51
|
Li GY, Gower AL, Destrade M, Yun SH. Non-destructive mapping of stress and strain in soft thin films through sound waves. COMMUNICATIONS PHYSICS 2022; 5:231. [PMID: 37744302 PMCID: PMC10516392 DOI: 10.1038/s42005-022-01000-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/24/2022] [Indexed: 09/26/2023]
Abstract
Measuring the in-plane mechanical stress in a taut membrane is challenging, especially if its material parameters are unknown or altered by the stress. Yet being able to measure the stress is of fundamental interest to basic research and practical applications that use soft membranes, from engineering to tissues. Here we present a robust non-destructive technique to measure directly in-situ stress and strain in soft thin films without the need to calibrate material parameters. Our method relies on measuring the speed of elastic waves propagating in the film. Using optical coherence tomography, we verify our method experimentally for a stretched rubber membrane, a piece of cling film (about 10 μm thick), and the leather skin of a traditional Irish frame drum. We find that our stress predictions are highly accurate and anticipate that our technique could be useful in applications ranging from soft matter devices to biomaterial engineering and medical diagnosis.
Collapse
Affiliation(s)
- Guo-Yang Li
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Artur L. Gower
- Department of Mechanical Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Michel Destrade
- School of Mathematical and Statistical Sciences, NUI Galway, Galway, Ireland
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province and Department of Engineering Mechanics, Zhejiang University, Hangzhou, PR China
| | - Seok-Hyun Yun
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, United States
| |
Collapse
|
52
|
AC amplification gain in organic electrochemical transistors for impedance-based single cell sensors. Nat Commun 2022; 13:5423. [PMID: 36109508 PMCID: PMC9477811 DOI: 10.1038/s41467-022-33094-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
Research on electrolyte-gated and organic electrochemical transistor (OECT) architectures is motivated by the prospect of a highly biocompatible interface capable of amplifying bioelectronic signals at the site of detection. Despite many demonstrations in these directions, a quantitative model for OECTs as impedance biosensors is still lacking. We overcome this issue by introducing a model experiment where we simulate the detection of a single cell by the impedance sensing of a dielectric microparticle. The highly reproducible experiment allows us to study the impact of transistor geometry and operation conditions on device sensitivity. With the data we rationalize a mathematical model that provides clear guidelines for the optimization of OECTs as single cell sensors, and we verify the quantitative predictions in an in-vitro experiment. In the optimized geometry, the OECT-based impedance sensor allows to record single cell adhesion and detachment transients, showing a maximum gain of 20.2±0.9 dB with respect to a single electrode-based impedance sensor. The authors develop a quantitative description of alternating current amplification gain in organic electrochemical transistors. The findings are applied to achieve detection of single glioblastoma cell adhesion with 20 dB gain compared to microelectrodes.
Collapse
|
53
|
Patil LS, Varner VD. Toward Measuring the Mechanical Stresses Exerted by Branching Embryonic Airway Epithelial Explants in 3D Matrices of Matrigel. Ann Biomed Eng 2022; 50:1143-1157. [PMID: 35718813 PMCID: PMC9590229 DOI: 10.1007/s10439-022-02989-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/03/2022] [Indexed: 11/01/2022]
Abstract
Numerous organs in the bodies of animals, including the lung, kidney, and mammary gland, contain ramified networks of epithelial tubes. These structures arise during development via a process known as branching morphogenesis. Previous studies have shown that mechanical forces directly impact this process, but the patterns of mechanical stress exerted by branching embryonic epithelia are not well understood. This is, in part, owing to a lack of experimental tools. Traditional traction force microscopy assays rely on the use of compliant hydrogels with well-defined mechanical properties. Isolated embryonic epithelial explants, however, have only been shown to branch in three-dimensional matrices of reconstituted basement membrane protein, or Matrigel, a biomaterial with poorly characterized mechanical behavior, especially in the regime of large deformations. Here, to compute the traction stresses generated by branching epithelial explants, we quantified the finite-deformation constitutive behavior of gels of reconstituted basement membrane protein subjected to multi-axial mechanical loads. We then modified the mesenchyme-free assay for the ex vivo culture of isolated embryonic airway epithelial explants by suspending fluorescent microspheres within the surrounding gel and tracking their motion during culture. Surprisingly, the tracked bead motion was non-zero in regions of the gel far away from the explants, suggestive of passive swelling deformations within the matrix. To compute accurate traction stresses, these swelling deformations must be decomposed from those generated by the branching explants. We thus tracked the motion of beads suspended within cell-free matrices and quantified spatiotemporal patterns of gel swelling. Taken together, these passive swelling data can be combined with the measured mechanical properties of the gel to compute the traction forces exerted by intact embryonic epithelial explants.
Collapse
Affiliation(s)
- Lokesh S Patil
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Victor D Varner
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA.
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
54
|
Wang XH, Liu Y, Kang B, Xu JJ, Chen HY. Cell mechanics and energetic costs of collective cell migration under confined microchannels. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
55
|
Ogita G, Kondo T, Ikawa K, Uemura T, Ishihara S, Sugimura K. Image-based parameter inference for epithelial mechanics. PLoS Comput Biol 2022; 18:e1010209. [PMID: 35737656 PMCID: PMC9223404 DOI: 10.1371/journal.pcbi.1010209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/17/2022] [Indexed: 11/19/2022] Open
Abstract
Measuring mechanical parameters in tissues, such as the elastic modulus of cell-cell junctions, is essential to decipher the mechanical control of morphogenesis. However, their in vivo measurement is technically challenging. Here, we formulated an image-based statistical approach to estimate the mechanical parameters of epithelial cells. Candidate mechanical models are constructed based on force-cell shape correlations obtained from image data. Substitution of the model functions into force-balance equations at the cell vertex leads to an equation with respect to the parameters of the model, by which one can estimate the parameter values using a least-squares method. A test using synthetic data confirmed the accuracy of parameter estimation and model selection. By applying this method to Drosophila epithelial tissues, we found that the magnitude and orientation of feedback between the junction tension and shrinkage, which are determined by the spring constant of the junction, were correlated with the elevation of tension and myosin-II on shrinking junctions during cell rearrangement. Further, this method clarified how alterations in tissue polarity and stretching affect the anisotropy in tension parameters. Thus, our method provides a novel approach to uncovering the mechanisms governing epithelial morphogenesis.
Collapse
Affiliation(s)
- Goshi Ogita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takefumi Kondo
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Keisuke Ikawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Tadashi Uemura
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shuji Ishihara
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Universal Biology Institute, The University of Tokyo, Tokyo, Japan
- * E-mail: (SI); (KS)
| | - Kaoru Sugimura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
- Universal Biology Institute, The University of Tokyo, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
- * E-mail: (SI); (KS)
| |
Collapse
|
56
|
Mechanical Forces Govern Interactions of Host Cells with Intracellular Bacterial Pathogens. Microbiol Mol Biol Rev 2022; 86:e0009420. [PMID: 35285720 PMCID: PMC9199418 DOI: 10.1128/mmbr.00094-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To combat infectious diseases, it is important to understand how host cells interact with bacterial pathogens. Signals conveyed from pathogen to host, and vice versa, may be either chemical or mechanical. While the molecular and biochemical basis of host-pathogen interactions has been extensively explored, relatively less is known about mechanical signals and responses in the context of those interactions. Nevertheless, a wide variety of bacterial pathogens appear to have developed mechanisms to alter the cellular biomechanics of their hosts in order to promote their survival and dissemination, and in turn many host responses to infection rely on mechanical alterations in host cells and tissues to limit the spread of infection. In this review, we present recent findings on how mechanical forces generated by host cells can promote or obstruct the dissemination of intracellular bacterial pathogens. In addition, we discuss how in vivo extracellular mechanical signals influence interactions between host cells and intracellular bacterial pathogens. Examples of such signals include shear stresses caused by fluid flow over the surface of cells and variable stiffness of the extracellular matrix on which cells are anchored. We highlight bioengineering-inspired tools and techniques that can be used to measure host cell mechanics during infection. These allow for the interrogation of how mechanical signals can modulate infection alongside biochemical signals. We hope that this review will inspire the microbiology community to embrace those tools in future studies so that host cell biomechanics can be more readily explored in the context of infection studies.
Collapse
|
57
|
Hernandez A, Staddon MF, Bowick MJ, Marchetti MC, Moshe M. Anomalous elasticity of a cellular tissue vertex model. Phys Rev E 2022; 105:064611. [PMID: 35854605 DOI: 10.1103/physreve.105.064611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Vertex models, such as those used to describe cellular tissue, have an energy controlled by deviations of each cell area and perimeter from target values. The constrained nonlinear relation between area and perimeter leads to new mechanical response. Here we provide a mean-field treatment of a highly simplified model: a uniform network of regular polygons with no topological rearrangements. Since all polygons deform in the same way, we only need to analyze the ground states and the response to deformations of a single polygon (cell). The model exhibits the known transition between a fluid/compatible state, where the cell can accommodate both target area and perimeter, and a rigid/incompatible state. We calculate and measure the mechanical resistance to various deformation protocols and discover that at the onset of rigidity, where a single zero-energy ground state exists, linear elasticity fails to describe the mechanical response to even infinitesimal deformations. In particular, we identify a breakdown of reciprocity expressed via different moduli for compressive and tensile loads, implying nonanalyticity of the energy functional. We give a pictorial representation in configuration space that reveals that the complex elastic response of the vertex model arises from the presence of two distinct sets of reference states (associated with target area and target perimeter). Our results on the critically compatible tissue provide a new route for the design of mechanical metamaterials that violate or extend classical elasticity.
Collapse
Affiliation(s)
- Arthur Hernandez
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Michael F Staddon
- Center for Systems Biology, Dresden 01307, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden 01187, Germany
| | - Mark J Bowick
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
- Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - M Cristina Marchetti
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Michael Moshe
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
58
|
Duan X, Huang J. Deep learning-based 3D cellular force reconstruction directly from volumetric images. Biophys J 2022; 121:2180-2192. [PMID: 35484854 DOI: 10.1016/j.bpj.2022.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/26/2022] [Accepted: 04/22/2022] [Indexed: 11/28/2022] Open
Abstract
The forces exerted by single cells in the three-dimensional (3D) environments play a crucial role in modulating cellular functions and behaviors closely related to physiological and pathological processes. Cellular force microscopy (CFM) provides a feasible solution for quantifying the mechanical interactions, which usually regains cellular forces from deformation information of extracellular matrices embedded with fluorescent beads. Owing to computational complexity, the traditional 3D-CFM is usually extremely time-consuming, which makes it challenging for efficient force recovery and large-scale sample analysis. With the aid of deep neural networks, this study puts forward a novel data-driven 3D-CFM to reconstruct 3D cellular force fields directly from volumetric images with random fluorescence patterns. The deep learning (DL)-based network is established through stacking deep convolutional neural network (DCNN) and specific function layers. Some necessary physical information associated with constitutive relation of extracellular matrix material is coupled to the data-driven network. The mini-batch stochastic gradient descent and back-propagation algorithms are introduced to ensure its convergence and training efficiency. The network not only have good generalization ability and robustness, but also can recover 3D cellular forces directly from the input fluorescence image pairs. Particularly, the computational efficiency of the DL-based network is at least one to two orders of magnitude higher than that of the traditional 3D-CFM. This study provides a novel scheme for developing high-performance 3D cellular force microscopy to quantitatively characterize mechanical interactions between single cells and surrounding extracellular matrices, which is of vital importance for quantitative investigations in biomechanics and mechanobiology.
Collapse
Affiliation(s)
- Xiaocen Duan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China;; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China;; Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
59
|
Brás MM, Sousa SR, Carneiro F, Radmacher M, Granja PL. Mechanobiology of Colorectal Cancer. Cancers (Basel) 2022; 14:1945. [PMID: 35454852 PMCID: PMC9028036 DOI: 10.3390/cancers14081945] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
In this review, the mechanobiology of colorectal cancer (CRC) are discussed. Mechanotransduction of CRC is addressed considering the relationship of several biophysical cues and biochemical pathways. Mechanobiology is focused on considering how it may influence epithelial cells in terms of motility, morphometric changes, intravasation, circulation, extravasation, and metastization in CRC development. The roles of the tumor microenvironment, ECM, and stroma are also discussed, taking into account the influence of alterations and surface modifications on mechanical properties and their impact on epithelial cells and CRC progression. The role of cancer-associated fibroblasts and the impact of flow shear stress is addressed in terms of how it affects CRC metastization. Finally, some insights concerning how the knowledge of biophysical mechanisms may contribute to the development of new therapeutic strategies and targeting molecules and how mechanical changes of the microenvironment play a role in CRC disease are presented.
Collapse
Affiliation(s)
- Maria Manuela Brás
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Faculdade de Engenharia da Universidade do Porto (FEUP), 4200-465 Porto, Portugal
| | - Susana R. Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto (IPP), 4200-072 Porto, Portugal
| | - Fátima Carneiro
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-465 Porto, Portugal
- Serviço de Patologia, Centro Hospitalar Universitário de São João (CHUSJ), 4200-319 Porto, Portugal
- Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| | - Manfred Radmacher
- Institute for Biophysics, University of Bremen, 28334 Bremen, Germany
| | - Pedro L. Granja
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
60
|
Wilks BT, Evans EB, Howes A, Hopkins CM, Nakhla MN, Williams G, Morgan JR. Quantifying Cell-Derived Changes in Collagen Synthesis, Alignment, and Mechanics in a 3D Connective Tissue Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103939. [PMID: 35102708 PMCID: PMC8981917 DOI: 10.1002/advs.202103939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Dysregulation of extracellular matrix (ECM) synthesis, organization, and mechanics are hallmark features of diseases like fibrosis and cancer. However, most in vitro models fail to recapitulate the three-dimensional (3D) multi-scale hierarchical architecture of collagen-rich tissues and as a result, are unable to mirror native or disease phenotypes. Herein, using primary human fibroblasts seeded into custom fabricated 3D non-adhesive agarose molds, a novel strategy is proposed to direct the morphogenesis of engineered 3D ring-shaped tissue constructs with tensile and histological properties that recapitulate key features of fibrous connective tissue. To characterize the shift from monodispersed cells to a highly-aligned, collagen-rich matrix, a multi-modal approach integrating histology, multiphoton second-harmonic generation, and electron microscopy is employed. Structural changes in collagen synthesis and alignment are then mapped to functional differences in tissue mechanics and total collagen content. Due to the absence of an exogenously added scaffolding material, this model enables the direct quantification of cell-derived changes in 3D matrix synthesis, alignment, and mechanics in response to the addition or removal of relevant biomolecular perturbations. To illustrate this, the effects of nutrient composition, fetal bovine serum, rho-kinase inhibitor, and pro- and anti-fibrotic compounds on ECM synthesis, 3D collagen architecture, and mechanophenotype are quantified.
Collapse
Affiliation(s)
- Benjamin T. Wilks
- Center for Biomedical EngineeringBrown UniversityProvidenceRI02129USA
- Center for Alternatives to Animals in TestingBrown UniversityProvidenceRI02129USA
- Present address:
Center for Engineering in Medicine & SurgeryHarvard Medical School & Massachusetts General HospitalBostonMA02114USA
| | | | - Andrew Howes
- Department of Molecular BiologyCell Biology & BiochemistryBrown UniversityProvidenceRI02129USA
| | - Caitlin M. Hopkins
- Center for Alternatives to Animals in TestingBrown UniversityProvidenceRI02129USA
- Department of Pathology & Laboratory MedicineBrown UniversityProvidenceRI02129USA
| | - Morcos N. Nakhla
- Department of Pathology & Laboratory MedicineBrown UniversityProvidenceRI02129USA
| | - Geoffrey Williams
- Department of Molecular BiologyCell Biology & BiochemistryBrown UniversityProvidenceRI02129USA
| | - Jeffrey R. Morgan
- Center for Biomedical EngineeringBrown UniversityProvidenceRI02129USA
- Center for Alternatives to Animals in TestingBrown UniversityProvidenceRI02129USA
- Department of Pathology & Laboratory MedicineBrown UniversityProvidenceRI02129USA
| |
Collapse
|
61
|
Ding X, Li M, Cheng B, Wei Z, Dong Y, Xu F. Microsphere sensors for characterizing stress fields within three-dimensional extracellular matrix. Acta Biomater 2022; 141:1-13. [PMID: 34979325 DOI: 10.1016/j.actbio.2021.12.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/11/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022]
Abstract
Stress in the three-dimensional extracellular matrix is one of the key cues in regulating multiscale biological processes. Thus far, noticeable progress in methods and techniques (e.g., micropipette aspiration, AFM, and molecule probes) has been made to quantify stress in cell microenvironment at different length scales. Among them, the microsphere sensor-based method (MSS-based method) has emerged as an advantageous approach over conventional techniques in quantifying stress in situ and in vivo at cellular and supra-cellular scales. This method is implemented by seven sequential steps, including fabrication, modification, characterization, cell adhesion, imaging, displacement field extraction and stress calculation. Precise control of each step and inter-tunning between steps can provide quantitative characterization of stress field. However, detailed procedural information associated with each step and process has been scattered. This review aims to provide a comprehensive overview of MSS-based method, systematically summarizing the principles and research progresses. Firstly, the basic principles are introduced, and the specific experiment and calculation processes of MSS-based method are presented in detail. Then, recent advances and applications of this method are summarized. Finally, perspectives of the limitations and development trends of MSS-based method are discussed. This specific and comprehensive review would provide a guideline for the widespread application of MSS-based method as an advantageous method for in situ and in vivo stress characterization at cellular and supra-cellular scale within three-dimensional extracellular matrix. STATEMENT OF SIGNIFICANCE: In this review, a method based on a microsphere sensor (MSS-based method) as an advantageous approach over conventional techniques in quantifying stress in situ and in vivo at cellular and supra-cellular scales is introduced and discussed. This technique is implemented by seven sequential steps, including fabrication, modification, characterization, cell junction, imaging, displacement field extraction, and stress calculation. Precise control of each step and inter-tunning between steps can provide quantitative stress field. However, detailed procedural information associated with each step has been scattered. Thus, a comprehensive review collating recent advances and perspective discussions is a necessity to introduce a better option for quantifying the stress field in biological processes at the cellular and supra-cellular scales.
Collapse
Affiliation(s)
- Xin Ding
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Moxiao Li
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Bo Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuqing Dong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
62
|
Souchaud A, Boutillon A, Charron G, Asnacios A, Noûs C, David NB, Graner F, Gallet F. Live 3D imaging and mapping of shear stresses within tissues using incompressible elastic beads. Development 2022; 149:274481. [DOI: 10.1242/dev.199765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022]
Abstract
ABSTRACT
To investigate the role of mechanical constraints in morphogenesis and development, we have developed a pipeline of techniques based on incompressible elastic sensors. These techniques combine the advantages of incompressible liquid droplets, which have been used as precise in situ shear stress sensors, and of elastic compressible beads, which are easier to tune and to use. Droplets of a polydimethylsiloxane mix, made fluorescent through specific covalent binding to a rhodamin dye, are produced by a microfluidics device. The elastomer rigidity after polymerization is adjusted to the tissue rigidity. Its mechanical properties are carefully calibrated in situ, for a sensor embedded in a cell aggregate submitted to uniaxial compression. The local shear stress tensor is retrieved from the sensor shape, accurately reconstructed through an active contour method. In vitro, within cell aggregates, and in vivo, in the prechordal plate of the zebrafish embryo during gastrulation, our pipeline of techniques demonstrates its efficiency to directly measure the three dimensional shear stress repartition within a tissue.
Collapse
Affiliation(s)
- Alexandre Souchaud
- Matière et Systèmes Complexes, UMR 7057 associée au CNRS et à l'Université de Paris, 10 rue Alice Domon et Léonie Duquet, 75013 Paris, France
| | - Arthur Boutillon
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Gaëlle Charron
- Matière et Systèmes Complexes, UMR 7057 associée au CNRS et à l'Université de Paris, 10 rue Alice Domon et Léonie Duquet, 75013 Paris, France
| | - Atef Asnacios
- Matière et Systèmes Complexes, UMR 7057 associée au CNRS et à l'Université de Paris, 10 rue Alice Domon et Léonie Duquet, 75013 Paris, France
| | - Camille Noûs
- Laboratory Cogitamus, 10 rue Alice Domon et Léonie Duquet, 75013 Paris, France
| | - Nicolas B. David
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - François Graner
- Matière et Systèmes Complexes, UMR 7057 associée au CNRS et à l'Université de Paris, 10 rue Alice Domon et Léonie Duquet, 75013 Paris, France
| | - François Gallet
- Matière et Systèmes Complexes, UMR 7057 associée au CNRS et à l'Université de Paris, 10 rue Alice Domon et Léonie Duquet, 75013 Paris, France
| |
Collapse
|
63
|
Tello-Lafoz M, de Jesus MM, Huse M. Harder, better, faster, stronger: biochemistry and biophysics in the immunosurveillance concert. Trends Immunol 2022; 43:96-105. [PMID: 34973924 PMCID: PMC8810625 DOI: 10.1016/j.it.2021.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 02/08/2023]
Abstract
Antitumor immunosurveillance is triggered by immune cell recognition of characteristic biochemical signals on the surfaces of cancer cells. Recent data suggest that the mechanical properties of cancer cells influence the strength of these signals, with physically harder target cells (more rigid) eliciting better, faster, and stronger cytotoxic responses against metastasis. Using analogies to a certain electronic music duo, we argue that the biophysical properties of cancer cells and their environment can adjust the volume and tone of the antitumor immune response. We also consider the potential influence of biomechanics-based immunosurveillance in disease progression and posit that targeting the biophysical properties of cancer cells in concert with their biochemical features could increase the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Maria Tello-Lafoz
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Miguel M de Jesus
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Morgan Huse
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Correspondence: (M.H.)
| |
Collapse
|
64
|
Sun W, Gao X, Lei H, Wang W, Cao Y. Biophysical Approaches for Applying and Measuring Biological Forces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105254. [PMID: 34923777 PMCID: PMC8844594 DOI: 10.1002/advs.202105254] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 05/13/2023]
Abstract
Over the past decades, increasing evidence has indicated that mechanical loads can regulate the morphogenesis, proliferation, migration, and apoptosis of living cells. Investigations of how cells sense mechanical stimuli or the mechanotransduction mechanism is an active field of biomaterials and biophysics. Gaining a further understanding of mechanical regulation and depicting the mechanotransduction network inside cells require advanced experimental techniques and new theories. In this review, the fundamental principles of various experimental approaches that have been developed to characterize various types and magnitudes of forces experienced at the cellular and subcellular levels are summarized. The broad applications of these techniques are introduced with an emphasis on the difficulties in implementing these techniques in special biological systems. The advantages and disadvantages of each technique are discussed, which can guide readers to choose the most suitable technique for their questions. A perspective on future directions in this field is also provided. It is anticipated that technical advancement can be a driving force for the development of mechanobiology.
Collapse
Affiliation(s)
- Wenxu Sun
- School of SciencesNantong UniversityNantong226019P. R. China
| | - Xiang Gao
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
| | - Hai Lei
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023P. R. China
| | - Wei Wang
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
| | - Yi Cao
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023P. R. China
| |
Collapse
|
65
|
Rigidity transitions in development and disease. Trends Cell Biol 2022; 32:433-444. [DOI: 10.1016/j.tcb.2021.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/21/2022]
|
66
|
Brinker M, Huber P. Wafer-Scale Electroactive Nanoporous Silicon: Large and Fully Reversible Electrochemo-Mechanical Actuation in Aqueous Electrolytes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105923. [PMID: 34677879 PMCID: PMC11468870 DOI: 10.1002/adma.202105923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Nanoporosity in silicon results in interface-dominated mechanics, fluidics, and photonics that are often superior to the ones of the bulk material. However, their active control, for example, by electronic stimuli, is challenging due to the absence of intrinsic piezoelectricity in the base material. Here, for large-scale nanoporous silicon cantilevers wetted by aqueous electrolytes, electrosorption-induced mechanical stress generation of up to 600 kPa that is reversible and adjustable at will by potential variations of ≈1 V is shown. Laser cantilever bending experiments in combination with in operando voltammetry and step coulombmetry allow this large electro-actuation to be traced to the concerted action of 100 billions of parallel nanopores per square centimeter cross-section and determination of the capacitive charge-stress coupling parameter upon ion adsorption and desorption as well as the intimately related stress actuation dynamics for perchloric and isotonic saline solutions. A comparison with planar silicon surfaces reveals mechanistic insights on the observed electrocapillarity (Hellmann-Feynman interactions) with respect to the importance of oxide formation and wall roughness on the single-nanopore scale. The observation of robust electrochemo-mechanical actuation in a mainstream semiconductor with wafer-scale, self-organized nanoporosity opens up novel opportunities for on-chip integrated stress generation and actuorics at exceptionally low operation voltages.
Collapse
Affiliation(s)
- Manuel Brinker
- Institute for Materials and X‐Ray PhysicsHamburg University of Technology21073HamburgGermany
- Center for X‐Ray and Nano Science CXNSDeutsches Elektronen‐Synchrotron DESY22607HamburgGermany
- Center for Hybrid Nanostructures CHyNUniversity of Hamburg22607HamburgGermany
| | - Patrick Huber
- Institute for Materials and X‐Ray PhysicsHamburg University of Technology21073HamburgGermany
- Center for X‐Ray and Nano Science CXNSDeutsches Elektronen‐Synchrotron DESY22607HamburgGermany
- Center for Hybrid Nanostructures CHyNUniversity of Hamburg22607HamburgGermany
| |
Collapse
|
67
|
Veenvliet JV, Lenne PF, Turner DA, Nachman I, Trivedi V. Sculpting with stem cells: how models of embryo development take shape. Development 2021; 148:dev192914. [PMID: 34908102 PMCID: PMC8722391 DOI: 10.1242/dev.192914] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During embryogenesis, organisms acquire their shape given boundary conditions that impose geometrical, mechanical and biochemical constraints. A detailed integrative understanding how these morphogenetic information modules pattern and shape the mammalian embryo is still lacking, mostly owing to the inaccessibility of the embryo in vivo for direct observation and manipulation. These impediments are circumvented by the developmental engineering of embryo-like structures (stembryos) from pluripotent stem cells that are easy to access, track, manipulate and scale. Here, we explain how unlocking distinct levels of embryo-like architecture through controlled modulations of the cellular environment enables the identification of minimal sets of mechanical and biochemical inputs necessary to pattern and shape the mammalian embryo. We detail how this can be complemented with precise measurements and manipulations of tissue biochemistry, mechanics and geometry across spatial and temporal scales to provide insights into the mechanochemical feedback loops governing embryo morphogenesis. Finally, we discuss how, even in the absence of active manipulations, stembryos display intrinsic phenotypic variability that can be leveraged to define the constraints that ensure reproducible morphogenesis in vivo.
Collapse
Affiliation(s)
- Jesse V. Veenvliet
- Stembryogenesis Lab, Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany
| | - Pierre-François Lenne
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, 13288, Marseille, France
| | - David A. Turner
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, University of Liverpool, Liverpool, L7 8TX, UK
| | - Iftach Nachman
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Vikas Trivedi
- European Molecular Biology Laboratories (EMBL), Barcelona, 08003, Spain
- EMBL Heidelberg, Developmental Biology Unit, 69117, Heidelberg, Germany
| |
Collapse
|
68
|
Pérez-González C, Ceada G, Matejčić M, Trepat X. Digesting the mechanobiology of the intestinal epithelium. Curr Opin Genet Dev 2021; 72:82-90. [PMID: 34902705 DOI: 10.1016/j.gde.2021.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/05/2021] [Accepted: 10/20/2021] [Indexed: 02/02/2023]
Abstract
The dizzying life of the homeostatic intestinal epithelium is governed by a complex interplay between fate, form, force and function. This interplay is beginning to be elucidated thanks to advances in intravital and ex vivo imaging, organoid culture, and biomechanical measurements. Recent discoveries have untangled the intricate organization of the forces that fold the monolayer into crypts and villi, compartmentalize cell types, direct cell migration, and regulate cell identity, proliferation and death. These findings revealed that the dynamic equilibrium of the healthy intestinal epithelium relies on its ability to precisely coordinate tractions and tensions in space and time. In this review, we discuss recent findings in intestinal mechanobiology, and highlight some of the many fascinating questions that remain to be addressed in this emerging field.
Collapse
Affiliation(s)
| | - Gerardo Ceada
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain
| | - Marija Matejčić
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain; Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08028 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
69
|
Yamamoto K, Miura H, Ishida M, Mii Y, Kinoshita N, Takada S, Ueno N, Sawai S, Kondo Y, Aoki K. Optogenetic relaxation of actomyosin contractility uncovers mechanistic roles of cortical tension during cytokinesis. Nat Commun 2021; 12:7145. [PMID: 34880255 PMCID: PMC8654997 DOI: 10.1038/s41467-021-27458-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
Actomyosin contractility generated cooperatively by nonmuscle myosin II and actin filaments plays essential roles in a wide range of biological processes, such as cell motility, cytokinesis, and tissue morphogenesis. However, subcellular dynamics of actomyosin contractility underlying such processes remains elusive. Here, we demonstrate an optogenetic method to induce relaxation of actomyosin contractility at the subcellular level. The system, named OptoMYPT, combines a protein phosphatase 1c (PP1c)-binding domain of MYPT1 with an optogenetic dimerizer, so that it allows light-dependent recruitment of endogenous PP1c to the plasma membrane. Blue-light illumination is sufficient to induce dephosphorylation of myosin regulatory light chains and a decrease in actomyosin contractile force in mammalian cells and Xenopus embryos. The OptoMYPT system is further employed to understand the mechanics of actomyosin-based cortical tension and contractile ring tension during cytokinesis. We find that the relaxation of cortical tension at both poles by OptoMYPT accelerated the furrow ingression rate, revealing that the cortical tension substantially antagonizes constriction of the cleavage furrow. Based on these results, the OptoMYPT system provides opportunities to understand cellular and tissue mechanics.
Collapse
Affiliation(s)
- Kei Yamamoto
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Haruko Miura
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Motohiko Ishida
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, 153-8902, Tokyo, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Komaba, 153-8902, Tokyo, Japan
| | - Yusuke Mii
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Noriyuki Kinoshita
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Shinji Takada
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Naoto Ueno
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- IRCC International Research Collaboration Center, National Institutes of Natural Sciences, 4-3-13 Toranomon, Minato-ku, Tokyo, 105-0001, Japan
| | - Satoshi Sawai
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, 153-8902, Tokyo, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Komaba, 153-8902, Tokyo, Japan
| | - Yohei Kondo
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
| | - Kazuhiro Aoki
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- IRCC International Research Collaboration Center, National Institutes of Natural Sciences, 4-3-13 Toranomon, Minato-ku, Tokyo, 105-0001, Japan.
| |
Collapse
|
70
|
Fang G, Lu H, Rodriguez de la Fuente L, Law AMK, Lin G, Jin D, Gallego‐Ortega D. Mammary Tumor Organoid Culture in Non-Adhesive Alginate for Luminal Mechanics and High-Throughput Drug Screening. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102418. [PMID: 34494727 PMCID: PMC8564453 DOI: 10.1002/advs.202102418] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/25/2021] [Indexed: 05/14/2023]
Abstract
Mammary tumor organoids have become a promising in vitro model for drug screening and personalized medicine. However, the dependency on the basement membrane extract (BME) as the growth matrices limits their comprehensive application. In this work, mouse mammary tumor organoids are established by encapsulating tumor pieces in non-adhesive alginate. High-throughput generation of organoids in alginate microbeads is achieved utilizing microfluidic droplet technology. Tumor pieces within the alginate microbeads developed both luminal- and solid-like structures and displayed a high similarity to the original fresh tumor in cellular phenotypes and lineages. The mechanical forces of the luminal organoids in the alginate capsules are analyzed with the theory of the thick-wall pressure vessel (TWPV) model. The luminal pressure of the organoids increase with the lumen growth and can reach 2 kPa after two weeks' culture. Finally, the mammary tumor organoids are treated with doxorubicin and latrunculin A to evaluate their application as a drug screening platform. It is found that the drug response is related to the luminal size and pressures of organoids. This high-throughput culture for mammary tumor organoids may present a promising tool for preclinical drug target validation and personalized medicine.
Collapse
Affiliation(s)
- Guocheng Fang
- Institute for Biomedical Materials and DevicesSchool of Mathematical and Physical SciencesUniversity of Technology SydneyBroadway UltimoSydneyNew South Wales2007Australia
| | - Hongxu Lu
- Institute for Biomedical Materials and DevicesSchool of Mathematical and Physical SciencesUniversity of Technology SydneyBroadway UltimoSydneyNew South Wales2007Australia
| | - Laura Rodriguez de la Fuente
- St. Vincent's Clinical SchoolFaculty of MedicineUniversity of New South Wales SydneyDarlinghurstNew South Wales2010Australia
- Garvan Institute of Medical Research384 Victoria StreetDarlinghurstNew South Wales2010Australia
| | - Andrew M. K. Law
- St. Vincent's Clinical SchoolFaculty of MedicineUniversity of New South Wales SydneyDarlinghurstNew South Wales2010Australia
- Garvan Institute of Medical Research384 Victoria StreetDarlinghurstNew South Wales2010Australia
| | - Gungun Lin
- Institute for Biomedical Materials and DevicesSchool of Mathematical and Physical SciencesUniversity of Technology SydneyBroadway UltimoSydneyNew South Wales2007Australia
| | - Dayong Jin
- Institute for Biomedical Materials and DevicesSchool of Mathematical and Physical SciencesUniversity of Technology SydneyBroadway UltimoSydneyNew South Wales2007Australia
- UTS‐SUSTech Joint Research Centre for Biomedical Materials and DevicesDepartment of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - David Gallego‐Ortega
- Institute for Biomedical Materials and DevicesSchool of Mathematical and Physical SciencesUniversity of Technology SydneyBroadway UltimoSydneyNew South Wales2007Australia
- St. Vincent's Clinical SchoolFaculty of MedicineUniversity of New South Wales SydneyDarlinghurstNew South Wales2010Australia
- Garvan Institute of Medical Research384 Victoria StreetDarlinghurstNew South Wales2010Australia
- School of Biomedical EngineeringFaculty of EngineeringUniversity of Technology SydneyBroadway UltimoSydneyNew South Wales2007Australia
| |
Collapse
|
71
|
Efremov YM, Zurina IM, Presniakova VS, Kosheleva NV, Butnaru DV, Svistunov AA, Rochev YA, Timashev PS. Mechanical properties of cell sheets and spheroids: the link between single cells and complex tissues. Biophys Rev 2021; 13:541-561. [PMID: 34471438 PMCID: PMC8355304 DOI: 10.1007/s12551-021-00821-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022] Open
Abstract
Cell aggregates, including sheets and spheroids, represent a simple yet powerful model system to study both biochemical and biophysical intercellular interactions. However, it is becoming evident that, although the mechanical properties and behavior of multicellular structures share some similarities with individual cells, yet distinct differences are observed in some principal aspects. The description of mechanical phenomena at the level of multicellular model systems is a necessary step for understanding tissue mechanics and its fundamental principles in health and disease. Both cell sheets and spheroids are used in tissue engineering, and the modulation of mechanical properties of cell constructs is a promising tool for regenerative medicine. Here, we review the data on mechanical characterization of cell sheets and spheroids, focusing both on advances in the measurement techniques and current understanding of the subject. The reviewed material suggest that interplay between the ECM, intercellular junctions, and cellular contractility determines the behavior and mechanical properties of the cell aggregates.
Collapse
Affiliation(s)
- Yuri M. Efremov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, Moscow, 119991 Russia
| | - Irina M. Zurina
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St, Moscow, Russia
- FSBSI Institute of General Pathology and Pathophysiology, 125315, 8 Baltiyskaya St, Moscow, Russia
| | - Viktoria S. Presniakova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St, Moscow, Russia
| | - Nastasia V. Kosheleva
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, Moscow, 119991 Russia
- FSBSI Institute of General Pathology and Pathophysiology, 125315, 8 Baltiyskaya St, Moscow, Russia
| | - Denis V. Butnaru
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | - Andrey A. Svistunov
- Sechenov First Moscow State Medical University (Sechenov University), 119991, 8-2 Trubetskaya St, Moscow, Russia
| | - Yury A. Rochev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St, Moscow, Russia
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, H91 W2TY, Ireland
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, Moscow, 119991 Russia
- Department of Polymers and Composites, N.N. Semenov Institute of Chemical Physics, 119991 4 Kosygin St, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1–3, Moscow, 119991 Russia
| |
Collapse
|
72
|
He C, Wei X, Liang T, Liu M, Jiang D, Zhuang L, Wang P. Quantifying the Compressive Force of 3D Cardiac Tissues via Calculating the Volumetric Deformation of Built-In Elastic Gelatin Microspheres. Adv Healthc Mater 2021; 10:e2001716. [PMID: 34197053 DOI: 10.1002/adhm.202001716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/30/2020] [Indexed: 01/28/2023]
Abstract
Quantifying cardiac contractile force is of paramount important in studying mechanical heart failure and screening therapeutic drugs. However, most existing methods can only measure the in-plane component of twitch force of cardiomyocytes, such that mismatching the centripetal compressive stress of heart beating in physiology. Here, a non-destructive method is developed for quantifying the compressive stress and mapping the distribution of the local stress within the 3D cardiac tissues. In detail, elastic gelatin microspheres labeled with fluorescence beads are fabricated by microfluidic chips with high throughput, and they serve as built-in pressure sensors which are wrapped by cardiomyocytes in 3D tissues. The deformation of microspheres and the displacements of fluorescent beads induced by the contraction of cardiomyocytes are demonstrated to characterize the amount and distribution of the centripetal compressive stress. Further, the method shows a potent capability to locally quantify contractile force variation of 3D cardiac tissues, which is induced by agonist (norepinephrine) and inhibitor (blebbistatin). On the whole, the method significantly improves the 3D measurement of mechanical force in vitro and provides a solution for locally quantifying the compressive stress within engineered cardiac tissues.
Collapse
Affiliation(s)
- Chuanjiang He
- Biosensor National Special Laboratory Key Laboratory for Biomedical Engineering Ministry of Education Department of Biomedical Engineering Zhejiang University Hangzhou 310027 China
- State Key Laboratory of Transducer Technology Chinese Academy of Sciences Shanghai 200050 China
| | - Xinwei Wei
- Biosensor National Special Laboratory Key Laboratory for Biomedical Engineering Ministry of Education Department of Biomedical Engineering Zhejiang University Hangzhou 310027 China
| | - Tao Liang
- Biosensor National Special Laboratory Key Laboratory for Biomedical Engineering Ministry of Education Department of Biomedical Engineering Zhejiang University Hangzhou 310027 China
| | - Mengxue Liu
- Biosensor National Special Laboratory Key Laboratory for Biomedical Engineering Ministry of Education Department of Biomedical Engineering Zhejiang University Hangzhou 310027 China
| | - Deming Jiang
- Biosensor National Special Laboratory Key Laboratory for Biomedical Engineering Ministry of Education Department of Biomedical Engineering Zhejiang University Hangzhou 310027 China
| | - Liujing Zhuang
- Biosensor National Special Laboratory Key Laboratory for Biomedical Engineering Ministry of Education Department of Biomedical Engineering Zhejiang University Hangzhou 310027 China
| | - Ping Wang
- Biosensor National Special Laboratory Key Laboratory for Biomedical Engineering Ministry of Education Department of Biomedical Engineering Zhejiang University Hangzhou 310027 China
- State Key Laboratory of Transducer Technology Chinese Academy of Sciences Shanghai 200050 China
| |
Collapse
|
73
|
Roffay C, Chan CJ, Guirao B, Hiiragi T, Graner F. Inferring cell junction tension and pressure from cell geometry. Development 2021; 148:148/18/dev192773. [PMID: 33712442 DOI: 10.1242/dev.192773] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recognizing the crucial role of mechanical regulation and forces in tissue development and homeostasis has stirred a demand for in situ measurement of forces and stresses. Among emerging techniques, the use of cell geometry to infer cell junction tensions, cell pressures and tissue stress has gained popularity owing to the development of computational analyses. This approach is non-destructive and fast, and statistically validated based on comparisons with other techniques. However, its qualitative and quantitative limitations, in theory as well as in practice, should be examined with care. In this Primer, we summarize the underlying principles and assumptions behind stress inference, discuss its validity criteria and provide guidance to help beginners make the appropriate choice of its variants. We extend our discussion from two-dimensional stress inference to three dimensional, using the early mouse embryo as an example, and list a few possible extensions. We hope to make stress inference more accessible to the scientific community and trigger a broader interest in using this technique to study mechanics in development.
Collapse
Affiliation(s)
- Chloé Roffay
- Matière et Systèmes Complexes, Université de Paris - Diderot, CNRS UMR7057, 10 rue Alice Domon et Léonie Duquet, F-75205 Paris Cedex 13, France.,Polarity, Division and Morphogenesis Team, Genetics and Developmental Biology Unit, (CNRS UMR3215/Inserm U934), Institut Curie, F-75248 Paris Cedex 05, France
| | - Chii J Chan
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Boris Guirao
- Polarity, Division and Morphogenesis Team, Genetics and Developmental Biology Unit, (CNRS UMR3215/Inserm U934), Institut Curie, F-75248 Paris Cedex 05, France
| | - Takashi Hiiragi
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - François Graner
- Matière et Systèmes Complexes, Université de Paris - Diderot, CNRS UMR7057, 10 rue Alice Domon et Léonie Duquet, F-75205 Paris Cedex 13, France
| |
Collapse
|
74
|
Shinde A, Illath K, Gupta P, Shinde P, Lim KT, Nagai M, Santra TS. A Review of Single-Cell Adhesion Force Kinetics and Applications. Cells 2021; 10:577. [PMID: 33808043 PMCID: PMC8000588 DOI: 10.3390/cells10030577] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Cells exert, sense, and respond to the different physical forces through diverse mechanisms and translating them into biochemical signals. The adhesion of cells is crucial in various developmental functions, such as to maintain tissue morphogenesis and homeostasis and activate critical signaling pathways regulating survival, migration, gene expression, and differentiation. More importantly, any mutations of adhesion receptors can lead to developmental disorders and diseases. Thus, it is essential to understand the regulation of cell adhesion during development and its contribution to various conditions with the help of quantitative methods. The techniques involved in offering different functionalities such as surface imaging to detect forces present at the cell-matrix and deliver quantitative parameters will help characterize the changes for various diseases. Here, we have briefly reviewed single-cell mechanical properties for mechanotransduction studies using standard and recently developed techniques. This is used to functionalize from the measurement of cellular deformability to the quantification of the interaction forces generated by a cell and exerted on its surroundings at single-cell with attachment and detachment events. The adhesive force measurement for single-cell microorganisms and single-molecules is emphasized as well. This focused review should be useful in laying out experiments which would bring the method to a broader range of research in the future.
Collapse
Affiliation(s)
- Ashwini Shinde
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| | - Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| | - Pallavi Gupta
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| | - Pallavi Shinde
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon-Si, Gangwon-Do 24341, Korea;
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan;
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| |
Collapse
|
75
|
Gómez-Gálvez P, Vicente-Munuera P, Anbari S, Buceta J, Escudero LM. The complex three-dimensional organization of epithelial tissues. Development 2021; 148:148/1/dev195669. [PMID: 33408064 DOI: 10.1242/dev.195669] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Understanding the cellular organization of tissues is key to developmental biology. In order to deal with this complex problem, researchers have taken advantage of reductionist approaches to reveal fundamental morphogenetic mechanisms and quantitative laws. For epithelia, their two-dimensional representation as polygonal tessellations has proved successful for understanding tissue organization. Yet, epithelial tissues bend and fold to shape organs in three dimensions. In this context, epithelial cells are too often simplified as prismatic blocks with a limited plasticity. However, there is increasing evidence that a realistic approach, even from a reductionist perspective, must include apico-basal intercalations (i.e. scutoidal cell shapes) for explaining epithelial organization convincingly. Here, we present an historical perspective about the tissue organization problem. Specifically, we analyze past and recent breakthroughs, and discuss how and why simplified, but realistic, in silico models require scutoidal features to address key morphogenetic events.
Collapse
Affiliation(s)
- Pedro Gómez-Gálvez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013 Seville, Spain.,Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Pablo Vicente-Munuera
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013 Seville, Spain.,Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Samira Anbari
- Chemical and Biomolecular Engineering Department, Lehigh University, Bethlehem, PA 18018, USA
| | - Javier Buceta
- Institute for Integrative Systems Biology (I2SysBio), CSIC-UV, 46980 Paterna (Valencia), Spain
| | - Luis M Escudero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013 Seville, Spain .,Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| |
Collapse
|
76
|
Boot RC, Koenderink GH, Boukany PE. Spheroid mechanics and implications for cell invasion. ADVANCES IN PHYSICS: X 2021. [DOI: 10.1080/23746149.2021.1978316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Ruben C. Boot
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Gijsje H. Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| | - Pouyan E. Boukany
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
77
|
Özkale B, Sakar MS, Mooney DJ. Active biomaterials for mechanobiology. Biomaterials 2021; 267:120497. [PMID: 33129187 PMCID: PMC7719094 DOI: 10.1016/j.biomaterials.2020.120497] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023]
Abstract
Active biomaterials offer novel approaches to study mechanotransduction in mammalian cells. These material systems probe cellular responses by dynamically modulating their resistance to endogenous forces or applying exogenous forces on cells in a temporally controlled manner. Stimuli-responsive molecules, polymers, and nanoparticles embedded inside cytocompatible biopolymer networks transduce external signals such as light, heat, chemicals, and magnetic fields into changes in matrix elasticity (few kPa to tens of kPa) or forces (few pN to several μN) at the cell-material interface. The implementation of active biomaterials in mechanobiology has generated scientific knowledge and therapeutic potential relevant to a variety of conditions including but not limited to cancer metastasis, fibrosis, and tissue regeneration. We discuss the repertoire of cellular responses that can be studied using these platforms including receptor signaling as well as downstream events namely, cytoskeletal organization, nuclear shuttling of mechanosensitive transcriptional regulators, cell migration, and differentiation. We highlight recent advances in active biomaterials and comment on their future impact.
Collapse
Affiliation(s)
- Berna Özkale
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, 02138, USA
| | - Mahmut Selman Sakar
- Institute of Mechanical Engineering and Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.
| | - David J Mooney
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, 02138, USA.
| |
Collapse
|
78
|
Wang XH, Yang F, Pan JB, Kang B, Xu JJ, Chen HY. Quantitative Imaging of pN Intercellular Force and Energetic Costs during Collective Cell Migration in Epithelial Wound Healing. Anal Chem 2020; 92:16180-16187. [PMID: 33253543 DOI: 10.1021/acs.analchem.0c03935] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Collective cell migration plays a key role in tissue repair, metastasis, and development. Cellular tension is a vital mechanical regulator during the force-driven cell movements. However, the contribution and mechanism of cell-cell force interaction and energetic costs during cell migration are yet to be understood. Here, we attempted to unfold the mechanism of collective cell movement through quantification of the intercellular tension and energetic costs. The measurement of pN intercellular force is based on a "spring-like" DNA-probe and a molecular tension fluorescence microscopy. During the process of wound healing, the intercellular force along with the cell monolayer mainly originates from actin polymerization, which is strongly related to the cellular energy metabolism level. Intracellular force at different spatial regions of wound and the energetic costs of leader and follower cells were measured. The maximum force and energy consumption are mainly concentrated at the wound edge and dynamically changed along with different stages of wound healing. These results indicated the domination of leader cells other than follower cells during the collective cell migration.
Collapse
Affiliation(s)
- Xiao-Hong Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fan Yang
- College of Textile and Clothing, Dezhou University, Dezhou 253023, China
| | - Jian-Bin Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
79
|
Frtús A, Smolková B, Uzhytchak M, Lunova M, Jirsa M, Hof M, Jurkiewicz P, Lozinsky VI, Wolfová L, Petrenko Y, Kubinová Š, Dejneka A, Lunov O. Hepatic Tumor Cell Morphology Plasticity under Physical Constraints in 3D Cultures Driven by YAP-mTOR Axis. Pharmaceuticals (Basel) 2020; 13:ph13120430. [PMID: 33260691 PMCID: PMC7759829 DOI: 10.3390/ph13120430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Recent studies undoubtedly show that the mammalian target of rapamycin (mTOR) and the Hippo–Yes-associated protein 1 (YAP) pathways are important mediators of mechanical cues. The crosstalk between these pathways as well as de-regulation of their signaling has been implicated in multiple tumor types, including liver tumors. Additionally, physical cues from 3D microenvironments have been identified to alter gene expression and differentiation of different cell lineages. However, it remains incompletely understood how physical constraints originated in 3D cultures affect cell plasticity and what the key mediators are of such process. In this work, we use collagen scaffolds as a model of a soft 3D microenvironment to alter cellular size and study the mechanotransduction that regulates that process. We show that the YAP-mTOR axis is a downstream effector of 3D cellular culture-driven mechanotransduction. Indeed, we found that cell mechanics, dictated by the physical constraints of 3D collagen scaffolds, profoundly affect cellular proliferation in a YAP–mTOR-mediated manner. Functionally, the YAP–mTOR connection is key to mediate cell plasticity in hepatic tumor cell lines. These findings expand the role of YAP–mTOR-driven mechanotransduction to the control hepatic tumor cellular responses under physical constraints in 3D cultures. We suggest a tentative mechanism, which coordinates signaling rewiring with cytoplasmic restructuring during cell growth in 3D microenvironments.
Collapse
Affiliation(s)
- Adam Frtús
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (A.F.); (B.S.); (M.U.); (M.L.); (Š.K.)
| | - Barbora Smolková
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (A.F.); (B.S.); (M.U.); (M.L.); (Š.K.)
| | - Mariia Uzhytchak
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (A.F.); (B.S.); (M.U.); (M.L.); (Š.K.)
| | - Mariia Lunova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (A.F.); (B.S.); (M.U.); (M.L.); (Š.K.)
- Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic;
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic;
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 18223 Prague, Czech Republic; (M.H.); (P.J.)
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 18223 Prague, Czech Republic; (M.H.); (P.J.)
| | - Vladimir I. Lozinsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia;
| | - Lucie Wolfová
- Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.W.); (Y.P.)
- Department of Tissue Engineering, Contipro a.s., 56102 Dolni Dobrouc, Czech Republic
| | - Yuriy Petrenko
- Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.W.); (Y.P.)
| | - Šárka Kubinová
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (A.F.); (B.S.); (M.U.); (M.L.); (Š.K.)
- Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.W.); (Y.P.)
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (A.F.); (B.S.); (M.U.); (M.L.); (Š.K.)
- Correspondence: (A.D.); (O.L.); Tel.: +420-2660-52141 (A.D.); +420-2660-52131 (O.L.)
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (A.F.); (B.S.); (M.U.); (M.L.); (Š.K.)
- Correspondence: (A.D.); (O.L.); Tel.: +420-2660-52141 (A.D.); +420-2660-52131 (O.L.)
| |
Collapse
|