51
|
Dessels C, Ambele MA, Pepper MS. The effect of medium supplementation and serial passaging on the transcriptome of human adipose-derived stromal cells expanded in vitro. Stem Cell Res Ther 2019; 10:253. [PMID: 31412930 PMCID: PMC6694630 DOI: 10.1186/s13287-019-1370-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND For adipose-derived stromal cells (ASCs) to be safe for use in the clinical setting, they need to be prepared using good manufacturing practices (GMPs). Fetal bovine serum (FBS), used to expand ASCs in vitro in some human clinical trials, runs the risk of xenoimmunization and zoonotic disease transmission. To ensure that GMP standards are maintained, pooled human platelet lysate (pHPL) has been used as an alternative to FBS. ASCs proliferate more rapidly in pHPL than in FBS, with no significant change in immunophenotype and differentiation capacity. However, not much is known about how pHPL affects the transcriptome of these cells. METHODS This study investigated the effect of pHPL and FBS on the ASC transcriptome during in vitro serial expansion from passage 0 to passage 5 (P0 to P5). RNA was isolated from ASCs at each passage and hybridized to Affymetrix HuGene 2.0 ST arrays for gene expression analysis. RESULTS We observed that the transcriptome of ASCs expanded in pHPL (pHPL-ASCs) and FBS (FBS-ASCs) had the greatest change in gene expression at P2. Gene ontology revealed that genes upregulated in pHPL-ASCs were enriched for cell cycle, migration, motility, and cell-cell interaction processes, while those in FBS-ASCs were enriched for immune response processes. ASC transcriptomes were most homogenous from P2 to P5 in FBS and from P3 to P5 in pHPL. FBS- and pHPL-gene-specific signatures were observed, which could be used as markers to identify cells previously grown in either FBS or pHPL for downstream clinical/research applications. The number of genes constituting the FBS-specific effect was 3 times greater than for pHPL, suggesting that pHPL may be a milder supplement for cell expansion. A set of genes were expressed in ASCs at all passages and in both media. This suggests that a unique ASC in vitro transcriptomic profile exists that is independent of the passage number or medium used. CONCLUSIONS GO classification revealed that pHPL-ASCs are more involved in cell cycle processes and cellular proliferation when compared to FBS-ASCs, which are involved in more specialized or differentiation processes like cardiovascular and vascular development. This makes pHPL a potential superior supplement for expanding ASCs as they retain their proliferative capacity, remain untransformed and pHPL does not affect the genes involved in differentiation in specific developmental processes.
Collapse
Affiliation(s)
- Carla Dessels
- Department of Immunology, Institute for Cellular and Molecular Medicine, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, PO Box 2034, Pretoria, 0001, South Africa
| | - Melvin A Ambele
- Department of Immunology, Institute for Cellular and Molecular Medicine, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, PO Box 2034, Pretoria, 0001, South Africa
- Department of Oral Pathology and Oral Biology, School of Dentistry, Faculty of Health Sciences, University of Pretoria, PO Box 1266, Pretoria, 0001, South Africa
| | - Michael S Pepper
- Department of Immunology, Institute for Cellular and Molecular Medicine, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, PO Box 2034, Pretoria, 0001, South Africa.
| |
Collapse
|
52
|
Seo Y, Shin TH, Kim HS. Current Strategies to Enhance Adipose Stem Cell Function: An Update. Int J Mol Sci 2019; 20:E3827. [PMID: 31387282 PMCID: PMC6696067 DOI: 10.3390/ijms20153827] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) emerged as a promising therapeutic tool targeting a variety of inflammatory disorders due to their multiple remarkable properties, such as superior immunomodulatory function and tissue-regenerative capacity. Although bone marrow (BM) is a dominant source for adult MSCs, increasing evidence suggests that adipose tissue-derived stem cells (ASCs), which can be easily obtained at a relatively high yield, have potent therapeutic advantages comparable with BM-MSCs. Despite its outstanding benefits in pre-clinical settings, the practical efficacy of ASCs remains controversial since clinical trials with ASC application often resulted in unsatisfactory outcomes. To overcome this challenge, scientists established several strategies to generate highly functional ASCs beyond the naïve cells, including (1) pre-conditioning of ASCs with various stimulants such as inflammatory agents, (2) genetic manipulation of ASCs and (3) modification of culture conditions with three-dimensional (3D) aggregate formation and hypoxic culture. Also, exosomes and other extracellular vesicles secreted from ASCs can be applied directly to recapitulate the beneficial performance of ASCs. This review summarizes the current strategies to improve the therapeutic features of ASCs for successful clinical implementation.
Collapse
Affiliation(s)
- Yoojin Seo
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Tae-Hoon Shin
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hyung-Sik Kim
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea.
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| |
Collapse
|
53
|
Oh SY, Choi YM, Kim HY, Park YS, Jung SC, Park JW, Woo SY, Ryu KH, Kim HS, Jo I. Application of Tonsil-Derived Mesenchymal Stem Cells in Tissue Regeneration: Concise Review. Stem Cells 2019; 37:1252-1260. [PMID: 31287931 PMCID: PMC6852396 DOI: 10.1002/stem.3058] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/23/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022]
Abstract
Since the discovery of stem cells and multipotency characteristics of mesenchymal stem cells (MSCs), there has been tremendous development in regenerative medicine. MSCs derived from bone marrow have been widely used in various research applications, yet there are limitations such as invasiveness of obtaining samples, low yield and proliferation rate, and questions regarding their practicality in clinical applications. Some have suggested that MSCs from other sources, specifically those derived from palatine tonsil tissues, that is, tonsil‐derived MSCs (TMSCs), could be considered as a new potential therapeutic tool in regenerative medicine due to their superior proliferation rate and differentiation capabilities with low immunogenicity and ease of obtaining. Several studies have determined that TMSCs have differentiation potential not only into the mesodermal lineage but also into the endodermal as well as ectodermal lineages, expanding their potential usage and placing them as an appealing option to consider for future studies in regenerative medicine. In this review, the differentiation capacities of TMSCs and their therapeutic competencies from past studies are addressed. stem cells2019;37:1252–1260
Collapse
Affiliation(s)
- Se-Young Oh
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Young Min Choi
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Ha Yeong Kim
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Yoon Shin Park
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Sung-Chul Jung
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Joo-Won Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - So-Youn Woo
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Kyung-Ha Ryu
- Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Han Su Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Inho Jo
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
54
|
Fideles SOM, Ortiz AC, Assis AF, Duarte MJ, Oliveira FS, Passos GA, Beloti MM, Rosa AL. Effect of cell source and osteoblast differentiation on gene expression profiles of mesenchymal stem cells derived from bone marrow or adipose tissue. J Cell Biochem 2019; 120:11842-11852. [PMID: 30746760 DOI: 10.1002/jcb.28463] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
Mesenchymal stem cells (MSCs) have been used in therapies for bone tissue healing. The aim of this study was to investigate the effect of cell source and osteoblast differentiation on gene expression profiles of MSCs from bone marrow (BM-MSCs) or adipose tissue (AT-MSCs) to contribute for selecting a suitable cell population to be used in cell-based strategies for bone regeneration. BM-MSCs and AT-MSCs were cultured in growth medium to keep MSCs characteristics or in osteogenic medium to induce osteoblast differentiation (BM-OBs and AT-OBs). The transcriptomic analysis was performed by microarray covering the entire rat functional genome. It was observed that cells from bone marrow presented higher expression of genes related to osteogenesis, whereas cells from adipose tissue showed a higher expression of genes related to angiogenesis and adipocyte differentiation, irrespective of cell differentiation. By comparing cells from the same source, MSCs from both sources exhibited higher expression of genes involved in angiogenesis, osteoblast differentiation, and bone morphogenesis than osteoblasts. The clustering analysis showed that AT-OBs exhibited a gene expression profile closer to MSCs from both sources than BM-OBs, suggesting that BM-OBs were in a more advanced stage of differentiation. In conclusion, our results suggest that in cell-based therapies for bone regeneration AT-MSCs could be considered for angiogenic purposes, whereas BM-MSCs and osteoblasts differentiated from either source could be better for osteogenic approaches.
Collapse
Affiliation(s)
- Simone Ortiz Moura Fideles
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Adriana Cassia Ortiz
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Amanda Freire Assis
- Department of Genetics, Molecular Immunogenetics Group, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Max Jordan Duarte
- Department of Genetics, Molecular Immunogenetics Group, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fabiola Singaretti Oliveira
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Geraldo Aleixo Passos
- Department of Genetics, Molecular Immunogenetics Group, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Márcio Mateus Beloti
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Adalberto Luiz Rosa
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
55
|
Zhou W, Lin J, Zhao K, Jin K, He Q, Hu Y, Feng G, Cai Y, Xia C, Liu H, Shen W, Hu X, Ouyang H. Single-Cell Profiles and Clinically Useful Properties of Human Mesenchymal Stem Cells of Adipose and Bone Marrow Origin. Am J Sports Med 2019; 47:1722-1733. [PMID: 31100005 DOI: 10.1177/0363546519848678] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) can be isolated from various tissues and can present themselves as a promising cell source for cell-based therapies. Although adipose- and bone marrow-derived mesenchymal stem cells have already been used in a considerable number of clinical trials for osteoarthritis treatment, systematic analyses from single- to bulk-cell resolution as well as clinical outcomes of these 2 MSCs are still insufficient. PURPOSE To explore the characteristics and differences of adipose-derived stem cells (ADSCs) and bone marrow MSCs (BMSCs) at single- and bulk-cell levels, to study the clinical outcomes of these 2 cells on the treatment of osteoarthritis, and to provide potential guidance on the more precise clinical application of these MSCs. STUDY DESIGN Controlled laboratory study and meta-analysis. METHODS Same donor-derived ADSCs and BMSCs were isolated and cultured. Single- and bulk-cell assays were used to identify the characteristics of these 2 cells. Meta-analysis of clinical trials was done to compare the clinical therapeutic effects in osteoarthritis treatment with ADSCs and BMSCs. RESULTS Single-cell RNA sequencing analysis showed that the population of ADSCs showed lower transcriptomic heterogeneity when compared with BMSCs. Additionally, as compared with BMSCs, ADSCs were less dependent on mitochondrial respiration for energy production. Furthermore, ADSCs had a lower expression level of human leukocyte antigen class I antigen and higher immunosuppression capacity when compared with the BMSC population. Meta-analysis of current clinical trials of osteoarthritis treatment with MSCs consistently showed that ADSCs are more stable than BMSCs in their therapeutic effect. CONCLUSION These results provide basic biological insights into human ADSCs and BMSCs at the single-cell resolution. Findings indicated that ADSCs may be a more controllable stem cell source, may be more adaptable to surviving in the hypoxic articular cavity niche, and may exhibit superiority in regulating inflammation. Based on the meta-analysis results of the different characteristics of ADSCs and BMSCs, ADSCs were implicated as being a better cell source for osteoarthritis treatment. CLINICAL RELEVANCE These results guide a more precise clinical application of adipose and bone marrow mesenchymal stem cells.
Collapse
Affiliation(s)
- Wenyan Zhou
- Investigation performed at the School of Medicine, Zhejiang University, Hangzhou, China
| | - Junxin Lin
- Investigation performed at the School of Medicine, Zhejiang University, Hangzhou, China
| | - Kun Zhao
- Investigation performed at the School of Medicine, Zhejiang University, Hangzhou, China
| | - Kaixiu Jin
- Investigation performed at the School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiulin He
- Investigation performed at the School of Medicine, Zhejiang University, Hangzhou, China
| | - Yejun Hu
- Investigation performed at the School of Medicine, Zhejiang University, Hangzhou, China
| | - Gang Feng
- Investigation performed at the School of Medicine, Zhejiang University, Hangzhou, China
| | - Youzhi Cai
- Investigation performed at the School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Xia
- Investigation performed at the School of Medicine, Zhejiang University, Hangzhou, China
| | - Hua Liu
- Investigation performed at the School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiliang Shen
- Investigation performed at the School of Medicine, Zhejiang University, Hangzhou, China
| | - Xueqing Hu
- Investigation performed at the School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongwei Ouyang
- Investigation performed at the School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
56
|
Terunuma A, Ashiba K, Takane T, Sakaguchi Y, Terunuma H. Comparative transcriptomic analysis of human mesenchymal stem cells derived from dental pulp and adipose tissues. J Stem Cells Regen Med 2019; 15:8-11. [PMID: 31239606 PMCID: PMC6586766 DOI: 10.46582/jsrm.1501003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 01/19/2019] [Indexed: 08/10/2023]
Abstract
Objective: Mesenchymal stem cells (MSCs) have been isolated from various human tissues. Although they share cardinal stem cell features of self-renewal and multi-potency, they also seem to possess distinct characteristics depending on the tissue types they originated from. When developing stem cell-based therapies, MSCs with the most desirable characteristics should be chosen. However, our knowledge on tissue type-specific characteristics of MSCs is limited. Here, we comparatively studied the gene expression profiles of MSCs from different tissue types, and predicted target diseases suitable for each type of MSCs. Methods: We harvested MSCs from human dental pulp and adipose tissue specimens and subjected them to gene expression microarray analysis. Characteristic gene expression signatures of the MSCs from each tissue type were identified using gene-annotation enrichment analysis. Results: Dental pulp-derived MSCs exhibited gene expression signatures of neuronal growth, while adipose tissue-derived MSCs exhibited signatures of angiogenesis and hair growth. MSCs from each tissue type expressed a discrete set of genes encoding secretory peptides, which may function as paracrine factors. Conclusions: MSCs derived from different tissue types demonstrated distinct gene expression signatures, which are suggestive of target diseases in clinical applications of the MSCs and stem cell-conditioned media. By expanding the analysis to MSCs from a wide range of tissue types, and by employing multiple omics approaches, a catalogue of MSCs and therapeutic targets can be generated.
Collapse
Affiliation(s)
- Atsushi Terunuma
- Biotherapy Institute of Japan, Tokyo, Japan
- Tokyo Clinic, Tokyo, Japan
| | | | | | | | - Hiroshi Terunuma
- Biotherapy Institute of Japan, Tokyo, Japan
- Tokyo Clinic, Tokyo, Japan
- Southern Tohoku General Hospital, Koriyama, Japan
| |
Collapse
|
57
|
Administration of Tonsil-Derived Mesenchymal Stem Cells Improves Glucose Tolerance in High Fat Diet-Induced Diabetic Mice via Insulin-Like Growth Factor-Binding Protein 5-Mediated Endoplasmic Reticulum Stress Modulation. Cells 2019; 8:cells8040368. [PMID: 31018536 PMCID: PMC6523961 DOI: 10.3390/cells8040368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/14/2019] [Accepted: 04/19/2019] [Indexed: 12/21/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a prevalent chronic metabolic disorder accompanied by high blood glucose, insulin resistance, and relative insulin deficiency. Endoplasmic reticulum (ER) stress induced by high glucose and free fatty acids has been suggested as one of the main causes of β-cell dysfunction and death in T2DM. Stem cell-derived insulin-secreting cells were recently suggested as a novel therapy for diabetes. In the present study, we demonstrate the therapeutic potential of tonsil-derived mesenchymal stem cells (TMSCs) to treat high-fat diet (HFD)-induced T2DM. To explore whether TMSC administration can alleviate T2DM, TMSCs were intraperitoneally injected in HFD-induced T2DM mice once every 2 weeks. TMSC injection markedly improved glucose tolerance and glucose-stimulated insulin secretion and prevented HFD-induced pancreatic β-cell hypertrophy and cell death. In addition, TMSC injection relieved the ER-stress response and preserved gene expression related to glucose sensing and insulin secretion. Moreover, administration of TMSC-derived conditioned medium induced similar therapeutic outcomes, suggesting paracrine effects. Finally, proteomic analysis revealed high secretion of insulin-like growth factor-binding protein 5 by TMSCs, and its expression was critical for the protective effects of TMSCs against HFD-induced glucose intolerance and ER-stress response in pancreatic islets. TMSC administration can alleviate HFD-induced-T2DM via preserving pancreatic islets and their function. These results provide novel evidence of TMSCs as an ER-stress modulator that may be a novel, alternative cell therapy for T2DM.
Collapse
|
58
|
Zhang B, Kasoju N, Li Q, Soliman E, Yang A, Cui Z, Ma J, Wang H, Ye H. Culture surfaces induce hypoxia-regulated genes in human mesenchymal stromal cells. ACTA ACUST UNITED AC 2019; 14:035012. [PMID: 30849767 DOI: 10.1088/1748-605x/ab0e61] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Culturing human Mesenchymal stromal cells (hMSCs) in vitro in hypoxic conditions resulted in reduced senescence, enhanced pluripotency and altered proliferation rate. It has been known that in vitro hypoxia affects expression of cell surface proteins. However, the impact of culture surfaces on the hypoxia-regulated genes (HRG) have not yet been reported. This study utilized Next-Generation sequencing to analyse the changes in the gene expression levels of HRG for hMSCs cultured on different culture surfaces. The samples, which were cultured on four different synthesized surfaces (treatments) and tissue culture plate (control), resulted in a difference in growth rate. The sequencing results revealed that the transcription of a number of key genes involved in regulating hypoxic functions were significantly altered, including HIF2A, a marker for potency, differentiation, and various cellular functions. Significant alternations in the expression levels of previously reported oxygen-sensitive surface proteins were detected in this study, some of which closely correlate with the expression levels of HIF2A. Our analysis of the hMSCs transcriptome and HRG mapped out a list of genes encoding surface proteins which may directly regulate or be regulated by HIF2A. The findings from this study showed that culture surfaces have an impact on regulating the expression profile of HRG. Therefore, novel culture surfaces may be designed to selectively activate HIF2A and other HRG and pathways under in vitro normoxia. The understanding of the crosstalk between the regulating genes of hypoxia and culture surfaces may be utilized to strengthen desired hypoxic functions.
Collapse
Affiliation(s)
- Bo Zhang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom. Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Zhang B, Kasoju N, Li Q, Ma J, Yang A, Cui Z, Wang H, Ye H. Effect of Substrate Topography and Chemistry on Human Mesenchymal Stem Cell Markers: A Transcriptome Study. Int J Stem Cells 2019; 12:84-94. [PMID: 30836724 PMCID: PMC6457710 DOI: 10.15283/ijsc18102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/25/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023] Open
Abstract
Background and Objectives The International Society for Cellular Therapy (ISCT) proposed a set of minimal markers for identifying human mesenchymal stromal cells (hMSCs) in 2007. Since then, with the growing interest of better characterising hMSCs, various additional surface markers have been proposed. However, the impact of how culture conditions, in particular, the culture surface, vary the expression of hMSC markers was overlooked. Methods and Results In this study, we utilized the RNA sequencing data on hMSCs cultured on different surfaces to investigate the variation of the proposed hMSC biomarkers. One of the three ISCT proposed positive biomarker, CD90 was found to be significantly down regulated on hMSCs culture on fibrous surfaces when compared to flat surfaces. The detected gene expression values for 177 hMSCs biomarkers compiled from the literature are reported here. Correlation and cluster analysis revealed the existence of different biomarker communities that displayed a similar expression profile. We found a list of hMSCs biomarkers which are the least sensitive to a change in surface properties and another list of biomarkers which are found to have high sensitivity to a change in surface properties. Conclusions This study demonstrated that substrate properties have paramount effect on altering the expressions of hMSCs biomarkers and the proposed list of substrate-stable and substrate-sensitive biomarkers would better assist in the population characterisation. However, proteomic level analysis would be essential to confirm the observations noted.
Collapse
Affiliation(s)
- Bo Zhang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK.,Department of Engineering Science, University of Oxford, Oxford, UK
| | - Naresh Kasoju
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | | | - Jinmin Ma
- BGI-Shenzhen, Shenzhen 518083, China
| | - Aidong Yang
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Hui Wang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK.,BGI-Shenzhen, Shenzhen 518083, China.,Oxford Suzhou Centre for Advanced Research, Suzhou Industrial Park, Jiangsu, China
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| |
Collapse
|
60
|
Alhattab D, Jamali F, Ali D, Hammad H, Adwan S, Rahmeh R, Samarah O, Salah B, Hamdan M, Awidi A. An insight into the whole transcriptome profile of four tissue-specific human mesenchymal stem cells. Regen Med 2019; 14:841-865. [PMID: 30702025 DOI: 10.2217/rme-2018-0137] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: Variations in the clinical outcomes using mesenchymal stem cells (MSCs) treatments exist, reflecting different origins and niches. To date, there is no consensus on the best source of MSCs most suitable to treat a specific disease. Methods: Total transcriptome analysis of human MSCs was performed. MSCs were isolated from two adult sources bone marrow, adipose tissue and two perinatal sources umbilical cord and placenta. Results: Each MSCs type possessed a unique expression pattern that reflects an advantage in terms of their potential therapeutic use. Advantages in immune modulation, neurogenesis and other aspects were found. Discussion: This study is a milestone for evidence-based choice of the type of MSCs used in the treatment of diseases.
Collapse
Affiliation(s)
- Dana Alhattab
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Fatima Jamali
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Dema Ali
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Hana Hammad
- Department of Biological Sciences, School of Science, The University of Jordan, Amman, Jordan
| | - Sofia Adwan
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Reem Rahmeh
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Omar Samarah
- Special Surgery Department, School of Medicine, The University of Jordan, Amman, Jordan
| | - Bareqa Salah
- General Surgery Department/Plastic & Reconstructive, Jordan University Hospital, The University of Jordan, Amman, Jordan
| | - Mohammad Hamdan
- Special Surgery Department, School of Medicine, The University of Jordan, Amman, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan.,Department of Hematology & Oncology, Faculty of Medicine, The University of Jordan, Amman, Jordan
| |
Collapse
|
61
|
Stępniewski J, Florczyk-Soluch U, Szade K, Bukowska-Strakova K, Czapla J, Matuszczak S, Jarosz-Biej M, Langrzyk A, Tomczyk M, Rumieńczyk I, Kulecka M, Mikuła M, Ostrowski J, Jaźwa-Kusior A, Zembala M, Józkowicz A, Zembala MO, Dulak J. Transcriptomes of human mesenchymal cells isolated from the right ventricle and epicardial fat differ strikingly both directly after isolation and long-term culture. ESC Heart Fail 2019; 6:351-361. [PMID: 30623613 PMCID: PMC6437551 DOI: 10.1002/ehf2.12397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/21/2018] [Indexed: 11/08/2022] Open
Abstract
Aims Mesenchymal stromal cells isolated from different tissues are claimed to demonstrate similar therapeutic potential and are often incorrectly named mesenchymal stem cells. However, through comparison of such cells is lacking. This study aimed to compare the transcriptome of mesenchymal cells of the same phenotype isolated from the heart muscle and epicardial fat of the same patient, before and after culture. Methods and results Cells were isolated from biopsies of the right ventricle and epicardial fat collected from five patients (three men and two women, mean age 59.4 ± 2.6) who underwent heart transplantation due to ischaemic cardiomyopathy. In both tissues, immunophenotyping revealed three distinct populations: (i)CD31−CD45−CD90+CD34+CD146−, (ii) CD31−CD45−CD90+CD34−CD146+, and (iii) CD31−CD45−CD90−CD34−CD146+, of which only the first one could be grown after sorting. Material for RNA‐seq was collected from these cells before culture (250 cells) and at passage 6 (5000 cells). Transcriptomic analysis revealed that cells of the same phenotype (CD31−CD45−CD90+CD34+CD146−) upon isolation preferentially clustered according to the tissue of origin, not to the patient from whom they were isolated. Genes up‐regulated in the right ventricle‐derived cells were related to muscle physiology while down‐regulated genes included those encoding proteins with transmembrane signalling receptor activity. After six passages, heart‐derived and fat‐derived cells did not acquire similar transcriptome. Cells isolated from the right ventricle in comparison with their epicardial fat‐derived counterparts demonstrated higher level of transcripts related, among others, to RNA processing and muscle development. The down‐regulated genes were involved in the nucleosome assembly, DNA packaging and replication, and interleukin‐7‐mediated signalling pathway. Cells from epicardial fat demonstrated higher heterogeneity both before and after culture. Cell culture significantly changed gene expression profile within both tissues. Conclusions This study is an essential indication that mesenchymal cells isolated from different tissues do not demonstrate similar properties. Phenotypic identification and ease of isolation cannot be considered as a criterion in any therapeutic utilization of such cells.
Collapse
Affiliation(s)
- Jacek Stępniewski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Urszula Florczyk-Soluch
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Karolina Bukowska-Strakova
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.,Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Justyna Czapla
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Sybilla Matuszczak
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Magdalena Jarosz-Biej
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | | | - Mateusz Tomczyk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Izabela Rumieńczyk
- Department of Genetics, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Michał Mikuła
- Department of Genetics, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Genetics, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland.,Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Agnieszka Jaźwa-Kusior
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marian Zembala
- Department of Cardiac Surgery and Transplantology, Silesian Center for Heart Diseases, Zabrze, Poland
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Michał Oskar Zembala
- Department of Cardiac Surgery and Transplantology, Silesian Center for Heart Diseases, Zabrze, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.,KardioMed Silesia, Zabrze, Poland
| |
Collapse
|
62
|
Ho YT, Shimbo T, Wijaya E, Ouchi Y, Takaki E, Yamamoto R, Kikuchi Y, Kaneda Y, Tamai K. Chromatin accessibility identifies diversity in mesenchymal stem cells from different tissue origins. Sci Rep 2018; 8:17765. [PMID: 30531792 PMCID: PMC6288149 DOI: 10.1038/s41598-018-36057-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/14/2018] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cells (MSCs), which can differentiate into tri-lineage (osteoblast, adipocyte, and chondrocyte) and suppress inflammation, are promising tools for regenerative medicine. MSCs are phenotypically diverse based on their tissue origins. However, the mechanisms underlying cell-type-specific gene expression patterns are not fully understood due to the lack of suitable strategy to identify the diversity. In this study, we investigated gene expression programs and chromatin accessibilities of MSCs by whole-transcriptome RNA-seq analysis and an assay for transposase-accessible chromatin using sequencing (ATAC-seq). We isolated MSCs from four tissues (femoral and vertebral bone marrow, adipose tissue, and lung) and analysed their molecular signatures. RNA-seq identified the expression of MSC markers and both RNA-seq and ATAC-seq successfully clustered the MSCs based on their tissue origins. Interestingly, clustering based on tissue origin was more accurate with chromatin accessibility signatures than with transcriptome profiles. Furthermore, we identified transcription factors potentially involved in establishing cell-type specific chromatin structures. Thus, epigenome analysis is useful to analyse MSC identity and can be utilized to characterize these cells for clinical use.
Collapse
Affiliation(s)
- Yen-Ting Ho
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takashi Shimbo
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Edward Wijaya
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,StemRIM Co., Ltd., Ibaraki, Osaka, Japan
| | - Yuya Ouchi
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,StemRIM Co., Ltd., Ibaraki, Osaka, Japan
| | - Eiichi Takaki
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,StemRIM Co., Ltd., Ibaraki, Osaka, Japan
| | - Ryoma Yamamoto
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,StemRIM Co., Ltd., Ibaraki, Osaka, Japan
| | - Yasushi Kikuchi
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yasufumi Kaneda
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
63
|
Conditioned Medium from Tonsil-Derived Mesenchymal Stem Cells Relieves CCl 4-Induced Liver Fibrosis in Mice. Tissue Eng Regen Med 2018; 16:51-58. [PMID: 30815350 DOI: 10.1007/s13770-018-0160-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/21/2018] [Accepted: 09/02/2018] [Indexed: 12/18/2022] Open
Abstract
Background The liver is an organ with remarkable regenerative capacity; however, once chronic fibrosis occurs, liver failure follows, with high mortality and morbidity rates. Continuous exposure to proinflammatory stimuli exaggerates the pathological process of liver failure; therefore, immune modulation is a potential strategy to treat liver fibrosis. Mesenchymal stem cells (MSCs) with tissue regenerative and immunomodulatory potential may support the development of therapeutics for liver fibrosis. Methods Here, we induced hepatic injury in mice by injecting carbon tetrachloride (CCl4) and investigated the therapeutic potential of conditioned medium from tonsil-derived MSCs (T-MSC CM). In parallel, we used recombinant human IL-1Ra, which, as we have previously shown, is secreted exclusively from T-MSCs and resolves the fibrogenic activation of myoblasts. Hepatic inflammation and fibrosis were determined by histological analyses using H&E and Picro-Sirius Red staining. Results The results demonstrated that T-MSC CM treatment significantly reduced inflammation as well as fibrosis in the CCl4-injured mouse liver. IL-1Ra injection showed effects similar to T-MSC CM treatment, suggesting that T-MSC CM may exert anti-inflammatory and anti-fibrotic effects via the endogenous production of IL-1Ra. The expression of genes involved in fibrosis was evaluated, and the results showed significant induction of alpha-1 type I collagen, transforming growth factor beta, and tissue inhibitor of metalloproteases 1 upon CCl4 injection, whereas treatment with T-MSC CM or IL-1Ra downregulated their expression. Conclusions Taken together, these data support the therapeutic potential of T-MSC CM and/or IL-1Ra for the alleviation of liver fibrosis, as well as in treating diseases involving organ fibrosis.
Collapse
|
64
|
Kim G, Jin YM, Yu Y, Kim HY, Jo SA, Park YJ, Park YS, Jo I. Double intratibial injection of human tonsil-derived mesenchymal stromal cells recovers postmenopausal osteoporotic bone mass. Cytotherapy 2018; 20:1013-1027. [PMID: 30072298 DOI: 10.1016/j.jcyt.2018.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND AIMS Osteoporosis, which is a disease characterized by weakening of the bone, affects a large portion of the senior population. The current therapeutic options for osteoporosis have side effects, and there is no effective treatment for severe osteoporosis. Thus, we urgently need new treatment strategies, such as topical therapies and/or safe and effective stem cell therapies. METHODS We investigated the therapeutic potential of directly injecting human tonsil-derived mesenchymal stem cells (TMSC) into the right proximal tibias of ovariectomized postmenopausal osteoporosis model mice. Injections were given once (1×) or twice (2×) during the 3-month experimental period. At the end of the experiment, micro-computed tomographic images revealed some improvement in the proximal tibias and more significant improvement in the femoral heads of treated mice. RESULTS Osteogenic effect was qualitatively and quantitatively more pronounced in TMSC/2×-treated mice. Furthermore, TMSC/2× mice exhibited significant recovery of the serum osteocalcin level, which is pathologically elevated in osteoporosis, and increased serum alkaline phosphatase, which indicates bone formation. TMSC therapy was generally well tolerated and caused no apparent toxicity in the experimental mice. Moreover, TMSC therapy reduced visceral fat. CONCLUSION Our results demonstrate that double injection of TMSC directly into the proximal tibia triggers recovery of osteoporosis, and thus could be a potential therapeutic approach for severe bone loss.
Collapse
Affiliation(s)
- Gyungah Kim
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea; Ewha Tonsil-derived mesenchymal Stem cells Research Center (ETSRC), School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Yoon Mi Jin
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea; Ewha Tonsil-derived mesenchymal Stem cells Research Center (ETSRC), School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Yeonsil Yu
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea; Ewha Tonsil-derived mesenchymal Stem cells Research Center (ETSRC), School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Ha Yeong Kim
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea; Ewha Tonsil-derived mesenchymal Stem cells Research Center (ETSRC), School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Sangmee Ahn Jo
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Chungnam, Republic of Korea; Department of Pharmacology, College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Yoon Jeong Park
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul, Republic of Korea; Department of Dental Regenerative Biotechnology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Yoon Shin Park
- Major in Microbiology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| | - Inho Jo
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea; Ewha Tonsil-derived mesenchymal Stem cells Research Center (ETSRC), School of Medicine, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
65
|
Kim G, Park YS, Lee Y, Jin YM, Choi DH, Ryu KH, Park YJ, Park KD, Jo I. Tonsil-derived mesenchymal stem cell-embedded in situ crosslinkable gelatin hydrogel therapy recovers postmenopausal osteoporosis through bone regeneration. PLoS One 2018; 13:e0200111. [PMID: 29975738 PMCID: PMC6033433 DOI: 10.1371/journal.pone.0200111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/19/2018] [Indexed: 12/23/2022] Open
Abstract
We investigated therapeutic potential of human tonsil-derived mesenchymal stem cells (TMSC) subcutaneously delivered to ovariectomized (OVX) mice for developing more safe and effective therapy for osteoporosis. TMSC were isolated from tonsil tissues of children undergoing tonsillectomy, and TMSC-embedded in situ crosslinkable gelatin-hydroxyphenyl propionic acid hydrogel (TMSC-GHH) or TMSC alone were delivered subcutaneously to the dorsa of OVX mice. After 3 months, three-dimensionally reconstructed micro-computed tomographic images revealed better recovery of the femoral heads in OVX mice treated with TMSC-GHH. Serum osteocalcin and alkaline phosphatase were also recovered, indicating bone formation only in TMSC-GHH-treated mice, and absence in hypercalcemia or other severe macroscopic deformities showed biocompatibility of TMSC-GHH. Additionally, visceral fat reduction effects by TMSC-GHH further supported their therapeutic potential. TMSC provided therapeutic benefits toward osteoporosis only when embedded in GHH, and showed potential as a supplement or alternative to current therapies.
Collapse
Affiliation(s)
- Gyungah Kim
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
- Ewha Tonsil-derived mesenchymal Stem cells Research Center (ETSRC), College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Yoon Shin Park
- Major in Microbiology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Yunki Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Yoon Mi Jin
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
- Ewha Tonsil-derived mesenchymal Stem cells Research Center (ETSRC), College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Da Hyeon Choi
- Major in Microbiology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Kyung-Ha Ryu
- Ewha Tonsil-derived mesenchymal Stem cells Research Center (ETSRC), College of Medicine, Ewha Womans University, Seoul, Republic of Korea
- Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Yoon Jeong Park
- Department of Dental Regenerative Biotechnology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul, Republic of Korea
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Inho Jo
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
- Ewha Tonsil-derived mesenchymal Stem cells Research Center (ETSRC), College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
66
|
Diomede F, D'Aurora M, Gugliandolo A, Merciaro I, Orsini T, Gatta V, Piattelli A, Trubiani O, Mazzon E. Biofunctionalized Scaffold in Bone Tissue Repair. Int J Mol Sci 2018; 19:E1022. [PMID: 29596323 PMCID: PMC5979468 DOI: 10.3390/ijms19041022] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/15/2018] [Accepted: 03/26/2018] [Indexed: 01/02/2023] Open
Abstract
Bone tissue engineering is based on bone grafting to repair bone defects. Bone graft substitutes can contribute to the addition of mesenchymal stem cells (MSCs) in order to enhance the rate and the quality of defect regeneration. The stem cell secretome contains many growth factors and chemokines, which could affect cellular characteristics and behavior. Conditioned medium (CM) could be used in tissue regeneration avoiding several problems linked to the direct use of MSCs. In this study, we investigated the effect of human periodontal ligament stem cells (hPDLSCs) and their CM on bone regeneration using a commercially available membrane scaffold Evolution (EVO) implanted in rat calvarias. EVO alone or EVO + hPDLSCs with or without CM were implanted in Wistar male rats subjected to calvarial defects. The in vivo results revealed that EVO membrane enriched with hPDLSCs and CM showed a better osteogenic ability to repair the calvarial defect. These results were confirmed by acquired micro-computed tomography (CT) images and the increased osteopontin levels. Moreover, RT-PCR in vitro revealed the upregulation of three genes (Collagen (COL)5A1, COL16A1 and transforming growth factor (TGF)β1) and the down regulation of 26 genes involved in bone regeneration. These results suggest a promising potential application of CM from hPDLSCs and scaffolds for bone defect restoration and in particular for calvarial repair in case of trauma.
Collapse
Affiliation(s)
- Francesca Diomede
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy.
| | - Marco D'Aurora
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy.
| | | | - Ilaria Merciaro
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy.
| | - Tiziana Orsini
- CNR-National Research Council, Institute of Cell Biology and Neurobiology (IBCN), via Ramarini 32, Monterotondo, 00015 Roma, Italy.
| | - Valentina Gatta
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy.
| | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy.
| | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy.
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino Pulejo", 98124 Messina, Italy.
| |
Collapse
|
67
|
Abstract
The field of mesenchymal stromal cell (MSC) biology and clinical cellular therapy has grown exponentially over the last few decades. With discovery of multiple tissue specific sources of stromal cells, invariably being termed MSCs, and their increasing clinical application, there is a need to further delineate the true definition of a mesenchymal stromal cell and to recognise the inherit differences between cell sources; both their potential and limitations. In this review, we discuss the importance of considering every stromal cell source as an independent entity and the need to critically evaluate and appreciate the true phenotype of these cells and their safety when considering their use in novel cell therapies.
Collapse
Affiliation(s)
- Katarina Le Blanc
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.
| | - Lindsay C Davies
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|