51
|
Drosophila Homeodomain-Interacting Protein Kinase (Hipk) Phosphorylates the Homeodomain Proteins Homeobrain, Empty Spiracles, and Muscle Segment Homeobox. Int J Mol Sci 2019; 20:ijms20081931. [PMID: 31010135 PMCID: PMC6515119 DOI: 10.3390/ijms20081931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 11/30/2022] Open
Abstract
The Drosophila homeodomain-interacting protein kinase (Hipk) is the fly representative of the well-conserved group of HIPKs in vertebrates. It was initially found through its characteristic interactions with homeodomain proteins. Hipk is involved in a variety of important developmental processes, such as the development of the eye or the nervous system. In the present study, we set Hipk and the Drosophila homeodomain proteins Homeobrain (Hbn), Empty spiracles (Ems), and Muscle segment homeobox (Msh) in an enzyme-substrate relationship. These homeoproteins are transcription factors that function during Drosophila neurogenesis and are, at least in part, conserved in vertebrates. We reveal a physical interaction between Hipk and the three homeodomain proteins in vivo using bimolecular fluorescence complementation (BiFC). In the course of in vitro phosphorylation analysis and subsequent mutational analysis we mapped several Hipk phosphorylation sites of Hbn, Ems, and Msh. The phosphorylation of Hbn, Ems, and Msh may provide further insight into the function of Hipk during development of the Drosophila nervous system.
Collapse
|
52
|
Odontological analysis of Polish children with unilateral cleft lip and palate. ANTHROPOLOGICAL REVIEW 2019. [DOI: 10.2478/anre-2019-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tooth size, being the effect of interaction of genetic and prenatal factors, could be of importance in interpreting the multifactor causes of cleft lip/palate. Publications indicating decreased tooth parameters, no dental differences, or larger dimensions of teeth in cleft lip/palate patients. Researchers report mostly mesiodistal (MD) measurements of maxillary (affected) teeth. There is a lack of data for buccolingual (BL) diameters. Both MD and BL parameters have influence on the planning and performance of orthodontic treatment. The aim of this paper was to assess differences in mesiodistal and buccolingual tooth dimensions in Polish children with unilateral cleft lip and palate (UCLP) in comparison to patients without oral clefts. A total of 1883 permanent teeth, 1182 teeth of UCLP patients and 701 teeth of healthy participants were analyzed. Tooth diameters were performed using an orthodontic cast of dentition with a digital odontometer. The greatest anomalies were found in both maxillary canines and consisted of their reduced mesiodistal dimension and increased buccolingual dimension, resulting in a pathologically high crown shape index (BL/MD). Conclusion can be drawn that unilateral cleft lip and palate is a condition that causes morphological disturbances of varying severity in most mandibular and maxillary teeth both on the cleft and non-cleft sides.
Collapse
|
53
|
Li R, Chen Z, Yu Q, Weng M, Chen Z. The Function and Regulatory Network of Pax9 Gene in Palate Development. J Dent Res 2018; 98:277-287. [PMID: 30583699 DOI: 10.1177/0022034518811861] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cleft palate, a common congenital deformity, can arise from disruptions in any stage of palatogenesis, including palatal shelf growth, elevation, adhesion, and fusion. Paired box gene 9 (Pax9) is recognized as a vital regulator of palatogenesis with great relevance to cleft palate in humans and mice. Pax9-deficient murine palatal shelves displayed deficient elongation, postponed elevation, failed contact, and fusion. Pax9 is expressed in epithelium and mesenchyme, exhibiting a dynamic expression pattern that changes according to the proceeding of palatogenesis. Recent studies highlighted the Pax9-related genetic interactions and their critical roles during palatogenesis. During palate growth, PAX9 interacts with numerous molecules and members of pathways (e.g., OSR2, FGF10, SHOS2, MSX1, BARX1, TGFβ3, LDB1, BMP, WNT β-catenin dependent, and EDA) in the mesenchyme and functions as a key mediator in epithelial-mesenchymal communications with FGF8, TBX1, and the SHH pathway. During palate elevation, PAX9 is hypothesized to mediate the time point of the elevation event in the anterior and posterior parts of the palatal shelves. The delayed elevation of Pax9 mutant palatal shelves probably results from abnormal expressions of a series of genes ( Osr2 and Bmpr1a) leading to deficient palate growth, abnormal tongue morphology, and altered hyaluronic acid distribution. The interactions between PAX9 and genes encoding the OSR2, TGFβ3, and WNT β-catenin-dependent pathways provide evidence that PAX9 might participate in the regulation of palate fusion. This review summarizes the current understanding of PAX9’s functions and emphasizes the interactions between PAX9 and vital genes during palatogenesis. We hope to provide some clues for further exploration of the function and mechanism of PAX9, especially during palate elevation and fusion events.
Collapse
Affiliation(s)
- R. Li
- Department of Orthodontics, Ninth People’s Hospital, School of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Z. Chen
- Department of Orthodontics, Ninth People’s Hospital, School of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Q. Yu
- Department of Orthodontics, Ninth People’s Hospital, School of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - M. Weng
- Department of Orthodontics, Ninth People’s Hospital, School of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Z. Chen
- Department of Orthodontics, Ninth People’s Hospital, School of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
54
|
Shokrzadeh N, Alivand MR, Abedelahi A, Hessam Shariati MB, Niknafs B. Upregulation of HB-EGF, Msx.1, and miRNA Let-7a by administration of calcitonin through mTOR and ERK1/2 pathways during a window of implantation in mice. Mol Reprod Dev 2018; 85:790-801. [DOI: 10.1002/mrd.23061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/12/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Naser Shokrzadeh
- Immunology Research Center, Faculty Of Medicine, Tabriz University of Medical Sciences; Tabriz Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics; Faculty of Medicine, Tabriz University of Medical Sciences; Tabriz Iran
| | - Ali Abedelahi
- Department of Anatomical Sciences; Faculty of Medicine, Tabriz University of Medical Sciences; Tabriz Iran
| | | | - Behrooz Niknafs
- Department of Anatomical Sciences; Faculty of Medicine, Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
55
|
Ma J, Wang BB, Ma XY, Deng WP, Xu LS, Sha WH. Potential involvement of heat shock proteins in pancreatic-duodenal homeobox-1-mediated effects on the genesis of gastric cancer: A 2D gel-based proteomic study. World J Gastroenterol 2018; 24:4263-4271. [PMID: 30310259 PMCID: PMC6175762 DOI: 10.3748/wjg.v24.i37.4263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/09/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To identify functional proteins involved in pancreatic-duodenal homeobox-1 (PDX1)-mediated effects on gastric carcinogenesis.
METHODS A PDX1-overexpressed model was established by transfecting gastric cancer cell line SGC7901 with pcDNA3.1(+)-PDX1 vector (SGC-PDX1). Transfection with empty pcDNA3.1 vector (SGC-pcDNA) served as control. Comparative protein profiles of the two groups were analyzed by two-dimensional electrophoresis based-proteomics (2DE gel-based proteomics). The differential proteins identified by 2DE were further validated by qRT-PCR and immunoblotting. Finally, co-immunoprecipitation was used to determine any direct interactions between PDX1 and the differential proteins.
RESULTS 2DE gel proteomics identified seven differential proteins in SGC-PDX1 when compared with those in SGC-pcDNA. These included four heat shock proteins (HSPs; HSP70p1B, HSP70p8, HSP60, HSP27) and three other proteins (ER60, laminin receptor 1, similar to epsilon isoform of 14-3-3 protein). Immunoblotting validated the expression of the HSPs (HSP70, HSP60, HSP27). Furthermore, their expressions were lowered to 80%, 20% and 24%, respectively, in SGC-PDX1, while PDX1 exhibited a 9-fold increase, compared to SGC-pcDNA. However, qRT-PCR analysis revealed that mRNA levels of the HSPs were increased in SGC-PDX1, suggesting that the expression of the HSPs was post-translationally regulated by the PDX1 protein. Finally, co-immunoprecipitation failed to identify any direct interaction between PDX1 and HSP70 proteins.
CONCLUSION This study demonstrates the potential involvement of HSPs in PDX1-mediated effects on the genesis of gastric cancer.
Collapse
Affiliation(s)
- Juan Ma
- Department of Gastroenterology and Hepatology, Guangdong General Hospital (Guangdong Academy of Medical Sciences), Guangdong Geriatrics Institute, Guangzhou 510080, Guangdong Province, China
| | - Bei-Bei Wang
- Department of Gastroenterology and Hepatology, Guangdong General Hospital (Guangdong Academy of Medical Sciences), Guangdong Geriatrics Institute, Guangzhou 510080, Guangdong Province, China
| | - Xiao-Yan Ma
- Forensic Identification Institute, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, China
| | - Wei-Ping Deng
- Department of Gastroenterology and Hepatology, Guangdong General Hospital (Guangdong Academy of Medical Sciences), Guangdong Geriatrics Institute, Guangzhou 510080, Guangdong Province, China
| | - Li-Shu Xu
- Department of Gastroenterology and Hepatology, Guangdong General Hospital (Guangdong Academy of Medical Sciences), Guangdong Geriatrics Institute, Guangzhou 510080, Guangdong Province, China
| | - Wei-Hong Sha
- Department of Gastroenterology and Hepatology, Guangdong General Hospital (Guangdong Academy of Medical Sciences), Guangdong Geriatrics Institute, Guangzhou 510080, Guangdong Province, China
| |
Collapse
|
56
|
Suhl J, Romitti PA, Rocheleau C, Cao Y, Burns TL, Conway K, Bell EM, Stewart P, Langlois P, National Birth Defects Prevention Study. Parental occupational pesticide exposure and nonsyndromic orofacial clefts. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2018; 15:641-653. [PMID: 29993348 PMCID: PMC7099602 DOI: 10.1080/15459624.2018.1484127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/14/2018] [Accepted: 05/25/2018] [Indexed: 06/08/2023]
Abstract
Nonsyndromic orofacial clefts are common birth defects. Reported risks for orofacial clefts associated with parental occupational pesticide exposure are mixed. To examine the role of parental pesticide exposure in orofacial cleft development in offspring, this study compared population-based case-control data for parental occupational exposures to insecticides, herbicides, and fungicides, alone or in combinations, during maternal (1 month before through 3 months after conception) and paternal (3 months before through 3 months after conception) critical exposure periods between orofacial cleft cases and unaffected controls. Multivariable logistic regression was used to estimate odds ratios, adjusted for relevant covariables, and 95% confidence intervals for any (yes, no) and cumulative (none, low [
Collapse
Affiliation(s)
- Jonathan Suhl
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, Iowa
| | - Paul A. Romitti
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, Iowa
| | - Carissa Rocheleau
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio
| | - Yanyan Cao
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, Iowa
| | - Trudy L. Burns
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, Iowa
| | - Kristin Conway
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, Iowa
| | - Erin M. Bell
- Department of Epidemiology and Biostatistics, School of Public Health, State University of New York at Albany, Rensselaer, New York
| | | | - Peter Langlois
- Birth Defects Epidemiology and Surveillance Branch, Texas Department of State Health Services, Austin, Texas
| | | |
Collapse
|
57
|
Hughes MW, Jiang TX, Plikus MV, Guerrero-Juarez CF, Lin CH, Schafer C, Maxson R, Widelitz RB, Chuong CM. Msx2 Supports Epidermal Competency during Wound-Induced Hair Follicle Neogenesis. J Invest Dermatol 2018; 138:2041-2050. [PMID: 29577917 PMCID: PMC6109435 DOI: 10.1016/j.jid.2018.02.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 02/06/2018] [Accepted: 02/10/2018] [Indexed: 12/11/2022]
Abstract
Cutaneous wounds in adult mammals typically heal by scarring. However, large full-thickness wounds undergo wound-induced hair follicle neogenesis (WIHN), a form of regeneration. Here, we show that WIHN requires transient expression of epidermal Msx2 in two phases: the wound margin early and the wound center late. Msx2 expression is present in the migrating epithelium during early wound healing and then presents in the epithelium and mesenchyme later in the wound center. WIHN is abrogated in germline and epithelial-specific Msx2 mutant mice. Unlike the full-length Msx2 promoter, a minimal Msx2 promoter fails activation in the wound center, suggesting complex regulation of Msx2 expression. The Msx2 promoter binding sites include Tcf/Lef, Jun/Creb, Pax3, and three SMAD sites. However, basal epithelial-induced BMP suppression by noggin overexpression did not affect WIHN. We propose that Msx2 signaling is required for the epidermis to acquire spatiotemporal competence during WIHN. Topologically, hair regeneration dominates in the wound center, coinciding with late Msx2 expression. Together, these results suggest that intrinsic Msx2 expression supports epithelial competency during hair follicle neogenesis. This work provides insight into endogenous mechanisms modulating competency of adult epidermal progenitors for mammalian ectodermal appendage neogenesis, and offers the target Msx2 for future regeneration-promoting therapies.
Collapse
Affiliation(s)
- Michael W Hughes
- Department of Pathology, School of Medicine, University of Southern California, Los Angeles, California, USA; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Ting-Xin Jiang
- Department of Pathology, School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, California, USA; Stem Cell Research Center, Center for Complex Biological Systems, University of California Irvine, Irvine, California, USA
| | - Christian Fernando Guerrero-Juarez
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, California, USA; Stem Cell Research Center, Center for Complex Biological Systems, University of California Irvine, Irvine, California, USA
| | - Chien-Hong Lin
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan; Department of Basic Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Christopher Schafer
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Robert Maxson
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Randall B Widelitz
- Department of Pathology, School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Cheng-Ming Chuong
- Department of Pathology, School of Medicine, University of Southern California, Los Angeles, California, USA; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan; Department of Basic Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan; Integrative Stem Cell Center, China Medical University Hospital, China Medical University, 2 Yude Road, North District, Taichung, Taiwan.
| |
Collapse
|
58
|
Putrino A, Leonardi RM, Barbato E, Galluccio G. The Association between Ponticulus Posticus and Dental Agenesis: A Retrospective Study. Open Dent J 2018; 12:510-519. [PMID: 30197690 PMCID: PMC6110062 DOI: 10.2174/1874210601812010510] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/25/2018] [Accepted: 07/16/2018] [Indexed: 11/22/2022] Open
Abstract
Objective: Neural tube defects may increase the risk of an abnormal development of skull, vertebral column and teeth formation, including dental agenesis in non syndromic patients. The association between the presence of a congenital Dental Agenesis (DA) and the Atlantooccipital Ligament (AOL) calcification, known as “Ponticulus Posticus” (PP), as possible links can be investigated. Design: After a systematic review of the scientific literature on this topic, two independent examiners assessed the AOL calcification in lateral cephalograms of 350 non syndromic patients(7-21 years old). The results were compared with a control group (non syndromic patients, without congenital missing teeth). Results: The 16.3% of the population studied by cephalometric analysis revealed a prevalence rate of PP (both complete and partial) with a slight male predominance is seen, not statistically significant (χ square test = 0.09; p= 0.76). In both sexes complete PP is more observed. In the patients affected by DA the frequency of PP is the 66.6% (both complete than partial). The χ square test with Yates correction showed a significative difference(χ= 66.20; p value= 0.00) between PP in patients with DA compared to not affected by DA. Conclusions: PP is not an uncommon anomaly. Since orofacial pain like migraine and other symptoms are often associated to PP, during routine radiographic examination, if detected, it should be documented in patients’ health record and with symptoms, further investigation should be sought for. These findings encourage to think there’s an association between DA in non syndromic patients and neuro-crestal cells defects.
Collapse
Affiliation(s)
- Alessandra Putrino
- Department of Oral and Maxillofacial Sciences, University "Sapienza" of Rome, Roma, Italy
| | - Rosa Maria Leonardi
- Department of Medical and Surgical Sciences, II Dental Unity, University of Catania, Catania, Italy
| | - Ersilia Barbato
- Department of Oral and Maxillofacial Sciences, University "Sapienza" of Rome, Roma, Italy
| | - Gabriella Galluccio
- Department of Oral and Maxillofacial Sciences, University "Sapienza" of Rome, Roma, Italy
| |
Collapse
|
59
|
MSX2 Initiates and Accelerates Mesenchymal Stem/Stromal Cell Specification of hPSCs by Regulating TWIST1 and PRAME. Stem Cell Reports 2018; 11:497-513. [PMID: 30033084 PMCID: PMC6092836 DOI: 10.1016/j.stemcr.2018.06.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2023] Open
Abstract
The gap in knowledge of the molecular mechanisms underlying differentiation of human pluripotent stem cells (hPSCs) into the mesenchymal cell lineages hinders the application of hPSCs for cell-based therapy. In this study, we identified a critical role of muscle segment homeobox 2 (MSX2) in initiating and accelerating the molecular program that leads to mesenchymal stem/stromal cell (MSC) differentiation from hPSCs. Genetic deletion of MSX2 impairs hPSC differentiation into MSCs. When aided with a cocktail of soluble molecules, MSX2 ectopic expression induces hPSCs to form nearly homogeneous and fully functional MSCs. Mechanistically, MSX2 induces hPSCs to form neural crest cells, an intermediate cell stage preceding MSCs, and further differentiation by regulating TWIST1 and PRAME. Furthermore, we found that MSX2 is also required for hPSC differentiation into MSCs through mesendoderm and trophoblast. Our findings provide novel mechanistic insights into lineage specification of hPSCs to MSCs and effective strategies for applications of stem cells for regenerative medicine.
Collapse
|
60
|
Tohmonda T, Kamiya A, Ishiguro A, Iwaki T, Fujimi TJ, Hatayama M, Aruga J. Identification and Characterization of Novel Conserved Domains in Metazoan Zic Proteins. Mol Biol Evol 2018; 35:2205-2229. [DOI: 10.1093/molbev/msy122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Takahide Tohmonda
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute, Wako-Shi, Saitama, Japan
| | - Akiko Kamiya
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute, Wako-Shi, Saitama, Japan
| | - Akira Ishiguro
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute, Wako-Shi, Saitama, Japan
| | - Takashi Iwaki
- Meguro Parasitological Museum, Meguro-Ku, Tokyo, Japan
| | - Takahiko J Fujimi
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute, Wako-Shi, Saitama, Japan
| | - Minoru Hatayama
- Department of Medical Pharmacology, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan
| | - Jun Aruga
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute, Wako-Shi, Saitama, Japan
- Department of Medical Pharmacology, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
61
|
Nakatomi M, Ida-Yonemochi H, Nakatomi C, Saito K, Kenmotsu S, Maas RL, Ohshima H. Msx2 Prevents Stratified Squamous Epithelium Formation in the Enamel Organ. J Dent Res 2018; 97:1355-1364. [PMID: 29863959 DOI: 10.1177/0022034518777746] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Tooth enamel is manufactured by the inner enamel epithelium of the multilayered enamel organ. Msx2 loss-of-function mutation in a mouse model causes an abnormal accumulation of epithelial cells in the enamel organ, but the underlying mechanism by which Msx2 regulates amelogenesis is poorly understood. We therefore performed detailed histological and molecular analyses of Msx2 null mice. Msx2 null ameloblasts and stratum intermedium (SI) cells differentiated normally in the early stages of amelogenesis. However, during subsequent developmental stages, the outer enamel epithelium (OEE) became highly proliferative and transformed into a keratinized stratified squamous epithelium that ectopically expressed stratified squamous epithelium markers, including Heat shock protein 25, Loricrin, and Keratin 10. Moreover, expression of hair follicle-specific keratin genes such as Keratin 26 and Keratin 73 was upregulated in the enamel organ of Msx2 mutants. With the accumulation of keratin in the stellate reticulum (SR) region and subsequent odontogenic cyst formation, SI cells gradually lost the ability to differentiate, and the expression of Sox2 and Notch1 was downregulated, leading to ameloblast depolarization. As a consequence, the organization of the Msx2 mutant enamel organ became disturbed and enamel failed to form in the normal location. Instead, there was ectopic mineralization that likely occurred within the SR. In summary, we show that during amelogenesis, Msx2 executes a bipartite function, repressing the transformation of OEE into a keratinized stratified squamous epithelium while simultaneously promoting the development of a properly differentiated enamel organ competent for enamel formation.
Collapse
Affiliation(s)
- M Nakatomi
- 1 Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,2 Division of Anatomy, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Japan
| | - H Ida-Yonemochi
- 1 Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - C Nakatomi
- 3 General Dentistry and Clinical Education Unit, Niigata University Medical and Dental Hospital, Niigata, Japan.,4 Division of Molecular Signaling and Biochemistry, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Japan
| | - K Saito
- 1 Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - S Kenmotsu
- 1 Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - R L Maas
- 5 Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - H Ohshima
- 1 Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
62
|
Becic T, Kero D, Vukojevic K, Mardesic S, Saraga-Babic M. Growth factors FGF8 and FGF2 and their receptor FGFR1, transcriptional factors Msx-1 and MSX-2, and apoptotic factors p19 and RIP5 participate in the early human limb development. Acta Histochem 2018; 120:205-214. [PMID: 29409666 DOI: 10.1016/j.acthis.2018.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 10/18/2022]
Abstract
The expression pattern of fibroblast growth factors FGF8 and FGF2 and their receptor FGFR1, transcription factors MSX-1 and MSX-2, as well as cell proliferation (Ki-67) and cell death associated caspase-3, p19 and RIP5 factors were analyzed in histological sections of eight 4th-9th-weeks developing human limbs by immunohistochemistry and semi-thin sectioning. Increasing expression of all analyzed factors (except FGF8) characterized both the multilayered human apical ectodermal ridge (AER), sub-ridge mesenchyme (progress zone) and chondrocytes in developing human limbs. While cytoplasmic co-expression of MSX-1 and MSX-2 was observed in both limb epithelium and mesenchyme, p19 displayed strong cytoplasmic expression in non-proliferating cells. Nuclear expression of Ki-67 proliferating cells, and partly of MSX-1 and MSX-2 was detected in the whole limb primordium. Strong expression of factors p19 and RIP5, both in the AER and mesenchyme of human developing limbs indicates their possible involvement in control of cell senescence and cell death. In contrast to animal studies, expression of FGFR1 in the surface ectoderm and p19 in the whole limb primordium might reflect interspecies differences in limb morphology. Expression of FGF2 and downstream RIP5 gene, and transcription factors Msx-1 and MSX-2 did not show human-specific changes in expression pattern. Based on their spatio-temporal expression during human limb development, our study indicates role of FGFs and Msx genes in stimulation of cell proliferation, limb outgrowth, digit elongation and separation, and additionally MSX-2 in control of vasculogenesis. The cascade of orchestrated gene expressions, including the analyzed developmental factors, jointly contribute to the complex human limb development.
Collapse
|
63
|
He B, Ni Z, Kong S, Lu J, Wang H. Homeobox genes for embryo implantation: From mouse to human. Animal Model Exp Med 2018; 1:14-22. [PMID: 30891542 PMCID: PMC6357426 DOI: 10.1002/ame2.12002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 12/13/2022] Open
Abstract
The proper development of uterus to a state of receptivity and the attainment of implantation competency for blastocyst are 2 indispensable aspects for implantation, which is considered to be a critical event for successful pregnancy. Like many developmental processes, a large number of transcription factors, such as homeobox genes, have been shown to orchestrate this complicated but highly organized physiological process during implantation. In this review, we focus on progress in studies of the role of homeobox genes, especially the Hox and Msx gene families, during implantation, together with subsequent development of post-implantation uterus and related reproductive defects in both mouse models and humans, that have led to better understanding of how implantation is precisely regulated and provide new insights into infertility.
Collapse
Affiliation(s)
- Bo He
- Reproductive Medical CenterThe First Affiliated Hospital of Xiamen UniversityXiamenFujianChina
- Fujian Provincial Key Laboratory of Reproductive Health ResearchMedical College of Xiamen UniversityXiamenFujianChina
| | - Zhang‐li Ni
- Reproductive Medical CenterThe First Affiliated Hospital of Xiamen UniversityXiamenFujianChina
- Fujian Provincial Key Laboratory of Reproductive Health ResearchMedical College of Xiamen UniversityXiamenFujianChina
| | - Shuang‐bo Kong
- Reproductive Medical CenterThe First Affiliated Hospital of Xiamen UniversityXiamenFujianChina
- Fujian Provincial Key Laboratory of Reproductive Health ResearchMedical College of Xiamen UniversityXiamenFujianChina
| | - Jin‐hua Lu
- Reproductive Medical CenterThe First Affiliated Hospital of Xiamen UniversityXiamenFujianChina
- Fujian Provincial Key Laboratory of Reproductive Health ResearchMedical College of Xiamen UniversityXiamenFujianChina
| | - Hai‐bin Wang
- Reproductive Medical CenterThe First Affiliated Hospital of Xiamen UniversityXiamenFujianChina
- Fujian Provincial Key Laboratory of Reproductive Health ResearchMedical College of Xiamen UniversityXiamenFujianChina
| |
Collapse
|
64
|
Van Otterloo E, Li H, Jones KL, Williams T. AP-2α and AP-2β cooperatively orchestrate homeobox gene expression during branchial arch patterning. Development 2018; 145:dev157438. [PMID: 29229773 PMCID: PMC5825845 DOI: 10.1242/dev.157438] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/05/2017] [Indexed: 12/19/2022]
Abstract
The evolution of a hinged moveable jaw with variable morphology is considered a major factor behind the successful expansion of the vertebrates. DLX homeobox transcription factors are crucial for establishing the positional code that patterns the mandible, maxilla and intervening hinge domain, but how the genes encoding these proteins are regulated remains unclear. Herein, we demonstrate that the concerted action of the AP-2α and AP-2β transcription factors within the mouse neural crest is essential for jaw patterning. In the absence of these two proteins, the hinge domain is lost and there are alterations in the size and patterning of the jaws correlating with dysregulation of homeobox gene expression, with reduced levels of Emx, Msx and Dlx paralogs accompanied by an expansion of Six1 expression. Moreover, detailed analysis of morphological features and gene expression changes indicate significant overlap with various compound Dlx gene mutants. Together, these findings reveal that the AP-2 genes have a major function in mammalian neural crest development, influencing patterning of the craniofacial skeleton via the DLX code, an effect that has implications for vertebrate facial evolution, as well as for human craniofacial disorders.
Collapse
Affiliation(s)
- Eric Van Otterloo
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Hong Li
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth L Jones
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Trevor Williams
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO 80045, USA
| |
Collapse
|
65
|
Liu D, Schwender H, Wang M, Wang H, Wang P, Zhu H, Zhou Z, Li J, Wu T, Beaty TH. Gene-gene interaction between MSX1 and TP63 in Asian case-parent trios with nonsyndromic cleft lip with or without cleft palate. Birth Defects Res 2018; 110:317-324. [PMID: 29341488 DOI: 10.1002/bdr2.1139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/27/2017] [Accepted: 09/06/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Small ubiquitin-like modification, also known as sumoylation, is a crucial post-translational regulatory mechanisms involved in development of the lip and palate. Recent studies reported two sumoylation target genes, MSX1 and TP63, to have achieved genome-wide level significance in tests of association with nonsyndromic clefts. Here, we performed a candidate gene analysis considering gene-gene and gene-environment interaction for SUMO1, MSX1, and TP63 to further explore the etiology of nonsyndromic cleft lip with or without cleft palate (NSCL/P). METHODS A total of 130 single-nucleotide polymorphisms (SNPs) in or near SUMO1, MSX1, and TP63 was analyzed among 1,038 Asian NSCL/P trios ascertained through an international consortium. Conditional logistic regression models were used to explore gene-gene (G × G) and gene-environment (G × E) interaction involving maternal environmental tobacco smoke and multivitamin supplementation. Bonferroni correction was used for G × E analysis and permutation tests were used for G × G analysis. RESULTS While transmission disequilibrium tests and gene-environment interaction analysis showed no significant results, we did find signals of gene-gene interaction between SNPs near MSX1 and TP63. Three pairwise interactions yielded significant p values in permutation tests (rs884690 and rs9290890 with p = 9.34 × 10-5 and empirical p = 1.00 × 10-4 , rs1022136 and rs4687098 with p = 2.41 × 10-4 and empirical p = 2.95 × 10-4 , rs6819546 and rs9681004 with p = 5.15 × 10-4 and empirical p = 3.02 × 10-4 ). CONCLUSION Gene-gene interaction between MSX1 and TP63 may influence the risk of NSCL/P in Asian populations. Our study provided additional understanding of the genetic etiology of NSCL/P and underlined the importance of considering gene-gene interaction in the etiology of this common craniofacial malformation.
Collapse
Affiliation(s)
- Dongjing Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Holger Schwender
- Mathematical Institute, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Mengying Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Hong Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Ping Wang
- Department of Statistics and Information, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Hongping Zhu
- School of Stomatology, Peking University, Beijing, China
| | - Zhibo Zhou
- School of Stomatology, Peking University, Beijing, China
| | - Jing Li
- School of Stomatology, Peking University, Beijing, China
| | - Tao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.,Key Laboratory of Reproductive Health, Ministry of Health, Beijing, China
| | - Terri H Beaty
- Department of Epidemiology, School of Public Health, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
66
|
Tan ELY, Kuek MC, Wong HC, Ong SAK, Yow M. Secondary Dentition Characteristics in Children With Nonsyndromic Unilateral Cleft Lip and Palate. Cleft Palate Craniofac J 2018; 55:582-589. [DOI: 10.1177/1055665617750489] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective: Children with cleft lip and palate are reported to be commonly associated with higher prevalence of dental anomalies such as hypodontia, supernumeraries, and abnormalities in tooth size, shape, and position. This study investigated the prevalence of dental anomalies in a longitudinal cohort of children with unilateral cleft lip and palate (UCLP). Design: The study was a retrospective analysis of radiographs, study models, and treatment notes. Patients: Sixty patients with repaired UCLP aged 13 years old with complete dental records dating from 5 years of age were included. Methods: Study casts, dental panoramic, anterior maxillary occlusal, and periapical radiographs of the patients were examined for cleft-sidedness, congenitally missing permanent teeth, supernumerary teeth, microdontic, and macrodontic teeth in the anterior maxillary region, presence of malformed permanent cleft-sided lateral incisor and its morphology (peg-shaped, conical shaped, canine-formed), positions of the permanent lateral incisors relative to the cleft side and presence of rotated cleft-sided central incisors. Results: Of the 60 patients studied, 63.3% had hypodontia, 21.7% had supernumerary teeth, 69.6% had microdontia, and 12.5% had macrodontia. All of the cleft-sided permanent lateral incisors had associated anomalies, with a large proportion (43.1%) missing; and when present in 31 subjects, the majority (90.3%) was positioned distal to the cleft. Most of the cleft-sided permanent central incisors were rotated if present, and prevalent at 86.7%. Conclusion: A high prevalence of dental anomalies was observed in this sample of children with UCLP.
Collapse
Affiliation(s)
| | - Meaw Charm Kuek
- Department of Orthodontics, National Dental Centre, Singapore
| | - Hung Chew Wong
- Biostatistics Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Mimi Yow
- Department of Orthodontics, National Dental Centre, Singapore
| |
Collapse
|
67
|
Gai Z, Yu X, Zhu M. The Evolution of the Zygomatic Bone From Agnatha to Tetrapoda. Anat Rec (Hoboken) 2017; 300:16-29. [PMID: 28000409 DOI: 10.1002/ar.23512] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 04/23/2016] [Accepted: 06/10/2016] [Indexed: 12/29/2022]
Abstract
Establishing the homology of the zygomatic or jugal bone and tracing its origin and early evolution represents a complex issue because of large morphological gaps between various groups of vertebrates. Using recent paleontological findings, we discuss the deep homology of the zygomatic or jugal bone in stem gnathostomes (placoderms) and examine its homology and modifications in crown gnathostomes (acanthodians, chondrichthyans and osteichthyans). The discovery of the placoderm Entelognathus from the Silurian of China (∼423 million years ago) established that the large dermal plates in placoderms and osteichthyans are homologous. In Entelognathus, the jugal was joined by a new set of bones (premaxilla, maxilla, and lachrymal), marking the first appearance of the typical vertebrate face found in tetrapods including humans. In non-Entelognathus placoderms, the jugal (homologized with the suborbital plate) occupied most of the cheek region and covered the palatoquadrate laterally. In antiarch placoderms (the most basal jawed vertebrates), the jugal (represented by the ventrally positioned mental plate) functioned as part of the upper jaw. In osteichthyans, the preopercular arose as a novel bone and separated the jugal from the opercular in piscine osteichthyans. A single bone in basal osteichthyans, the preopercular may have divided into two or three elements (the preopercular, the squamosal and/or the quadratojugal) in several later osteichthyan groups. Subsequent modifications of the jugal in the fish-tetrapod transition (its enlargement leading to its contact with the quadratojugal and the separation of the squamosal from the maxilla) brought the vertebrate face to the typical model we see in living tetrapods. Anat Rec, 300:16-29, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zhikun Gai
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology Chinese Academy of Sciences, Beijing, 100044, China
| | - Xiaobo Yu
- Department of Biological Sciences, Kean University, Union, New Jersey
| | - Min Zhu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology Chinese Academy of Sciences, Beijing, 100044, China
| |
Collapse
|
68
|
Ramanathan A, Srijaya TC, Sukumaran P, Zain RB, Abu Kasim NH. Homeobox genes and tooth development: Understanding the biological pathways and applications in regenerative dental science. Arch Oral Biol 2017; 85:23-39. [PMID: 29031235 DOI: 10.1016/j.archoralbio.2017.09.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 09/27/2017] [Accepted: 09/30/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Homeobox genes are a group of conserved class of transcription factors that function as key regulators during the embryonic developmental processes. They act as master regulator for developmental genes, which involves coordinated actions of various auto and cross-regulatory mechanisms. In this review, we summarize the expression pattern of homeobox genes in relation to the tooth development and various signaling pathways or molecules contributing to the specific actions of these genes in the regulation of odontogenesis. MATERIALS AND METHODS An electronic search was undertaken using combination of keywords e.g. Homeobox genes, tooth development, dental diseases, stem cells, induced pluripotent stem cells, gene control region was used as search terms in PubMed and Web of Science and relevant full text articles and abstract were retrieved that were written in English. A manual hand search in text books were also carried out. Articles related to homeobox genes in dentistry and tissue engineering and regenerative medicine of odontogenesis were selected. RESULTS The possible perspective of stem cells technology in odontogenesis and subsequent analysis of gene correction pertaining to dental disorders through the possibility of induced pluripotent stem cells technology is also inferred. CONCLUSIONS We demonstrate the promising role of tissue engineering and regenerative medicine on odontogenesis, which can generate a new ray of hope in the field of dental science.
Collapse
Affiliation(s)
- Anand Ramanathan
- Oral Cancer Research and Coordinating Center, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Department of Oral & Maxillofacial Clinical Science, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| | | | - Prema Sukumaran
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| | - Rosnah Binti Zain
- Oral Cancer Research and Coordinating Center, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Department of Oral & Maxillofacial Clinical Science, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Faculty of Dentistry, MAHSA University, Jenjarom, Selangor, Malaysia.
| | - Noor Hayaty Abu Kasim
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
69
|
Carpinelli MR, de Vries ME, Jane SM, Dworkin S. Grainyhead-like Transcription Factors in Craniofacial Development. J Dent Res 2017; 96:1200-1209. [PMID: 28697314 DOI: 10.1177/0022034517719264] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Craniofacial development in vertebrates involves the coordinated growth, migration, and fusion of several facial prominences during embryogenesis, processes governed by strict genetic and molecular controls. A failure in any of the precise spatiotemporal sequences of events leading to prominence fusion often leads to anomalous facial, skull, and jaw formation-conditions termed craniofacial defects (CFDs). Affecting approximately 0.1% to 0.3% of live births, CFDs are a highly heterogeneous class of developmental anomalies, which are often underpinned by genetic mutations. Therefore, identifying novel disease-causing mutations in genes that regulate craniofacial development is a critical prerequisite to develop new preventive or therapeutic measures. The Grainyhead-like ( GRHL) transcription factors are one such gene family, performing evolutionarily conserved roles in craniofacial patterning. The antecedent member of this family, Drosophila grainyhead ( grh), is required for head skeleton development in fruit flies, loss or mutation of Grhl family members in mouse and zebrafish models leads to defects of both maxilla and mandible, and recently, mutations in human GRHL3 have been shown to cause or contribute to both syndromic (Van Der Woude syndrome) and nonsyndromic palatal clefts. In this review, we summarize the current knowledge regarding the craniofacial-specific function of the Grainyhead-like family in multiple model species, identify some of the major target genes regulated by the Grhl transcription factors in craniofacial patterning, and, by examining animal models, draw inferences as to how these data will inform the likely roles of GRHL factors in human CFDs comprising palatal clefting. By understanding the molecular networks regulated by Grhl2 and Grhl3 target genes in other systems, we can propose likely pathways that mediate the effects of these transcription factors in human palatogenesis.
Collapse
Affiliation(s)
- M R Carpinelli
- 1 Central Clinical School, Monash University, Prahran, VIC, Australia
| | - M E de Vries
- 2 Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - S M Jane
- 1 Central Clinical School, Monash University, Prahran, VIC, Australia
| | - S Dworkin
- 2 Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
70
|
Gabor L, Canaz H, Canaz G, Kara N, Gulec EY, Alatas I. Foramina parietalia permagna: familial and radiological evaluation of two cases and review of literature. Childs Nerv Syst 2017; 33:853-857. [PMID: 27975139 DOI: 10.1007/s00381-016-3315-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/01/2016] [Indexed: 11/28/2022]
Abstract
PURPOSE Foramina parietalia permagna is a variable intramembranous ossification defect of the parietal bones. Foramina parietalia permagna have an autosomal dominant inheritance, and it is showed that mutations in chromosome 5 and 11 are causing this anomaly. Enlarged parietal foramina occurs extremely rare. They are usually asymptomatic, but occasional headache, vomiting, pain over unprotected cerebral cortex, and seizures may be experienced by the patients. In the literature, some associated congenital bony defects, soft tissue pathologies, underlying neuronal deficits, and vascular variations have been described. METHODS We report two cases of foramina parietal permagna with their pedigrees and genetic analysis. RESULTS In case 1, cytogenetic analysis revealed a mutation of the ALX4 gene and all of the members of the family diagnosed with FPP. MRI revealed inferior vermian cerebellar hypoplasia. Surgery was not considered. In case 2, cytogenetic analysis could not be obtained because of financial reasons. Cranial MRI revealed hypoplastic right transverse sinus and sigmoid sinus, with a persistent parafalcine sinus. Surgery was not considered. CONCLUSION Despite of its rarity, genetic background and some important associated anomalies make foramina parietalia permagna more than an uncommon insignificant genetic disorder.
Collapse
Affiliation(s)
- Larissa Gabor
- Department of Neurosurgery, Istanbul Bilim University, Sisli Florence Nightingale Hospital, Istanbul, Turkey
| | - Huseyin Canaz
- Department of Neurosurgery, Istanbul Bilim University, Sisli Florence Nightingale Hospital, Istanbul, Turkey
| | - Gokhan Canaz
- Department of Neurosurgery, Bakirkoy Research and Training Hospital for Neurology, Neurosurgery and Psychiatry, 34147, Bakırkoy, Istanbul, Turkey.
| | - Nursu Kara
- Department of Neonatology, Istanbul Bilim University, Sisli Florence Nightingale Hospital, Istanbul, Turkey
| | - Elif Yilmaz Gulec
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Reseach Hospital, Istanbul, Turkey
| | - Ibrahim Alatas
- Department of Neurosurgery, Istanbul Bilim University, Sisli Florence Nightingale Hospital, Istanbul, Turkey
| |
Collapse
|
71
|
Stabley JN, Towler DA. Arterial Calcification in Diabetes Mellitus: Preclinical Models and Translational Implications. Arterioscler Thromb Vasc Biol 2017; 37:205-217. [PMID: 28062508 PMCID: PMC5480317 DOI: 10.1161/atvbaha.116.306258] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus increasingly afflicts our aging and dysmetabolic population. Type 2 diabetes mellitus and the antecedent metabolic syndrome represent the vast majority of the disease burden-increasingly prevalent in children and older adults. However, type 1 diabetes mellitus is also advancing in preadolescent children. As such, a crushing wave of cardiometabolic disease burden now faces our society. Arteriosclerotic calcification is increased in metabolic syndrome, type 2 diabetes mellitus, and type 1 diabetes mellitus-impairing conduit vessel compliance and function, thereby increasing the risk for dementia, stroke, heart attack, limb ischemia, renal insufficiency, and lower extremity amputation. Preclinical models of these dysmetabolic settings have provided insights into the pathobiology of arterial calcification. Osteochondrogenic morphogens in the BMP-Wnt signaling relay and transcriptional regulatory programs driven by Msx and Runx gene families are entrained to innate immune responses-responses activated by the dysmetabolic state-to direct arterial matrix deposition and mineralization. Recent studies implicate the endothelial-mesenchymal transition in contributing to the phenotypic drift of mineralizing vascular progenitors. In this brief overview, we discuss preclinical disease models that provide mechanistic insights-and point to challenges and opportunities to translate these insights into new therapeutic strategies for our patients afflicted with diabetes mellitus and its arteriosclerotic complications.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Arteries/metabolism
- Arteries/pathology
- Atherosclerosis/etiology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetic Angiopathies/etiology
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/pathology
- Diet, High-Fat
- Disease Models, Animal
- Female
- Genetic Predisposition to Disease
- Humans
- Hyperlipidemias/complications
- Hyperlipidemias/genetics
- Male
- Phenotype
- Plaque, Atherosclerotic
- Rats
- Signal Transduction
- Translational Research, Biomedical
- Vascular Calcification/etiology
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
Collapse
Affiliation(s)
- John N Stabley
- From the Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Dwight A Towler
- From the Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX.
| |
Collapse
|
72
|
Nishihara H, Kobayashi N, Kimura-Yoshida C, Yan K, Bormuth O, Ding Q, Nakanishi A, Sasaki T, Hirakawa M, Sumiyama K, Furuta Y, Tarabykin V, Matsuo I, Okada N. Coordinately Co-opted Multiple Transposable Elements Constitute an Enhancer for wnt5a Expression in the Mammalian Secondary Palate. PLoS Genet 2016; 12:e1006380. [PMID: 27741242 PMCID: PMC5065162 DOI: 10.1371/journal.pgen.1006380] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/21/2016] [Indexed: 11/18/2022] Open
Abstract
Acquisition of cis-regulatory elements is a major driving force of evolution, and there are several examples of developmental enhancers derived from transposable elements (TEs). However, it remains unclear whether one enhancer element could have been produced via cooperation among multiple, yet distinct, TEs during evolution. Here we show that an evolutionarily conserved genomic region named AS3_9 comprises three TEs (AmnSINE1, X6b_DNA and MER117), inserted side-by-side, and functions as a distal enhancer for wnt5a expression during morphogenesis of the mammalian secondary palate. Functional analysis of each TE revealed step-by-step retroposition/transposition and co-option together with acquisition of a binding site for Msx1 for its full enhancer function during mammalian evolution. The present study provides a new perspective suggesting that a huge variety of TEs, in combination, could have accelerated the diversity of cis-regulatory elements involved in morphological evolution.
Collapse
Affiliation(s)
- Hidenori Nishihara
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa, Japan
| | - Naoki Kobayashi
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa, Japan
| | - Chiharu Kimura-Yoshida
- Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan
| | - Kuo Yan
- Institute of Cell Biology and Neurobiology, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Olga Bormuth
- Institute of Cell Biology and Neurobiology, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Qiong Ding
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa, Japan
| | - Akiko Nakanishi
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa, Japan
| | - Takeshi Sasaki
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa, Japan
| | - Mika Hirakawa
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Kenta Sumiyama
- National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yasuhide Furuta
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Chuou-ku, Kobe, Japan
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, Chuou-ku, Kobe, Japan
| | - Victor Tarabykin
- Institute of Cell Biology and Neurobiology, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Isao Matsuo
- Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan
| | - Norihiro Okada
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa, Japan
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
- Foundation for Advancement of International Science, Tsukuba, Japan
- * E-mail: ,
| |
Collapse
|
73
|
Distorted Patterns of Dentinogenesis and Eruption in Msx2 Null Mutants. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2577-87. [DOI: 10.1016/j.ajpath.2016.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/16/2016] [Accepted: 06/09/2016] [Indexed: 01/20/2023]
|
74
|
Bolnick AD, Bolnick JM, Kilburn BA, Stewart T, Oakes J, Rodriguez-Kovacs J, Kohan-Ghadr HR, Dai J, Diamond MP, Hirota Y, Drewlo S, Dey SK, Armant DR. Reduced homeobox protein MSX1 in human endometrial tissue is linked to infertility. Hum Reprod 2016; 31:2042-50. [PMID: 27312535 PMCID: PMC4991657 DOI: 10.1093/humrep/dew143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 12/22/2022] Open
Abstract
STUDY QUESTION Is protein expression of the muscle segment homeobox gene family member MSX1 altered in the human secretory endometrium by cell type, developmental stage or fertility? SUMMARY ANSWER MSX1 protein levels, normally elevated in the secretory phase endometrium, were significantly reduced in endometrial biopsies obtained from women of infertile couples. WHAT IS KNOWN ALREADY Molecular changes in the endometrium are important for fertility in both animals and humans. Msx1 is expressed in the preimplantation mouse uterus and regulates uterine receptivity for implantation. The MSX protein persists a short time, after its message has been down-regulated. Microarray analysis of the human endometrium reveals a similar pattern of MSX1 mRNA expression that peaks before the receptive period, with depressed expression at implantation. Targeted deletion of uterine Msx1 and Msx2 in mice prevents the loss of epithelial cell polarity during implantation and causes infertility. STUDY DESIGN, SIZE DURATION MSX1 mRNA and cell type-specific levels of MSX1 protein were quantified from two retrospective cohorts during the human endometrial cycle. MSX1 protein expression patterns were compared between fertile and infertile couples. Selected samples were dual-labeled by immunofluorescence microscopy to localize E-cadherin and β-catenin in epithelial cells. PARTICIPANTS/MATERIALS, SETTING METHODS MSX1 mRNA was quantified by PCR in endometrium from hysterectomies (n = 14) determined by endometrial dating to be in the late-proliferative (cycle days 10-13), early-secretory (cycle days 14-19) or mid-secretory (cycle days 20-24) phase. MSX1 protein was localized using high-throughput, semi-quantitative immunohistochemistry with sectioned endometrial biopsy tissues from fertile (n = 89) and infertile (n = 89) couples. Image analysis measured stain intensity specifically within the luminal epithelium, glands and stroma during the early-, mid- and late- (cycle days 25-28) secretory phases. MAIN RESULTS AND THE ROLE OF CHANCE MSX1 transcript increased 5-fold (P < 0.05) between the late-proliferative and early secretory phase and was then down-regulated (P < 0.05) prior to receptivity for implantation. In fertile patients, MSX1 protein displayed strong nuclear localization in the luminal epithelium and glands, while it was weakly expressed in nuclei of the stroma. MSX1 protein levels accumulated throughout the secretory phase in all endometrial cellular compartments. MSX1 protein decreased (P < 0.05) in the glands between mid- and late-secretory phases. However, infertile patients demonstrated a broad reduction (P < 0.001) of MSX1 accumulation in all cell types throughout the secretory phase that was most pronounced (∼3-fold) in stroma and glands. Infertility was associated with persistent co-localization of E-cadherin and β-catenin in epithelial cell junctions in the mid- and late-secretory phases. LIMITATIONS, REASONS FOR CAUTION Details of the infertility diagnoses and other patient demographic data were not available. Therefore, patients with uterine abnormalities (Mullerian) could not be distinguished from other sources of infertility. Antibody against human MSX2 is not available, limiting the study to MSX1. However, both RNAs in the human endometrium are similarly regulated. In mice, Msx1 and Msx2 are imperative for murine embryo implantation, with Msx2 compensating for genetic ablation of Msx1 through its up-regulation in a knockout model. WIDER IMPLICATIONS OF THE FINDINGS This investigation establishes that the MSX1 homeobox protein accumulation is associated with the secretory phase in endometrium of fertile couples, and is widely disrupted in infertile patients. It is the first study to examine MSX1 protein localization in the human endometrium, and supported by genetic findings in mice, suggests that genes regulated by MSX1 are linked to the loss of epithelial cell polarity required for uterine receptivity during implantation. STUDY FUNDING/COMPETING INTERESTS This research was supported by the NICHD National Cooperative Reproductive Medicine Network grant HD039005 (M.P.D.), NIH grants HD068524 (S.K.D.), HD071408 (D.R.A., M.P.D.), and HL128628 (S.D.), the Intramural Research Program of the NICHD, March of Dimes (S.K.D., S.D.) and JSPS KAKENHI grant 26112506 (Y.H.). There were no conflicts or competing interests.
Collapse
Affiliation(s)
- Alan D. Bolnick
- Obstetrics and Gynecology,Wayne State University, Detroit, MI, USA
| | - Jay M. Bolnick
- Obstetrics and Gynecology,Wayne State University, Detroit, MI, USA
| | - Brian A. Kilburn
- Obstetrics and Gynecology,Wayne State University, Detroit, MI, USA
| | - Tamika Stewart
- Obstetrics and Gynecology,Wayne State University, Detroit, MI, USA
| | - Jonathan Oakes
- Obstetrics and Gynecology,Wayne State University, Detroit, MI, USA
| | | | | | - Jing Dai
- Obstetrics and Gynecology,Wayne State University, Detroit, MI, USA
| | | | - Yasushi Hirota
- Obstetrics and Gynecology, University of Tokyo, Tokyo, Japan
| | - Sascha Drewlo
- Obstetrics and Gynecology,Wayne State University, Detroit, MI, USA
| | - Sudhansu K. Dey
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - D. Randall Armant
- Obstetrics and Gynecology,Wayne State University, Detroit, MI, USA
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
75
|
Benítez-Burraco A, Lattanzi W, Murphy E. Language Impairments in ASD Resulting from a Failed Domestication of the Human Brain. Front Neurosci 2016; 10:373. [PMID: 27621700 PMCID: PMC5002430 DOI: 10.3389/fnins.2016.00373] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/02/2016] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders entailing social and cognitive deficits, including marked problems with language. Numerous genes have been associated with ASD, but it is unclear how language deficits arise from gene mutation or dysregulation. It is also unclear why ASD shows such high prevalence within human populations. Interestingly, the emergence of a modern faculty of language has been hypothesized to be linked to changes in the human brain/skull, but also to the process of self-domestication of the human species. It is our intention to show that people with ASD exhibit less marked domesticated traits at the morphological, physiological, and behavioral levels. We also discuss many ASD candidates represented among the genes known to be involved in the “domestication syndrome” (the constellation of traits exhibited by domesticated mammals, which seemingly results from the hypofunction of the neural crest) and among the set of genes involved in language function closely connected to them. Moreover, many of these genes show altered expression profiles in the brain of autists. In addition, some candidates for domestication and language-readiness show the same expression profile in people with ASD and chimps in different brain areas involved in language processing. Similarities regarding the brain oscillatory behavior of these areas can be expected too. We conclude that ASD may represent an abnormal ontogenetic itinerary for the human faculty of language resulting in part from changes in genes important for the “domestication syndrome” and, ultimately, from the normal functioning of the neural crest.
Collapse
Affiliation(s)
| | - Wanda Lattanzi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Elliot Murphy
- Division of Psychology and Language Sciences, University College London London, UK
| |
Collapse
|
76
|
MSX1 mutations and associated disease phenotypes: genotype-phenotype relations. Eur J Hum Genet 2016; 24:1663-1670. [PMID: 27381090 DOI: 10.1038/ejhg.2016.78] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/21/2016] [Accepted: 05/26/2016] [Indexed: 02/06/2023] Open
Abstract
The Msx1 transcription factor is involved in multiple epithelial-mesenchymal interactions during vertebrate embryogenesis. It has pleiotropic effects in several tissues. In humans, MSX1 variants have been related to tooth agenesis, orofacial clefting, and nail dysplasia. We correlate all MSX1 disease causing variants to phenotypic features to shed light on this hitherto unclear association. MSX1 truncations cause more severe phenotypes than in-frame variants. Mutations in the homeodomain always cause tooth agenesis with or without other phenotypes while mutations outside the homeodomain are mostly associated with non-syndromic orofacial clefts. Downstream effects can be further explored by the edgetic perturbation model. This information provides new insights for genetic diagnosis and for further functional analysis of MSX1 variants.
Collapse
|
77
|
Hirata A, Katayama K, Tsuji T, Imura H, Natsume N, Sugahara T, Kunieda T, Nakamura H, Otsuki Y. Homeobox family Hoxc localization during murine palate formation. Congenit Anom (Kyoto) 2016; 56:172-9. [PMID: 26718736 DOI: 10.1111/cga.12153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 12/24/2015] [Accepted: 12/24/2015] [Indexed: 12/29/2022]
Abstract
Homeobox genes play important roles in craniofacial morphogenesis. However, the characteristics of the transcription factor Hoxc during palate formation remain unclear. We examined the immunolocalization patterns of Hoxc5, Hoxc4, and Hoxc6 in palatogenesis of cleft palate (Eh/Eh) mice. On the other hand, mutations in the FGF/FGFR pathway are exclusively associated with syndromic forms of cleft palate. We also examined the immunolocalization of Fgfr1 and Erk1/2 to clarify their relationships with Hoxc in palatogenesis. Some palatal epithelial cells showed Hoxc5 labeling, while almost no labeling of mesenchymal cells was observed in +/+ mice. As palate formation progressed in +/+ mice, Hoxc5, Hoxc4, and Hoxc6 were observed in medial epithelial seam cells. Hoxc5 and Hoxc6 were detected in the oral epithelium. The palatal mesenchyme also showed intense staining for Fgfr1 and Erk1/2 with progression of palate formation. In contrast, the palatal shelves of Eh/Eh mice exhibited impaired horizontal growth and failed to fuse, resulting in a cleft. Hoxc5 was observed in a few epithelial cells and diffusely in the mesenchyme of Eh/Eh palatal shelves. No or little labeling of Fgfr1 and Erk1/2 was detected in the cleft palate of Eh/Eh mice. These findings suggest that Hoxc genes are involved in palatogenesis. Furthermore, there may be the differences in the localization pattern between Hoxc5, Hoxc4, and Hoxc6. Additionally, Hoxc distribution in palatal cells during palate development may be correlated with FGF signaling. (228/250 words) © 2016 Japanese Teratology Society.
Collapse
Affiliation(s)
- Azumi Hirata
- Department of Anatomy and Cell Biology, Faculty of Medicine, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Kentaro Katayama
- Division of Functional Morphology, Department of Basic Veterinary Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| | - Takehito Tsuji
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Hideto Imura
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi, Japan
| | - Nagato Natsume
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi, Japan
| | - Toshio Sugahara
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi, Japan
| | - Tetsuo Kunieda
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Hiroaki Nakamura
- Department of Oral Histology, School of Dentistry, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | | |
Collapse
|
78
|
Aslar Oner D, Tastan H. Association of MSX1 c.*6C > T Variant with Nonsyndromic Cleft Lip With or Without Cleft Palate in Turkish Patients. Genet Test Mol Biomarkers 2016; 20:402-5. [DOI: 10.1089/gtmb.2015.0341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Deniz Aslar Oner
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | - Hakki Tastan
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| |
Collapse
|
79
|
Dai J, Si J, Zhu X, Zhang L, Wu D, Lu J, Ouyang N, Wang X, Shen G. Overexpression of Dlx2 leads to postnatal condyle degradation. Mol Med Rep 2016; 14:1624-30. [PMID: 27315306 PMCID: PMC4940110 DOI: 10.3892/mmr.2016.5406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 05/31/2016] [Indexed: 11/06/2022] Open
Abstract
Distal-less homeobox 2 (Dlx2), a member of the Dlx family of transcription factors, is important for the development of craniofacial tissues. Previous studies based on knock-out mutant mice revealed that Dlx2 primarily disturbed the development of tissues from maxillary arch. The present study used a transgenic mouse model to specifically overexpress Dlx2 in neural crest cells in order to investigate the role of Dlx2 overexpression in post-natal condyle in mice. The model was constructed and the phenotype observed using gross observation, micro-CT scan and histological examination. The model determined that overexpression of Dlx2 may lead to postnatal condyle malformation, subchondral bone degradation and irregular histological structure of the condylar cartilage. In addition, the expression of osteocalcin in the condyle region was markedly downregulated, whereas expression of msh homeobox 2 was upregulated. The results of the present study suggest that Dlx2 overexpression in cranial neural crest cells would disrupt the development of post-natal condyle, which demonstrates that the expression level and the spatiotemporal expression patterns of Dlx2 may be important in regulating the development of post-natal condyle in mice, and also offered a possible temporal-mandibular joint osteoarthritis model animal for future studies.
Collapse
Affiliation(s)
- Jiewen Dai
- Department of Oral and Cranio‑Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Jiawen Si
- Department of Oral and Cranio‑Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Xiaofang Zhu
- Department of Oral and Cranio‑Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Lei Zhang
- Department of Oral and Cranio‑Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Dandan Wu
- Department of Oral and Cranio‑Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Jingting Lu
- Department of Oral and Cranio‑Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Ningjuan Ouyang
- Department of Oral and Cranio‑Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Xudong Wang
- Department of Oral and Cranio‑Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Guofang Shen
- Department of Oral and Cranio‑Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| |
Collapse
|
80
|
Cdh1 regulates craniofacial development via APC-dependent ubiquitination and activation of Goosecoid. Cell Res 2016; 26:699-712. [PMID: 27126000 DOI: 10.1038/cr.2016.51] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 11/12/2015] [Accepted: 03/02/2016] [Indexed: 02/05/2023] Open
Abstract
Craniofacial anomalies (CFAs) characterized by birth defects of skull and facial bones are the most frequent congenital disease. Genomic analysis has identified multiple genes responsible for CFAs; however, the underlying genetic mechanisms for the majority of CFAs remain largely unclear. Our previous study revealed that the Wwp2 E3 ubiquitin ligase facilitates craniofacial development in part through inducing monoubiquitination and activation of the paired-like homeobox transcription factor, Goosecoid (Gsc). Here we report that Gsc is also ubiquitinated and activated by the APC(Cdh1) E3 ubiquitin ligase, leading to transcriptional activation of various Gsc target genes crucial for craniofacial development. Consistenly, neural crest-specific Cdh1-knockout mice display similar bone malformation as Wwp2-deficient mice in the craniofacial region, characterized by a domed skull, a short snout and a twisted nasal bone. Mechanistically, like Wwp2-deficient mice, mice with Cdh1 deficiency in neural crest cells exhibit reduced Gsc/Sox6 transcriptional activities. Simultaneous deletion of Cdh1 and Wwp2 results in a more severe craniofacial defect compared with single gene deletion, suggesting a synergistic augmentation of Gsc activity by these two E3 ubiquitin ligases. Hence, our study reveals a novel role for Cdh1 in craniofacial development through promoting APC-dependent non-proteolytic ubiquitination and activation of Gsc.
Collapse
|
81
|
Chen Y, Sakamuru S, Huang R, Reese DH, Xia M. Identification of compounds that modulate retinol signaling using a cell-based qHTS assay. Toxicol In Vitro 2016; 32:287-96. [PMID: 26820057 DOI: 10.1016/j.tiv.2016.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/15/2016] [Accepted: 01/20/2016] [Indexed: 01/12/2023]
Abstract
In vertebrates, the retinol (vitamin A) signaling pathway (RSP) controls the biosynthesis and catabolism of all-trans retinoic acid (atRA), which regulates transcription of genes essential for embryonic development. Chemicals that interfere with the RSP to cause abnormal intracellular levels of atRA are potential developmental toxicants. To assess chemicals for the ability to interfere with retinol signaling, we have developed a cell-based RARE (Retinoic Acid Response Element) reporter gene assay to identify RSP disruptors. To validate this assay in a quantitative high-throughput screening (qHTS) platform, we screened the Library of Pharmacologically Active Compounds (LOPAC) in both agonist and antagonist modes. The screens detected known RSP agonists, demonstrating assay reliability, and also identified novel RSP agonists including kenpaullone, niclosamide, PD98059 and SU4312, and RSP antagonists including Bay 11-7085, LY294002, 3,4-Methylenedioxy-β-nitrostyrene, and topoisomerase inhibitors (camptothecin, topotecan, amsacrine hydrochloride, and idarubicin). When evaluated in the P19 pluripotent cell, these compounds were found to affect the expression of the Hoxa1 gene that is essential for embryo body patterning. These results show that the RARE assay is an effective qHTS approach for screening large compound libraries to identify chemicals that have the potential to adversely affect embryonic development through interference with retinol signaling.
Collapse
Affiliation(s)
- Yanling Chen
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, United States.
| | - Srilatha Sakamuru
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, United States
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, United States
| | - David H Reese
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, United States
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
82
|
Sun X, Park CB, Deng W, Potter SS, Dey SK. Uterine inactivation of muscle segment homeobox (Msx) genes alters epithelial cell junction proteins during embryo implantation. FASEB J 2015; 30:1425-35. [PMID: 26667042 DOI: 10.1096/fj.15-282798] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/23/2015] [Indexed: 12/28/2022]
Abstract
Embryo implantation requires that the uterus differentiate into the receptive state. Failure to attain uterine receptivity will impede blastocyst attachment and result in a compromised pregnancy. The molecular mechanism by which the uterus transitions from the prereceptive to the receptive stage is complex, involving an intricate interplay of various molecules. We recently found that mice with uterine deletion ofMsxgenes (Msx1(d/d)/Msx2(d/d)) are infertile because of implantation failure associated with heightened apicobasal polarity of luminal epithelial cells during the receptive period. However, information on Msx's roles in regulating epithelial polarity remains limited. To gain further insight, we analyzed cell-type-specific gene expression by RNA sequencing of separated luminal epithelial and stromal cells by laser capture microdissection fromMsx1(d/d)/Msx2(d/d)and floxed mouse uteri on d 4 of pseudopregnancy. We found that claudin-1, a tight junction protein, and small proline-rich (Sprr2) protein, a major component of cornified envelopes in keratinized epidermis, were substantially up-regulated inMsx1(d/d)/Msx2(d/d)uterine epithelia. These factors also exhibited unique epithelial expression patterns at the implantation chamber (crypt) inMsx1(f/f)/Msx2(f/f)females; the patterns were lost inMsx1(d/d)/Msx2(d/d)epithelia on d 5, suggesting important roles during implantation. The results suggest thatMsxgenes play important roles during uterine receptivity including modulation of epithelial junctional activity.-Sun, X., Park, C. B., Deng, W., Potter, S. S., Dey, S. K. Uterine inactivation of muscle segment homeobox (Msx) genes alters epithelial cell junction proteins during embryo implantation.
Collapse
Affiliation(s)
- Xiaofei Sun
- *Division of Reproductive Sciences and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Craig B Park
- *Division of Reproductive Sciences and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Wenbo Deng
- *Division of Reproductive Sciences and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - S Steven Potter
- *Division of Reproductive Sciences and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Sudhansu K Dey
- *Division of Reproductive Sciences and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
83
|
Common mechanisms in development and disease: BMP signaling in craniofacial development. Cytokine Growth Factor Rev 2015; 27:129-39. [PMID: 26747371 DOI: 10.1016/j.cytogfr.2015.11.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 11/13/2015] [Indexed: 01/04/2023]
Abstract
BMP signaling is one of the key pathways regulating craniofacial development. It is involved in the early patterning of the head, the development of cranial neural crest cells, and facial patterning. It regulates development of its mineralized structures, such as cranial bones, maxilla, mandible, palate, and teeth. Targeted mutations in the mouse have been instrumental to delineate the functional involvement of this signaling network in different aspects of craniofacial development. Gene polymorphisms and mutations in BMP pathway genes have been associated with various non-syndromic and syndromic human craniofacial malformations. The identification of intricate cellular interactions and underlying molecular pathways illustrate the importance of local fine-regulation of Bmp signaling to control proliferation, apoptosis, epithelial-mesenchymal interactions, and stem/progenitor differentiation during craniofacial development. Thus, BMP signaling contributes both to shape and functionality of our facial features. BMP signaling also regulates postnatal craniofacial growth and is associated with dental structures life-long. A more detailed understanding of BMP function in growth, homeostasis, and repair of postnatal craniofacial tissues will contribute to our ability to rationally manipulate this signaling network in the context of tissue engineering.
Collapse
|
84
|
Wattanarat O, Kantaputra PN. Preaxial polydactyly associated with a MSX1 mutation and report of two novel mutations. Am J Med Genet A 2015; 170A:254-9. [PMID: 26463473 DOI: 10.1002/ajmg.a.37417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/22/2015] [Indexed: 01/23/2023]
Abstract
We report two novel heterozygous missense MSX1 mutations in two Thai families (c.739C>T; p.Pro247Ser and c.607G>A; p.Ala203Thr). The p.Ala203Thr mutation was found in a female patient, her sister, and their father and is associated with unilateral cleft lip and palate, hypodontia, and microdontia. The p.Pro247Ser mutation was found in a three-generation Thai family and was associated with bilateral cleft lip and palate, hypodontia, microdontia, and dens invaginatus. The proband also had preaxial polydactyly of the left hand. The role of Msx1 in limb development in mice is discussed. Intrafamilial variability of the phenotypes is clearly evident. This is the first time that a limb anomaly has been reported to be associated with a mutation in MSX1.
Collapse
Affiliation(s)
- Onnida Wattanarat
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai, Thailand.,Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Piranit Nik Kantaputra
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai, Thailand.,Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.,DENTALAND CLINIC, Chiang Mai, Thailand
| |
Collapse
|
85
|
Gou Y, Zhang T, Xu J. Transcription Factors in Craniofacial Development: From Receptor Signaling to Transcriptional and Epigenetic Regulation. Curr Top Dev Biol 2015; 115:377-410. [PMID: 26589933 DOI: 10.1016/bs.ctdb.2015.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Craniofacial morphogenesis is driven by spatial-temporal terrains of gene expression, which give rise to stereotypical pattern formation. Transcription factors are key cellular components that control these gene expressions. They are information hubs that integrate inputs from extracellular factors and environmental cues, direct epigenetic modifications, and define transcriptional status. These activities allow transcription factors to confer specificity and potency to transcription regulation during development.
Collapse
Affiliation(s)
- Yongchao Gou
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, USA
| | - Tingwei Zhang
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, USA; State Key Laboratory of Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Xu
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, USA.
| |
Collapse
|
86
|
Goodwin AF, Kim R, Bush JO, Klein OD. From Bench to Bedside and Back: Improving Diagnosis and Treatment of Craniofacial Malformations Utilizing Animal Models. Curr Top Dev Biol 2015; 115:459-92. [PMID: 26589935 DOI: 10.1016/bs.ctdb.2015.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Craniofacial anomalies are among the most common birth defects and are associated with increased mortality and, in many cases, the need for lifelong treatment. Over the past few decades, dramatic advances in the surgical and medical care of these patients have led to marked improvements in patient outcomes. However, none of the treatments currently in clinical use address the underlying molecular causes of these disorders. Fortunately, the field of craniofacial developmental biology provides a strong foundation for improved diagnosis and for therapies that target the genetic causes of birth defects. In this chapter, we discuss recent advances in our understanding of the embryology of craniofacial conditions, and we focus on the use of animal models to guide rational therapies anchored in genetics and biochemistry.
Collapse
Affiliation(s)
- Alice F Goodwin
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, USA; Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, USA
| | - Rebecca Kim
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, USA; Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, USA
| | - Jeffrey O Bush
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, USA; Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA.
| | - Ophir D Klein
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, USA; Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, USA; Department of Pediatrics, University of California San Francisco, San Francisco, California, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
87
|
Snowball J, Ambalavanan M, Whitsett J, Sinner D. Endodermal Wnt signaling is required for tracheal cartilage formation. Dev Biol 2015; 405:56-70. [PMID: 26093309 DOI: 10.1016/j.ydbio.2015.06.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 02/07/2023]
Abstract
Tracheobronchomalacia is a common congenital defect in which the walls of the trachea and bronchi lack of adequate cartilage required for support of the airways. Deletion of Wls, a cargo receptor mediating Wnt ligand secretion, in the embryonic endoderm using ShhCre mice inhibited formation of tracheal-bronchial cartilaginous rings. The normal dorsal-ventral patterning of tracheal mesenchyme was lost. Smooth muscle cells, identified by Acta2 staining, were aberrantly located in ventral mesenchyme of the trachea, normally the region of Sox9 expression in cartilage progenitors. Wnt/β-catenin activity, indicated by Axin2 LacZ reporter, was decreased in tracheal mesenchyme of Wls(f/f);Shh(Cre/+) embryos. Proliferation of chondroblasts was decreased and reciprocally, proliferation of smooth muscle cells was increased in Wls(f/f);Shh(Cre/+) tracheal tissue. Expression of Tbx4, Tbx5, Msx1 and Msx2, known to mediate cartilage and muscle patterning, were decreased in tracheal mesenchyme of Wls(f/f);Shh(Cre/+) embryos. Ex vivo studies demonstrated that Wnt7b and Wnt5a, expressed by the epithelium of developing trachea, and active Wnt/β-catenin signaling are required for tracheal chondrogenesis before formation of mesenchymal condensations. In conclusion, Wnt ligands produced by the tracheal epithelium pattern the tracheal mesenchyme via modulation of gene expression and cell proliferation required for proper tracheal cartilage and smooth muscle differentiation.
Collapse
Affiliation(s)
- John Snowball
- The Perinatal Institute Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Medical Center Research Foundation, USA
| | - Manoj Ambalavanan
- The Perinatal Institute Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Medical Center Research Foundation, USA
| | - Jeffrey Whitsett
- The Perinatal Institute Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Medical Center Research Foundation, USA; University of Cincinnati, College of Medicine, Cincinnati OH 45229, USA
| | - Debora Sinner
- The Perinatal Institute Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Medical Center Research Foundation, USA; University of Cincinnati, College of Medicine, Cincinnati OH 45229, USA.
| |
Collapse
|
88
|
Goldschmidt B, Meireles BCS, Calado MIZ, França FGO, Oliveira A, Resende FC. Study of three non-syndromic cases of congenital thumb aplasia in captive rhesus monkeys. J Med Primatol 2015; 44:218-22. [PMID: 25959542 DOI: 10.1111/jmp.12175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2015] [Indexed: 11/27/2022]
Abstract
Although congenital thumb absence has been reported frequently in humans, their occurrence in macaques is rare. We observed three cases of spontaneous thumb defects in captive female rhesus monkeys. One animal exhibited bilateral absence and two other presented unilateral thumb absence, all with metacarpal integrity. This report presents the clinical, radiological, and genealogical details as well as possible etiologies in an attempt to draw a parallel with humans and other primate species.
Collapse
Affiliation(s)
- B Goldschmidt
- Department of Primatology, Center for Laboratory Animal Breeding, Oswaldo Cruz Foundation, Rio de Janeiro/RJ, Brazil
| | - B C S Meireles
- Department of Primatology, Center for Laboratory Animal Breeding, Oswaldo Cruz Foundation, Rio de Janeiro/RJ, Brazil
| | - M I Z Calado
- Department of Primatology, Center for Laboratory Animal Breeding, Oswaldo Cruz Foundation, Rio de Janeiro/RJ, Brazil
| | - F G O França
- Department of Primatology, Center for Laboratory Animal Breeding, Oswaldo Cruz Foundation, Rio de Janeiro/RJ, Brazil
| | - A Oliveira
- Department of Primatology, Center for Laboratory Animal Breeding, Oswaldo Cruz Foundation, Rio de Janeiro/RJ, Brazil
| | - F C Resende
- Department of Primatology, Center for Laboratory Animal Breeding, Oswaldo Cruz Foundation, Rio de Janeiro/RJ, Brazil
| |
Collapse
|
89
|
Hur SW, Oh SH, Jeong BC, Choi H, Kim JW, Lee KN, Hwang YC, Ryu JH, Kim SH, Koh JT. COUP-TFII Stimulates Dentin Sialophosphoprotein Expression and Mineralization in Odontoblasts. J Dent Res 2015; 94:1135-42. [PMID: 25940145 DOI: 10.1177/0022034515585125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Chicken ovalbumin upstream promoter transcription factor 2 (COUP-TFII), an orphan nuclear receptor belonging to the steroid-thyroid hormone receptor superfamily, plays an important role in cell fate determination of various tissues. However, the specific role of COUP-TFII in tooth development has not yet been elucidated. In the present study, we aimed to explore the role of COUP-TFII in dentin sialophosphoprotein (DSPP) expression and matrix mineralization in odontoblast-lineage cells. In primary human dental pulp cells (HDPCs) and murine dental papilla-derived cells (MDPC-23) cultured in a mineralizing medium, the expression of COUP-TFII was induced along with the increased odontoblast-specific dentin matrix protein-1 (DMP-1) and DSPP expression. Endogenous expression of COUP-TFII in maxillary second molar germs of rats showed an increasing tendency as development of the tooth progressed. Also, COUP-TFII protein was detected in greater quantity in the odontoblastic layer of second molar germs than in that of third molar germs of rats. Overexpression of COUP-TFII using an adenoviral system upregulated the expression of odontoblast-specific genes with increased alkaline phosphatase activity and matrix mineralization in odontoblast-lineage cells. In contrast, knockdown of COUP-TFII using small interfering RNA decreased the expression of odontoblast-specific genes, which reduced matrix mineralization. Mechanistic studies revealed that COUP-TFII increased DSPP transcription by direct binding on the DSPP promoter. In addition, COUP-TFII physically interacted with the homeodomain transcription factor Msx2 and antagonistically regulated the Msx2 effect on DSPP promoter activity. Taken together, these results suggest that COUP-TFII has a stimulatory role in DSPP expression and matrix mineralization in odontoblast-lineage cells.
Collapse
Affiliation(s)
- S-W Hur
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - S-H Oh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - B-C Jeong
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - H Choi
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - J-W Kim
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - K-N Lee
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Y-C Hwang
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - J-H Ryu
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - S-H Kim
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - J-T Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
90
|
Hantak AM, Bagchi IC, Bagchi MK. Role of uterine stromal-epithelial crosstalk in embryo implantation. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2015; 58:139-46. [PMID: 25023679 DOI: 10.1387/ijdb.130348mb] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Embryo implantation is a crucial step for successful pregnancy. Prior to implantation, the luminal epithelium undergoes steroid hormone-induced structural and functional changes that render it competent for embryo attachment. Subsequent invasion of the embryo into the maternal tissue triggers differentiation of the underlying stromal cells to form the decidua, a transient tissue which supports the developing embryo. Many molecular cues of both stromal and epithelial origin have been identified that are critical mediators of this process. An important aspect of uterine biology is the elaborate crosstalk that occurs between these tissue compartments during early pregnancy through expression of paracrine factors regulated by the steroid hormones estrogen and progesterone. Aberrant expression of these factors often leads to implantation failure and infertility. Genetically-engineered mouse models have been instrumental in elucidating what these paracrine factors are, what drives their expression, and what their effects are on neighboring cells. This review provides an overview of several well-characterized signaling pathways that span both epithelial and stromal compartments and their function during implantation in the mouse.
Collapse
Affiliation(s)
- Alison M Hantak
- Departments of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | |
Collapse
|
91
|
Reiter R, Brosch S, Lüdeke M, Fischbein E, Rinckleb A, Haase S, Schwandt A, Pickhard A, Maier C, Högel J, Vogel W. Do Orofacial Clefts Represent Different Genetic Entities? Cleft Palate Craniofac J 2015; 52:115-20. [DOI: 10.1597/13-016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objective To contribute to the understanding of potential genetic differences between different cleft types. Method Analysis of family history concerning cleft type and search for cleft-type–specific associations in candidate genes performed in 98 individuals from 98 families. Results In a given family, the cleft type of a second case was more often identical to the index case than expected by chance. Each type of cleft (cleft lip [CL], cleft lip and palate [CLP], cleft palate only [CP], and submucous cleft palate only [SMCP]) was associated with different genes. Conclusion Family history indicates some specificity of cleft types. The observed phenotype-genotype associations were compatible with this interpretation in that significant associations occurred with disjoint sets of genes in each cleft type. These observations indicate that CL, CLP, CP, and SMCP might represent genetically different entities.
Collapse
Affiliation(s)
- Rudolf Reiter
- Section of Phoniatrics and Pedaudiology, University of Ulm, Ulm, Germany
| | - Sibylle Brosch
- Section of Phoniatrics and Pedaudiology, University of Ulm, Ulm, Germany
| | - Manuel Lüdeke
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Elena Fischbein
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Antje Rinckleb
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Stephan Haase
- Department of Cranio-Maxillo-Facial Surgery, University of Ulm, Ulm, Germany
| | - Anke Schwandt
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Anja Pickhard
- Department of Otolaryngology Head and Neck Surgery, Technical University Munich, Munich, Germany
| | | | - Josef Högel
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Walther Vogel
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| |
Collapse
|
92
|
Lee JT, Choi SY, Kim HL, Kim JY, Lee HJ, Kwon TG. Comparison of gene expression between mandibular and iliac bone-derived cells. Clin Oral Investig 2014; 19:1223-33. [PMID: 25366872 DOI: 10.1007/s00784-014-1353-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/28/2014] [Indexed: 01/31/2023]
Abstract
OBJECTIVES The purpose of this study is to investigate the differences in gene expression between the human mandibular and iliac bone-derived cells (BCs) for better understanding of the site-specific characteristics of bones. METHODS Primary cells were obtained from mandibular and iliac bones from six healthy, elderly donors. To investigate site-specific differences, gene expression profile of mandibular and iliac BC from the same donors were compared via cDNA microarray analysis. RESULTS A comparison of the gene expression profiles revealed that 82 genes were significantly upregulated and 66 genes were downregulated with 1.5 fold or greater in mandibular versus iliac BCs. The most significantly differentially regulated genes were associated with skeletal system development or morphogenesis (SIX1, MSX1, MSX2, HAND2, PRRX1, OSR2, HOX gene family, PITX2). Especially, upregulated genes in mandibular BC were related with tooth morphogenesis, originated from the ectomesenchyme. Microarray analysis revealed that Msx1 was 2.03-fold and Msx2 was 1.99-fold upregulated in mandibular versus iliac BCs (both p < 0.01). Furthermore, in mandibular BCs, all members of the HOX gene family that were analyzed were downregulated (p < 0.01) and osteopontin was also downregulated by 2.84-fold (p < 0.01). CONCLUSIONS Site-specific differences between jaw and long bones can be explained by the differences in gene expression patterns. Our results suggest that bone cell-derived cells maintain the genetic characteristics of their embryological origin. CLINICAL RELEVANCE This study revealed fundamental differences in gene expression between the mandibular and iliac bone in humans. These differences could be important for understanding jaw bone-specific development of bisphosphonate-related osteonecrosis of the jaw.
Collapse
Affiliation(s)
- Jung-Tae Lee
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | |
Collapse
|
93
|
Kamiunten T, Ideno H, Shimada A, Nakamura Y, Kimura H, Nakashima K, Nifuji A. Coordinated expression of H3K9 histone methyltransferases during tooth development in mice. Histochem Cell Biol 2014; 143:259-66. [DOI: 10.1007/s00418-014-1284-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2014] [Indexed: 12/17/2022]
|
94
|
Nassif A, Senussi I, Meary F, Loiodice S, Hotton D, Robert B, Bensidhoum M, Berdal A, Babajko S. Msx1 role in craniofacial bone morphogenesis. Bone 2014; 66:96-104. [PMID: 24929242 DOI: 10.1016/j.bone.2014.06.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/28/2014] [Accepted: 06/02/2014] [Indexed: 01/01/2023]
Abstract
The homeobox gene Msx1 encodes a transcription factor that is highly expressed during embryogenesis and postnatal development in bone. Mutations of the MSX1 gene in humans are associated with cleft palate and (or) tooth agenesis. A similar phenotype is observed in newborn mice invalidated for the Msx1 gene. However, little is known about Msx1 function in osteoblast differentiation and bone mineralization in vivo. In the present study, we aimed to explore the variations of individualized bone shape in a subtle way avoiding the often severe consequences associated with gene mutations. We established transgenic mice that specifically express Msx1 in mineral-matrix-secreting cells under the control of the mouse 2.3kb collagen 1 alpha 1 (Col1α1) promoter, which enabled us to investigate Msx1 function in bone in vivo. Adult transgenic mice (Msx1-Tg) presented altered skull shape and mineralization resulting from increased Msx1 expression during bone development. Serial section analysis of the mandibles showed a high amount of bone matrix in these mice. In addition, osteoblast number, cell proliferation and apoptosis were higher in Msx1-Tg mice than in controls with regional differences that could account for alterations of bone shape. However, Von Kossa staining and μCT analysis showed that bone mineralization was lower in Msx1-Tg mice than in controls due to alteration of osteoblastic differentiation. Msx1 appears to act as a modeling factor for membranous bone; it stimulates trabecular bone metabolism but limits cortical bone growth by promoting apoptosis, and concomitantly controls the collagen-based mineralization process.
Collapse
Affiliation(s)
- Ali Nassif
- Cordeliers Research Center, INSERM UMRS 1138, Laboratory of Molecular Oral Pathophysiology, 15 rue de l'école de médecine, Paris, F-75006, France; Paris-Descartes University, Paris, F-75006, France; Pierre and Marie Curie University, Paris, F-75006, France; Paris-Diderot University, UFR Odontology, Paris, F-75006, France
| | - Ibtisam Senussi
- Cordeliers Research Center, INSERM UMRS 1138, Laboratory of Molecular Oral Pathophysiology, 15 rue de l'école de médecine, Paris, F-75006, France; Paris-Descartes University, Paris, F-75006, France; Pierre and Marie Curie University, Paris, F-75006, France; Paris-Diderot University, UFR Odontology, Paris, F-75006, France
| | - Fleur Meary
- Cordeliers Research Center, INSERM UMRS 1138, Laboratory of Molecular Oral Pathophysiology, 15 rue de l'école de médecine, Paris, F-75006, France; Paris-Descartes University, Paris, F-75006, France; Pierre and Marie Curie University, Paris, F-75006, France; Paris-Diderot University, UFR Odontology, Paris, F-75006, France
| | - Sophia Loiodice
- Cordeliers Research Center, INSERM UMRS 1138, Laboratory of Molecular Oral Pathophysiology, 15 rue de l'école de médecine, Paris, F-75006, France; Paris-Descartes University, Paris, F-75006, France; Pierre and Marie Curie University, Paris, F-75006, France; Paris-Diderot University, UFR Odontology, Paris, F-75006, France
| | - Dominique Hotton
- Cordeliers Research Center, INSERM UMRS 1138, Laboratory of Molecular Oral Pathophysiology, 15 rue de l'école de médecine, Paris, F-75006, France; Paris-Descartes University, Paris, F-75006, France; Pierre and Marie Curie University, Paris, F-75006, France; Paris-Diderot University, UFR Odontology, Paris, F-75006, France
| | - Benoît Robert
- Pasteur Institute, URA CNRS 2578, 25 rue du Docteur Roux, Paris, F-75724, France
| | - Morad Bensidhoum
- Lariboisière-Saint-Louis Medical School, 10 Avenue de Verdun, Paris, F-75010, France
| | - Ariane Berdal
- Cordeliers Research Center, INSERM UMRS 1138, Laboratory of Molecular Oral Pathophysiology, 15 rue de l'école de médecine, Paris, F-75006, France; Paris-Descartes University, Paris, F-75006, France; Pierre and Marie Curie University, Paris, F-75006, France; Paris-Diderot University, UFR Odontology, Paris, F-75006, France
| | - Sylvie Babajko
- Cordeliers Research Center, INSERM UMRS 1138, Laboratory of Molecular Oral Pathophysiology, 15 rue de l'école de médecine, Paris, F-75006, France; Paris-Descartes University, Paris, F-75006, France; Pierre and Marie Curie University, Paris, F-75006, France; Paris-Diderot University, UFR Odontology, Paris, F-75006, France.
| |
Collapse
|
95
|
Nagel S, Ehrentraut S, Meyer C, Kaufmann M, Drexler HG, MacLeod RAF. Repressed BMP signaling reactivates NKL homeobox gene MSX1 in a T-ALL subset. Leuk Lymphoma 2014; 56:480-91. [PMID: 24844359 DOI: 10.3109/10428194.2014.924119] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In T-cell acute lymphoblastic leukemia (T-ALL), several members of the NK-like (NKL) homeobox genes are aberrantly expressed. Here, we have analyzed the activity of NKL homeobox gene MSX1 using pediatric T-ALL in silico data, detecting overexpression in 11% of patients. Quantification of MSX1 transcripts in a panel of 24 T-ALL cell lines demonstrated overexpression in two examples. Comparative expression profiling indicated inhibition of the bone morphogenetic protein (BMP) signaling pathway, which was shown to inhibit MSX1 transcription. In the LOUCY cell line we identified conspicuous expression of CHRDL1 encoding a BMP inhibitor which mediated activation of MSX1. Promoter analyses demonstrated activation of CHRDL1 by oncogenic PITX1. Furthermore, knockdown and overexpression studies of hematopoietic transcription factors demonstrated that GATA2 and FOXC1 mediate activation and GATA3, LEF1, TAL1 and TOX repression of MSX1 transcription. Collectively, our findings suggest that MSX1 is physiologically restricted to lymphoid progenitors. The identification of deregulated BMP signaling may provide novel therapeutic options for the treatment of T-ALL.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ - German Collection of Microorganisms and Cell Cultures , Braunschweig , Germany
| | | | | | | | | | | |
Collapse
|
96
|
Plaisancié J, Collet C, Pelletier V, Perdomo Y, Studer F, Fradin M, Schaefer E, Speeg-Schatz C, Bloch-Zupan A, Flori E, Dollfus H. MSX2 Gene Duplication in a Patient with Eye Development Defects. Ophthalmic Genet 2014; 36:353-8. [PMID: 24666290 DOI: 10.3109/13816810.2014.886270] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND MSX2 mutations are a very rare cause of craniosynostosis. Gain-of-function mutations may lead to the Boston-type craniosynostosis with limb defects and refraction errors, whereas loss-of-function mutations causes primary osseous defects such as enlarged parietal foramina. MATERIALS AND METHODS Herein we report the case of a child with bicoronal synostosis and cutaneous syndactylies, who presented iridal and chorioretinal colobomas. Due to the craniofacial features that were prominent in the clinical picture, the genes involved in craniosynostosis were explored. RESULTS The patient disclosed an intragenic duplication of the entire MSX2 gene whereas no mutation was identified in any major genes known to be involved in craniosynostosis. CONCLUSION This is the first report of an eye development defect due to an increase in the MSX2 copy number in a human being. The implication of this gene in eye development has already been shown in several animal models. Indeed, overexpression of the Msx2 gene in a mouse model resulted also in optic nerve aplasia and microphthalmia. This report expands the phenotypic spectrum of the MSX2 mutations impacting early ocular development knowledge.
Collapse
Affiliation(s)
- Julie Plaisancié
- a Centre de référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), Hôpital Civil , Strasbourg , France
| | - Corinne Collet
- b Service de Biochimie et Biologie Moléculaire, Hôpital Lariboisière , Paris , France
| | - Valerie Pelletier
- a Centre de référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), Hôpital Civil , Strasbourg , France
| | - Yaumara Perdomo
- a Centre de référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), Hôpital Civil , Strasbourg , France
| | - Fouzia Studer
- a Centre de référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), Hôpital Civil , Strasbourg , France
| | - Mélanie Fradin
- c Service de Génétique Médicale, Hôpital de Hautepierre , Strasbourg , France
| | - Elise Schaefer
- c Service de Génétique Médicale, Hôpital de Hautepierre , Strasbourg , France
| | | | - Agnès Bloch-Zupan
- e Reference Centre for Orodental Manifestations of Rare Diseases, Pôle de Médecine et Chirurgie Bucco-Dentaires, Hôpitaux Universitaires de Strasbourg , Strasbourg , France
| | - Elisabeth Flori
- f Laboratoire de Cytogénétique , Hôpital de Hautepierre , Strasbourg , France , and
| | - Hélène Dollfus
- a Centre de référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), Hôpital Civil , Strasbourg , France .,c Service de Génétique Médicale, Hôpital de Hautepierre , Strasbourg , France .,g Laboratoire de Génétique Médicale , INSERM U1112 , Strasbourg , France
| |
Collapse
|
97
|
Nagel S, Ehrentraut S, Meyer C, Kaufmann M, Drexler HG, MacLeod RAF. Oncogenic deregulation of NKL homeobox gene MSX1 in mantle cell lymphoma. Leuk Lymphoma 2014; 55:1893-903. [PMID: 24237447 DOI: 10.3109/10428194.2013.864762] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
NKL homeobox gene MSX1 is physiologically expressed during embryonic hematopoiesis. Here, we detected MSX1 overexpression in three examples of mantle cell lymphoma (MCL) and one of acute myeloid leukemia (AML) by screening 96 leukemia/lymphoma cell lines via microarray profiling. Moreover, in silico analysis identified significant overexpression of MSX1 in 3% each of patients with MCL and AML, confirming aberrant activity in subsets of both types of malignancies. Comparative expression profiling analysis and subsequent functional studies demonstrated overexpression of histone acetyltransferase PHF16 together with transcription factors FOXC1 and HLXB9 as activators of MSX1 transcription. Additionally, we identified regulation of cyclin D1/CCND1 by MSX1 and its repressive cofactor histone H1C. Fluorescence in situ hybridization in MCL cells showed that t(11;14)(q13;q32) results in detachment of CCND1 from its corresponding repressive MSX1 binding site. Taken together, we uncovered regulators and targets of homeobox gene MSX1 in leukemia/lymphoma cells, supporting the view of a recurrent genetic network that is reactivated in malignant transformation.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ - German Collection of Microorganisms and Cell Cultures , Braunschweig , Germany
| | | | | | | | | | | |
Collapse
|
98
|
Simon Y, Marchadier A, Riviere MK, Vandamme K, Koenig F, Lezot F, Trouve A, Benhamou CL, Saffar JL, Berdal A, Nefussi JR. Cephalometric assessment of craniofacial dysmorphologies in relation with Msx2 mutations in mouse. Orthod Craniofac Res 2014; 17:92-105. [PMID: 24387797 DOI: 10.1111/ocr.12035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2013] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To determine the role of Msx2 in craniofacial morphology and growth, we used a mouse model and performed a quantitative morphological characterization of the Msx2 (-/-) and the Msx2 (+/-) phenotype using a 2D cephalometric analysis applied on micrographs. MATERIALS AND METHODS Forty-four three-and-a-half-month-old female CD1 mice were divided into the following three groups: Msx2 (+/+) (n = 16), Msx2 (+/-) (n = 16), and Msx2 (-/-) (n = 12). Profile radiographs were scanned. Modified cephalometric analysis was performed to compare the three groups. RESULTS Compared with the wild-type mice, the Msx2 (-/-) mutant mice presented an overall craniofacial size decrease and modifications of the shape of the different parts of the craniofacial skeleton, namely the neurocranium, the viscerocranium, the mandible, and the teeth. In particular, dysmorphologies were seen in the cochlear apparatus and the teeth (taurodontism, reduced incisor curvature). Finally contrary to previous published results, we were able to record a specific phenotype of the Msx2 (+/-) mice with this methodology. This Msx2 (+/-) mouse phenotype was not intermediate between the Msx2 (-/-) and the wild-type animals. CONCLUSION Msx2 plays an important role in craniofacial morphogenesis and growth because almost all craniofacial structures were affected in the Msx2(-/-) mice including both intramembranous and endochondral bones, the cochlear apparatus, and the teeth. In addition, Msx2 haploinsufficiency involves a specific phenotype with subtle craniofacial structures modifications compared with human mutations.
Collapse
Affiliation(s)
- Y Simon
- Team 5, UMRS 872 INSERM, Paris, France; INSERM, U 658-IPROS CHR Orléans BP 2439, Orléans Cedex 1, France; Dental School, University Paris 5 Descartes, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Bioinformatic Analysis of Msx1 and Msx2 Involved in Craniofacial Development. J Craniofac Surg 2014; 25:129-34. [DOI: 10.1097/scs.0000000000000373] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
100
|
Kawakami M, Okuda H, Tatsumi K, Kirita T, Wanaka A. Inhibition of Wnt/β-catenin pathway by Dickkopf-1 [corrected] affects midfacial morphogenesis in chick embryo. J Biosci Bioeng 2013; 117:664-9. [PMID: 24378667 DOI: 10.1016/j.jbiosc.2013.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 11/11/2013] [Accepted: 11/25/2013] [Indexed: 10/25/2022]
Abstract
The development of the vertebrate face is regulated by complex interactions among several signaling pathways. Dickkopf-1 (Dkk-1), an inhibitor of the Wnt/β-catenin signaling pathway, can affect midfacial morphogenesis. The downstream target genes of the Wnt/β-catenin signaling pathway in morphogenesis of the developing upper jaw and lip remain unknown. To investigate the functional roles of Wnt/β-catenin signaling in facial development, we performed a loss-of-function experiment using local implantation of beads soaked with Dkk-1 during lip fusion at the maxillary prominence of chick embryos at stage 22(HH22). Antagonism of Wnt/β-catenin signaling by Dkk-1 induced deformities of the premaxilla and jugal bone, which are derived from the maxillary mesenchyme. Real-time and semi-quantitative RT-PCR analysis showed the significant reduction of Lhx8, Msx1 and Msx2 expression levels around the beads in the maxillary mesenchyme at 6 and 24 h after bead implantation. Time course experiments in the HH 22 embryos showed the effect of Dkk-1 on Lhx8, Msx1 and Msx2 expression was not significant after 48 h of the treatment. At HH 26 when the fusion of facial primordial started, Dkk-1 application did not exhibit any significant reduction of those genes. Our findings suggested that Dkk-1 regulates maxillary morphogenesis in chick embryos through Lhx8, Msx1 and Msx2 signals. Wnt/β-catenin signaling is responsible for intrinsic upper jaw development before the lip fusion.
Collapse
Affiliation(s)
- Masayoshi Kawakami
- Department of Oral and Maxillofacial Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan.
| | - Hiroaki Okuda
- Department of Anatomy and Neurosciences, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan.
| | - Kouko Tatsumi
- Department of Anatomy and Neurosciences, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan.
| | - Tadaaki Kirita
- Department of Oral and Maxillofacial Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan.
| | - Akio Wanaka
- Department of Anatomy and Neurosciences, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan.
| |
Collapse
|