
| | - Hengameh Behzadpour
- Division of Pediatric Otolaryngology, Children’s National Hospital, Washington, DC
| | - Maria Karkanitsa
- Laboratory of Immuno-Engineering, National Institute of Biomedical Imaging and Bioengineering (NIBIB), NIH, Bethesda, MD
| | - Jacquelyn Spathies
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, NIBIB, NIH, Bethesda, MD
| | - Heather Kalish
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, NIBIB, NIH, Bethesda, MD
| | - Lela Kardava
- B-cell Immunology Section, Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD
| | - Martha Kirby
- National Human Genome Research Institute (NHGRI), NIH, Bethesda, MD
| | - Foo Cheung
- Center for Human Immunology, NIAID, NIH, Bethesda, MD
| | - Silvia Preite
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | | | - Nahir Romero
- Division of Otolaryngology, Department of Surgery, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Diego Preciado
- Division of Pediatric Otolaryngology, Children’s National Hospital, Washington, DC
- Division of Otolaryngology, Department of Surgery, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Lyuba Gitman
- Division of Pediatric Otolaryngology, Children’s National Hospital, Washington, DC
- Division of Otolaryngology, Department of Surgery, George Washington University School of Medicine and Health Sciences, Washington, DC
| | | | - Grace Smith
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD
| | - Arthur Shaffer
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD
| | - Ian T. McBain
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD
| | - Ronald N. Germain
- Center for Advanced Tissue Imaging, LISB, NIAID, NIH Bethesda, MD
- Lymphocyte Biology Section, LISB, NIAID, NIH, Bethesda, MD
| | - Richard Apps
- Center for Human Immunology, NIAID, NIH, Bethesda, MD
| | - Kaitlyn Sadtler
- Laboratory of Immuno-Engineering, National Institute of Biomedical Imaging and Bioengineering (NIBIB), NIH, Bethesda, MD
| | - Susan Moir
- B-cell Immunology Section, Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD
| | - Daniel S. Chertow
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center (CC), NIH, Bethesda, MD
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD
| | - Steven H. Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD
| | - John S. Tsang
- Center for Human Immunology, NIAID, NIH, Bethesda, MD
- Multiscale Systems Biology Section, LISB, NIAID, NIH, Bethesda, MD
| | - Pamela Mudd
- Division of Pediatric Otolaryngology, Children’s National Hospital, Washington, DC
- Division of Otolaryngology, Department of Surgery, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Pamela L. Schwartzberg
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
- National Human Genome Research Institute (NHGRI), NIH, Bethesda, MD
| | - Kalpana Manthiram
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| |
Collapse
|
83
|
Affiliation(s)
- Joshua T Schiffer
- Vaccine and Infectious Diseases Division, University of Washington, Seattle, WA, USA.
- Clinical and Research Division Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, USA.
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA.
| |
Collapse
|
84
|
T cell responses to SARS-CoV-2 in humans and animals. J Microbiol 2022; 60:276-289. [PMID: 35157219 PMCID: PMC8852923 DOI: 10.1007/s12275-022-1624-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 02/08/2023]
Abstract
SARS-CoV-2, the causative agent of COVID-19, first emerged in 2019. Antibody responses against SARS-CoV-2 have been given a lot of attention. However, the armamentarium of humoral and T cells may have differing roles in different viral infections. Though the exact role of T cells in COVID-19 remains to be elucidated, prior experience with human coronavirus has revealed an essential role of T cells in the outcomes of viral infections. Moreover, an increasing body of evidence suggests that T cells might be effective against SARS-CoV-2. This review summarizes the role of T cells in mouse CoV, human pathogenic respiratory CoV in general and SARS-CoV-2 in specific.
Collapse
|
85
|
Pothast CR, Dijkland RC, Thaler M, Hagedoorn RS, Kester MGD, Wouters AK, Hiemstra PS, van Hemert MJ, Gras S, Falkenburg JHF, Heemskerk MHM. SARS-CoV-2-specific CD4 + and CD8 + T cell responses can originate from cross-reactive CMV-specific T cells. eLife 2022; 11:82050. [PMID: 36408799 PMCID: PMC9822249 DOI: 10.7554/elife.82050] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022] Open
Abstract
Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) specific CD4+ and CD8+ T cells in SARS-CoV-2-unexposed donors has been explained by the presence of T cells primed by other coronaviruses. However, based on the relatively high frequency and prevalence of cross-reactive T cells, we hypothesized cytomegalovirus (CMV) may induce these cross-reactive T cells. Stimulation of pre-pandemic cryo-preserved peripheral blood mononuclear cells (PBMCs) with SARS-CoV-2 peptides revealed that frequencies of SARS-CoV-2-specific T cells were higher in CMV-seropositive donors. Characterization of these T cells demonstrated that membrane-specific CD4+ and spike-specific CD8+ T cells originate from cross-reactive CMV-specific T cells. Spike-specific CD8+ T cells recognize SARS-CoV-2 spike peptide FVSNGTHWF (FVS) and dissimilar CMV pp65 peptide IPSINVHHY (IPS) presented by HLA-B*35:01. These dual IPS/FVS-reactive CD8+ T cells were found in multiple donors as well as severe COVID-19 patients and shared a common T cell receptor (TCR), illustrating that IPS/FVS-cross-reactivity is caused by a public TCR. In conclusion, CMV-specific T cells cross-react with SARS-CoV-2, despite low sequence homology between the two viruses, and may contribute to the pre-existing immunity against SARS-CoV-2.
Collapse
Affiliation(s)
- Cilia R Pothast
- Department of Hematology, Leiden University Medical CenterLeidenNetherlands
| | - Romy C Dijkland
- Department of Hematology, Leiden University Medical CenterLeidenNetherlands
| | - Melissa Thaler
- Department of Medical Microbiology, Leiden University Medical CenterLeidenNetherlands
| | - Renate S Hagedoorn
- Department of Hematology, Leiden University Medical CenterLeidenNetherlands
| | - Michel GD Kester
- Department of Hematology, Leiden University Medical CenterLeidenNetherlands
| | - Anne K Wouters
- Department of Hematology, Leiden University Medical CenterLeidenNetherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical CenterLeidenNetherlands
| | - Martijn J van Hemert
- Department of Medical Microbiology, Leiden University Medical CenterLeidenNetherlands
| | - Stephanie Gras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe UniversityVictoriaAustralia,Department of Biochemistry and Molecular Biology, Monash UniversityClaytonAustralia
| | | | | |
Collapse
|