51
|
Sexton HG, Olszewski NA, Risher ML. The Effects of Rosiglitazone on Task Specific Anxiety-Like Behavior and Novelty Seeking in a Model of Chronic Adolescent Unpredictable Stress. Front Behav Neurosci 2022; 16:830310. [PMID: 35221947 PMCID: PMC8874210 DOI: 10.3389/fnbeh.2022.830310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/20/2022] [Indexed: 12/02/2022] Open
Abstract
Adolescence is characterized as a period of increased social behavior, risk taking, and novelty seeking, partly due to ongoing maturation in critical brain areas and the hypothalamic-pituitary-adrenal (HPA) negative-feedback system. During this period there is heightened vulnerability to stress that can drive neuro-immune-endocrine remodeling, resulting in the emergence of maladaptive behaviors that increase susceptibility to alcohol and substance abuse. Here we used a rat model to investigate the impact of chronic adolescent unpredictable stress on a battery of behavioral measures to assess anxiety, novelty seeking, risk taking, depression, and voluntary ethanol consumption while determining whether the PPARγ agonist rosiglitazone can attenuate these effects. Adolescent female rats that experienced stress showed increased risk taking behavior and novelty seeking behavior with no change in ethanol consumption. The administration of rosiglitazone during stress induction attenuated stress-induced cortisol elevation, normalized risk taking behavior in a model anxiety, and attenuated novelty seeking in a task-specific manner. Depressive-like behavior was not impacted by adolescent unpredictable stress or the administration of rosiglitazone. The results from this study demonstrate that exposure to unpredictable stress during adolescence increases the prevalence of maladaptive behaviors that are known to increase susceptibility to alcohol and substance abuse, and that rosiglitazone may be an effective therapeutic to attenuate the emergence of select risk taking and novelty seeking behaviors in females.
Collapse
Affiliation(s)
- Hannah G. Sexton
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
- Hershel ‘Woody’ Williams Veterans Affairs Medical Center, Huntington, WV, United States
| | - Nathan A. Olszewski
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Mary-Louise Risher
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
- Hershel ‘Woody’ Williams Veterans Affairs Medical Center, Huntington, WV, United States
| |
Collapse
|
52
|
David M, Serena B, Jeremy B, Madeline T, Bernard BW. CRF-receptor1 modulation of the dopamine projection to prelimbic cortex facilitates cognitive flexibility after acute and chronic stress. Neurobiol Stress 2022; 16:100424. [PMID: 35005102 PMCID: PMC8718497 DOI: 10.1016/j.ynstr.2021.100424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 11/29/2022] Open
Abstract
Stress reduces cognitive flexibility and dopamine D1 receptor-related activity in the prelimbic cortex (PL), effects hypothesized to depend on reduced corticotropic releasing factor receptor type 1 (CRFr1) regulation of dopamine neurons in the ventral tegmental area (VTA). We assessed this hypothesis in rats by examining the effect of chronic unpredictable restraint stress (CUS), mild acute stress, or their combination on cognitive flexibility, CRFr1 expression in the VTA and D1-related activity in PL. In Experiment 1, rats received either CUS or equivalent handling for 14 days before being trained to press two levers to earn distinct food outcomes. Initial learning was assessed using an outcome devaluation test after which cognitive flexibility was assessed by reversing the outcomes earned by the actions. Prior to each reversal training session, half the CUS and controls receiving acute stress with action-outcome updating assessed using a second devaluation test and CRFr1 expression in the VTA assessed using in-situ hybridisation. Although CUS did not itself affect action-outcome learning, its combination with acute stress blocked reversal learning and decreased VTA CRFr1 expression after acute shock. The relationship between these latter two effects was assessed in Experiment 2 by pharmacologically disconnecting the VTA and PL, unilaterally blocking neurons expressing CRFr1 in the VTA and D1 receptors in the contralateral PL during reversal learning after acute stress. Acute stress again blocked reversal learning but only in the group with VTA-PL disconnection, demonstrating that VTA CRFr1-induced facilitation of dopaminergic activity in the PL is necessary for maintaining cognitive flexibility after acute stress. [250]. Acute stress increased CRF receptor1 expression in the VTA. Chronic stress attenuated the effect of acute stress on CRFr1 expression. Chronic stress plus acute stress produced a loss of cognitive flexibility. Blocking VTA CFRr1 and dopamine D1r in PL reduced cognitive flexibility following stress.
Collapse
Affiliation(s)
- Mor David
- School of Medical Sciences, University of Sydney, Australia
| | - Becchi Serena
- Decision Neuroscience Lab, University of New South Wales, Australia
| | - Bowring Jeremy
- School of Medical Sciences, University of Sydney, Australia
| | | | | |
Collapse
|
53
|
Alamri H. Evaluation of the antidepressant-like activity of the aqueous extract of Crataegus aronia. Pharmacogn Mag 2022. [DOI: 10.4103/pm.pm_463_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
54
|
Agarwal V, Kaushik AS, Rehman M, Chaudhary R, Jawaid T, Kamal M, Mishra V. Interleukin-6 expression and its modulation by diacerein in a rat model of chronic stress induced cardiac dysfunction. Heliyon 2021; 7:e08522. [PMID: 34917808 PMCID: PMC8665349 DOI: 10.1016/j.heliyon.2021.e08522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/20/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022] Open
Abstract
People with chronic stress have higher levels of pro-inflammatory cytokines, which enhance their susceptibility to cardiovascular diseases. Diacerein has ability to modulate pro-inflammatory cytokines such as IL-1β and IL-6; however, its efficacy in chronic stress associated cardiovascular diseases is not yet assessed. In this study, we standardized a rat model of chronic unpredictable stress (CUS) demonstrating cardiovascular dysfunctions and further assessed the effect of IL-6 modulator, diacerein, on cardiovascular functions in CUS exposed rats. The CUS procedure consisted of exposing male albino Wistar rats to random stressors, everyday for 8 weeks. The binding affinity of diacerein with IL-6 was ascertained using Docking tools viz AutoDock and SwissDock. Moreover, diacerein was administered (50 mg/kg/day x 20 days P.O) post CUS exposure to rats and the serum IL-6 levels and heart functions of CUS rats were determined by ELISA and ECG-HRV analysis, respectively. 8 weeks of CUS exposure resulted in two-fold increase in serum corticosterone and IL-6 levels in rats. The ECG and HRV analysis of CUS rats showed altered sinus rhythm, elevated heart rate, systolic blood pressure and sympathetic tone. Molecular docking studies revealed diacerein high binding affinity towards IL-6 receptor. The post-treatment of diacerein in CUS rats prevented these cardiovascular dysfunctions. Our findings thus suggests that IL-6 may have a prominent role in chronic stress induced cardiovascular dysfunctions and diacerein, could be used as a preventive measure for such conditions.
Collapse
Affiliation(s)
- Vipul Agarwal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, UP, India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, UP, India
| | - Mujeeba Rehman
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, UP, India
| | - Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, UP, India
| | - Talha Jawaid
- Department of Pharmacology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box- 173, Al-Kharj 11942, Saudi Arabia
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, UP, India
| |
Collapse
|
55
|
Xiong TW, Liu B, Wu Q, Xu YY, Liu P, Wang Y, Liu J, Shi JS. Beneficial effects of Dendrobium nobile Lindl. Alkaloids (DNLA) on anxiety and depression induced by chronic unpredictable stress in rats. Brain Res 2021; 1771:147647. [PMID: 34481787 DOI: 10.1016/j.brainres.2021.147647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 11/25/2022]
Abstract
Dendrobium nobile Lindl. alkaloid (DNLA) is effective against animal models of Alzheimer's disease. This study further examined its effect on anxiety and depression produced by chronic unpredictable stress (CUS). Rats were subjected to CUS for 42 days, followed by DNLA treatment (20 mg/kg/day, po) for 28 days. The behavioral tests, histopathology, neurotransmitters and RNA-Seq were examined. DNLA attenuated body weight loss and CUS-induced anxiety/depressive-like behaviors, as evidenced by the elevated-plus-maze test, open-field test and sucrose preference. DNLA alleviated neuronal damage and loss and increased Nissl bodies in the hippocampus CA2 region and cortex. DNLA decreased CUS-elevated 5-hydroxytryptamine, dopamine and monoamine oxidase and catechol-O-methyltransferase activities in the brain. DNLA attenuated HPA activation by decreasing adrenocorticotropic hormones and the expression of corticotropin-releasing hormone receptor-1, and increased the expression of glucocorticoid receptor in the brain. RNA-Seq revealed distinct gene expression patterns among groups. Gene ontology revealed the cell projection assembly, postsynapse and centrosome as top biological processes, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment showed the cAMP, cGMP-PKG, glutamatergic synapse and circadian as major pathways for DNLA effects. Using DESeq2, CUS modulated 1700 differentially expressed genes (DEGs), which were prevented or attenuated by DNLA. CUS-induced DEGs were highly correlated with the Gene Expression Omnibus (GEO) database for anxiety and depression and were ameliorated by DNLA. Taken together, DNLA attenuated anxiety/depression-like behavior and neuronal damage induced by CUS in rats. The mechanisms could be related to regulation of the monoamine neurotransmitters and the HPA axis, and modulation of gene expression in the hippocampus.
Collapse
Affiliation(s)
- Ting-Wang Xiong
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China; Zunyi Medical and Pharmaceutical College, Zunyi, China.
| | - Bo Liu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Qin Wu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Yun-Yan Xu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Ping Liu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China; Department of Clinical Pharmacy, Zunyi Medical University, Zunyi, China.
| | - Yan Wang
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Jie Liu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Jing-Shan Shi
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
56
|
Pradhan LK, Sahoo PK, Chauhan NR, Das SK. Temporal exposure to chronic unpredictable stress induces precocious neurobehavioral deficits by distorting neuromorphology and glutathione biosynthesis in zebrafish brain. Behav Brain Res 2021; 418:113672. [PMID: 34785260 DOI: 10.1016/j.bbr.2021.113672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022]
Abstract
Modelling of chronic stress conditions in experimental animals and its neuropsychiatric outcomes has been well documented in literature. Zebrafish (Danio rerio) by exhibiting significant genetic and epidemiological similarities with human beings, has now emerged as a promising animal model of translational research. In this line, risk assessment following exposure to chronic unpredictable stress (CUS) towards neurobehavioral response and neuromorphology of sensitive brain region in zebrafish is the prime objective of the present study. With the existing knowledge on CUS in affecting diverse neurobehavioral aspects, we were primarily interested in whether this neurobehavioral transformation is an outcome of altered glutathione biosynthesis in zebrafish. We were also concerned about whether the precocious neurobehavioral transformation has been linked to altered neuromorphology in the periventricular grey zone (PGZ) of the zebrafish brain. Our basic findings showed that CUS itself represented as a universal factor in altering native bottom-dwelling and scototaxis behaviour of zebrafish. Our findings also backing the argument that CUS itself represented a collective stress regimen by altering the brain glutathione biosynthesis in zebrafish. Correspondingly, a temporal transformation in CUS instigated augmentation in neuronal pyknosis and chromatin condensation were observed in PGZ of the zebrafish brain. Collectively, these findings designate that CUS induced temporal neurobehavioral transformation is an outcome of augmented oxidative stress and neuromorphological alteration in the zebrafish brain. However, the underlying mechanism of such neuropathological manifestation associated with CUS might provide novel insight towards the development of prophylactic/therapeutic intervention to counter such co-morbid behavioral alteration.
Collapse
Affiliation(s)
- Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, India
| | - Pradyumna Kumar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, India
| | - Nishant Ranjan Chauhan
- Infectious Disease Biology Division, Institute of Life Sciences, Bhubaneswar 751023, India
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, India.
| |
Collapse
|
57
|
Rojas-Carvajal M, Chinchilla-Alvarado J, Brenes JC. Muscarinic regulation of self-grooming behavior and ultrasonic vocalizations in the context of open-field habituation in rats. Behav Brain Res 2021; 418:113641. [PMID: 34756999 DOI: 10.1016/j.bbr.2021.113641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/05/2021] [Accepted: 10/24/2021] [Indexed: 11/29/2022]
Abstract
Laboratory rats repeatedly exposed to an open field (OF) apparatus display increasingly high levels of grooming -especially that characterized by long and complex sequences- which has been taken as an additional index of novelty habituation. We hypothesized that disrupting such a learning process by administering an amnesic drug as the antimuscarinic scopolamine (SCP) could delay the appearance of more complex grooming subtypes. Thus, rats were pretreated either with SCP (15 mg/kg or 30 mg/kg) or vehicle (VEH) upon four one-day apart OF (OF1-4). On a fifth assessment, all rats received VEH to analyze the likely carry-over effect of SCP. Finally, we measured 50-kHz and 22-kHz ultrasonic vocalizations (USVs) as reliable markers of positive and negative emotionality, respectively. We found that SCP increased locomotion during OF1 and reduced rearing on OF1-OF4, causing no disruption in habituation over tests. SCP prevented the increase of total grooming time by inhibiting complex grooming subtypes and promoting short cephalic sequences. Despite the SCP-induced alterations on grooming agreed with our hypotheses, those changes may have resulted from a motor impairment that could have also affected rearing behavior. Additionally, SCP suppressed 50-kHz USVs while marginally increased 22-kHz calls. Once SCP was withdrawn, rearing, grooming, and some 50-kHz USVs subtypes returned to VEH levels, suggesting that novelty habituation occurred despite the SCP administration. Altogether, that mixed profile of SCP-induced behavioral changes may derive from the complex interplay between the contrasting action of SCP on different brain regions and the doses here used.
Collapse
Affiliation(s)
- Mijail Rojas-Carvajal
- Neuroscience Research Center, University of Costa Rica, Montes de Oca, San José, Costa Rica; Institute for Psychological Research, University of Costa Rica, Montes de Oca, San José, Costa Rica.
| | - Jimmy Chinchilla-Alvarado
- Neuroscience Research Center, University of Costa Rica, Montes de Oca, San José, Costa Rica; Institute for Psychological Research, University of Costa Rica, Montes de Oca, San José, Costa Rica.
| | - Juan C Brenes
- Neuroscience Research Center, University of Costa Rica, Montes de Oca, San José, Costa Rica; Institute for Psychological Research, University of Costa Rica, Montes de Oca, San José, Costa Rica.
| |
Collapse
|
58
|
Muhammad RN, Ahmed LA, Abdul Salam RM, Ahmed KA, Attia AS. Crosstalk Among NLRP3 Inflammasome, ET BR Signaling, and miRNAs in Stress-Induced Depression-Like Behavior: a Modulatory Role for SGLT2 Inhibitors. Neurotherapeutics 2021; 18:2664-2681. [PMID: 34664178 PMCID: PMC8804152 DOI: 10.1007/s13311-021-01140-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
Depression is an overwhelming health concern, and many patients fail to optimally respond to available standard therapies. Neuroplasticity and blood-brain barrier (BBB) integrity are the cornerstones of a well-functioning central nervous system, but they are vulnerable to an overly active NLRP3 inflammasome pathway that can also indirectly trigger the release of ET-1 and contribute to the ET system disturbance, which further damages stress resilience mechanisms. Here, the promising yet unexplored antidepressant potential of dapagliflozin (Dapa), a sodium-glucose co-transporter-2 inhibitor, was investigated by assessing its role in the modulation of the NLRP3 inflammasome pathway and ETBR signal transduction, and their impact on neuroplasticity and BBB integrity in an animal model of depression. Dapa (1 mg/kg/day; p.o.) with and without BQ-788 (1 mg/kg/day; i.p.), a specific ETBR blocker, were administered to adolescent male Wistar rats exposed to a 5-week chronic unpredictable stress protocol. The depressive animals demonstrated marked activation of the NLRP3 inflammasome pathway (NF-κB/NLRP3/caspase-1/IL/TNF-α), which was associated with both peripheral and central inflammatory responses. The ET system was disrupted, with noticeable reduction in miR-125a-5p and ETBR gene expression. Cortical ZO-1 expression was downregulated under the influence of NLRP3/TNF-α/miR-501-3p signaling, along with a prominent reduction in hippocampal BDNF and synapsin-1. With ETBR up-regulation being a cornerstone outcome, Dapa administration efficiently created an overall state of resilience, improved histopathological and behavioral variables, and preserved BBB function. These observations were further verified by the results obtained with BQ-788 co-administration. Thus, Dapa may exert its antidepressant action by reinforcing BBB integrity and promoting neuroplasticity through manipulation of the NLRP3/ET-1/ETBR/BDNF/ZO-1 axis, with a significant role for ETBR signaling. Graphical illustration for the proposed mechanisms of the anti-depressant potential of Dapa. Dapa suppressed NLRP3 inflammasome activation and assembly with subsequent inhibition of pro-inflammatory ILs. This results in attenuation of neuro-inflammation, BBB disruption, glial cell activation, TNF-α and ET-1 release, and the enhanced production of neurotrophins. The role of ETBR signaling was emphasized; Dapa possibly augmented ETBR expression, which is thought to boost neurotrophins production. The ETBR blocker, BQ-788, suppressed most of the positive outcomes of Dapa. Finally, miR-125a-5p and miR-501-3p that played major roles in these pathological pathways were modulated by Dapa. It is not yet clear whether Dapa has a direct or rather indirect effect on their expression. BBB, blood-brain barrier; Dapa, dapagliflozin; ET-1, endothelin-1; ETBR, endothelin B receptor; IL, interleukin; NF-κB, nuclear factor kappa B; NLRP3, nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing protein 3; TNF-α, tumor necrosis factor-α. Created with BioRender.com.
Collapse
Affiliation(s)
- Radwa N Muhammad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Rania M Abdul Salam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Department of Biology, School of Pharmacy, New Giza University, Giza, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Amina S Attia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
59
|
Haloperidol and aripiprazole impact on the BDNF and glucocorticoid receptor levels in the rat hippocampus and prefrontal cortex: effect of the chronic mild stress. Endocr Regul 2021; 55:153-162. [PMID: 34523299 DOI: 10.2478/enr-2021-0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Objective. Changes in the brain derived neurotrophic factor (BDNF) and glucocorticoid receptor (GR) expression in the prefrontal cortex (PFC) and hippocampus (HIP) are associated with psychiatric diseases and stress response. Chronic mild stress (CMS) may alter BDNF as well as GR levels in both the PFC and the HIP. The aim of the present study was to find out whether chronic treatment with a typical antipsychotic haloperidol (HAL) and an atypical antipsychotic aripiprazole (ARI) may modify the CMS effect on the BDNF and GR expression in the above-mentioned structures. Methods. The rats were exposed to CMS for 3 weeks and from the 7th day of CMS injected with vehicle (VEH), HAL (1 mg/kg) or ARI (10 mg/kg) for 4 weeks. BDNF and GR mRNA levels were established in the PFC and the HIP by Real Time PCR, whereas, PFC and HIP samples were obtained by punching them from 500 µm thick frozen sections. C-Fos immunoreactivity was analyzed in the PFC and the HIP on 30 µm thick paraformaldehyde fixed sections. Weight gain and corticosterone (CORT) levels were also measured. Results. The CMS and HAL suppressed the BDNF and GR mRNA levels in the PFC. In the HIP, CMS elevated BDNF mRNA levels that were suppressed by HAL and ARI treatments. The CMS decreased the c-Fos immunoreactivity in the PFC in both HAL- and ARI-treated animals. In the HIP, HAL increased the c-Fos immunoreactivity that was again diminished in animals exposed to CMS. Stressed animals gained markedly less weight until the 7th day of CMS, however, later their weight gain did not differ from the unstressed ones or was even higher in CMS+HAL group. Un-stressed HAL and ARI animals gained less weight than the VEH ones. Neither CMS nor HAL/ARI affected the plasma CORT levels. Conclusion. The present data indicate that HAL and ARI in the doses 1 mg/kg or 10 mg/kg, respectively, does not modify the effect of the CMS preconditioning on the BDNF and GR mRNA levels in the PFC or the HIP. However, HAL seems to modify the CMS effect on the HIP activation.
Collapse
|
60
|
Lages YV, Maisonnette SS, Marinho B, Rosseti FP, Krahe TE, Landeira-Fernandez J. Behavioral effects of chronic stress in Carioca high- and low-conditioned freezing rats. Stress 2021; 24:602-611. [PMID: 34030584 DOI: 10.1080/10253890.2021.1934445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Chronic unpredictable mild stress (CUMS) is a widely used model to study stress-coping strategies in rodents. Different factors have been shown to influence whether animals adopt passive or active coping responses to CUMS. Individual adaptation and susceptibility to the environment seem to play a critical role in this process. To further investigate this relationship, we examined the effects of CUMS on Carioca high- and low-conditioned freezing rats (CHF and CLF, respectively), bidirectional lines of animals selected for high and low freezing in response to contextual cues that were previously associated with footshocks. For this purpose, the behavior of CHF and CLF animals was evaluated in the contextual fear conditioning, open field, elevated T maze, and forced swimming tests before and after 21 days of CUMS. For all tests, CHF rats were more susceptible to the effects of CUMS compared to CLF. CHF animals exposed to CUMS displayed a reduction in freezing behavior, decreased number of entries and time spent in the center of the open field, greater latencies to become immobile, and increased avoidance and escaping behaviors in the elevated T maze. Overall, these findings support the hypothesis that a heightened susceptibility to the environment exerts a strong influence on coping responses to chronic stress.
Collapse
Affiliation(s)
- Yury V Lages
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvia S Maisonnette
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Beatriz Marinho
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flávia P Rosseti
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thomas E Krahe
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J Landeira-Fernandez
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
61
|
Abstract
Chronic stress evokes wide-ranging behavioral alterations, including risk avoidance, increased motoric output, and reduced consummatory behaviors. These are often interpreted as dysfunctions, but they may subserve adaptations for coping with existential threats. We tested this in a cohort of rats previously exposed to mild unpredictable stress for 5 weeks. Previously stressed rats exhibited the typically increased avoidance of open field and altered responses to predator odor, suggesting enhanced sensitivity to threatening contexts and cues. Interestingly, these animals collected rewards at a higher rate than controls, because they locomoted faster, spent less time in off-task (exploratory) behavior, and committed fewer licks at feeders. Further, they were not impaired in flexibly shifting choice as reward probabilities changed among feeders, suggesting that behavioral adaptations are not simply of transference to behavioral control to neural systems insensitive to reward (e.g. habits). These data add to a small but growing body of evidence indicating that stress shifts responses away from exploration and toward exploitation of resources, possibly to reduce threat exposure.HighlightsRats with a history of stress collected reward at a higher rate than controls on an operant task, owing to increase locomotion speed, reduced off-task behavior, and reduced time licking at feeders.Previously stressed rats exhibited increased win-stay responses than controls, suggesting the involvement of neural circuits related to goal-directed responding.Previously stressed rats performed equally to controls on a task requiring a shift of preferences based on reward probability, suggesting that they are not simply relying more on habit-based neural systems.
Collapse
Affiliation(s)
- C E Matisz
- Department of Neuroscience, Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - C A Badenhorst
- Department of Neuroscience, Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - A J Gruber
- Department of Neuroscience, Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| |
Collapse
|
62
|
Sequeira-Cordero A, Brenes JC. Time-dependent changes in striatal monoamine levels and gene expression following single and repeated amphetamine administration in rats. Eur J Pharmacol 2021; 904:174148. [PMID: 33961872 DOI: 10.1016/j.ejphar.2021.174148] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
As drug addiction may result from pathological usurpations of learning and memory's neural mechanisms, we focused on the amphetamine-induced time-dependent neurochemical changes associated with neural plasticity. We used juvenile rats as the risk for drug abuse is higher during adolescence. Experiment 1 served to define the appropriate amphetamine dose and the neurochemical effects of a single administration. In experiment 2, rats received seven amphetamine or saline injections in the open-field test throughout a twelve-day period. We measured the mRNA levels of the brain-derived neurotrophic factor (BDNF), its tropomyosin receptor kinase B (TrkB), the cAMP response element-binding protein (CREB), the microRNA-132, the Rho GTPase-activating protein 32 (p250GAP), the corticotropin-releasing factor (CRF), and monoamines and amino-acids contents in the nucleus accumbens and the dorsal striatum 45, 90, and 180 min after the last injection. We found that amphetamine changed gene expression only at certain time points and in a dose and region-dependent manner. Repeated but not single administrations upregulated accumbal and striatal BDNF (180 min) and striatal pri-miR-132 (90 min) expression, while downregulated accumbal CREB levels (90 min). As only some drug users develop addiction, we compared brain parameters between low and high amphetamine responders. Prone subjects characterized by having reduced striatal 5-HT metabolism, higher accumbal BDNF and TrkB expression, and lower levels of CREB in the dorsal striatum and p250GAP in both regions. Thus, individual differences in drug-induced changes in neurotransmission and gene expression in nigrostriatal and mesolimbic dopaminergic pathways may underlie the plasticity adaptations associated with behavioral sensitization to amphetamine.
Collapse
Affiliation(s)
- Andrey Sequeira-Cordero
- Instituto de Investigaciones en Salud, Universidad de Costa Rica, Costa Rica; Centro de Investigación en Neurociencias, Universidad de Costa Rica, Costa Rica.
| | - Juan C Brenes
- Instituto de Investigaciones Psicológicas, Universidad de Costa Rica, Costa Rica; Centro de Investigación en Neurociencias, Universidad de Costa Rica, Costa Rica.
| |
Collapse
|
63
|
Taghadosi Z, Zarifkar A, Razban V, Owjfard M, Aligholi H. Effect of chronically electric foot shock stress on spatial memory and hippocampal blood brain barrier permeability. Behav Brain Res 2021; 410:113364. [PMID: 33992668 DOI: 10.1016/j.bbr.2021.113364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Maintaining blood-brain barrier (BBB) contributes critically to preserving normal brain functions. According to the available evidence, intense or chronic exposure to stress would potentially affect different brain structures, such as the hippocampus, negatively. The purpose of this study was to define the relationship between the BBB permeability of the hippocampus and the performance of spatial learning and memory under chronically electric foot shock stress. Sixteen rats were divided into the control and stress groups equally. Animals in the stress group were exposed to foot shock (1 mA, 1 Hz) for 10-s duration every 60 s (1 h/day) for 10 consecutive days. The anxiety-related behavior, spatial learning, and memory were assessed by an Open Field (OF) and the Morris Water Maze (MWM) respectively. The hippocampal BBB permeability was determined by Evans blue penetration assay. Our results demonstrated that the stress model not only increased locomotor activities in the OF test but reduced spatial learning and memory in MWM. Moreover, these effects coincided with a significant increase in hippocampal BBB permeability. In sum, the stress model can be used in future studies focusing on the relationship between stress and BBB permeability of the hippocampus.
Collapse
Affiliation(s)
- Zohreh Taghadosi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asadollah Zarifkar
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Neuroscience Research Center and Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Science and Technology, Shiraz University of Medical Science, Shiraz, Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Aligholi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
64
|
Pain sensitivity increases with sleep disturbance under predictable chronic mild stress in mice. Sci Rep 2021; 11:14231. [PMID: 34244555 PMCID: PMC8271003 DOI: 10.1038/s41598-021-93560-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/28/2021] [Indexed: 11/20/2022] Open
Abstract
Even though it has been well documented that stress can lead to the development of sleep disorders and the intensification of pain, their relationships have not been fully understood. The present study was aimed at investigating the effects of predictable chronic mild stress (PCMS) on sleep–wake states and pain threshold, using the PCMS rearing conditions of mesh wire (MW) and water (W) for 21 days. Exposure to PCMS decreased the amount of non-rapid eye movement (NREM) sleep during the dark phase. Moreover, the chronicity of PCMS decreased slow-wave activity (SWA) during NREM sleep in the MW and W groups in both the light and dark phases. Mechanical and aversively hot thermal hyperalgesia were more intensified in the PCMS groups than the control. Higher plasma corticosterone levels were seen in mice subjected to PCMS, whereas TNF-α expression was found higher in the hypothalamus in the W and the trigeminal ganglion in the MW group. The W group had higher expression levels of IL-6 in the thalamus as well. The PCMS paradigm decreased SWA and may have intensified mechanical and thermal hyperalgesia. The current study also suggests that rearing under PCMS may cause impaired sleep quality and heightened pain sensation to painful mechanical and aversively hot thermal stimuli.
Collapse
|
65
|
High-throughput rat immunoglobulin G N-glycosylation profiling revealed subclass-specific changes associated with chronic stress. J Proteomics 2021; 245:104293. [PMID: 34118474 DOI: 10.1016/j.jprot.2021.104293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/03/2021] [Accepted: 05/26/2021] [Indexed: 12/31/2022]
Abstract
Immunoglobulin G (IgG) glycosylation corresponds well with immune system changes, so it can potentially be used as a biomarker for the consequences of chronic stress such as low-grade inflammation and enhanced immunosenescence in older animals. Here we present a high-throughput glycoproteomic workflow, including IgG enrichment, HILIC glycopeptide purification, and nano-LC-MS analysis of tryptic glycopeptides applied for the analysis of rat IgG. A cohort of 80 animals was exposed to seven stressors in a customized chronic stress protocol with blood and tissue sampling in three timepoints. Young female rats experienced an increase in agalactosylated glycoforms on IgG2a and IgG2c accompanied by a decrease in monogalactosylation. Among old females, increased galactosylation was observed in the IgG2b subclass, pointing to an anti-inflammatory activity of IgG. Additionally, IgG Fc N-glycosylation patterns in Sprague Dawley rats were analyzed, quantified, and reported for the first time. Our findings emphasize age-, sex- and subclass-dependent differences in IgG glycosylation related to chronic stress exposure, confirming the relevance of newly developed methods for further research in glycobiology of rodent immune response. SIGNIFICANCE: In this study, we showed that a high-throughput streamlined methodology based on protein L 96-well monolithic plates for efficient rat IgG immunoaffinity enrichment from blood plasma, paired with appropriate tryptic glycopeptide preparation, HILIC-SPE enrichment, and nano-LC-MS methods was suitable for quick processing of large sample sets. We report a subclass-specific profiling and changes in rat IgG Fc galactosylation and adrenal gland immunohistochemistry of male and female animals exposed to a customized chronic stress protocol.
Collapse
|
66
|
Acero-Castillo MC, Ardila-Figueroa MC, Botelho de Oliveira S. Anhedonic Type Behavior and Anxiety Profile of Wistar-UIS Rats Subjected to Chronic Social Isolation. Front Behav Neurosci 2021; 15:663761. [PMID: 34122025 PMCID: PMC8192826 DOI: 10.3389/fnbeh.2021.663761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/26/2021] [Indexed: 01/17/2023] Open
Abstract
Chronic Social Isolation (CSI) is a model of prolonged stress employed in a variety of studies to induce depression and anxious behavior in rats. The present study aims to evaluate the effect of CSI on male Wistar rats in terms of "anhedonic-type" behavior in the Sucrose Preference Test (SPT) and anxiogenic profile in the elevated-plus-maze (EPM) test, as well as evaluating the effect of resocialization upon sucrose consumption. A total of 24 adolescent male Wistar rats were evaluated. The animals were housed either together (communally) or socially isolated for 21 days, and then exposed for four consecutive days to the SPT test [water vs. a 32% sucrose solution (SS)]. Four days later, they were again subjected to the SPT test (32% vs. 0.7% SS), and then tested on the EPM apparatus 3 days later. Following the completion of the anxiogenic profile of the model, the animals were resocialized for 72 h and then re-tested once again using the SPT (32% vs. 0.7% SS). Twenty-four hours after this final consumption, the animals were euthanized to record the weight of their adrenal glands (AG). It was found that exposure to CSI produces anhedonic-type behavior and an anxiogenic profile in adolescent male rats, as evidenced in both the SPT and EPM tests, as well as in the animals' physiological stress response. It was also demonstrated that resocialization does not reverse the anhedonic-type behavior, nor the physiological response to stress.
Collapse
Affiliation(s)
- María Camila Acero-Castillo
- Psychology, Universidad Pontificia Bolivariana Sectional Bucaramanga, Santander, Colombia.,Neurosciences and Behavior, Universidad Pontificia Bolivariana Sectional Bucaramanga, Santander, Colombia.,Health Sciences, Universidade de Brasilia, Brasilia, Brazil
| | - María Camila Ardila-Figueroa
- Psychology, Universidad Pontificia Bolivariana Sectional Bucaramanga, Santander, Colombia.,Neurosciences and Behavior, Universidad Pontificia Bolivariana Sectional Bucaramanga, Santander, Colombia
| | - Silvia Botelho de Oliveira
- Neurosciences and Behavior, Universidad Pontificia Bolivariana Sectional Bucaramanga, Santander, Colombia.,Psychology, Universidade Estadual Paulista, São Paulo, Brazil.,Psychobiology, Universidade de São Paulo, São Paulo, Brazil.,Faculty of Psychology, Universidad Pontificia Bolivariana Sectional Bucaramanga, Santander, Colombia.,Laboratory of Neurosciences and Behavior, Universidad Pontificia Bolivariana Sectional Bucaramanga, Santander, Colombia
| |
Collapse
|
67
|
Nishimura W, Takayanagi Y, Tumurkhuu M, Zhou R, Miki H, Noda Y. Effect of long-term confinement on metabolic and physiological parameters in mice. Physiol Behav 2021; 234:113386. [PMID: 33713694 DOI: 10.1016/j.physbeh.2021.113386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
Long-term and mild confinement or isolation in an enclosed environment can occur in situations such as disasters, specific political, economic or social events, nuclear shelters, seabed exploration, polar expeditions, and space travel. To investigate the effects of stress caused by long-term confinement in an enclosed environment in mammals, we divided 8-week-old C57BL/6J mice into four groups that were housed in a closed environment with a narrow metabolic cage (stress group), normal metabolic cage (control group), conventional cage (conventional group) or conventional cage with wire mesh floor (wire mesh group). The phenotypes of the mice were examined for four weeks, followed by behavioral tests. Weight gain suppression was observed in the stress group. Continuous analysis of these mice every two minutes for four weeks using an implanted measuring device showed a significantly decreased amount of spontaneous activity and subcutaneous temperature in the stress group. After housing in each environment for four weeks, the behavioral tests of mice in the stress group also revealed a shorter latency to fall off in the rotarod test and shorter stride length and interstep distance in the footprint test. Interestingly, the lower spontaneous activity of mice in the stress group was rescued by housing in conventional cages. These results suggest a temporary effect of long-term confinement in an enclosed environment as a chronic and mild stress on homeostasis in mammals.
Collapse
Affiliation(s)
- Wataru Nishimura
- Department of Molecular Biology, International University of Health and Welfare School of Medicine, 4-3 Kozunomori, Narita, Chiba, Japan; Division of Anatomy, Bio-imaging and Neuro-cell Science, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, Japan.
| | - Yuki Takayanagi
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, Japan
| | - Munkhtuya Tumurkhuu
- Department of Molecular Biology, International University of Health and Welfare School of Medicine, 4-3 Kozunomori, Narita, Chiba, Japan
| | - Ruyun Zhou
- Division of Anatomy, Bio-imaging and Neuro-cell Science, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, Japan
| | - Harukata Miki
- Division of Anatomy, Bio-imaging and Neuro-cell Science, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, Japan
| | - Yasuko Noda
- Division of Anatomy, Bio-imaging and Neuro-cell Science, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, Japan.
| |
Collapse
|
68
|
Rudolph S, Guo C, Pashkovski SL, Osorno T, Gillis WF, Krauss JM, Nyitrai H, Flaquer I, El-Rifai M, Datta SR, Regehr WG. Cerebellum-Specific Deletion of the GABA A Receptor δ Subunit Leads to Sex-Specific Disruption of Behavior. Cell Rep 2021; 33:108338. [PMID: 33147470 PMCID: PMC7700496 DOI: 10.1016/j.celrep.2020.108338] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 08/04/2020] [Accepted: 10/08/2020] [Indexed: 12/19/2022] Open
Abstract
Granule cells (GCs) of the cerebellar input layer express high-affinity δ GABAA subunit-containing GABAA receptors (δGABAARs) that respond to ambient GABA levels and context-dependent neuromodulators like steroids. We find that GC-specific deletion of δGABAA (cerebellar [cb] δ knockout [KO]) decreases tonic inhibition, makes GCs hyperexcitable, and in turn, leads to differential activation of cb output regions as well as many cortical and subcortical brain areas involved in cognition, anxiety-like behaviors, and the stress response. Cb δ KO mice display deficits in many behaviors, but motor function is normal. Strikingly, δGABAA deletion alters maternal behavior as well as spontaneous, stress-related, and social behaviors specifically in females. Our findings establish that δGABAARs enable the cerebellum to control diverse behaviors not previously associated with the cerebellum in a sex-dependent manner. These insights may contribute to a better understanding of the mechanisms that underlie behavioral abnormalities in psychiatric and neurodevelopmental disorders that display a gender bias. Rudolph et al. show that deletion of the neuromodulator and hormone-sensitive δGABAA receptor subunit from cerebellar granule cells results in anxiety-like behaviors and female-specific deficits in social behavior and maternal care. δGABAA deletion is associated with hyperexcitability of the cerebellar input layer and altered activation of many stress-related brain regions.
Collapse
Affiliation(s)
- Stephanie Rudolph
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Chong Guo
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Stan L Pashkovski
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Tomas Osorno
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Winthrop F Gillis
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeremy M Krauss
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hajnalka Nyitrai
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Isabella Flaquer
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Mahmoud El-Rifai
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
69
|
Virmani G, D'almeida P, Nandi A, Marathe S. Subfield-specific effects of chronic mild unpredictable stress on hippocampal astrocytes. Eur J Neurosci 2021; 54:5730-5746. [PMID: 33866634 DOI: 10.1111/ejn.15234] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/04/2021] [Indexed: 12/20/2022]
Abstract
Major depressive disorder (MDD) is a debilitating neuropsychiatric illness affecting over 20% of the population worldwide. Despite its prevalence, our understanding of its pathophysiology is severely limited, thus hampering the development of novel therapeutic strategies. Recent advances have clearly established astrocytes as major players in the pathophysiology, and plausibly pathogenesis, of major depression. In particular, astrocyte density in the hippocampus is severely diminished in MDD patients and correlates strongly with the disease outcome. Moreover, astrocyte densities from different subfields of the hippocampus show varying trends in terms of their correlation to the disease outcome. Given the central role that hippocampus plays in the pathophysiology of depression and in the action of antidepressant drugs, changes in hippocampal astrocyte density and physiology may have a significant effect on behavioral symptoms of MDD. In this study, we used chronic mild unpredictable stress (CMUS) in mice, which induces a depressive-like state, and examined its effects on astrocytes from different subfields of the hippocampus. We used SOX9 and S100β immunostaining to estimate the number of astrocytes per square millimeter from various hippocampal subfields. Furthermore, using confocal images of fluorescently labeled glial fibrillary acidic protein (GFAP)-immunopositive hippocampal astrocytes, we quantified various morphology-related parameters and performed Sholl analysis. We found that CMUS exerts differential effects on astrocyte cell numbers, ramification, cell radius, surface area, and process width of hippocampal astrocytes from different hippocampal subfields. Taken together, our study reveals that chronic stress does not uniformly affect all hippocampal astrocytes; but exerts its effects differentially on different astrocytic subpopulations within the hippocampus.
Collapse
Affiliation(s)
- Garima Virmani
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Priyal D'almeida
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Arnab Nandi
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Swananda Marathe
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| |
Collapse
|
70
|
Chronic unpredictable stress negatively regulates hippocampal neurogenesis and promote anxious depression-like behavior via upregulating apoptosis and inflammatory signals in adult rats. Brain Res Bull 2021; 172:164-179. [PMID: 33895271 DOI: 10.1016/j.brainresbull.2021.04.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/28/2022]
Abstract
Psychological and physical stress play a pivotal role in etiology of anxiety and depression. Chronic psychological and physical stress modify various physiological phenomena, as a consequence of which oxidative stress, decreased neurotransmitter level, elevated corticosterone level and altered NSC homeostasis is observed. However, the precise mechanism by which chronic stress induce anxious depression and modify internal milieu is still unknown. Herein, we show that exposure to CUS increase oxidative stress, microgliosis, astrogliosis while it reduces hippocampal NSC proliferation, neuronal differentiation and maturation in adult rats. CUS exposure in rats reduce dopamine and serotonin level in cortex and hippocampus, which result in increased anxiety and depression-like phenotypes. We also found elevated level of NF-κB and TNF-α while decreased anti-inflammatory cytokine IL-10 level, that led to increased expression of Bax and cleaved Caspase-3 whereas down regulation of antiapoptotic protein Bcl2. Additionally, CUS altered adult hippocampal neurogenesis, increased gliosis and neuronal apoptosis in cerebral cortex and hippocampus which might be associated with reduced AKT and increased ERK signaling, as seen in the rat brain tissue. Taken together, these results indicate that CUS induce oxidative stress and neuroinflammation which directly affects NSC dynamics, monoamines levels and behavioral functions in adult rats.
Collapse
|
71
|
Minhoto GB, Khoury RD, Orozco EIF, Prado RF, Valera MC. Effect of chronic unpredictable stress on the progression of experimental apical periodontitis in rats. Int Endod J 2021; 54:1342-1352. [PMID: 33724486 DOI: 10.1111/iej.13515] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 11/29/2022]
Abstract
AIM To establish an experimental model combining chronic stress and apical periodontitis by assessing the development of periapical lesions in rats in three different time points. METHODOLOGY Forty-eight male Wistar rats were randomly assigned into two equal groups: Apical periodontitis (AP) and AP + Stress (AP + S). The animals of the AP group were not exposed to stressful conditions whereas the AP + S group were exposed to a variety of stressors on a daily basis until the end of the experiment. After three weeks of chronic unpredictable stress, apical periodontitis was induced in both groups by exposing the pulpal tissue of the mandibular first molar to the oral environment. Each group was further subdivided into three subgroups according to the euthanasia period: 14, 21 and 28 days after pulp exposure. The animals were weighed, and the blood was collected for corticosterone serum dosage by radioimmunoassay. The mandibles were removed and submitted to histopathological and microtomography analyses to assess the inflammatory response and the progression of periapical lesions. Comparisons between the AP and AP + S groups were performed using Student's t-test and Mann-Whitney U-test for parametric and nonparametric data, respectively. The one-way anova test followed by Tukey's test (parametric data) and Kruskal-Wallis followed by Dunn's test (nonparametric data) were used for comparisons between the three time points within the same group (P < 0.05). RESULTS The AP + S group had a significantly lower average percentage of weight gain at 14 days and 21 days after AP induction (P < 0.05). Significantly higher levels of corticosterone were found in the AP + S group at 21 days (P < 0.05). The AP + S group had a significantly greater intensity and extension of inflammatory infiltrate with larger areas of bone loss compared to the AP groups at 21 days (P < 0.05). The volume of the periapical lesions in the AP + S group was significantly larger than that of the AP group 21 days following pulp exposure (P < 0.05). CONCLUSIONS The chronic unpredictable stress model applied for 6 weeks exacerbated the inflammatory response and increased bone loss associated with AP, especially 21 days after its induction. This model appears to be suitable for investigating the bidirectional relationship between apical periodontitis and chronic stress.
Collapse
Affiliation(s)
- G B Minhoto
- Endodontic Division, Department of Restorative Dentistry, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, São Paulo, Brazil
| | - R D Khoury
- Endodontic Division, Department of Restorative Dentistry, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, São Paulo, Brazil
| | - E I F Orozco
- Endodontic Division, Department of Restorative Dentistry, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, São Paulo, Brazil
| | - R F Prado
- Endodontic Division, Department of Restorative Dentistry, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, São Paulo, Brazil
| | - M C Valera
- Endodontic Division, Department of Restorative Dentistry, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, São Paulo, Brazil
| |
Collapse
|
72
|
Rojas-Carvajal M, Sequeira-Cordero A, Brenes JC. The environmental enrichment model revisited: A translatable paradigm to study the stress of our modern lifestyle. Eur J Neurosci 2021; 55:2359-2392. [PMID: 33638921 DOI: 10.1111/ejn.15160] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/31/2021] [Accepted: 02/14/2021] [Indexed: 01/31/2023]
Abstract
Mounting evidence shows that physical activity, social interaction and sensorimotor stimulation provided by environmental enrichment (EE) exert several neurobehavioural effects traditionally interpreted as enhancements relative to standard housing (SH) conditions. However, this evidence rather indicates that SH induces many deficits, which could be ameliorated by exposing animals to an environment vaguely mimicking some features of their wild habitat. Rearing rodents in social isolation (SI) can aggravate such deficits, which can be restored by SH or EE. It is not surprising, therefore, that most preclinical stress models have included severe and unnatural stressors to produce a stress response prominent enough to be distinguishable from SH or SI-frequently used as control groups. Although current stress models induce a stress-related phenotype, they may fail to represent the stress of our urban lifestyle characterized by SI, poor housing and working environments, sedentarism, obesity and limited access to recreational activities and exercise. In the following review, we discuss the stress of living in urban areas and how exposures to and performing activities in green environments are stress relievers. Based on the commonalities between human and animal EE, we discuss how models of housing conditions (e.g., SI-SH-EE) could be adapted to study the stress of our modern lifestyle. The housing conditions model might be easy to implement and replicate leading to more translational results. It may also contribute to accomplishing some ethical commitments by promoting the refinement of procedures to model stress, diminishing animal suffering, enhancing animal welfare and eventually reducing the number of experimental animals needed.
Collapse
Affiliation(s)
- Mijail Rojas-Carvajal
- Instituto de Investigaciones Psicológicas, Universidad de Costa Rica, San Pedro, Costa Rica.,Centro de Investigación en Neurociencias, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Andrey Sequeira-Cordero
- Centro de Investigación en Neurociencias, Universidad de Costa Rica, San Pedro, Costa Rica.,Instituto de Investigaciones en Salud, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Juan C Brenes
- Instituto de Investigaciones Psicológicas, Universidad de Costa Rica, San Pedro, Costa Rica.,Centro de Investigación en Neurociencias, Universidad de Costa Rica, San Pedro, Costa Rica
| |
Collapse
|
73
|
Meyer HC, Gerhard DM, Amelio PA, Lee FS. Pre-adolescent stress disrupts adult, but not adolescent, safety learning. Behav Brain Res 2021; 400:113005. [PMID: 33171149 PMCID: PMC8283802 DOI: 10.1016/j.bbr.2020.113005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/26/2020] [Accepted: 11/03/2020] [Indexed: 11/28/2022]
Abstract
Anxiety disorders are highly prevalent across the lifespan, although diagnoses peak early in adolescence. As a method for inhibiting fear, safety signals have the potential to augment conventional treatments for anxiety. However, the ability to acquire and use safety signals during adolescence remains unclear. Moreover, the impact of stress on safety learning has received surprisingly little attention given that stress is a major factor preceding anxiety onset. In this study, mice were trained in a discriminative conditioning protocol to facilitate safety learning and were tested for fear inhibition using a conditioned safety signal. Next, independent groups of mice were exposed to chronic unpredictable stress (CUS) conditions between postnatal day 22 and 28, followed by tests for anxiety-like phenotypes or fear inhibition using a safety signal, performed either 24 h or five weeks following CUS. Pre-adolescent CUS reduced weight in adolescence and this effect endured into adulthood. CUS also increased specific anxiety-like behaviors in adolescence that were unique from the increase in anxiety observed in adulthood. Despite increased anxiety-like behaviors, adolescents were able to learn about and effectively use safety signals to inhibit fear. In contrast, adults that experienced CUS showed a subtle increase in anxiety but had impaired safety signal learning and usage. Together, these findings indicate that pre-adolescent stress has immediate and enduring effects on anxiety-like behaviors but impairs the capacity for conditioned inhibition only following incubation.
Collapse
Affiliation(s)
- Heidi C Meyer
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Danielle M Gerhard
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Paia A Amelio
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA; School of Communication, Northwestern University, Evanston, IL, 60208, USA.
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA; Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
74
|
Ren J, Guo J, Zhu S, Wang Q, Gao R, Zhao C, Feng C, Qin C, He Z, Qin C, Wang Z, Zang L. The Role of Potassium Channels in Chronic Stress-Induced Brain Injury. Biol Pharm Bull 2021; 44:169-180. [PMID: 33239494 DOI: 10.1248/bpb.b20-00504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic stress-induced brain injury (CSBI) is the organic damage of brain tissue caused by long-term psychological and environmental stress. However, there is no effective drug for the treatment of CSBI. The present study aimed to investigate possible mechanisms of CSBI and to explore related therapeutic targets. A rat model of CSBI was established by combining chronic restraint and cold water immersion. Our CSBI model was validated via Nissl staining, Western blotting, and behavioral tests. RNA sequencing (RNA-seq) was used to identify differentially expressed genes (DEGs) within brain tissue during CSBI. Both Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses were performed to determine signaling pathways associated with CSBI-induced DEGs. Agonists/antagonists were used to validate the pharmacodynamics of potential therapeutic targets. A combination of chronic restraint and cold water immersion successfully induced a rat model of CSBI, as indicated by various markers of brain injury and cell apoptosis that were verified via Nissl staining, Western blotting, and behavioral tests. RNA-seq analysis identified 1131 DEGs in CSBI rats. Of these DEGs, 553 genes were up-regulated and 778 genes were down-regulated. GO and KEGG pathway analyses revealed that significant DEGs were predominantly related to membrane-bound ion channels, among which the potassium channel function was found to be significantly affected. Pharmacological experiments revealed that retigabine, a voltage-gated potassium channel opener, demonstrated a protective effect in CSBI rats. Taken together, our findings suggest that potassium channel function is disrupted in CSBI, and that potassium channel regulators may function as anti-CSBI drugs.
Collapse
Affiliation(s)
- Jianhui Ren
- School of Pharmacy, Guangdong Pharmaceutical University
| | - Jiquan Guo
- Department of Respiratory, Guangdong Provincial People's Hospital
| | - Shuguang Zhu
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Guangdong Pharmaceutical College
| | - Qiyou Wang
- Orthopedics, Third Affiliated Hospital of Sun Yat-Sen University
| | - Ruiping Gao
- School of Clinical Medicine, First Affiliated Hospital of Guangdong Pharmaceutical College
| | - Chunhe Zhao
- School of Pharmacy, Guangdong Pharmaceutical University
| | - Chuyu Feng
- School of Pharmacy, Guangdong Pharmaceutical University
| | - Cuiying Qin
- School of Pharmacy, Guangdong Pharmaceutical University
| | - Zhenfeng He
- School of Pharmacy, Guangdong Pharmaceutical University
| | - Changyun Qin
- School of Pharmacy, Guangdong Pharmaceutical University
| | - Zhanle Wang
- School of Pharmacy, Guangdong Pharmaceutical University
| | - Linquan Zang
- School of Pharmacy, Guangdong Pharmaceutical University
| |
Collapse
|
75
|
Becker M, Pinhasov A, Ornoy A. Animal Models of Depression: What Can They Teach Us about the Human Disease? Diagnostics (Basel) 2021; 11:123. [PMID: 33466814 PMCID: PMC7830961 DOI: 10.3390/diagnostics11010123] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/28/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Depression is apparently the most common psychiatric disease among the mood disorders affecting about 10% of the adult population. The etiology and pathogenesis of depression are still poorly understood. Hence, as for most human diseases, animal models can help us understand the pathogenesis of depression and, more importantly, may facilitate the search for therapy. In this review we first describe the more common tests used for the evaluation of depressive-like symptoms in rodents. Then we describe different models of depression and discuss their strengths and weaknesses. These models can be divided into several categories: genetic models, models induced by mental acute and chronic stressful situations caused by environmental manipulations (i.e., learned helplessness in rats/mice), models induced by changes in brain neuro-transmitters or by specific brain injuries and models induced by pharmacological tools. In spite of the fact that none of the models completely resembles human depression, most animal models are relevant since they mimic many of the features observed in the human situation and may serve as a powerful tool for the study of the etiology, pathogenesis and treatment of depression, especially since only few patients respond to acute treatment. Relevance increases by the fact that human depression also has different facets and many possible etiologies and therapies.
Collapse
Affiliation(s)
- Maria Becker
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - Albert Pinhasov
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - Asher Ornoy
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
- Hebrew University Hadassah Medical School, Jerusalem 9112102, Israel
| |
Collapse
|
76
|
Cojocariu RO, Balmus IM, Lefter R, Ababei DC, Ciobica A, Hritcu L, Kamal F, Doroftei B. Behavioral and Oxidative Stress Changes in Mice Subjected to Combinations of Multiple Stressors Relevant to Irritable Bowel Syndrome. Brain Sci 2020; 10:brainsci10110865. [PMID: 33212821 PMCID: PMC7698185 DOI: 10.3390/brainsci10110865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 12/12/2022] Open
Abstract
Background and Objectives: Irritable bowel syndrome (IBS) is a well-known functional gastrointestinal (GI) disorder exhibiting a wide range of symptoms due to individual variability and multifactorial etiology. Stress exposure is a major risk factor for the development of IBS. Here, we investigate the differential effects of psychological stress exposures on behavior and oxidative status in mice by using increasingly complex combinations of etiologic IBS-relevant stressors (maternal separation and chronic unpredictable mild stress combinations). Materials and Methods: Mice were subjected to three different combinations of psychological stress factors and subsequent behavioral cognitive and affective parameters and oxidative status markers (superoxide dismutase and glutathione peroxidase antioxidant activity and malondialdehyde level) in the brain and bowel tissues of the animals were analyzed. Results: GI transit modifications reflected by decreased fecal output, cognitive and affective behavioral deficits were observed in all stress exposed groups, but were more evident for the more complex combinations of stressors. Behavioral deficits were accompanied by mild oxidative stress occurring in the bowel and to a greater extent in brain tissue. Conclusions: The presented data depict the effect of various associations in mimicking IBS symptoms and comorbidities and suggest that an all-inclusive combination of early and adult-life psychological stressors is more effective in IBS symptoms modulation. Oxidative stress in both brain and bowel, suggestive for brain-gut molecular connectivity, may play an important role in IBS mechanistic.
Collapse
Affiliation(s)
- Roxana Oana Cojocariu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, 11th Carol I Avenue, 700506 Iasi, Romania;
| | - Ioana Miruna Balmus
- Department of Interdisciplinary Research in Science, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, no. 11, 700506 Iasi, Romania;
| | - Radu Lefter
- Center of Biomedical Research, Romanian Academy, 8th Carol I Avenue, 700506 Iasi, Romania;
| | - Daniela Carmen Ababei
- “Grigore T. Popa” University of Medicine and Pharmacy, 16th Universitatii Street, 700115 Iasi, Romania;
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, 11th Carol I Avenue, 700506 Iasi, Romania;
- Correspondence: (A.C.); (L.H.)
| | - Luminita Hritcu
- Faculty of Veterinary Medicine, University of Agricultural Sciencies and Veterinary Medicine “Ion Ionescu de la Brad” of Iasi, 3rd Mihail Sadoveanu, 700490 Iasi, Romania
- Correspondence: (A.C.); (L.H.)
| | - Fatimazahra Kamal
- Faculty of Sciences and Technology Settat, University of Hasan I, B.P. 539, 26000 Settat, Morocco;
| | - Bogdan Doroftei
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 16th University Street, 700115 Iasi, Romania;
- Origyn Fertility Center, Human Reproduction, Palace Street, No. 3C, 700032 Iasi, Romania
| |
Collapse
|
77
|
Carlson HN, Weiner JL. The neural, behavioral, and epidemiological underpinnings of comorbid alcohol use disorder and post-traumatic stress disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 157:69-142. [PMID: 33648676 DOI: 10.1016/bs.irn.2020.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alcohol use disorder (AUD) and (PTSD) frequently co-occur and individuals suffering from this dual diagnosis often exhibit increased symptom severity and poorer treatment outcomes than those with only one of these diseases. Although there have been significant advances in our understanding of the neurobiological mechanisms underlying each of these disorders, the neural underpinnings of the comorbid condition remain poorly understood. This chapter summarizes recent epidemiological findings on comorbid AUD and PTSD, with a focus on vulnerable populations, the temporal relationship between these disorders, and the clinical consequences associated with the dual diagnosis. We then review animal models of the comorbid condition and emerging human and non-human animal research that is beginning to identify maladaptive neural changes common to both disorders, primarily involving functional changes in brain reward and stress networks. We end by proposing a neural framework, based on the emerging field of affective valence encoding, that may better explain the epidemiological and neural findings on AUD and PTSD.
Collapse
Affiliation(s)
- Hannah N Carlson
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jeff L Weiner
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
78
|
Pace SA, Christensen C, Schackmuth MK, Wallace T, McKlveen JM, Beischel W, Morano R, Scheimann JR, Wilson SP, Herman JP, Myers B. Infralimbic cortical glutamate output is necessary for the neural and behavioral consequences of chronic stress. Neurobiol Stress 2020; 13:100274. [PMID: 33344727 PMCID: PMC7739189 DOI: 10.1016/j.ynstr.2020.100274] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/08/2020] [Accepted: 11/17/2020] [Indexed: 01/03/2023] Open
Abstract
Exposure to prolonged stress is a major risk-factor for psychiatric disorders such as generalized anxiety and major depressive disorder. Human imaging studies have identified structural and functional abnormalities in the prefrontal cortex of subjects with depression and anxiety disorders, particularly Brodmann's area 25 (BA25). Further, deep brain stimulation of BA25 reduces symptoms of treatment-resistant depression. The rat homolog of BA25 is the infralimbic cortex (IL), which is critical for cognitive appraisal, executive function, and physiological stress reactivity. Previous studies indicate that the IL undergoes stress-induced changes in excitatory/inhibitory balance culminating in reduced activity of glutamate output neurons. However, the regulatory role of IL glutamate output in mood-related behaviors after chronic variable stress (CVS) is unknown. Here, we utilized a lentiviral-packaged small-interfering RNA to reduce translation of vesicular glutamate transporter 1 (vGluT1 siRNA), thereby constraining IL glutamate output. This viral-mediated gene transfer was used in conjunction with a quantitative anatomical analysis of cells expressing the stable immediate-early gene product FosB/ΔFosB, which accumulates in response to repeated neural activation. Through assessment of FosB/ΔFosB-expressing neurons across the frontal lobe in adult male rats, we mapped regions altered by chronic stress and determined the coordinating role of the IL in frontal cortical plasticity. Specifically, CVS-exposed rats had increased density of FosB/ΔFosB-expressing cells in the IL and decreased density in the insula. The latter effect was dependent on IL glutamate output. Next, we examined the interaction of CVS and reduced IL glutamate output in behavioral assays examining coping, anxiety-like behavior, associative learning, and nociception. IL glutamate knockdown decreased immobility during the forced swim test compared to GFP controls, both in rats exposed to CVS as well as rats without previous stress exposure. Further, vGluT1 siRNA prevented CVS-induced avoidance behaviors, while also reducing risk aversion and passive coping. Ultimately, this study identifies the necessity of IL glutamatergic output for regulating frontal cortical neural activity and behavior following chronic stress. These findings also highlight how disruption of excitatory/inhibitory balance within specific frontal cortical cell populations may impact neurobehavioral adaptation and lead to stress-related disorders.
Collapse
Affiliation(s)
- Sebastian A. Pace
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | | | - Tyler Wallace
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jessica M. McKlveen
- National Institutes of Health, National Center for Complementary and Integrative Health, Bethesda, MD, USA
| | - Will Beischel
- Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Rachel Morano
- Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Jessie R. Scheimann
- Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Steven P. Wilson
- Pharmacology, Physiology, and Neuroscience, University of South Carolina, Columbia, SC, USA
| | - James P. Herman
- Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Brent Myers
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
79
|
Costa R, Carvalho MSM, Brandão JDP, Moreira RP, Cunha TS, Casarini DE, Marcondes FK. Modulatory action of environmental enrichment on hormonal and behavioral responses induced by chronic stress in rats: Hypothalamic renin-angiotensin system components. Behav Brain Res 2020; 397:112928. [PMID: 32987059 DOI: 10.1016/j.bbr.2020.112928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
Abstract
Environmental enrichment (EE) has been studied as a protocol that can improve brain plasticity and may protect against negative insults such as chronic stress. The aim of this study was to evaluate the effects of EE on the hormonal and behavioral responses induced by chronic mild unpredictable stress (CMS) in rats, considering the involvement of the renin-angiotensin system. Male adult rats were divided into 4 groups: control, CMS, EE, and CMS + EE, and the experimental protocol lasted for 7 weeks. EE was performed during 7 weeks, 5 days per week, 2 h per day. CMS was applied during weeks 3, 4, and 5. After the CMS (week 6), depression-like behavior was evaluated by forced swimming and sucrose consumption tests, anxiety level was evaluated using the elevated plus-maze test, and memory was evaluated using the Y-maze test. On week 7, the animals were euthanized and basal plasma levels of corticosterone and catecholamines were determined. The hypothalamus was isolated and tissue levels of angiotensin peptides were evaluated. CMS increased plasma corticosterone, norepinephrine, and epinephrine basal concentrations, induced depression-like behaviors, impaired memory, and increased hypothalamic angiotensin I, II, and IV concentrations. EE decreased stress hormones secretion, depression-like behaviors, memory impairment, and hypothalamic angiotensin II induced by stress. Reductions of anxiety-like behavior and norepinephrine secretion were observed in both stressed and unstressed groups. The results indicated that EE seemed to protect adult rats against hormonal and behavioral CMS effects, and that the reduction of angiotensin II could contribute to these effects.
Collapse
Affiliation(s)
- Rafaela Costa
- Department of Biosciences, Laboratory of Stress, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Maeline Santos Morais Carvalho
- Department of Biosciences, Laboratory of Stress, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | | | - Roseli Peres Moreira
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Tatiana Sousa Cunha
- Science and Technology Institute, Federal University of São Paulo, São José Dos Campos, SP, Brazil
| | - Dulce Elena Casarini
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Fernanda Klein Marcondes
- Department of Biosciences, Laboratory of Stress, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil.
| |
Collapse
|
80
|
Brenes JC, Fornaguera J, Sequeira-Cordero A. Environmental Enrichment and Physical Exercise Attenuate the Depressive-Like Effects Induced by Social Isolation Stress in Rats. Front Pharmacol 2020; 11:804. [PMID: 32547399 PMCID: PMC7272682 DOI: 10.3389/fphar.2020.00804] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
We assessed the antidepressant-like effects of environmental enrichment (EE) and physical exercise (PE) compared with the selective serotonin reuptake inhibitor fluoxetine against the depression-related neurobehavioral alterations induced by postweaning social isolation (SI) in rats. After 1 month of SI, rats were submitted to PE (treadmill), EE, or fluoxetine (10 mg/kg), which were compared with naïve SI and group-housed rats. After 1 month, behavior was analyzed in the open field (OFT), the sucrose preference (SPT), and the forced swimming (FST) tests. Afterward, the hippocampal serotonin contents, its metabolite, and turnover were measured. SI induced a depression-related phenotype characterized by a marginal bodyweight gain, anxiety, anhedonia, behavioral despair, and alterations of serotonin metabolism. EE produced the widest and largest antidepressive-like effect, followed by PE and fluoxetine, which were almost equivalent. The treatments, however, affected differentially the neurobehavioral domains investigated. EE exerted its largest effect on anhedonia and was the only treatment inducing anxiolytic-like effects. Fluoxetine, in contrast, produced its largest effect on serotonin metabolism, followed by its anti-behavioral despair action. PE was a middle-ground treatment with broader behavioral outcomes than fluoxetine, but ineffective to reverse the serotonergic alterations induced by SI. The most responsive test to the treatments was the FST, followed closely by the SPT. Although OFT locomotion and body weight varied considerably between groups, they were barely responsive to PE and fluoxetine. From a translational standpoint, our data suggest that exercise and recreational activities may have broader health benefits than antidepressants to overcome confinement and the consequences of chronic stress.
Collapse
Affiliation(s)
- Juan C Brenes
- Institute for Psychological Research, University of Costa Rica, San José, Costa Rica.,Neuroscience Research Center, University of Costa Rica, San José, Costa Rica
| | - Jaime Fornaguera
- Neuroscience Research Center, University of Costa Rica, San José, Costa Rica.,Biochemistry Department, School of Medicine, University of Costa Rica, San José, Costa Rica
| | - Andrey Sequeira-Cordero
- Neuroscience Research Center, University of Costa Rica, San José, Costa Rica.,Institute of Health Research, University of Costa Rica, San José, Costa Rica
| |
Collapse
|
81
|
Lee DB, Anderson RE, Hope MO, Zimmerman MA. Racial discrimination trajectories predicting psychological well-being: From emerging adulthood to adulthood. Dev Psychol 2020; 56:1413-1423. [PMID: 32406704 DOI: 10.1037/dev0000938] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Perceived racial discrimination (PRD) has been documented as a risk factor for worse psychological well-being among African Americans. Yet, most researchers have not examined how trajectories of PRD during emerging adulthood shape psychological well-being in adulthood. Moreover, less is known about whether demographic factors and components of racial identity shape PRD over time. We identified trajectories of PRD among 605 African American emerging adults and examined whether PRD trajectories were associated with depressive symptoms, anxiety symptoms, and perceived lack of control in adulthood. Four trajectories of PRD were identified (i.e., high-stable, moderate-declining, low-rising, and low-stable), and demographic factors and racial identity indicators influenced the likelihood of trajectory classification. In addition, members of the moderate-declining trajectory exhibited higher levels of depressive symptoms, anxiety symptoms, and perceived lack of control than members in the low-stable trajectory. Our findings suggest that changes in PRD in emerging adulthood can extend our understanding of psychological well-being in adulthood. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
|
82
|
Rojas-Carvajal M, Sequeira-Cordero A, Brenes JC. Neurobehavioral Effects of Restricted and Unpredictable Environmental Enrichment in Rats. Front Pharmacol 2020; 11:674. [PMID: 32477137 PMCID: PMC7235364 DOI: 10.3389/fphar.2020.00674] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/24/2020] [Indexed: 12/21/2022] Open
Abstract
To study how motivational factors modulate experience-dependent neurobehavioral plasticity, we modify a protocol of environmental enrichment (EE) in rats. We assumed that the benefits derived from EE might vary according to the level of incentive salience attributed to it. To enhance the rewarding properties of EE, access to the EE cage varied randomly from 2 to 48 h for 30 days (REE). The REE group was enriched only 50% of the time and was compared to standard housing and continuous EE (CEE) groups. As behavioral readout, we analyzed the spontaneous activity and the ultrasonic vocalizations (USVs) within the EE cage weekly, and in the open field test at the end of the experiment. In the cage, REE increased the utilization of materials, physical activity, and the rate of appetitive USVs. In the OF, the CEE-induced enhancements in novelty habituation and social signaling were equaled by the REE. At the neural level, we measured the expression of genes related to neural plasticity and epigenetic regulations in different brain regions. In the dorsal striatum and hippocampus, REE upregulated the expression of the brain-derived neurotrophic factor, its tropomyosin kinase B receptor, and the DNA methyltransferase 3A. Altogether, our results suggest that the higher activity within the cage and the augmented incentive motivation provoked by the REE boosted its neurobehavioral effects equaling or surpassing those observed in the CEE condition. As constant exposures to treatments or stimulating environments are virtually impossible for humans, restricted EE protocols would have greater translational value than traditional ones.
Collapse
Affiliation(s)
- Mijail Rojas-Carvajal
- Neuroscience Research Center, University of Costa Rica, San Pedro, Costa Rica.,Institute for Psychological Research, University of Costa Rica, San Pedro, Costa Rica
| | - Andrey Sequeira-Cordero
- Neuroscience Research Center, University of Costa Rica, San Pedro, Costa Rica.,Institute for Health Research, University of Costa Rica, San Pedro, Costa Rica
| | - Juan C Brenes
- Neuroscience Research Center, University of Costa Rica, San Pedro, Costa Rica.,Institute for Psychological Research, University of Costa Rica, San Pedro, Costa Rica
| |
Collapse
|
83
|
Age-dependent differences on neurochemistry and behavior in rats raised with low and high levels of maternal care. Behav Brain Res 2019; 372:112054. [PMID: 31233822 DOI: 10.1016/j.bbr.2019.112054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/17/2019] [Accepted: 06/20/2019] [Indexed: 01/05/2023]
Abstract
In laboratory rats, naturally-occurring variations in maternal care have been used to study the neurobehavioral consequences of maternal nursing and to model the early-life adversity associated with many psychiatric disorders. This study aimed to determine the role of maternal care on behavior and monoamine concentrations at the prepubertal and young adulthood ages. We observed the licking/grooming (LG) behavior of Sprague-Dawley (SD) dams and assigned the litter to either low (LLG) or high (HLG) LG groups. Behavioral testing in the male offspring consisted of the open-field test, the elevated plus-maze, and the forced swimming test. Afterward, neurotransmitters contents were measured in the prefrontal cortex, the nucleus accumbens, the amygdala, and the hippocampus. We found that at the prepubertal stage, the effects of maternal care were only noticeable in the elevated plus-maze and the serotonin concentration in the nucleus accumbens. At adulthood, body weight and monoamines contents increased substantially in LLG rats. Specifically, they showed higher serotonin contents with a reduced turnover in almost all brain regions, followed by higher contents of norepinephrine and dopamine, especially in the nucleus accumbens. Changes in monoamines concentrations seem to be independent of the behavioral phenotype shaped by variations in maternal care, as behavioral effects were somewhat weak in both experiments. If higher monoamines contents in LLG rats represent an adaptive mechanism to deal with further adverse events, the behavioral paradigms used here were insufficiently challenging to bring out noticeable differences, at least in SD rats.
Collapse
|