51
|
Pal SC, Méndez-Sánchez N. Insulin resistance and adipose tissue interactions as the cornerstone of metabolic (dysfunction)-associated fatty liver disease pathogenesis. World J Gastroenterol 2023; 29:3999-4008. [PMID: 37476582 PMCID: PMC10354585 DOI: 10.3748/wjg.v29.i25.3999] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/09/2023] [Accepted: 03/20/2023] [Indexed: 06/28/2023] Open
Abstract
The relationship between metabolic derangements and fatty liver development are undeniable, since more than 75% of patients with type 2 diabetes mellitus present with fatty liver. There is also significant epidemiological association between insulin resistance (IR) and metabolic (dysfunction)-associated fatty liver disease (MAFLD). For little more than 2 years, the nomenclature of fatty liver of non-alcoholic origin has been intended to change to MAFLD by multiple groups. While a myriad of reasons for which MAFLD is thought to be of metabolic origin could be exposed, the bottom line relies on the role of IR as an initiator and perpetuator of this disease. There is a reciprocal role in MAFLD development and IR as well as serum glucose concentrations, where increased circulating glucose and insulin result in increased de novo lipogenesis by sterol regulatory element-binding protein-1c induced lipogenic enzyme stimulation; therefore, increased endogenous production of triglycerides. The same effect is achieved through impaired suppression of adipose tissue (AT) lipolysis in insulin-resistant states, increasing fatty acid influx into the liver. The complementary reciprocal situation occurs when liver steatosis alters hepatokine secretion, modifying fatty acid metabolism as well as IR in a variety of tissues, including skeletal muscle, AT, and the liver. The aim of this review is to discuss the importance of IR and AT interactions in metabolic altered states as perhaps the most important factor in MAFLD pathogenesis.
Collapse
Affiliation(s)
- Shreya C Pal
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City 04510, Mexico
| | - Nahum Méndez-Sánchez
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City 04510, Mexico
| |
Collapse
|
52
|
Duncan EM, Vita L, Dibnah B, Hudson BD. Metabolite-sensing GPCRs controlling interactions between adipose tissue and inflammation. Front Endocrinol (Lausanne) 2023; 14:1197102. [PMID: 37484963 PMCID: PMC10357040 DOI: 10.3389/fendo.2023.1197102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
Metabolic disorders including obesity, diabetes and non-alcoholic steatohepatitis are a group of conditions characterised by chronic low-grade inflammation of metabolic tissues. There is now a growing appreciation that various metabolites released from adipose tissue serve as key signalling mediators, influencing this interaction with inflammation. G protein-coupled receptors (GPCRs) are the largest family of signal transduction proteins and most historically successful drug targets. The signalling pathways for several key adipose metabolites are mediated through GPCRs expressed both on the adipocytes themselves and on infiltrating macrophages. These include three main groups of GPCRs: the FFA4 receptor, which is activated by long chain free fatty acids; the HCA2 and HCA3 receptors, activated by hydroxy carboxylic acids; and the succinate receptor. Understanding the roles these metabolites and their receptors play in metabolic-immune interactions is critical to establishing how these GPCRs may be exploited for the treatment of metabolic disorders.
Collapse
|
53
|
Wu KK. Extracellular Succinate: A Physiological Messenger and a Pathological Trigger. Int J Mol Sci 2023; 24:11165. [PMID: 37446354 DOI: 10.3390/ijms241311165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
When tissues are under physiological stresses, such as vigorous exercise and cold exposure, skeletal muscle cells secrete succinate into the extracellular space for adaptation and survival. By contrast, environmental toxins and injurious agents induce cellular secretion of succinate to damage tissues, trigger inflammation, and induce tissue fibrosis. Extracellular succinate induces cellular changes and tissue adaptation or damage by ligating cell surface succinate receptor-1 (SUCNR-1) and activating downstream signaling pathways and transcriptional programs. Since SUCNR-1 mediates not only pathological processes but also physiological functions, targeting it for drug development is hampered by incomplete knowledge about the characteristics of its physiological vs. pathological actions. This review summarizes the current status of extracellular succinate in health and disease and discusses the underlying mechanisms and therapeutic implications.
Collapse
Affiliation(s)
- Kenneth K Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
- Institute of Biotechnology, College of Life Science, National Tsing-Hua University, Hsinchu 30013, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
54
|
Wang C, Wang X, Hu W. Molecular and cellular regulation of thermogenic fat. Front Endocrinol (Lausanne) 2023; 14:1215772. [PMID: 37465124 PMCID: PMC10351381 DOI: 10.3389/fendo.2023.1215772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
Thermogenic fat, consisting of brown and beige adipocytes, dissipates energy in the form of heat, in contrast to the characteristics of white adipocytes that store energy. Increasing energy expenditure by activating brown adipocytes or inducing beige adipocytes is a potential therapeutic strategy for treating obesity and type 2 diabetes. Thus, a better understanding of the underlying mechanisms of thermogenesis provides novel therapeutic interventions for metabolic diseases. In this review, we summarize the recent advances in the molecular regulation of thermogenesis, focusing on transcription factors, epigenetic regulators, metabolites, and non-coding RNAs. We further discuss the intercellular and inter-organ crosstalk that regulate thermogenesis, considering the heterogeneity and complex tissue microenvironment of thermogenic fat.
Collapse
Affiliation(s)
- Cuihua Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, China
| | - Xianju Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Wenxiang Hu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
55
|
Li F, Zhang F, Yi X, Quan LL, Yang X, Yin C, Ma Z, Wu R, Zhao W, Ling M, Lang L, Hussein A, Feng S, Fu Y, Wang J, Liang S, Zhu C, Wang L, Zhu X, Gao P, Xi Q, Zhang Y, Zhang L, Shu G, Jiang Q, Wang S. Proline hydroxylase 2 (PHD2) promotes brown adipose thermogenesis by enhancing the hydroxylation of UCP1. Mol Metab 2023; 73:101747. [PMID: 37279828 PMCID: PMC10293773 DOI: 10.1016/j.molmet.2023.101747] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023] Open
Abstract
OBJECTIVE Brown adipose tissue (BAT) plays a crucial role in regulating non-shivering thermogenesis under cold exposure. Proline hydroxylases (PHDs) were found to be involved in adipocyte differentiation and lipid deposition. However, the effects of PHDs on regulatory mechanisms of BAT thermogenesis are not fully understood. METHODS We detected the expression of PHDs in different adipose tissues by using immunoblotting and real-time PCR. Further, immunoblotting, real-time PCR, and immunostaining were performed to determine the correlation between proline hydroxylase 2 (PHD2) and UCP1 expression. Inhibitor of PHDs and PHD2-sgRNA viruses were used to construct the PHD2-deficiency model in vivo and in vitro to investigate the impacts of PHD2 on BAT thermogenesis. Afterward, the interaction between UCP1 and PHD2 and the hydroxylation modification level of UCP1 were verified by Co-IP assays and immunoblotting. Finally, the effect of specific proline hydroxylation on the expression/activity of UCP1 was further confirmed by site-directed mutation of UCP1 and mass spectrometry analysis. RESULTS PHD2, but not PHD1 and PHD3, was highly enriched in BAT, colocalized, and positively correlated with UCP1. Inhibition or knockdown of PHD2 significantly suppressed BAT thermogenesis under cold exposure and aggravated obesity of mice fed HFD. Mechanistically, mitochondrial PHD2 bound to UCP1 and regulated the hydroxylation level of UCP1, which was enhanced by thermogenic activation and attenuated by PHD2 knockdown. Furthermore, PHD2-dependent hydroxylation of UCP1 promoted the expression and stability of UCP1 protein. Mutation of the specific prolines (Pro-33, 133, and 232) in UCP1 significantly mitigated the PHD2-elevated UCP1 hydroxylation level and reversed the PHD2-increased UCP1 stability. CONCLUSIONS This study suggested an important role for PHD2 in BAT thermogenesis regulation by enhancing the hydroxylation of UCP1.
Collapse
Affiliation(s)
- Fan Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Fenglin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Xin Yi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Lu Lu Quan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiaohua Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Cong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Zewei Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Ruifan Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Weijie Zhao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Mingfa Ling
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Limin Lang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Abdelaziz Hussein
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Shengchun Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yiming Fu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Junfeng Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Shuyi Liang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Canjun Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Lin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China.
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Yunfu Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Wen's Foodstuffs Group Co., Ltd, Yunfu 527400, PR China.
| |
Collapse
|
56
|
Pellegrinelli V, Figueroa-Juárez E, Samuelson I, U-Din M, Rodriguez-Fdez S, Virtue S, Leggat J, Çubuk C, Peirce VJ, Niemi T, Campbell M, Rodriguez-Cuenca S, Blázquez JD, Carobbio S, Virtanen KA, Vidal-Puig A. Defective extracellular matrix remodeling in brown adipose tissue is associated with fibro-inflammation and reduced diet-induced thermogenesis. Cell Rep 2023; 42:112640. [PMID: 37318951 DOI: 10.1016/j.celrep.2023.112640] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/25/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023] Open
Abstract
The relevance of extracellular matrix (ECM) remodeling is reported in white adipose tissue (AT) and obesity-related dysfunctions, but little is known about the importance of ECM remodeling in brown AT (BAT) function. Here, we show that a time course of high-fat diet (HFD) feeding progressively impairs diet-induced thermogenesis concomitantly with the development of fibro-inflammation in BAT. Higher markers of fibro-inflammation are associated with lower cold-induced BAT activity in humans. Similarly, when mice are housed at thermoneutrality, inactivated BAT features fibro-inflammation. We validate the pathophysiological relevance of BAT ECM remodeling in response to temperature challenges and HFD using a model of a primary defect in the collagen turnover mediated by partial ablation of the Pepd prolidase. Pepd-heterozygous mice display exacerbated dysfunction and BAT fibro-inflammation at thermoneutrality and in HFD. Our findings show the relevance of ECM remodeling in BAT activation and provide a mechanism for BAT dysfunction in obesity.
Collapse
Affiliation(s)
- Vanessa Pellegrinelli
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK.
| | - Elizabeth Figueroa-Juárez
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Isabella Samuelson
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Mueez U-Din
- Turku PET Centre, University of Turku, Turku, Finland; Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Sonia Rodriguez-Fdez
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Samuel Virtue
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Jennifer Leggat
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Cankut Çubuk
- Platform of Computational Medicine, Fundación Progreso y Salud (FPS), Hospital Virgen Del Rocío, 41013 Sevilla, Spain
| | - Vivian J Peirce
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Tarja Niemi
- Department of Plastic and General Surgery, Turku University Hospital, Turku, Finland
| | - Mark Campbell
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK; Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, P.R. China
| | - Sergio Rodriguez-Cuenca
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK; Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, P.R. China
| | - Joaquin Dopazo Blázquez
- Platform of Computational Medicine, Fundación Progreso y Salud (FPS), Hospital Virgen Del Rocío, 41013 Sevilla, Spain; Bioinformatics in RareDiseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 41013 Sevilla, Spain; Computational Systems Medicine, Institute of Biomedicine of Seville (IBiS), Sevilla 41013, Spain; Functional Genomics Node (INB-ELIXIR-es), Sevilla, Spain
| | - Stefania Carobbio
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK; Centro de Investigacion Principe Felipe (CIPF), Valencia, Spain
| | - Kirsi A Virtanen
- Turku PET Centre, University of Turku, Turku, Finland; Institute of Public Health and Clinical Nutrition, University of Eastern Finland (UEF), Kuopio, Finland; Department of Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Antonio Vidal-Puig
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK; Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, P.R. China; Centro de Investigacion Principe Felipe (CIPF), Valencia, Spain; Cambridge Heart and Lung Research Institute, Cambridge, UK.
| |
Collapse
|
57
|
Marsal-Beltran A, Rodríguez-Castellano A, Astiarraga B, Calvo E, Rada P, Madeira A, Rodríguez-Peña MM, Llauradó G, Núñez-Roa C, Gómez-Santos B, Maymó-Masip E, Bosch R, Frutos MD, Moreno-Navarrete JM, Ramos-Molina B, Aspichueta P, Joven J, Fernández-Real JM, Quer JC, Valverde ÁM, Pardo A, Vendrell J, Ceperuelo-Mallafré V, Fernández-Veledo S. Protective effects of the succinate/SUCNR1 axis on damaged hepatocytes in NAFLD. Metabolism 2023:155630. [PMID: 37315889 DOI: 10.1016/j.metabol.2023.155630] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Succinate and succinate receptor 1 (SUCNR1) are linked to fibrotic remodeling in models of non-alcoholic fatty liver disease (NAFLD), but whether they have roles beyond the activation of hepatic stellate cells remains unexplored. We investigated the succinate/SUCNR1 axis in the context of NAFLD specifically in hepatocytes. METHODS We studied the phenotype of wild-type and Sucnr1-/- mice fed a choline-deficient high-fat diet to induce non-alcoholic steatohepatitis (NASH), and explored the function of SUCNR1 in murine primary hepatocytes and human HepG2 cells treated with palmitic acid. Lastly, plasma succinate and hepatic SUCNR1 expression were analyzed in four independent cohorts of patients in different NAFLD stages. RESULTS Sucnr1 was upregulated in murine liver and primary hepatocytes in response to diet-induced NASH. Sucnr1 deficiency provoked both beneficial (reduced fibrosis and endoplasmic reticulum stress) and detrimental (exacerbated steatosis and inflammation and reduced glycogen content) effects in the liver, and disrupted glucose homeostasis. Studies in vitro revealed that hepatocyte injury increased Sucnr1 expression, which when activated improved lipid and glycogen homeostasis in damaged hepatocytes. In humans, SUCNR1 expression was a good determinant of NAFLD progression to advanced stages. In a population at risk of NAFLD, circulating succinate was elevated in patients with a fatty liver index (FLI) ≥60. Indeed, succinate had good predictive value for steatosis diagnosed by FLI, and improved the prediction of moderate/severe steatosis through biopsy when added to an FLI algorithm. CONCLUSIONS We identify hepatocytes as target cells of extracellular succinate during NAFLD progression and uncover a hitherto unknown function for SUCNR1 as a regulator of hepatocyte glucose and lipid metabolism. Our clinical data highlight the potential of succinate and hepatic SUCNR1 expression as markers to diagnose fatty liver and NASH, respectively.
Collapse
Affiliation(s)
- Anna Marsal-Beltran
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain; Universitat Rovira i Virgili (URV), 43201 Reus, Spain
| | - Adrià Rodríguez-Castellano
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; Universitat Rovira i Virgili (URV), 43201 Reus, Spain
| | - Brenno Astiarraga
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Enrique Calvo
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Patricia Rada
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain; Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain
| | - Ana Madeira
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - M-Mar Rodríguez-Peña
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Gemma Llauradó
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain; Department of Endocrinology and Nutrition, Hospital del Mar, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Catalina Núñez-Roa
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Beatriz Gómez-Santos
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Elsa Maymó-Masip
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Ramon Bosch
- Department of Pathology, Oncological Pathology and Bioinformatics Research Group, Hospital de Tortosa Verge de la Cinta - IISPV, 43500 Tortosa, Spain
| | - María Dolores Frutos
- Department of General and Digestive System Surgery, Virgen de la Arrixaca University Hospital, 30120 Murcia, Spain
| | - José-María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition and Insititut d'Investigació Biomèdica de Girona (IDIBGI), Dr. Josep Trueta University Hospital, Department of Medicine, University of Girona, 17007 Girona, Spain; CIBER de Fisiopatología de la Obesidad (CIBEROBN) - Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Bruno Ramos-Molina
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; CIBER de Enfermedades Hepáticas y Digestivas (CIBEREHD)- Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Jorge Joven
- Universitat Rovira i Virgili (URV), 43201 Reus, Spain; Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, 43204 Reus, Spain
| | - José-Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition and Insititut d'Investigació Biomèdica de Girona (IDIBGI), Dr. Josep Trueta University Hospital, Department of Medicine, University of Girona, 17007 Girona, Spain; CIBER de Fisiopatología de la Obesidad (CIBEROBN) - Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan Carlos Quer
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; Universitat Rovira i Virgili (URV), 43201 Reus, Spain
| | - Ángela M Valverde
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain; Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain
| | - Albert Pardo
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; Universitat Rovira i Virgili (URV), 43201 Reus, Spain
| | - Joan Vendrell
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain; Universitat Rovira i Virgili (URV), 43201 Reus, Spain
| | - Victòria Ceperuelo-Mallafré
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain; Universitat Rovira i Virgili (URV), 43201 Reus, Spain.
| | - Sonia Fernández-Veledo
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain; Universitat Rovira i Virgili (URV), 43201 Reus, Spain.
| |
Collapse
|
58
|
Abstract
Traditional views of cellular metabolism imply that it is passively adapted to meet the demands of the cell. It is becoming increasingly clear, however, that metabolites do more than simply supply the substrates for biological processes; they also provide critical signals, either through effects on metabolic pathways or via modulation of other regulatory proteins. Recent investigation has also uncovered novel roles for several metabolites that expand their signalling influence to processes outside metabolism, including nutrient sensing and storage, embryonic development, cell survival and differentiation, and immune activation and cytokine secretion. Together, these studies suggest that, in contrast to the prevailing notion, the biochemistry of a cell is frequently governed by its underlying metabolism rather than vice versa. This important shift in perspective places common metabolites as key regulators of cell phenotype and behaviour. Yet the signalling metabolites, and the cognate targets and transducers through which they signal, are only beginning to be uncovered. In this Review, we discuss the emerging links between metabolism and cellular behaviour. We hope this will inspire further dissection of the mechanisms through which metabolic pathways and intermediates modulate cell function and will suggest possible drug targets for diseases linked to metabolic deregulation.
Collapse
Affiliation(s)
| | - Jared Rutter
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
- Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
59
|
Immune response gene 1 deficiency aggravates high fat diet-induced nonalcoholic fatty liver disease via promotion of redox-sensitive AKT suppression. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166656. [PMID: 36706797 DOI: 10.1016/j.bbadis.2023.166656] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder worldwide. Immune response gene 1 (IRG1) catalyzes the production of bio-active itaconate, which is actively involved in the regulation of signal transduction. A recent study has found that the expression of IRG1 was significantly down-regulated in obesity-associated fatty liver, but the potential roles of IRG1 in the development NAFLD remain unclear. The present study found that genetic deletion of IRG1 aggravated high fat diet (HFD)-induced metabolic disturbance, including obesity, dyslipidemia and insulin resistance. In addition, HFD induced more severe liver steatosis and higher serum ALT and AST level in IRG1 KO mice, which were accompanied with altered expression of genes involved in lipid uptake, synthesis and catabolism. RNA-seq and immunoblot analysis indicated that deficiency of IRG1 is associated with suppressed activation of AKT, a master metabolic regulator. Mechanistically, IRG1/itaconate enhanced the antioxidative NRF2 pathway and prevented redox-sensitive suppression of AKT. Interestingly, supplementation with 4-octyl itaconate (4-OI), a cell-permeable derivate of itaconate, alleviated HFD-induced oxidative stress, AKT suppression and liver steatosis. Therefore, IRG1 probably functions as a protective regulator in the development of NAFLD and the cell-permeable 4-OI might have potential value for the pharmacological intervention of NAFLD.
Collapse
|
60
|
Abstract
Brown adipose tissue (BAT) displays the unique capacity to generate heat through uncoupled oxidative phosphorylation that makes it a very attractive therapeutic target for cardiometabolic diseases. Here, we review BAT cellular metabolism, its regulation by the central nervous and endocrine systems and circulating metabolites, the plausible roles of this tissue in human thermoregulation, energy balance, and cardiometabolic disorders, and the current knowledge on its pharmacological stimulation in humans. The current definition and measurement of BAT in human studies relies almost exclusively on BAT glucose uptake from positron emission tomography with 18F-fluorodeoxiglucose, which can be dissociated from BAT thermogenic activity, as for example in insulin-resistant states. The most important energy substrate for BAT thermogenesis is its intracellular fatty acid content mobilized from sympathetic stimulation of intracellular triglyceride lipolysis. This lipolytic BAT response is intertwined with that of white adipose (WAT) and other metabolic tissues, and cannot be independently stimulated with the drugs tested thus far. BAT is an interesting and biologically plausible target that has yet to be fully and selectively activated to increase the body's thermogenic response and shift energy balance. The field of human BAT research is in need of methods able to directly, specifically, and reliably measure BAT thermogenic capacity while also tracking the related thermogenic responses in WAT and other tissues. Until this is achieved, uncertainty will remain about the role played by this fascinating tissue in human cardiometabolic diseases.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Denis P Blondin
- Division of Neurology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | | | - Denis Richard
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, G1V 4G5, Canada
| |
Collapse
|
61
|
Reddy A, Winther S, Tran N, Xiao H, Jakob J, Garrity R, Smith A, Mills EL, Chouchani ET. Monocarboxylate transporters facilitate succinate uptake into brown adipocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530625. [PMID: 36909624 PMCID: PMC10002717 DOI: 10.1101/2023.03.01.530625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Uptake of circulating succinate by brown adipose tissue (BAT) and beige fat elevates whole body energy expenditure, counteracts obesity, and antagonizes systemic tissue inflammation in mice. The plasma membrane transporters that facilitate succinate uptake in these adipocytes remain undefined. Here we elucidate a mechanism underlying succinate import into BAT via monocarboxylate transporters (MCTs). We show that succinate transport is strongly dependent on the proportion of it present in the monocarboxylate form. MCTs facilitate monocarboxylate succinate uptake, which is promoted by alkalinization of the cytosol driven by adrenoreceptor stimulation. In brown adipocytes, we show that MCT1 primarily facilitates succinate import, however other members of the MCT family can partially compensate and fulfill this role in the absence of MCT1. In mice, we show that acute pharmacological inhibition of MCT1 and 2 decreases succinate uptake into BAT. Conversely, congenital genetic depletion of MCT1 alone has little effect on BAT succinate uptake, indicative of additional transport mechanisms with high capacity in vivo . In sum, we define a mechanism of succinate uptake in BAT that underlies its protective activity in mouse models of metabolic disease.
Collapse
|
62
|
Inhibition of Succinate Dehydrogenase by Pesticides (SDHIs) and Energy Metabolism. Int J Mol Sci 2023; 24:ijms24044045. [PMID: 36835457 PMCID: PMC9962667 DOI: 10.3390/ijms24044045] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Succinate dehydrogenase (SDH) is one of the enzymes of the tricarboxylic acid cycle (Krebs cycle) and complex II of the mitochondrial respiratory chain. A class of fungicides (SDHIs) targets the complex II reaction in the SDH. A large number of those in use have been shown to inhibit SDH in other phyla, including humans. This raises questions about possible effects on human health and non-target organisms in the environment. The present document will address metabolic consequences in mammals; it is neither a review on SDH nor is it about the toxicology of SDHIs. Most clinically relevant observations are linked to a severe decrease in SDH activity. Here we shall examine the mechanisms for compensating a loss of SDH activity and their possible weaknesses or adverse consequences. It can be expected that a mild inhibition of SDH will be compensated by the kinetic properties of this enzyme, but this implies a proportionate increase in succinate concentration. This would be relevant for succinate signaling and epigenetics (not reviewed here). With regard to metabolism, exposure of the liver to SDHIs would increase the risk for non-alcoholic fatty liver disease (NAFLD). Higher levels of inhibition may be compensated by modification of metabolic fluxes with net production of succinate. SDHIs are much more soluble in lipids than in water; consequently, a different diet composition between laboratory animals and humans is expected to influence their absorption.
Collapse
|
63
|
Gu P, Ding K, Lu L, Zhang Y, Wang W, Guo Q, Liao Y, Yang B, Wang T, Zhou C, Lu B, Kong APS, Cheng AS, Hui HX, Shao J. Compromised browning in white adipose tissue of ageing people. Eur J Endocrinol 2023; 188:lvad014. [PMID: 36750512 DOI: 10.1093/ejendo/lvad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/18/2022] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND Adipose tissue plays a pivotal role in the pathology of metabolic disorders. In the past decade, brown and brown-like adipose tissues were detected in adult humans and show therapeutic potential in ageing-related metabolic diseases. OBJECTIVE This study investigated expressions of major brown adipose markers in white adipose tissue (WAT) of different ages. Their associations with metabolic parameters and key adipokines were interrogated. DESIGN Cross-sectional study, 2019-2021. METHODS We recruited 21 young, 67 middle-aged, and 34 older patients. Omental adipose tissues were collected, and expressions of key brown markers and adipokines and the adipocyte size were evaluated. The fat depot distribution was evaluated by computed tomography. RESULTS UCP1 and PRDM16 mRNA expressions declined with ageing in WAT and were more associated with age, than with the body mass index (BMI). The increased visceral adipose tissue (VAT) amount, as well as the VAT to subcutaneous adipose tissue (SAT) ratio, was decreased in the highest tertile of UCP1 expression, while individuals in different PRDM16 mRNA tertiles exhibited similar fat distribution. UCP1 mRNA was positively correlated with ADIPOQ and the strength of the correlation declined with ageing. In contrast, the association between UCP1 and LEP was insignificant in young and middle-aged groups but became significantly correlated in the older-people group. We also found a positive correlation between UCP1 and PRDM16. CONCLUSIONS PRDM16 and UCP1, despite their key functions in adipose browning, exhibit differential clinical correlations with metabolic features in human WAT in an age-dependent manner. These two genes may participate in the pathogenesis of ageing-related metabolic diseases, but with distinct mechanisms.
Collapse
Affiliation(s)
- Ping Gu
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210000, China
| | - Kai Ding
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210000, China
| | - Lei Lu
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210000, China
| | - Yu Zhang
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210000, China
| | - Wei Wang
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210000, China
| | - Qingyu Guo
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210000, China
| | - Yannian Liao
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210000, China
| | - Bingjie Yang
- Department of Endocrinology, Jinling Hospital, Nanjing Med University, Nanjing 210000, China
| | - Tiantian Wang
- Department of Endocrinology, Jinling Hospital, Nanjing Med University, Nanjing 210000, China
| | - Changsheng Zhou
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210000, China
| | - Bin Lu
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210000, China
| | - Alice P S Kong
- Department of Medicine and Therapeutics, Hong Kong Special Administrative Region, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, Shatin, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, Shatin, Hong Kong, China
| | - Alfred S Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hannah Xiaoyan Hui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiaqing Shao
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210000, China
| |
Collapse
|
64
|
Wang Y, Tao H, Tang W, Wu S, Tang Y, Liu L. Succinate level is increased and succinate dehydrogenase exerts forward and reverse catalytic activities in lipopolysaccharides-stimulated cardiac tissue: The protective role of dimethyl malonate. Eur J Pharmacol 2023; 940:175472. [PMID: 36549501 DOI: 10.1016/j.ejphar.2022.175472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
This study aimed to investigate the alterations of myocardial succinate and fumarate levels with or without succinate dehydrogenase (SDH) inhibitor dimethyl malonate during 24 h of lipopolysaccharides (LPS) challenge, as well as the effects of dimethyl malonate on the impaired cardiac tissue. Myocardial succinate and fumarate levels were increased in the initial 9 h of LPS challenge. During this time, dimethyl malonate increased the succinate level, decreased the fumarate level, aggravated the cardiac dysfunction, reduced the oxidative stress, had little effect on interleukin-1β production, promoted interleukin-10 production and bothered the ATP production. Co-treatment with exogenous succinate significantly increased interleukin-1β production in this period. After 12 h of LPS challenge, myocardial the succinate level increased sharply, while the fumarate level gradually decreased. During 12-24 h of LPS challenge, dimethyl malonate effectively reduced the succinate level, increased the fumarate level, improved cardiac dysfunction, inhibited interleukin-1β production, and had little effect on oxidative stress, interleukin-10 production, and ATP production. LPS challenge also significantly increased the myocardial succinate receptor 1 expression and circulating succinate level. Inhibition of succinate receptor 1 significantly reduced the mRNA expression of interleukin-1β. In conclusion, the current study suggests that myocardial succinate accumulates during LPS challenge, and that SDH activity may be transformed (from forward to reversed) and involved in a line of stress response. Dimethyl malonate inhibits SDH and, depending on the time of treatment, reduces LPS-induced cardiac impairment. Furthermore, accumulated succinate exerts pro-inflammatory effects partly via succinate receptor 1 signaling.
Collapse
Affiliation(s)
- Yu Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hongmei Tao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Wenjing Tang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Siqi Wu
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yin Tang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ling Liu
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
65
|
Pu M, Zhang J, Zeng Y, Hong F, Qi W, Yang X, Gao G, Zhou T. Succinate-SUCNR1 induces renal tubular cell apoptosis. Am J Physiol Cell Physiol 2023; 324:C467-C476. [PMID: 36622070 DOI: 10.1152/ajpcell.00327.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Succinate has long been known to be only an intermediate product of the tricarboxylic acid cycle until identified as a natural ligand for SUCNR1 in 2004. SUCNR1 is widely expressed throughout the body, especially in the kidney. Abnormally elevated succinate is associated with many diseases, including obesity, type 2 diabetes, nonalcoholic fatty liver disease, and ischemia injury, but it is not known whether succinate can cause kidney damage. This study showed that succinate induced apparent renal injury after treatment for 12 wk, characterized by a reduction in 24 h urine and the significant detachment of the brush border of proximal tubular epithelial cells, tubular dilation, cast formation, and vacuolar degeneration of tubular cells in succinate-treated mice. Besides, succinate caused tubular epithelial cell apoptosis in kidneys and HK-2 cells. Mechanistically, succinate triggered cell apoptosis via SUCNR1 activation. In addition, succinate upregulated ERK by binding to SUCNR1, and inhibition of ERK using PD98059 abolished the proapoptotic effects of succinate in HK-2 cells. In summary, our study provides the first evidence that succinate acts as a risk factor and contributes to renal injury, and further research is required to discern the pathological effects of succinate on renal functions.
Collapse
Affiliation(s)
- Min Pu
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jing Zhang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yongcheng Zeng
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fuyan Hong
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weiwei Qi
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xia Yang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guoquan Gao
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products, Sun Yat-sen University, Guangzhou, China
| | - Ti Zhou
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,China Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
66
|
Saito M, Okamatsu-Ogura Y. Thermogenic Brown Fat in Humans: Implications in Energy Homeostasis, Obesity and Metabolic Disorders. World J Mens Health 2023:41.e26. [PMID: 36792089 DOI: 10.5534/wjmh.220224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/08/2022] [Indexed: 01/27/2023] Open
Abstract
In mammals including humans, there are two types of adipose tissue, white and brown adipose tissues (BATs). White adipose tissue is the primary site of energy storage, while BAT is a specialized tissue for non-shivering thermogenesis to dissipate energy as heat. Although BAT research has long been limited mostly in small rodents, the rediscovery of metabolically active BAT in adult humans has dramatically promoted the translational studies on BAT in health and diseases. It is now established that BAT, through its thermogenic and energy dissipating activities, plays a role in the regulation of body temperature, whole-body energy expenditure, and body fatness. Moreover, increasing evidence has demonstrated that BAT secretes various paracrine and endocrine factors, which influence other peripheral tissues and control systemic metabolic homeostasis, suggesting BAT as a metabolic regulator, other than for thermogenesis. In fact, clinical studies have revealed an association of BAT not only with metabolic disorders such as insulin resistance, diabetes, dyslipidemia, and fatty liver, but also with cardiovascular diseases including hypertension and atherosclerosis. Thus, BAT is an intriguing tissue combating obesity and related metabolic diseases. In this review, we summarize current knowledge on human BAT, focusing its patho-physiological roles in energy homeostasis, obesity and related metabolic disorders. The effects of aging and sex on BAT are also discussed.
Collapse
Affiliation(s)
- Masayuki Saito
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| | - Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
67
|
Zhang K, Li T, Li Q, Nie C, Sun Y, Xue L, Wang Y, Fan M, Qian H, Li Y, Wang L. 5-Heptadecylresorcinol Regulates the Metabolism of Thermogenic Fat and Improves the Thermogenic Capacity of Aging Mice via a Sirtuin 3-Adenosine Monophosphate-Activated Protein Kinase Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:557-568. [PMID: 36535764 DOI: 10.1021/acs.jafc.2c07073] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
5-Heptadecylresorcinol (AR-C17), a well-known biomarker for whole grain rye consumption, is a primary homolog of alkylresorcinols. In this study, the effects of AR-C17 on the thermogenesis of brown adipocytes and 3T3-L1 adipocytes were investigated. The results showed that AR-C17 increased sirtuin 3 (Sirt3) expression, and the expressions of specific thermogenic genes in adipocytes were increased. Furthermore, AR-C17 increased the mitochondrial functions during the thermogenic activation of adipocytes. In in vivo study, AR-C17 increased the cold tolerance and thermogenic capacity of adipose tissues in aging mice. In addition, Sirt3 activity was required for AR-C17-induced thermogenesis. Meanwhile, AR-C17 increased adenosine monophosphate-activated protein kinase (AMPK) phosphorylation, and AMPK was involved in the regulation of AR-C17 on thermogenic adipocytes. Mechanically, AR-C17 upregulated a Sirt3-AMPK positive-feedback loop in adipocytes and further increased the expression of uncoupling protein 1 to activate thermogenesis. This study indicated that AR-C17 could be a promising thermogenic activator of adipocytes to alleviate obesity and aging-associated metabolic diseases.
Collapse
Affiliation(s)
- Kuiliang Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tingting Li
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Li
- China National Institute of Standardization, Beijing 100015, China
| | - Chenzhipeng Nie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yujie Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lamei Xue
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yu Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
68
|
Wu N, Wen H, Xu P, Chen J, Xue M, Li J, Wang M, Song C, Li H. PPAR Signaling Maintains Metabolic Homeostasis under Hypothermia in Freshwater Drum ( Aplodinotus grunniens). Metabolites 2023; 13:102. [PMID: 36677027 PMCID: PMC9865675 DOI: 10.3390/metabo13010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Aplodinotus grunniens, known as freshwater drum, is a kind of eurythermal freshwater fish that is widely distributed in North America. In 2019, our research group reached a milestone on its artificial breeding and cultivation and have investigated its physiological adaption to the environment, providing a breakthrough and prospects for aquaculture. However, its adaptability and metabolic homeostasis to hypothermia is not fully understood. In this experiment, cold stress was conducted at 18 °C (LT18) and 10 °C (LT10) with 25 °C as control (Con) for 8 days to explore the effects of short-term hypothermia on the physiology and metabolism of freshwater drum. From the results, the level of free essential amino acids in LT18 and LT10 decreased significantly after 2 days cold stress compared with Con. Furthermore, plasma total triglyceride (TG) content and lipase (LPS) activity were decreased at LT10 for 2d. With RNA-seq in the liver, metabolic-related signaling, especially amino acid synthesis and lipid metabolism, was inhibited by hypothermia. Specifically, the PPAR signaling pathway is correlated with the inhibition of lipid and amino acid metabolism induced by hypothermia. These data confirmed that PPAR signaling maintains lipid and amino acid metabolic homeostasis during cold stress. These results give a theoretical foundation for hypothermia resistance in the area of metabolic homeostasis for freshwater drum.
Collapse
Affiliation(s)
- Ningyuan Wu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Road, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Haibo Wen
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Road, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Pao Xu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Road, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jianxiang Chen
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Miaomiao Xue
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jianlin Li
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Road, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Meiyao Wang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Road, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Changyou Song
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Road, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Hongxia Li
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Road, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| |
Collapse
|
69
|
Abstract
Succinate is a circulating metabolite, and the relationship between abnormal changes in the physiological concentration of succinate and inflammatory diseases caused by the overreaction of certain immune cells has become a research focus. Recent investigations have shown that succinate produced by the gut microbiota has the potential to regulate host homeostasis and treat diseases such as inflammation. Gut microbes are important for maintaining intestinal homeostasis. Microbial metabolites serve as nutrients in energy metabolism, and act as signal molecules that stimulate host cell and organ function and affect the structural balance between symbiotic gut microorganisms. This review focuses on succinate as a metabolite of both host cells and gut microbes and its involvement in regulating the gut - immune tissue axis by activating intestinal mucosal cells, including macrophages, dendritic cells, and intestinal epithelial cells. We also examined its role as the mediator of microbiota - host crosstalk and its potential function in regulating intestinal microbiota homeostasis. This review explores feasible ways to moderate succinate levels and provides new insights into succinate as a potential target for microbial therapeutics for humans.
Collapse
Affiliation(s)
- Yi-Han Wei
- College of Animal Science, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangzhou, China
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiang-Chao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, USA
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangzhou, China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangzhou, China
| |
Collapse
|
70
|
Yan XL, Liu XC, Zhang YN, Du TT, Ai Q, Gao X, Yang JL, Bao L, Li LQ. Succinate aggravates intestinal injury in mice with necrotizing enterocolitis. Front Cell Infect Microbiol 2022; 12:1064462. [PMID: 36519131 PMCID: PMC9742382 DOI: 10.3389/fcimb.2022.1064462] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
Background Necrotizing enterocolitis (NEC) is the most prevalent gastrointestinal disorder that predominantly threatens preterm newborns. Succinate is an emerging metabolic signaling molecule that was recently studied in relation to the regulation of intestinal immunity and homeostasis. We aimed to investigate the relationship between NEC and gut luminal succinate and preliminarily explored the effect of succinate on NEC pathogenesis. Methods Fecal samples from human neonates and mouse pups were analyzed by HPLC - MS/MS and 16S rRNA gene sequencing. C57BL/6 mice were randomly divided into four groups: control, NEC, Lsuc, and Hsuc. The mortality, weight gain, and intestinal pathological changes in four mouse groups were observed. Inflammatory cytokines and markers of macrophages were identified by quantitative real-time PCR. Succinate receptor 1 (SUCNR1) localization was visualized by immunohistochemistry. The protein levels of SUCNR1 and hypoxia-inducible factor 1a (HIF-1a) were quantified by western blotting. Results The levels of succinate in feces from NEC patients were higher than those in feces from non-NEC patients (P <0.05). In the murine models, succinate levels in intestinal content samples were also higher in the NEC group than in the control group (P <0.05). The change in succinate level was closely related to intestinal flora composition. In samples from human neonates, relative to the control group, the NEC group showed a higher abundance of Enterobacteriaceae and a lower abundance of Lactobacillaceae and Lactobacillus (P <0.05). In the murine models, relative to the control group, increased abundance was observed for Clostridiaceae, Enterococcaceae, Clostridium_sensu_stricto_1, and Enterococcus, whereas decreased abundance was observed for Lactobacillaceae and Lactobacillus (P <0.05). Increased succinate levels prevented mice from gaining weight, damaged their intestines, and increased their mortality; upregulated the gene expression of interleukin-1β (IL-1β), IL-6, IL-18 and tumor necrosis factor (TNF); and downregulated the gene expression of IL-10 and transforming growth factor (TGF)-β. Exogenous succinic acid increased inducible nitric oxide synthase (iNOS) gene expression but decreased Arginase-1 (Arg1) gene expression; and increased the protein expression of SUCNR1 and HIF-1a. Conclusion Succinate plays an important role in the development of necrotizing enterocolitis severity, and the activation of the HIF-1a signaling pathway may lead to disease progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lei Bao
- Department of Neonatology Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Lu-Quan Li
- Department of Neonatology Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
71
|
Mercado NM, Zhang G, Ying Z, Gómez-Pinilla F. Traumatic brain injury alters the gut-derived serotonergic system and associated peripheral organs. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166491. [PMID: 35902006 PMCID: PMC9839318 DOI: 10.1016/j.bbadis.2022.166491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/01/2022] [Accepted: 07/09/2022] [Indexed: 01/18/2023]
Abstract
Most efforts to understand the pathology of traumatic brain injury (TBI) have been centered on the brain, ignoring the role played by systemic physiology. Gut-derived serotonin is emerging as a major regulator of systemic homeostasis involving various organs and tissues throughout the body. Here, we shed light on the roles occupied by gut-derived serotonin and its downstream metabolic targets in the systemic pathogenesis of TBI. Male C57BL/6J mice were subjected to a fluid percussion injury (FPI) and RT-qPCR was used to examine mRNA levels in intestine, liver, and adipose tissue. In the intestinal tract, TBI transiently downregulated enteric neuronal markers Chat and Nos1 in the duodenum and colon, and altered colonic genes related to synthesis and degradation of serotonin, favoring an overall serotonin downregulation. There also was a decrease in serotonin fluorescence intensity in the colonic mucosa and reduced circulating blood serotonin levels, with concurrent alterations in serotonin-associated gene expression in downstream tissues after TBI (i.e., upregulation of serotonin receptor Htr2a and dysregulation of genes associated with lipid metabolism in liver and adipose). Levels of commensal bacterial species were also altered in the gut and were associated with TBI-mediated changes in the colonic serotonin system. Our findings suggest that TBI alters peripheral serotonin homeostasis, which in turn may impact gastrointestinal function, gut microbiota, and systemic energy balance. These data highlight the importance of building an integrative view of the role of systemic physiology in TBI pathogenesis to assist in the development of effective TBI treatments.
Collapse
Affiliation(s)
- Natosha M Mercado
- Department of Integrative Biology & Physiology, University of California at Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Guanglin Zhang
- Department of Integrative Biology & Physiology, University of California at Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Zhe Ying
- Department of Integrative Biology & Physiology, University of California at Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Fernando Gómez-Pinilla
- Department of Integrative Biology & Physiology, University of California at Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
72
|
Abstract
The analogy of mitochondria as powerhouses has expired. Mitochondria are living, dynamic, maternally inherited, energy-transforming, biosynthetic, and signaling organelles that actively transduce biological information. We argue that mitochondria are the processor of the cell, and together with the nucleus and other organelles they constitute the mitochondrial information processing system (MIPS). In a three-step process, mitochondria (1) sense and respond to both endogenous and environmental inputs through morphological and functional remodeling; (2) integrate information through dynamic, network-based physical interactions and diffusion mechanisms; and (3) produce output signals that tune the functions of other organelles and systemically regulate physiology. This input-to-output transformation allows mitochondria to transduce metabolic, biochemical, neuroendocrine, and other local or systemic signals that enhance organismal adaptation. An explicit focus on mitochondrial signal transduction emphasizes the role of communication in mitochondrial biology. This framework also opens new avenues to understand how mitochondria mediate inter-organ processes underlying human health.
Collapse
Affiliation(s)
- Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA.
| | - Orian S Shirihai
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
73
|
Rahbani JF, Scholtes C, Lagarde DM, Hussain MF, Roesler A, Dykstra CB, Bunk J, Samborska B, O'Brien SL, Tripp E, Pacis A, Angueira AR, Johansen OS, Cinkornpumin J, Hossain I, Lynes MD, Zhang Y, White AP, Pastor WA, Chondronikola M, Sidossis L, Klein S, Kralli A, Cypess AM, Pedersen SB, Jessen N, Tseng YH, Gerhart-Hines Z, Seale P, Calebiro D, Giguère V, Kazak L. ADRA1A-Gα q signalling potentiates adipocyte thermogenesis through CKB and TNAP. Nat Metab 2022; 4:1459-1473. [PMID: 36344764 PMCID: PMC9684074 DOI: 10.1038/s42255-022-00667-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022]
Abstract
Noradrenaline (NA) regulates cold-stimulated adipocyte thermogenesis1. Aside from cAMP signalling downstream of β-adrenergic receptor activation, how NA promotes thermogenic output is still not fully understood. Here, we show that coordinated α1-adrenergic receptor (AR) and β3-AR signalling induces the expression of thermogenic genes of the futile creatine cycle2,3, and that early B cell factors, oestrogen-related receptors and PGC1α are required for this response in vivo. NA triggers physical and functional coupling between the α1-AR subtype (ADRA1A) and Gαq to promote adipocyte thermogenesis in a manner that is dependent on the effector proteins of the futile creatine cycle, creatine kinase B and tissue-non-specific alkaline phosphatase. Combined Gαq and Gαs signalling selectively in adipocytes promotes a continual rise in whole-body energy expenditure, and creatine kinase B is required for this effect. Thus, the ADRA1A-Gαq-futile creatine cycle axis is a key regulator of facultative and adaptive thermogenesis.
Collapse
Affiliation(s)
- Janane F Rahbani
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Charlotte Scholtes
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Damien M Lagarde
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Mohammed F Hussain
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Anna Roesler
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Christien B Dykstra
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Jakub Bunk
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Bozena Samborska
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Shannon L O'Brien
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Emma Tripp
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Alain Pacis
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Anthony R Angueira
- Institute for Diabetes, Obesity & Metabolism and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Olivia S Johansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Ishtiaque Hossain
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Matthew D Lynes
- Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Yang Zhang
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Andrew P White
- Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - William A Pastor
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Maria Chondronikola
- Department of Nutrition and Radiology, University of California, Davis, Davis, CA, USA
- Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
| | - Labros Sidossis
- Department of Kinesiology and Health, School of Arts and Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Samuel Klein
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO, USA
| | - Anastasia Kralli
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Steen B Pedersen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Aarhus N, Denmark
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Patrick Seale
- Institute for Diabetes, Obesity & Metabolism and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Davide Calebiro
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Vincent Giguère
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Lawrence Kazak
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada.
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
74
|
Li Y, Chen M, Ma Y, Yang Y, Cheng Y, Ma H, Ren D, Chen P. Regulation of viable/inactivated/lysed probiotic Lactobacillus plantarum H6 on intestinal microbiota and metabolites in hypercholesterolemic mice. NPJ Sci Food 2022; 6:50. [PMID: 36316361 PMCID: PMC9622822 DOI: 10.1038/s41538-022-00167-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023] Open
Abstract
Evidence suggests that probiotic interventions reduce non-communicable diseases (NCDs) risk. However, its therapeutic effect and mechanism are still unclear. To evaluate the hypocholesterolemic effect of Lactobacillus plantarum H6 (L.p H6), a new commercial patent strain capable of preventing hypercholesterolemia, and its mechanism in depth, three states of the strain were prepared, namely, viable (vH6), heat-inactivated (iH6), and ultrasonically-lysed (uH6) bacteria cells. The results showed that v/i/uH6 cells could lower serum and liver blood lipid levels, alleviate liver damage and improve glucose tolerance test (GTT) and insulin tolerance test (ITT) indexes. v/i/uH6 cells improved the gut microbial composition and significantly reduced the Firmicutes to Bacteroidetes ratio (F/B ratio) in feces. In particular, Muribaculaceae may be a potential biomarker for effective cholesterol reduction. Also, the recovery of these biochemical indices and gut microbiome was found following fecal microbiota transplantation (FMT) using stool from vH6 treated mice. The v/i/uH6 cells increased the intestinal flora metabolism of vitamins-cofactors, as well as amino acids, while decreasing the relative content of primary bile acids. The Pearson correlation analysis showed that norank_f__Muribaculaceae and Lactobacillus had a negative correlation with blood lipid levels. Overall, v/i/uH6 cells were effective in improving hypercholesterolemia in mice, and this effect was attributed partly to the regulation of intestinal microbiota and metabolites related to lipid metabolism. Our findings provided a theoretical basis for the industrial development of probiotics and postbiotics and the treatment of cholesterol diseases.
Collapse
Affiliation(s)
- Yue Li
- grid.464353.30000 0000 9888 756XCollege of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
| | - Mengling Chen
- grid.464353.30000 0000 9888 756XCollege of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
| | - Yuxuan Ma
- grid.464353.30000 0000 9888 756XCollege of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
| | - Yue Yang
- grid.464353.30000 0000 9888 756XCollege of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
| | - Ying Cheng
- grid.464353.30000 0000 9888 756XCollege of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
| | - Huijing Ma
- grid.464353.30000 0000 9888 756XCollege of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
| | - Dayong Ren
- grid.464353.30000 0000 9888 756XCollege of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
| | - Ping Chen
- grid.464353.30000 0000 9888 756XCollege of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
| |
Collapse
|
75
|
Qi Y, Hui XH. The Single-Cell Revelation of Thermogenic Adipose Tissue. Mol Cells 2022; 45:673-684. [PMID: 36254709 PMCID: PMC9589375 DOI: 10.14348/molcells.2022.0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/07/2022] Open
Abstract
The past two decades have witnessed an upsurge in the appreciation of adipose tissue (AT) as an immuno-metabolic hub harbouring heterogeneous cell populations that collectively fine-tune systemic metabolic homeostasis. Technological advancements, especially single-cell transcriptomics, have offered an unprecedented opportunity for dissecting the sophisticated cellular networks and compositional dynamics underpinning AT remodelling. The "re-discovery" of functional brown adipose tissue dissipating heat energy in human adults has aroused tremendous interest in exploiting the mechanisms underpinning the engagement of AT thermogenesis for combating human obesity. In this review, we aim to summarise and evaluate the use of single-cell transcriptomics that contribute to a better appreciation of the cellular plasticity and intercellular crosstalk in thermogenic AT.
Collapse
Affiliation(s)
- Yue Qi
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyan Hannah Hui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
76
|
Huang LY, Ma JY, Song JX, Xu JJ, Hong R, Fan HD, Cai H, Wang W, Wang YL, Hu ZL, Shen JG, Qi SH. Ischemic accumulation of succinate induces Cdc42 succinylation and inhibits neural stem cell proliferation after cerebral ischemia/reperfusion. Neural Regen Res 2022; 18:1040-1045. [PMID: 36254990 PMCID: PMC9827777 DOI: 10.4103/1673-5374.355821] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ischemic accumulation of succinate causes cerebral damage by excess production of reactive oxygen species. However, it is unknown whether ischemic accumulation of succinate affects neural stem cell proliferation. In this study, we established a rat model of cerebral ischemia/reperfusion injury by occlusion of the middle cerebral artery. We found that succinate levels increased in serum and brain tissue (cortex and hippocampus) after ischemia/reperfusion injury. Oxygen-glucose deprivation and reoxygenation stimulated primary neural stem cells to produce abundant succinate. Succinate can be converted into diethyl succinate in cells. Exogenous diethyl succinate inhibited the proliferation of mouse-derived C17.2 neural stem cells and increased the infarct volume in the rat model of cerebral ischemia/reperfusion injury. Exogenous diethyl succinate also increased the succinylation of the Rho family GTPase Cdc42 but repressed Cdc42 GTPase activity in C17.2 cells. Increasing Cdc42 succinylation by knockdown of the desuccinylase Sirt5 also inhibited Cdc42 GTPase activity in C17.2 cells. Our findings suggest that ischemic accumulation of succinate decreases Cdc42 GTPase activity by induction of Cdc42 succinylation, which inhibits the proliferation of neural stem cells and aggravates cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Lin-Yan Huang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ju-Yun Ma
- College of Pharmacology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jin-Xiu Song
- College of Pharmacology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jing-Jing Xu
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Rui Hong
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Hai-Di Fan
- College of Pharmacology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Heng Cai
- College of Pharmacology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Wan Wang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yan-Ling Wang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zhao-Li Hu
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jian-Gang Shen
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China,School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Su-Hua Qi
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China,College of Pharmacology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China,Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu Province, China,Correspondence to: Su-Hua Qi, .
| |
Collapse
|
77
|
Abstract
Metabolic adaptation to viral infections critically determines the course and manifestations of disease. At the systemic level, a significant feature of viral infection and inflammation that ensues is the metabolic shift from anabolic towards catabolic metabolism. Systemic metabolic sequelae such as insulin resistance and dyslipidaemia represent long-term health consequences of many infections such as human immunodeficiency virus, hepatitis C virus and severe acute respiratory syndrome coronavirus 2. The long-held presumption that peripheral and tissue-specific 'immune responses' are the chief line of defence and thus regulate viral control is incomplete. This Review focuses on the emerging paradigm shift proposing that metabolic engagements and metabolic reconfiguration of immune and non-immune cells following virus recognition modulate the natural course of viral infections. Early metabolic footprints are likely to influence longer-term disease manifestations of infection. A greater appreciation and understanding of how local biochemical adjustments in the periphery and tissues influence immunity will ultimately lead to interventions that curtail disease progression and identify new and improved prognostic biomarkers.
Collapse
Affiliation(s)
- Clovis S Palmer
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA.
| |
Collapse
|
78
|
Tong W, Hannou SA, Wang Y, Astapova I, Sargsyan A, Monn R, Thiriveedi V, Li D, McCann JR, Rawls JF, Roper J, Zhang GF, Herman MA. The intestine is a major contributor to circulating succinate in mice. FASEB J 2022; 36:e22546. [PMID: 36106538 PMCID: PMC9523828 DOI: 10.1096/fj.202200135rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 10/03/2023]
Abstract
The tricarboxylic acid (TCA) cycle is the epicenter of cellular aerobic metabolism. TCA cycle intermediates facilitate energy production and provide anabolic precursors, but also function as intra- and extracellular metabolic signals regulating pleiotropic biological processes. Despite the importance of circulating TCA cycle metabolites as signaling molecules, the source of circulating TCA cycle intermediates remains uncertain. We observe that in mice, the concentration of TCA cycle intermediates in the portal blood exceeds that in tail blood indicating that the gut is a major contributor to circulating TCA cycle metabolites. With a focus on succinate as a representative of a TCA cycle intermediate with signaling activities and using a combination of gut microbiota depletion mouse models and isotopomer tracing, we demonstrate that intestinal microbiota is not a major contributor to circulating succinate. Moreover, we demonstrate that endogenous succinate production is markedly higher than intestinal succinate absorption in normal physiological conditions. Altogether, these results indicate that endogenous succinate production within the intestinal tissue is a major physiological source of circulating succinate. These results provide a foundation for an investigation into the role of the intestine in regulating circulating TCA cycle metabolites and their potential signaling effects on health and disease.
Collapse
Affiliation(s)
- Wenxin Tong
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Sarah A. Hannou
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - You Wang
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Inna Astapova
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
- Division of Endocrinology, Metabolism, and Nutrition, Duke University, Durham, North Carolina, USA
| | - Ashot Sargsyan
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Ruby Monn
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | | | - Diana Li
- Division of Gastroenterology, Duke University, Durham, North Carolina, USA
| | - Jessica R. McCann
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University, Durham, NC, USA
| | - John F. Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University, Durham, NC, USA
| | - Jatin Roper
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
- Division of Gastroenterology, Duke University, Durham, North Carolina, USA
| | - Guo-fang Zhang
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Mark A. Herman
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
- Division of Endocrinology, Metabolism, and Nutrition, Duke University, Durham, North Carolina, USA
| |
Collapse
|
79
|
Zeng X, Ren D, Li D, Du H, Yang X. Artemisia sphaerocephala Krasch polysaccharide promotes adipose thermogenesis and decreases obesity by shaping the gut microbiota. Food Funct 2022; 13:10651-10664. [PMID: 36169214 DOI: 10.1039/d2fo02257e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study was designed to investigate the underlying mechanism of Artemisia sphaerocephala Krasch polysaccharide (ASKP) against obesity. Here, our results showed that ASKP considerably reduced body weight gain and metabolic disorders in high fat diet (HFD)-fed mice. 16S rRNA gene sequencing revealed that ASKP relieved the gut microbiota disorder caused by HFD and promoted the proliferation of probiotics such as Lactobacillus, Bifidobacterium and Blautia. Interestingly, the fecal levels of succinate, a microbial metabolite associated with adipose thermogenesis, were dramatically elevated by ASKP treatment in obese mice. Accordingly, ASKP promoted thermogenesis of brown adipose tissue (BAT) and browning of inguinal white adipose tissue (iWAT) of mice fed with a HFD, as revealed by the elevated expression of thermogenic marker genes (UCP1, CIDEA and PGC1α) in BAT and iWAT. Importantly, antibiotic treatment significantly decreased the ASKP-elevated fecal levels of succinate and further abolished the adipose thermogenesis effects of ASKP. Taken together, our results show that ASKP prevents obesity through iWAT browning and BAT activation, a mechanism that is dependent on the gut microbiota metabolism.
Collapse
Affiliation(s)
- Xiaoqian Zeng
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Donglu Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Haiping Du
- Institute of Physical Education, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
80
|
Lv S, Zhou Y, Chen J, Yuan H, Zhang ZN, Luan B. Hepatic ER stress suppresses adipose browning through ATF4-CIRP-ANGPTL3 cascade. Cell Rep 2022; 40:111422. [PMID: 36170814 DOI: 10.1016/j.celrep.2022.111422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/28/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022] Open
Abstract
Hepatic endoplasmic reticulum (ER) stress is a hallmark of obesity-induced liver steatosis and contributes to the progress of steatosis and insulin resistance in liver. However, its influence on adipose function is still unclear. Here, we identify a hepatic ER stress-induced activating transcription factor 4 (ATF4)-cold-inducible RNA-binding protein (CIRP)-angiopoietin-related protein3 (ANGPTL3) cascade critical for the regulation of adipose browning. We find that obesity increases CIRP expression in liver through ER stress-induced ATF4. CIRP in turn binds to the 3' UTR and increases mRNA stability of ANGPTL3. ANGPTL3 secreted from liver suppresses uncoupling protein 1 expression through integrin αvβ3 and c-Jun N-terminal kinase in adipose tissue. While hepatic expression of either ATF4, CIRP, or ANGPTL3 suppresses adipose browning, knockdown of CIRP and ANGPTL3 in liver or administration of integrin αvβ3 inhibitor cilengitide increases adipose browning process. Taken together, we identify a communication mechanism to link hepatic ER stress and adipose browning that may imply a reciprocal regulation of obesity and liver steatosis.
Collapse
Affiliation(s)
- Sihan Lv
- Department of Endocrinology, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Jiaojiao Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; School of Clinical Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Huiwen Yuan
- Department of Endocrinology, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai 200072, China
| | - Zhen-Ning Zhang
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Bing Luan
- Department of Endocrinology, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai 200072, China.
| |
Collapse
|
81
|
Queathem ED, Fitzgerald M, Welly R, Rowles CC, Schaller K, Bukhary S, Baines CP, Rector RS, Padilla J, Manrique-Acevedo C, Lubahn DB, Vieira-Potter VJ. Suppression of estrogen receptor beta classical genomic activity enhances systemic and adipose-specific response to chronic beta-3 adrenergic receptor (β3AR) stimulation. Front Physiol 2022; 13:920675. [PMID: 36213237 PMCID: PMC9534559 DOI: 10.3389/fphys.2022.920675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
White adipose tissue (WAT) dysfunction independently predicts cardiometabolic disease, yet there is a lack of effective adipocyte-targeting therapeutics. B3AR agonists enhance adipocyte mitochondrial function and hold potential in this regard. Based on enhanced sensitivity to B3AR-mediated browning in estrogen receptor (ER)alpha-null mice, we hypothesized that ERβ may enhance the WAT response to the B3AR ligand, CL316,243 (CL). Methods: Male and female wild-type (WT) and ERβ DNA binding domain knock-out (ERβDBDKO) mice fed high-fat diet (HFD) to induce obesity were administered CL (1 mg/kg) daily for 2 weeks. Systemic physiological assessments of body composition (EchoMRI), bioenergetics (metabolic chambers), adipocyte mitochondrial respiration (oroboros) and glucose tolerance were performed, alongside perigonadal (PGAT), subcutaneous (SQAT) and brown adipose tissue (BAT) protein expression assessment (Western blot). Mechanisms were tested in vitro using primary adipocytes isolated from WT mice, and from Esr2-floxed mice in which ERβ was knocked down. Statistical analyses were performed using 2 × 2 analysis of variance (ANOVA) for main effects of genotype (G) and treatment (T), as well as GxT interactions; t-tests were used to determine differences between in vitro treatment conditions (SPSS V24). Results: There were no genotype differences in HFD-induced obesity or systemic rescue effects of CL, yet ERβDBDKO females were more sensitive to CL-induced increases in energy expenditure and WAT UCP1 induction (GxT, p < 0.05), which coincided with greater WAT B3AR protein content among the KO (G, p < 0.05). Among males, who were more insulin resistant to begin with (no genotype differences before treatment), tended to be more sensitive to CL-mediated reduction in insulin resistance. With sexes combined, basal WAT mitochondrial respiration trended toward being lower in the ERβDBDKO mice, but this was completely rescued by CL (p < 0.05). Confirming prior work, CL increased adipose tissue ERβ protein (T, p < 0.05, all), an effect that was enhanced in WAT and BAT the female KO (GxT, p < 0.01). In vitro experiments indicated that an inhibitor of ERβ genomic function (PHTPP) synergized with CL to further increase UCP1 mRNA (p = 0.043), whereas full ERβ protein was required for UCP1 expression (p = 0.042). Conclusion: Full ERβ activity appears requisite and stimulatory for UCP1 expression via a mechanism involving non-classical ERβ signaling. This novel discovery about the role of ERβ in adipocyte metabolism may have important clinical applications.
Collapse
Affiliation(s)
- Eric D. Queathem
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Maggie Fitzgerald
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Rebecca Welly
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Candace C. Rowles
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Kylie Schaller
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Shahad Bukhary
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Christopher P. Baines
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - R. Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Internal Medicine-Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO, United States
- Research Service, Truman VA Memorial Hospital, Columbia, MO, United States
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - Camila Manrique-Acevedo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, MO, United States
| | - Dennis B. Lubahn
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Victoria J. Vieira-Potter
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
82
|
Yin X, Chen Y, Ruze R, Xu R, Song J, Wang C, Xu Q. The evolving view of thermogenic fat and its implications in cancer and metabolic diseases. Signal Transduct Target Ther 2022; 7:324. [PMID: 36114195 PMCID: PMC9481605 DOI: 10.1038/s41392-022-01178-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 02/07/2023] Open
Abstract
AbstractThe incidence of metabolism-related diseases like obesity and type 2 diabetes mellitus has reached pandemic levels worldwide and increased gradually. Most of them are listed on the table of high-risk factors for malignancy, and metabolic disorders systematically or locally contribute to cancer progression and poor prognosis of patients. Importantly, adipose tissue is fundamental to the occurrence and development of these metabolic disorders. White adipose tissue stores excessive energy, while thermogenic fat including brown and beige adipose tissue dissipates energy to generate heat. In addition to thermogenesis, beige and brown adipocytes also function as dynamic secretory cells and a metabolic sink of nutrients, like glucose, fatty acids, and amino acids. Accordingly, strategies that activate and expand thermogenic adipose tissue offer therapeutic promise to combat overweight, diabetes, and other metabolic disorders through increasing energy expenditure and enhancing glucose tolerance. With a better understanding of its origins and biological functions and the advances in imaging techniques detecting thermogenesis, the roles of thermogenic adipose tissue in tumors have been revealed gradually. On the one hand, enhanced browning of subcutaneous fatty tissue results in weight loss and cancer-associated cachexia. On the other hand, locally activated thermogenic adipocytes in the tumor microenvironment accelerate cancer progression by offering fuel sources and is likely to develop resistance to chemotherapy. Here, we enumerate current knowledge about the significant advances made in the origin and physiological functions of thermogenic fat. In addition, we discuss the multiple roles of thermogenic adipocytes in different tumors. Ultimately, we summarize imaging technologies for identifying thermogenic adipose tissue and pharmacologic agents via modulating thermogenesis in preclinical experiments and clinical trials.
Collapse
|
83
|
Zuo Y, Hong Y, Zeng X, Zhang Q, Liu X. MLysPRED: graph-based multi-view clustering and multi-dimensional normal distribution resampling techniques to predict multiple lysine sites. Brief Bioinform 2022; 23:6661182. [PMID: 35953081 DOI: 10.1093/bib/bbac277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Posttranslational modification of lysine residues, K-PTM, is one of the most popular PTMs. Some lysine residues in proteins can be continuously or cascaded covalently modified, such as acetylation, crotonylation, methylation and succinylation modification. The covalent modification of lysine residues may have some special functions in basic research and drug development. Although many computational methods have been developed to predict lysine PTMs, up to now, the K-PTM prediction methods have been modeled and learned a single class of K-PTM modification. In view of this, this study aims to fill this gap by building a multi-label computational model that can be directly used to predict multiple K-PTMs in proteins. In this study, a multi-label prediction model, MLysPRED, is proposed to identify multiple lysine sites using features generated from human protein sequences. In MLysPRED, three kinds of multi-label sequence encoding algorithms (MLDBPB, MLPSDAAP, MLPSTAAP) are proposed and combined with three encoding strategies (CHHAA, DR and Kmer) to convert preprocessed lysine sequences into effective numerical features. A multidimensional normal distribution oversampling technique and graph-based multi-view clustering under-sampling algorithm were first proposed and incorporated to reduce the proportion of the original training samples, and multi-label nearest neighbor algorithm is used for classification. It is observed that MLysPRED achieved an Aiming of 92.21%, Coverage of 94.98%, Accuracy of 89.63%, Absolute-True of 81.46% and Absolute-False of 0.0682 on the independent datasets. Additionally, comparison of results with five existing predictors also indicated that MLysPRED is very promising and encouraging to predict multiple K-PTMs in proteins. For the convenience of the experimental scientists, 'MLysPRED' has been deployed as a user-friendly web-server at http://47.100.136.41:8181.
Collapse
Affiliation(s)
- Yun Zuo
- Department of Computer Science, Xiamen University, Xiamen 361005, China
| | - Yue Hong
- Department of Computer Science, Xiamen University, Xiamen 361005, China
| | - Xiangxiang Zeng
- School of Information Science and Engineering, Hunan University, Changsha, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology (DLUT), China
| | - Xiangrong Liu
- Department of Computer Science, Xiamen University, Xiamen 361005, China
| |
Collapse
|
84
|
Zhang Y, Zhang L, Xu P, Qin X, Wang P, Cheng Y, Yao B, Wang X. Cytochrome P450 2E1 gene knockout or inhibition prevents obesity induced by high-fat diet via regulating energy expenditure. Biochem Pharmacol 2022; 202:115160. [PMID: 35780828 DOI: 10.1016/j.bcp.2022.115160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/02/2022]
Abstract
Cytochrome P450 2E1 (CYP2E1), an important member of the CYP metabolic enzyme family in the liver, regulates the disposal of drugs and the biotransformation of endogenous substances. Although previous studies have found that CYP2E1 is related to energy metabolism, the role of CYP2E1 in energy homeostasis remains unclear. Herein this study shows that the deletion of Cyp2e1 gene in rats can prevent obesity, fatty liver and insulin resistance induced by high-fat diet. Mechanism studies uncover that Cyp2e1 deficiency not only increases the expression of thermogenic genes in brown adipose tissue (BAT) and subcutaneous adipose tissue (SAT), but also promotes fatty acid metabolism in the liver and BAT. In particular, Cyp2e1 deficiency elevates energy expenditure through an increase of liver-generated acylcarnitines, which promote BAT thermogenesis and increase β-oxidation. Interestingly, disulfiram as a CYP2E1 inhibitor can also prevent obesity induced by high-fat diet in normal rats. In general, this study explains the relationship between CYP2E1 and energy metabolism, and provides a new perspective for the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Yuanjin Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Lei Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Peipei Xu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Xuan Qin
- Center of Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Peili Wang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yi Cheng
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China.
| |
Collapse
|
85
|
Mills EL, Chouchani ET. Career pathways, part 9. Nat Metab 2022; 4:961-962. [PMID: 35931883 PMCID: PMC9875044 DOI: 10.1038/s42255-022-00624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Evanna Mills and Edward Chouchani share the experience of their successful mentor–mentee relationship and talk about the challenges of starting a new lab — both from a recent perspective and five years on.
Collapse
Affiliation(s)
- Evanna L Mills
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
86
|
Sponton CH, de Lima-Junior JC, Leiria LO. What puts the heat on thermogenic fat: metabolism of fuel substrates. Trends Endocrinol Metab 2022; 33:587-599. [PMID: 35697585 DOI: 10.1016/j.tem.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/04/2022] [Accepted: 05/19/2022] [Indexed: 11/15/2022]
Abstract
Owing to its unique capacity to clear macronutrients from circulation and use them to produce heat, thermogenic fat is capable of regulating glucose, lipids, and branched-chain amino acids (BCAA) circulatory levels. At the same time, its activity yields a higher energy expenditure, thereby conferring protection against cardiometabolic diseases. Our knowledge on the mechanisms of uptake and intracellular metabolism of such energy substrates into thermogenic fat has meaningfully evolved in recent years. This has allowed us to better understand how the thermogenic machinery processes those molecules to utilize them as substrates for heating up the body. Here, we discuss recent advances in the molecular and cellular regulatory process that governs the uptake and metabolism of such substrates within thermogenic fat.
Collapse
Affiliation(s)
- Carlos H Sponton
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil; Obesity and Comorbidities Research Center, Campinas, Sao Paulo, Brazil.
| | | | - Luiz O Leiria
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
87
|
Pardella E, Ippolito L, Giannoni E, Chiarugi P. Nutritional and metabolic signalling through GPCRs. FEBS Lett 2022; 596:2364-2381. [PMID: 35776088 DOI: 10.1002/1873-3468.14441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/11/2022]
Abstract
Deregulated metabolism is a well-known feature of several challenging diseases, including diabetes, obesity and cancer. Besides their important role as intracellular bioenergetic molecules, dietary nutrients and metabolic intermediates are released in the extracellular environment. As such, they may achieve unconventional roles as hormone-like molecules by activating cell-surface G-protein-coupled receptors (GPCRs) that regulate several pathophysiological processes. In this review, we provide an insight into the role of lactate, succinate, fatty acids, amino acids, ketogenesis-derived and β-oxidation-derived intermediates as extracellular signalling molecules. Moreover, the mechanisms by which their cognate metabolite-sensing GPCRs integrate nutritional and metabolic signals with specific intracellular pathways will be described. A better comprehension of these aspects is of fundamental importance to identify GPCRs as novel druggable targets.
Collapse
Affiliation(s)
- Elisa Pardella
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Luigi Ippolito
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| |
Collapse
|
88
|
Hass DT, Bisbach CM, Robbings BM, Sadilek M, Sweet IR, Hurley JB. Succinate metabolism in the retinal pigment epithelium uncouples respiration from ATP synthesis. Cell Rep 2022; 39:110917. [PMID: 35675773 PMCID: PMC9251713 DOI: 10.1016/j.celrep.2022.110917] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/08/2022] [Accepted: 05/12/2022] [Indexed: 11/28/2022] Open
Abstract
Fumarate can be a surrogate for O2 as a terminal electron acceptor in the electron transport chain. Reduction of fumarate produces succinate, which can be exported. It is debated whether intact tissues can import and oxidize succinate produced by other tissues. In a previous report, we showed that mitochondria in retinal pigment epithelium (RPE)-choroid preparations can use succinate to reduce O2 to H2O. However, cells in that preparation could have been disrupted during tissue isolation. We now use multiple strategies to quantify intactness of the isolated RPE-choroid tissue. We find that exogenous 13C4-succinate is oxidized by intact cells then exported as fumarate or malate. Unexpectedly, we also find that oxidation of succinate is different from oxidation of other substrates because it uncouples electron transport from ATP synthesis. Retinas produce and export succinate. Our findings imply that retina succinate may substantially increase O2 consumption by uncoupling adjacent RPE mitochondria. The retina releases succinate, a source of reducing power for mitochondria. Hass et al. outline a pathway by which retina succinate can enter intact RPE-choroid cells and stimulate mitochondrial respiration that is uncoupled from ATP synthesis. Rapid RPE succinate oxidation may limit O2 levels in the retina.
Collapse
Affiliation(s)
- Daniel T Hass
- Biochemistry Department, The University of Washington, Seattle, WA 98195, USA
| | - Celia M Bisbach
- Biochemistry Department, The University of Washington, Seattle, WA 98195, USA; Promega Corporation, 2800 Woods Hollow Road, Fitchburg, WI 53711, USA
| | - Brian M Robbings
- Biochemistry Department, The University of Washington, Seattle, WA 98195, USA; Diabetes Institute, The University of Washington, Seattle, WA 98109, USA
| | - Martin Sadilek
- Chemistry Department, The University of Washington, Seattle, WA 98195, USA
| | - Ian R Sweet
- Diabetes Institute, The University of Washington, Seattle, WA 98109, USA; Division of Metabolism, Endocrinology and Nutrition, The University of Washington, Seattle, WA 98195, USA
| | - James B Hurley
- Biochemistry Department, The University of Washington, Seattle, WA 98195, USA; Opthalmology Department, The University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
89
|
Sugimoto S, Mena HA, Sansbury BE, Kobayashi S, Tsuji T, Wang CH, Yin X, Huang TL, Kusuyama J, Kodani SD, Darcy J, Profeta G, Pereira N, Tanzi RE, Zhang C, Serwold T, Kokkotou E, Goodyear LJ, Cypess AM, Leiria LO, Spite M, Tseng YH. Brown adipose tissue-derived MaR2 contributes to cold-induced resolution of inflammation. Nat Metab 2022; 4:775-790. [PMID: 35760872 PMCID: PMC9792164 DOI: 10.1038/s42255-022-00590-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 05/18/2022] [Indexed: 12/30/2022]
Abstract
Obesity induces chronic inflammation resulting in insulin resistance and metabolic disorders. Cold exposure can improve insulin sensitivity in humans and rodents, but the mechanisms have not been fully elucidated. Here, we find that cold resolves obesity-induced inflammation and insulin resistance and improves glucose tolerance in diet-induced obese mice. The beneficial effects of cold exposure on improving obesity-induced inflammation and insulin resistance depend on brown adipose tissue (BAT) and liver. Using targeted liquid chromatography with tandem mass spectrometry, we discovered that cold and β3-adrenergic stimulation promote BAT to produce maresin 2 (MaR2), a member of the specialized pro-resolving mediators of bioactive lipids that play a role in the resolution of inflammation. Notably, MaR2 reduces inflammation in obesity in part by targeting macrophages in the liver. Thus, BAT-derived MaR2 could contribute to the beneficial effects of BAT activation in resolving obesity-induced inflammation and may inform therapeutic approaches to combat obesity and its complications.
Collapse
Affiliation(s)
- Satoru Sugimoto
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Hebe Agustina Mena
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Brian E Sansbury
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shio Kobayashi
- Section of Immunobiology, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Tadataka Tsuji
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Chih-Hao Wang
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Xuanzhi Yin
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tian Lian Huang
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Joji Kusuyama
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Sean D Kodani
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Justin Darcy
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Gerson Profeta
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Nayara Pereira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas Serwold
- Section of Immunobiology, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Efi Kokkotou
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Luiz Osório Leiria
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Matthew Spite
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
90
|
da Silva IV, Gullette S, Florindo C, Huang NK, Neuberger T, Ross AC, Soveral G, Castro R. The Effect of Nutritional Ketosis on Aquaporin Expression in Apolipoprotein E-Deficient Mice: Potential Implications for Energy Homeostasis. Biomedicines 2022; 10:biomedicines10051159. [PMID: 35625895 PMCID: PMC9138310 DOI: 10.3390/biomedicines10051159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Ketogenic diets (KDs) are very low-carbohydrate, very high-fat diets which promote nutritional ketosis and impact energetic metabolism. Aquaporins (AQPs) are transmembrane channels that facilitate water and glycerol transport across cell membranes and are critical players in energy homeostasis. Altered AQP expression or function impacts fat accumulation and related comorbidities, such as the metabolic syndrome. Here, we sought to determine whether nutritional ketosis impacts AQPs expression in the context of an atherogenic model. To do this, we fed ApoE−/− (apolipoprotein E-deficient) mice, a model of human atherosclerosis, a KD (Kcal%: 1/81/18, carbohydrate/fat/protein) or a control diet (Kcal%: 70/11/18, carbohydrate/fat/protein) for 12 weeks. Plasma was collected for biochemical analysis. Upon euthanasia, livers, white adipose tissue (WAT), and brown adipose tissue (BAT) were used for gene expression studies. Mice fed the KD and control diets exhibited similar body weights, despite the profoundly different fat contents in the two diets. Moreover, KD-fed mice developed nutritional ketosis and showed increased expression of thermogenic genes in BAT. Additionally, these mice presented an increase in Aqp9 transcripts in BAT, but not in WAT, which suggests the participation of Aqp9 in the influx of excess plasma glycerol to fuel thermogenesis, while the up-regulation of Aqp7 in the liver suggests the involvement of this aquaporin in glycerol influx into hepatocytes. The relationship between nutritional ketosis, energy homeostasis, and the AQP network demands further investigation.
Collapse
Affiliation(s)
- Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
| | - Sean Gullette
- Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA 16802, USA; (S.G.); (T.N.)
| | - Cristina Florindo
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
| | - Neil K. Huang
- Department of Nutritional Sciences, The Pennsylvania State University, State College, PA 16802, USA; (N.K.H.); (A.C.R.)
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Thomas Neuberger
- Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA 16802, USA; (S.G.); (T.N.)
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, State College, PA 16802, USA
| | - A. Catharine Ross
- Department of Nutritional Sciences, The Pennsylvania State University, State College, PA 16802, USA; (N.K.H.); (A.C.R.)
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Correspondence: (G.S.); (R.C.)
| | - Rita Castro
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Department of Nutritional Sciences, The Pennsylvania State University, State College, PA 16802, USA; (N.K.H.); (A.C.R.)
- Correspondence: (G.S.); (R.C.)
| |
Collapse
|
91
|
Monfort-Ferré D, Caro A, Menacho M, Martí M, Espina B, Boronat-Toscano A, Nuñez-Roa C, Seco J, Bautista M, Espín E, Megía A, Vendrell J, Fernández-Veledo S, Serena C. The Gut Microbiota Metabolite Succinate Promotes Adipose Tissue Browning in Crohn's Disease. J Crohns Colitis 2022; 16:1571-1583. [PMID: 35554517 PMCID: PMC9624294 DOI: 10.1093/ecco-jcc/jjac069] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/17/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Crohn's disease [CD] is associated with complex microbe-host interactions, involving changes in microbial communities, and gut barrier defects, leading to the translocation of microorganisms to surrounding adipose tissue [AT]. We evaluated the presence of beige AT depots in CD and questioned whether succinate and/or bacterial translocation promotes white-to-beige transition in adipocytes. METHODS Visceral [VAT] and subcutaneous [SAT] AT biopsies, serum and plasma were obtained from patients with active [n = 21] or inactive [n = 12] CD, and from healthy controls [n = 15]. Adipose-derived stem cells [ASCs] and AT macrophages [ATMs] were isolated from VAT biopsies. RESULTS Plasma succinate levels were significantly higher in patients with active CD than in controls and were intermediate in those with inactive disease. Plasma succinate correlated with the inflammatory marker high-sensitivity C-reactive protein. Expression of the succinate receptor SUCNR1 was higher in VAT, ASCs and ATMs from the active CD group than from the inactive or control groups. Succinate treatment of ASCs elevated the expression of several beige AT markers from controls and from patients with inactive disease, including uncoupling protein-1 [UCP1]. Notably, beige AT markers were prominent in ASCs from patients with active CD. Secretome profiling revealed that ASCs from patients with active disease secrete beige AT-related proteins, and co-culture assays showed that bacteria also trigger the white-to-beige switch of ASCs from patients with CD. Finally, AT depots from patients with CD exhibited a conversion from white to beige AT together with high UCP1 expression, which was corroborated by in situ thermal imaging analysis. CONCLUSIONS Succinate and bacteria trigger white-to-beige AT transition in CD. Understanding the role of beige AT in CD might aid in the development of therapeutic or diagnostic interventions.
Collapse
Affiliation(s)
- Diandra Monfort-Ferré
- Hospital Universitari de Tarragona Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Aleidis Caro
- Colorectal Surgery Unit, Hospital Universitari Joan XXIII, Tarragona, Spain
| | | | - Marc Martí
- Colorectal Surgery Unit, General Surgery Service, Hospital Valle de Hebron, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Beatriz Espina
- Colorectal Surgery Unit, Hospital Universitari Joan XXIII, Tarragona, Spain
| | - Albert Boronat-Toscano
- Hospital Universitari de Tarragona Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Cati Nuñez-Roa
- Hospital Universitari de Tarragona Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Seco
- Hospital Universitari de Tarragona Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Michelle Bautista
- Digestive Unit, Hospital Universitari Joan XXIII, 43007, Tarragona, Spain
| | - Eloy Espín
- Colorectal Surgery Unit, General Surgery Service, Hospital Valle de Hebron, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Ana Megía
- Hospital Universitari de Tarragona Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Joan Vendrell
- Hospital Universitari de Tarragona Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain,Universitat Rovira i Virgili, Tarragona, Spain
| | - Sonia Fernández-Veledo
- Corresponding authors: Sonia Fernández-Veledo, PhD, Hospital Universitari de Tarragona Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain. ;
| | - Carolina Serena
- Carolina Serena, PhD, Hospital Universitari de Tarragona Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain. ;
| |
Collapse
|
92
|
Why succinate? Physiological regulation by a mitochondrial coenzyme Q sentinel. Nat Chem Biol 2022; 18:461-469. [PMID: 35484255 PMCID: PMC9150600 DOI: 10.1038/s41589-022-01004-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/25/2022] [Indexed: 12/15/2022]
Abstract
Metabolites once considered solely in catabolism or anabolism turn out to have key regulatory functions. Among these, the citric acid cycle intermediate succinate stands out owing to its multiple roles in disparate pathways, its dramatic concentration changes and its selective cell release. Here we propose that succinate has evolved as a signaling modality because its concentration reflects the coenzyme Q (CoQ) pool redox state, a central redox couple confined to the mitochondrial inner membrane. This connection is of general importance because CoQ redox state integrates three bioenergetic parameters: mitochondrial electron supply, oxygen tension and ATP demand. Succinate, by equilibrating with the CoQ pool, enables the status of this central bioenergetic parameter to be communicated from mitochondria to the rest of the cell, into the circulation and to other cells. The logic of this form of regulation explains many emerging roles of succinate in biology, and suggests future research questions.
Collapse
|
93
|
Abstract
Specialized fat tissue generates heat and holds the potential to counter metabolic diseases.
Collapse
Affiliation(s)
- Christian Wolfrum
- Institute of Food, Nutrition, and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, DK.,ADIPOSIGN: Center for Adipocyte Signaling, University of Southern Denmark, DK.,Embark Biotech ApS, Copenhagen, DK
| |
Collapse
|
94
|
Abstract
PURPOSE OF REVIEW This review highlights aspects of brown adipose tissue (BAT) communication with other organ systems and how BAT-to-tissue cross-talk could help elucidate future obesity treatments. RECENT FINDINGS Until recently, research on BAT has focused mainly on its thermogenic activity. New research has identified an endocrine/paracrine function of BAT and determined that many BAT-derived molecules, termed "batokines," affect the physiology of a variety of organ systems and cell types. Batokines encompass a variety of signaling molecules including peptides, metabolites, lipids, or microRNAs. Recent studies have noted significant effects of batokines on physiology as it relates whole-body metabolism and cardiac function. This review will discuss batokines and other BAT processes that affect the liver, cardiovascular system, skeletal muscle, immune cells, and brown and white adipose tissue. Brown adipose tissue has a crucial secretory function that plays a key role in systemic physiology.
Collapse
Affiliation(s)
- Felix T Yang
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, 460 W. 12th Ave, Columbus, OH, 43210, USA
- Diabetes and Metabolism Research Center, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kristin I Stanford
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, 460 W. 12th Ave, Columbus, OH, 43210, USA.
- Diabetes and Metabolism Research Center, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
95
|
Chowdhury A, Witte S, Aich A. Role of Mitochondrial Nucleic Acid Sensing Pathways in Health and Patho-Physiology. Front Cell Dev Biol 2022; 10:796066. [PMID: 35223833 PMCID: PMC8873532 DOI: 10.3389/fcell.2022.796066] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/14/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria, in symbiosis with the host cell, carry out a wide variety of functions from generating energy, regulating the metabolic processes, cell death to inflammation. The most prominent function of mitochondria relies on the oxidative phosphorylation (OXPHOS) system. OXPHOS heavily influences the mitochondrial-nuclear communication through a plethora of interconnected signaling pathways. Additionally, owing to the bacterial ancestry, mitochondria also harbor a large number of Damage Associated Molecular Patterns (DAMPs). These molecules relay the information about the state of the mitochondrial health and dysfunction to the innate immune system. Consequently, depending on the intracellular or extracellular nature of detection, different inflammatory pathways are elicited. One group of DAMPs, the mitochondrial nucleic acids, hijack the antiviral DNA or RNA sensing mechanisms such as the cGAS/STING and RIG-1/MAVS pathways. A pro-inflammatory response is invoked by these signals predominantly through type I interferon (T1-IFN) cytokines. This affects a wide range of organ systems which exhibit clinical presentations of auto-immune disorders. Interestingly, tumor cells too, have devised ingenious ways to use the mitochondrial DNA mediated cGAS-STING-IRF3 response to promote neoplastic transformations and develop tumor micro-environments. Thus, mitochondrial nucleic acid-sensing pathways are fundamental in understanding the source and nature of disease initiation and development. Apart from the pathological interest, recent studies also attempt to delineate the structural considerations for the release of nucleic acids across the mitochondrial membranes. Hence, this review presents a comprehensive overview of the different aspects of mitochondrial nucleic acid-sensing. It attempts to summarize the nature of the molecular patterns involved, their release and recognition in the cytoplasm and signaling. Finally, a major emphasis is given to elaborate the resulting patho-physiologies.
Collapse
Affiliation(s)
- Arpita Chowdhury
- Department of Cellular Biochemistry, University Medical Center, Göttingen, Germany
| | - Steffen Witte
- Department of Cellular Biochemistry, University Medical Center, Göttingen, Germany
| | - Abhishek Aich
- Department of Cellular Biochemistry, University Medical Center, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging, from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
96
|
Mills EL, Harmon C, Jedrychowski MP, Xiao H, Gruszczyk AV, Bradshaw GA, Tran N, Garrity R, Laznik-Bogoslavski D, Szpyt J, Prendeville H, Lynch L, Murphy MP, Gygi SP, Spiegelman BM, Chouchani ET. Cysteine 253 of UCP1 regulates energy expenditure and sex-dependent adipose tissue inflammation. Cell Metab 2022; 34:140-157.e8. [PMID: 34861155 PMCID: PMC8732317 DOI: 10.1016/j.cmet.2021.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 09/15/2021] [Accepted: 11/08/2021] [Indexed: 01/07/2023]
Abstract
Uncoupling protein 1 (UCP1) is a major regulator of brown and beige adipocyte energy expenditure and metabolic homeostasis. However, the widely employed UCP1 loss-of-function model has recently been shown to have a severe deficiency in the entire electron transport chain of thermogenic fat. As such, the role of UCP1 in metabolic regulation in vivo remains unclear. We recently identified cysteine-253 as a regulatory site on UCP1 that elevates protein activity upon covalent modification. Here, we examine the physiological importance of this site through the generation of a UCP1 cysteine-253-null (UCP1 C253A) mouse, a precise genetic model for selective disruption of UCP1 in vivo. UCP1 C253A mice exhibit significantly compromised thermogenic responses in both males and females but display no measurable effect on fat accumulation in an obesogenic environment. Unexpectedly, we find that a lack of C253 results in adipose tissue redox stress, which drives substantial immune cell infiltration and systemic inflammatory pathology in adipose tissues and liver of male, but not female, mice. Elevation of systemic estrogen reverses this male-specific pathology, providing a basis for protection from inflammation due to loss of UCP1 C253 in females. Together, our results establish the UCP1 C253 activation site as a regulator of acute thermogenesis and sex-dependent tissue inflammation.
Collapse
Affiliation(s)
- Evanna L Mills
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Cathal Harmon
- Department of Immunology, Harvard Medical School, Boston, MA, USA; Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Mark P Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Anja V Gruszczyk
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Gary A Bradshaw
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Nhien Tran
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ryan Garrity
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - John Szpyt
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hannah Prendeville
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Lydia Lynch
- Department of Immunology, Harvard Medical School, Boston, MA, USA; Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, USA; School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Michael P Murphy
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
97
|
Brown-fat-mediated tumour suppression by cold-altered global metabolism. Nature 2022; 608:421-428. [PMID: 35922508 PMCID: PMC9365697 DOI: 10.1038/s41586-022-05030-3] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/28/2022] [Indexed: 02/05/2023]
Abstract
Glucose uptake is essential for cancer glycolysis and is involved in non-shivering thermogenesis of adipose tissues1-6. Most cancers use glycolysis to harness energy for their infinite growth, invasion and metastasis2,7,8. Activation of thermogenic metabolism in brown adipose tissue (BAT) by cold and drugs instigates blood glucose uptake in adipocytes4,5,9. However, the functional effects of the global metabolic changes associated with BAT activation on tumour growth are unclear. Here we show that exposure of tumour-bearing mice to cold conditions markedly inhibits the growth of various types of solid tumours, including clinically untreatable cancers such as pancreatic cancers. Mechanistically, cold-induced BAT activation substantially decreases blood glucose and impedes the glycolysis-based metabolism in cancer cells. The removal of BAT and feeding on a high-glucose diet under cold exposure restore tumour growth, and genetic deletion of Ucp1-the key mediator for BAT-thermogenesis-ablates the cold-triggered anticancer effect. In a pilot human study, mild cold exposure activates a substantial amount of BAT in both healthy humans and a patient with cancer with mitigated glucose uptake in the tumour tissue. These findings provide a previously undescribed concept and paradigm for cancer therapy that uses a simple and effective approach. We anticipate that cold exposure and activation of BAT through any other approach, such as drugs and devices either alone or in combination with other anticancer therapeutics, will provide a general approach for the effective treatment of various cancers.
Collapse
|
98
|
Gu P, Hui X, Zheng Q, Gao Y, Jin L, Jiang W, Zhou C, Liu T, Huang Y, Liu Q, Nie T, Wang Y, Wang Y, Zhao J, Xu A. Mitochondrial uncoupling protein 1 antagonizes atherosclerosis by blocking NLRP3 inflammasome-dependent interleukin-1β production. SCIENCE ADVANCES 2021; 7:eabl4024. [PMID: 34878840 PMCID: PMC8654294 DOI: 10.1126/sciadv.abl4024] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022]
Abstract
Mitochondrial uncoupling protein 1 (UCP1) is the hallmark of brown adipocytes responsible for cold- and diet-induced thermogenesis. Here, we report a previously unidentified role of UCP1 in maintaining vascular health through its anti-inflammatory actions possibly in perivascular adipose tissue. UCP1 deficiency exacerbates dietary obesity-induced endothelial dysfunction, vascular inflammation, and atherogenesis in mice, which was not rectified by reconstitution of UCP1 in interscapular brown adipose tissue. Mechanistically, lack of UCP1 augments mitochondrial membrane potential and mitochondrial superoxide, leading to hyperactivation of the NLRP3-inflammasome and caspase-1–mediated maturation of interleukin-1β (IL-1β). UCP1 deficiency–evoked deterioration of vascular dysfunction and atherogenesis is reversed by IL-1β neutralization or a chemical mitochondrial uncoupler. Furthermore, UCP1 knockin pigs (which lack endogenous UCP1) are refractory to vascular inflammation and coronary atherosclerosis. Thus, UCP1 acts as a gatekeeper to prevent NLRP3 inflammasome activation and IL-1β production in the vasculature, thereby conferring a protective effect against cardiovascular diseases.
Collapse
Affiliation(s)
- Ping Gu
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China
- Department of Medicine, University of Hong Kong, Hong Kong, China
- Department of Endocrinology, Jinling Hospital, Nanjing University, School of Medicine, Nanjing, China
| | - Xiaoyan Hui
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China
- Department of Medicine, University of Hong Kong, Hong Kong, China
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
- Corresponding author. (A.X.); (X.H.); (J.Z.)
| | - Qiantao Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Gao
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China
- Department of Medicine, University of Hong Kong, Hong Kong, China
| | - Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China
- Department of Medicine, University of Hong Kong, Hong Kong, China
| | - Weimin Jiang
- Department of Cardiology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Changsheng Zhou
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Tianxia Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Huang
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Qing Liu
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China
- Department of Medicine, University of Hong Kong, Hong Kong, China
| | - Tao Nie
- Clinical Department of Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanfang Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China
- Department of Pharmacy and Pharmacology, University of Hong Kong, Hong Kong, China
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Corresponding author. (A.X.); (X.H.); (J.Z.)
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China
- Department of Medicine, University of Hong Kong, Hong Kong, China
- Department of Pharmacy and Pharmacology, University of Hong Kong, Hong Kong, China
- Corresponding author. (A.X.); (X.H.); (J.Z.)
| |
Collapse
|
99
|
Akinci A, Kara A, Özgür A, Turkkahraman D, Aksu S. Genomic analysis to screen potential genes and mutations in children with non-syndromic early onset severe obesity: a multicentre study in Turkey. Mol Biol Rep 2021; 49:1883-1893. [PMID: 34850337 DOI: 10.1007/s11033-021-06999-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/19/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Obesity is a complex genetic-based pediatric disorder which triggers life-threatening conditions. Therefore, the understanding the molecular mechanisms of obesity has been a significant approach in medicine. Computational methods allow rapid and comprehensive pathway analysis, which is important for generation of diagnosis and treatment of obesity. METHODS AND RESULTS Aims of our study are to comprehensively investigate genetic characteristics of obesity in children with non-syndromic, early-onset (< 7 years), and severe obesity (BMI-SDS > 3) through computational approaches. First, the mutational analyses of 41 of obesity-related genes in 126 children with non-syndromic early-onset severe obesity and 76 healthy non-obese controls were performed using the next generation sequencing (NGS) technique, and the NGS data analyzed by using bioinformatics methods. Then, the relationship between pathogenic variants and anthropometric/biochemical parameters was further evaluated. Obtained results demonstrated that the 15 genes (ADIPOQ, ADRB2, ADRB3, IRS1, LEPR, NPY, POMC, PPARG, PPARGC1A, PPARGC1B, PTPN1, SLC22A1, SLC2A4, SREBF1 and UCP1) which directly related to obesity found linked together via biological pathways and/or functions. Among these genes, IRS1, PPARGC1A, and SLC2A4 stand out as the most central ones. Furthermore, 12 of non-synonymous pathogenic variants, including six novels, were detected on ADIPOQ (G90S and D242G), ADRB2 (V87M), PPARGC1A (E680G, A477T, and R656H), UCP1 (Q44R), and IRS1 (R302Q, R301H, R301C, H250P, and H250N) genes. CONCLUSION We propose that 12 of non-synonymous pathogenic variations detected on ADIPOQ, ADRB2, PPARGC1A, UCP1, and IRS1 genes might have a cumulative effect on the development and progression of obesity.
Collapse
Affiliation(s)
- Aysehan Akinci
- Pediatric Endocrinology and Diabetes Department, Medical Faculty, Inonu University, Malatya, Turkey.
| | - Altan Kara
- Genetic Engineering and Bioinformatic Department, TUBITAK Marmara Research Center, Gebze, Turkey.
| | - Aykut Özgür
- Laboratory and Veterinary Health Program, Department of Veterinary Medicine, Artova Vocational School, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - Doga Turkkahraman
- Pediatric Endocrinology Department, Antalya Training and Research Hospital, University of Health Sciences, Antalya, Turkey
| | - Soner Aksu
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Health and Technology University, İstanbul, Turkey
| |
Collapse
|
100
|
Priming, Triggering, Adaptation and Senescence (PTAS): A Hypothesis for a Common Damage Mechanism of Steatohepatitis. Int J Mol Sci 2021; 22:ijms222212545. [PMID: 34830427 PMCID: PMC8624051 DOI: 10.3390/ijms222212545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding the pathomechanism of steatohepatitis (SH) is hampered by the difficulty of distinguishing between causes and consequences, by the broad spectrum of aetiologies that can produce the phenotype, and by the long time-span during which SH develops, often without clinical symptoms. We propose that SH develops in four phases with transitions: (i) priming lowers stress defence; (ii) triggering leads to acute damage; (iii) adaptation, possibly associated with cellular senescence, mitigates tissue damage, leads to the phenotype, and preserves liver function at a lower level; (iv) finally, senescence prevents neoplastic transformation but favours fibrosis (cirrhosis) and inflammation and further reduction in liver function. Escape from senescence eventually leads to hepatocellular carcinoma. This hypothesis for a pathomechanism of SH is supported by clinical and experimental observations. It allows organizing the various findings to uncover remaining gaps in our knowledge and, finally, to provide possible diagnostic and intervention strategies for each stage of SH development.
Collapse
|