51
|
Helmbold P, Lahtz C, Enk A, Herrmann-Trost P, Marsch WC, Kutzner H, Dammann RH. Frequent occurrence ofRASSF1Apromoter hypermethylation and merkel cell polyomavirus in merkel cell carcinoma. Mol Carcinog 2009; 48:903-9. [DOI: 10.1002/mc.20540] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
52
|
Sepulveda AR, Jones D, Ogino S, Samowitz W, Gulley ML, Edwards R, Levenson V, Pratt VM, Yang B, Nafa K, Yan L, Vitazka P. CpG methylation analysis--current status of clinical assays and potential applications in molecular diagnostics: a report of the Association for Molecular Pathology. J Mol Diagn 2009; 11:266-78. [PMID: 19541921 DOI: 10.2353/jmoldx.2009.080125] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Methylation of CpG islands in gene promoter regions is a major molecular mechanism of gene silencing and underlies both cancer development and progression. In molecular oncology, testing for the CpG methylation of tissue DNA has emerged as a clinically useful tool for tumor detection, outcome prediction, and treatment selection, as well as for assessing the efficacy of treatment with the use of demethylating agents and monitoring for tumor recurrence. In addition, because CpG methylation occurs early in pre-neoplastic tissues, methylation tests may be useful as markers of cancer risk in patients with either infectious or inflammatory conditions. The Methylation Working Group of the Clinical Practice Committee of the Association of Molecular Pathology has reviewed the current state of clinical testing in this area. We report here our summary of both the advantages and disadvantages of various methods, as well as the needs for standardization and reporting. We then conclude by summarizing the most promising areas for future clinical testing in cancer molecular diagnostics.
Collapse
Affiliation(s)
- Antonia R Sepulveda
- Methylation Working Group of the Association for Molecular Pathology Clinical Practice Committee, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Fan H, Zhao ZJ, Cheng J, Su XW, Wu QX, Shan YF. Overexpression of DNA methyltransferase 1 and its biological significance in primary hepatocellular carcinoma. World J Gastroenterol 2009; 15:2020-6. [PMID: 19399937 PMCID: PMC2675095 DOI: 10.3748/wjg.15.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the relationship between DNA methyltransferase 1 (DNMT1) and hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) and its biological significance in primary HCC.
METHODS: We carried out an immunohistochemical examination of DNMT1 in both HCC and paired non-neoplastic liver tissues from Chinese subjects. DNMT1 mRNA was further examined in HCC cell lines by real-time PCR. We inhibited DNMT1 using siRNA and detected the effect of depletion of DNMT1 on cell proliferation ability and cell apoptosis in the HCC cell line SMMC-7721.
RESULTS: DNMT1 protein expression was increased in HCCs compared to histologically normal non-neoplastic liver tissues and the incidence of DNMT1 immunoreactivity in HCCs correlated significantly with poor tumor differentiation (P = 0.014). There were more cases with DNMT1 overexpression in HCC with HBV (42.85%) than in HCC without HBV (28.57%). However, no significant difference in DNMT1 expression was found in HBV-positive and HBV-negative cases in the Chinese HCC group. There was a trend that DNMT1 RNA expression increased more in HCC cell lines than in pericarcinoma cell lines and normal liver cell lines. In addition, we inhibited DNMT1 using siRNA in the SMMC-7721 HCC cell line and found depletion of DNMT1 suppressed cells growth independent of expression of proliferating cell nuclear antigen (PCNA), even in HCC cell lines where DNMT1 was stably decreased.
CONCLUSION: The findings implied that DNMT1 plays a key role in HBV-related hepatocellular tumorigenesis. Depletion of DNMT1 mediates growth suppression in SMMC-7721 cells.
Collapse
|
54
|
Minárovits J. Microbe-induced epigenetic alterations in host cells: the coming era of patho-epigenetics of microbial infections. A review. Acta Microbiol Immunol Hung 2009; 56:1-19. [PMID: 19388554 DOI: 10.1556/amicr.56.2009.1.1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is well documented that the double-stranded DNA (dsDNA) genomes of certain viruses and the proviral genomes of retroviruses are regularly targeted by epigenetic regulatory mechanisms (DNA methylation, histone modifications, binding of regulatory proteins) in infected cells. In parallel, proteins encoded by viral genomes may affect the activity of a set of cellular promoters by interacting with the very same epigenetic regulatory machinery. This may result in epigenetic dysregulation and subsequent cellular dysfunctions that may manifest in or contribute to the development of pathological changes (e.g. initiation and progression of malignant neoplasms; immunodeficiency). Bacteria infecting mammals may cause diseases in a similar manner, by causing hypermethylation of key cellular promoters at CpG dinucleotides (promoter silencing, e.g. by Campylobacter rectus in the placenta or by Helicobacter pylori in gastric mucosa). I suggest that in addition to viruses and bacteria, other microparasites (protozoa) as well as macroparasites (helminths, arthropods, fungi) may induce pathological changes by epigenetic reprogramming of host cells they are interacting with. Elucidation of the epigenetic consequences of microbe-host interactions (the emerging new field of patho-epigenetics) may have important therapeutic implications because epigenetic processes can be reverted and elimination of microbes inducing patho-epigenetic changes may prevent disease development.
Collapse
Affiliation(s)
- J Minárovits
- Microbiological Research Group, National Center for Epidemiology, Piheno u. 1, H-1529 Budapest, Hungary.
| |
Collapse
|
55
|
Zheng DL, Zhang L, Cheng N, Xu X, Deng Q, Teng XM, Wang KS, Zhang X, Huang J, Han ZG. Epigenetic modification induced by hepatitis B virus X protein via interaction with de novo DNA methyltransferase DNMT3A. J Hepatol 2009; 50:377-87. [PMID: 19070387 DOI: 10.1016/j.jhep.2008.10.019] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 09/20/2008] [Accepted: 10/09/2008] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIMS The hepatitis B virus X protein (HBx) has been implicated as a potential trigger of the epigenetic deregulation of some genes, but the underlying mechanisms remain unknown. The aim of this study was to identify underlying mechanisms involved in HBx-mediated epigenetic modification. METHODS Interactions between HBx and DNA methyltransferase (DNMT) or histone deacetylase-1 (HDAC1) were assessed by co-immunoprecipitation. DNA methylation of gene promoters was detected by bisulfite sequencing, and HBx-mediated protein binding to gene regulatory elements was evaluated by chromatin immunoprecipitation. Target gene transcriptional activity was measured by real-time polymerase chain reaction. RESULTS HBx can interact directly with DNMT3A and HDAC1. HBx recruited DNMT3A to the regulatory promoters of interleukin-4 receptor and metallothionein-1F and subsequently silenced their transcription via de novo DNA methylation. By contrast, the transcription of CDH6 and IGFBP3 was triggered by HBx through the deprivation of DNMT3A from their promoters. Transcriptional levels of target genes in hepatocellular carcinoma (HCC) specimens were strongly correlated with the occurrence of HBx. CONCLUSIONS The interaction of HBx and DNMT3A facilitates cellular epigenetic modification (via regional hypermethylation or hypomethylation) at distinct genomic loci, providing an alternative mechanism within HBx-mediated transcriptional regulation, and a profound understanding of hepatitis and HCC pathogenesis.
Collapse
Affiliation(s)
- Da-Li Zheng
- National Human Genome Center of Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui-Jin Road II, Shanghai 200025, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
|
57
|
Kong J, Nakagawa H, Isariyawongse BK, Funakoshi S, Silberg DG, Rustgi AK, Lynch JP. Induction of intestinalization in human esophageal keratinocytes is a multistep process. Carcinogenesis 2009; 30:122-30. [PMID: 18845559 PMCID: PMC2722140 DOI: 10.1093/carcin/bgn227] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 08/28/2008] [Accepted: 09/24/2008] [Indexed: 12/22/2022] Open
Abstract
Barrett's esophagus (BE) is the replacement of normal squamous esophageal mucosa with an intestinalized columnar epithelium. The molecular mechanisms underlying its development are not understood. Cdx2 is an intestine-specific transcription factor that is ectopically expressed in BE, but its role in this process is unclear. Herein, we describe a novel cell culture model for BE. Retroviral-mediated Cdx2 expression in immortalized human esophageal keratinocytes [EPC-human telomerase reverse transcriptase (hTERT)] could transiently be established but not maintained and was associated with a reduction in cell proliferation. Coexpression of cyclin D1, but not a dominant-negative p53, rescued proliferation in the Cdx2-expressing cells. Cdx2 expression in the EPC-hTERT.D1 cells decreased cell proliferation but did not induce intestinalization. We investigated for other treatments to enhance intestinalization and found that acidic culture conditions uniformly killed EPC-hTERT.D1.Cdx2 cells. However, treatment with 5-aza-2-deoxycytidine (5-AzaC) to demethylate epigenetically silenced genes did appear to be tolerated. Multiple Cdx2 target genes, markers of intestinal differentiation and markers of BE, were induced by this 5-AzaC treatment. More interestingly, the expression level of several of these genes was enhanced only in the EPC-hTERT.D1-Cdx2 cells treated with 5-AzaC. Two of these, SLC26a3/DRA (downregulated in adenoma) and Na+/H+ exchanger 2 (NHE2), were not previously known to be elevated in BE; however, we confirmed their elevation in BE tissue samples. 5-AzaC treatment also induced cell senescence, even at low doses. We conclude that ectopic proliferation signals, alterations in epigenetic gene regulation and the inhibition of tumor suppressor mechanisms are required for Cdx2-mediated intestinalization of human esophageal keratinocytes in BE.
Collapse
Affiliation(s)
- Jianping Kong
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hiroshi Nakagawa
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brandon K. Isariyawongse
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shinsuke Funakoshi
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Debra G. Silberg
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA 19104, USA
- AstraZeneca LP, Wilmington, DE 19850-5437, USA
| | - Anil K. Rustgi
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John P. Lynch
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
58
|
The reversal of epigenetic silencing of the EBV genome is regulated by viral bZIP protein. Biochem Soc Trans 2008; 36:637-9. [PMID: 18631132 DOI: 10.1042/bst0360637] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
EBV (Epstein-Barr virus) alternates between latency and lytic replication. During latency, the viral genome is largely silenced by host-driven methylation of CpG motifs and in the switch to the lytic cycle this epigenetic silencing is overturned. A key event is the activation of the viral protein Zta with three ZREs (Zta-response elements) from the BRLF1 promoter (referred to as Rp). Two of these ZREs contain CpG motifs and are methylated in the latent genome. Biochemical analyses and molecular modelling of Zta bound to methylated RpZRE3 indicate the precise contacts made between a serine and a cysteine residue of Zta with methyl cytosines. A single point mutant of Zta, C189S, is defective in binding to the methylated ZREs both in vitro and in vivo. This was used to probe the functional relevance of the interaction. ZtaC189S was not able to activate Rp in a B-cell line, demonstrating the relevance of the interaction with methylated ZREs. This demonstrates that Zta plays a role in overturning the epigenetic control of viral latency.
Collapse
|
59
|
Chang H, Yi B, Li L, Zhang HY, Sun F, Dong SQ, Cao Y. Methylation of tumor associated genes in tissue and plasma samples from liver disease patients. Exp Mol Pathol 2008; 85:96-100. [PMID: 18691570 DOI: 10.1016/j.yexmp.2008.07.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 07/08/2008] [Indexed: 12/26/2022]
Abstract
To investigate whether aberrant hypermethylation in plasma DNA could be used as diagnosis makers for hepatocellular carcinoma (HCC), we performed methylation-specific PCR (MSP) to check the methylation status of five tumor associated genes in 36 cases of tissue and 42 cases of plasma samples from HCC and liver cirrhosis patients, respectively. The hypermethylation frequency of GSTP1 and RASSF1A showed significant difference between HCCs and liver cirrhosis with or without HBV infection (P<0.05), but differences of the hypermethylation status of APC, E-cadherin, and P16 were not statistically significant. There were no significant differences in the hypermethylation status of five genes between the groups of cirrhosis with and without HBV infection. The significant differences of E-cadherin, GSTP1, P16, and RASSF1A in methylation between HCCs and liver cirrhosis were not observed in the plasma samples. Furthermore, the inconsistent results of MSP and real-time quantitative PCR for the paired samples of tissue and plasma suggested that plasma DNA could not fully stand for tissue DNA. In conclusion, hypermethylation of some specific, but not all, tumor associated genes may be involved in hepatocarcinogenesis; examination of the methylation status of E-cadherin, GSTP1, P16, and RASSF1A in the plasma samples might have limited usage for HCC diagnosis.
Collapse
Affiliation(s)
- Hong Chang
- Laboratory of Molecular and Experimental Pathology, Key Laboratory of Animal Models and Human Disease Mechanism, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | | | | | | | | | | | | |
Collapse
|
60
|
Yalcin A, Serin MS, Emekdas G, Tiftik N, Aslan G, Eskandari G, Tezcan S. Promoter methylation of P15(INK4B) gene is possibly associated with parvovirus B19 infection in adult acute leukemias. Int J Lab Hematol 2008; 31:407-19. [PMID: 18384396 DOI: 10.1111/j.1751-553x.2008.01052.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this study, we examined the P15(INK4B) gene promoter methylation in patients with myelodysplastic syndrome and acute leukemia and its possible relationship with parvovirus B19 and Epstein-Barr virus infections. P15(INK4B) methylation frequency was significantly higher in acute leukemia patients than in that of non-malignant patients (P < 0.05). When the patients with myelodysplastic syndrome were included, no significant difference was found between these groups regarding the methylation status. The possible correlation between P15(INK4B) promoter methylation and parvovirus B19 infection was observed in adult acute leukemia patients (P < 0.05). However, no similar relationship in EBV-infected patients was observed. To the best of our knowledge, this is the first report showing the possible association between P15(INK4B) promoter methylation and parvovirus B19 infection in acute leukemia.
Collapse
Affiliation(s)
- A Yalcin
- Department of Hematology, Faculty of Medicine, University of Mersin, Mersin, Turkey.
| | | | | | | | | | | | | |
Collapse
|
61
|
Park IY, Sohn BH, Yu E, Suh DJ, Chung YH, Lee JH, Surzycki SJ, Lee YI. Aberrant epigenetic modifications in hepatocarcinogenesis induced by hepatitis B virus X protein. Gastroenterology 2007; 132:1476-94. [PMID: 17408664 DOI: 10.1053/j.gastro.2007.01.034] [Citation(s) in RCA: 243] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 12/14/2006] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS The involvement of the hepatitis B virus X (HBx) protein in epigenetic modifications during hepatocarcinogenesis has not been previously characterized. The aim of the present study was to identify the involvement of HBx in regional hypermethylation and global hypomethylation during the formation of hepatocellular carcinoma (HCC). METHODS Liver cell lines were transiently or stably transfected with an HBx-expressing vector. DNA methyltransferase (DNMT) promoter activity changes were examined by luciferase assay and chromatin immunoprecipitation. The methylation status of insulin-like growth factor binding protein-3 was examined by methyl-specific polymerase chain reaction and bisulfite sequencing. Global DNA methylation levels were examined using 5-methylcytosine dot blot and methylation-sensitive Southern blot analysis. HBx-mediated DNA methylation abnormalities were confirmed in patient HCC samples using methyl-specific polymerase chain reaction and 5-methylcytosine dot blot analysis. RESULTS HBx expression increased total DNMT activities by up-regulation of DNMT1, DNMT3A1, and DNMT3A2 and selectively promoted regional hypermethylation of specific tumor suppressor genes. HBx specifically repressed insulin-like growth factor-3 expression through de novo methylation via DNMT3A1 and DNMT3A2 and by inhibiting SP1 binding via recruiting methyl CpG binding protein 2 to the newly methylated SP1 binding element. HBx also induced global hypomethylation of satellite 2 repeat sequences by down-regulating DNMT3B. The prevalence of these specific methylation abnormalities by HBx was significantly correlated with HBx expression in HBV-infected HCC patients. CONCLUSIONS Targeted deregulation of DNMTs by HBx promotes both specific regional hypermethylation and global hypomethylation. These epigenetic modulations by HBx may suggest a mechanism for epigenetic tumorigenesis during HBV-mediated hepatocarcinogenesis.
Collapse
Affiliation(s)
- In Young Park
- Liver Cell Signal Transduction Laboratory, Molecular Cancer Research Center, KRIBB, Daejeon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Merimi M, Klener P, Szynal M, Cleuter Y, Kerkhofs P, Burny A, Martiat P, Van den Broeke A. Suppression of viral gene expression in bovine leukemia virus-associated B-cell malignancy: interplay of epigenetic modifications leading to chromatin with a repressive histone code. J Virol 2007; 81:5929-39. [PMID: 17392371 PMCID: PMC1900279 DOI: 10.1128/jvi.02606-06] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ovine leukemia/lymphoma resulting from bovine leukemia virus infection of sheep offers a large animal model for studying mechanisms underlying leukemogenesis. Silencing of viral information including Tax, the major contributor to the oncogenic potential of the virus, is critical if not mandatory for tumor progression. In this study, we have identified epigenetic mechanisms that govern the complete suppression of viral expression, using a lymphoma-derived B-cell clone carrying a silent provirus. Silencing was not relieved by injection of the malignant B cells into sheep. However, exogenous expression of Tax or treatment with either the DNA methyltransferase inhibitor 5'azacytidine or the histone deacetylase (HDAC) inhibitor trichostatin A rescued viral expression, as demonstrated by in vivo infectivity trials. Comparing silent and reactivated provirus, we found mechanistic connections between chromatin conformation and tumor-associated transcriptional repression. Silencing is associated with DNA methylation and decreased accessibility of promoter sequences. HDAC1 and the transcriptional corepressor mSin3A are associated with the inactive but not the reactivated promoter. Silencing correlates with a repressed chromatin structure marked by histone H3 and H4 hypoacetylation, a loss of methylation at H3 lysine 4, and an increase of H3 lysine 9 methylation. These observations point to the critical role of epigenetic mechanisms in tumor-specific virus/oncogene silencing, a potential strategy to evade immune response and favor the propagation of the transformed cell.
Collapse
Affiliation(s)
- Makram Merimi
- Laboratory of Experimental Hematology, Bordet Institute, ULB, 121, Blvd. de Waterloo, 1000 Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Flanagan JM. Host epigenetic modifications by oncogenic viruses. Br J Cancer 2007; 96:183-8. [PMID: 17179991 PMCID: PMC2359987 DOI: 10.1038/sj.bjc.6603516] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 11/06/2006] [Accepted: 11/09/2006] [Indexed: 12/29/2022] Open
Abstract
Epigenetic alterations represent an important step in the initiation and progression of most human cancers, but it is difficult to differentiate the early cancer causing alterations from later consequences. Oncogenic viruses can induce transformation via expression of only a small number of viral genes. Therefore, the mechanisms by which oncogenic viruses cause cancer may provide clues as to which epigenetic alterations are critical in early carcinogenesis.
Collapse
Affiliation(s)
- J M Flanagan
- CR-UK Viral Oncology Group, Wolfson Institute for Biomedical Research, Gower Street, University College London, London WC1E 6BT, UK.
| |
Collapse
|
64
|
Abstract
The identification of high-risk human papillomavirus (HPV) types as a necessary cause of cervical cancer offers the prospect of effective primary prevention and the possibility of improving the efficiency of cervical screening programmes. However, for these opportunities to be realized, a more complete understanding of the natural history of HPV infection, and its relationship to the development of epithelial abnormalities of the cervix, is required. We discuss areas of uncertainty, and their possible effect on disease prevention strategies.
Collapse
Affiliation(s)
- Ciaran B J Woodman
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | |
Collapse
|
65
|
Amara K, Trimeche M, Ziadi S, Laatiri A, Hachana M, Sriha B, Mokni M, Korbi S. Presence of simian virus 40 DNA sequences in diffuse large B-cell lymphomas in Tunisia correlates with aberrant promoter hypermethylation of multiple tumor suppressor genes. Int J Cancer 2007; 121:2693-702. [PMID: 17724719 DOI: 10.1002/ijc.23038] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The simian virus SV40 (SV40), a potent DNA oncogenic polyomavirus, has been detected in several human tumors including lymphomas, mainly in diffuse large B-cell type (DLBCL). However, a causative role for this virus has not been convincingly established. Hypermethylation in promoter regions is a frequent process of silencing tumor suppressor genes (TSGs) in cancers, which may be induced by oncogenic viruses. In this study, we investigated the relationship between the presence of SV40 DNA sequences and the methylation status of 13 TSGs in 108 DLBCLs and 60 nontumoral samples from Tunisia. SV40 DNA presence was investigated by PCR assays targeting the large T-antigen, the regulatory and the VP1 regions. Hypermethylation was carried out by methylation-specific PCR. SV40 DNA was detected in 63/108 (56%) of DLBCL and in 4/60 (6%) of nontumoral samples. Hypermethylation frequencies for the tested TSGs were 74% for DAPK, 70% for CDH1, SHP1, and GSTP1, 58% for p16, 54% for APC, 50% for p14, 39% for p15, 19% for RB1, 15% for BLU, 3% for p53, and 0% for p300 and MGMT. No hypermethylation was observed in nontumoral samples. Hypermethylation of SHP1, DAPK, CDH1, GSTP1 and p16 genes were significantly higher in SV40-positive than in SV40-negative DLBCL samples (p values ranging from 0.0006 to <0.0001). Our findings showed a high prevalence of SV40 DNA in DLBCLs in Tunisia. The significant association of promoter hypermethylation of multiple TSGs with the presence of SV40 DNA in DLBCLs supports a functional effect of the virus in those lymphomas.
Collapse
MESH Headings
- Apoptosis/genetics
- Cell Adhesion/genetics
- Cell Cycle/genetics
- Cell Differentiation/genetics
- DNA Methylation
- DNA Repair/genetics
- DNA, Viral
- Electrophoresis, Agar Gel
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Genes, Tumor Suppressor
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/virology
- Neoplasm Invasiveness
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Simian virus 40
- Tumor Suppressor Proteins/genetics
- Tunisia
Collapse
Affiliation(s)
- Khaled Amara
- Laboratory of Pathology, CHU Farhat Hached, Sousse, Tunisia
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Vanden Berghe W, Ndlovu MN, Hoya-Arias R, Dijsselbloem N, Gerlo S, Haegeman G. Keeping up NF-κB appearances: Epigenetic control of immunity or inflammation-triggered epigenetics. Biochem Pharmacol 2006; 72:1114-31. [PMID: 16934762 DOI: 10.1016/j.bcp.2006.07.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 07/13/2006] [Accepted: 07/17/2006] [Indexed: 02/06/2023]
Abstract
Controlled expression of cytokine genes is an essential component of an immune response and is crucial for homeostasis. In order to generate an appropriate response to an infectious condition, the type of cytokine, as well as the cell type, dose range and the kinetics of its expression are of critical importance. The nuclear factor-kappaB (NF-kappaB) family of transcription factors has a crucial role in rapid responses to stress and pathogens (innate immunity), as well as in development and differentiation of immune cells (acquired immunity). Although quite a number of genes contain NF-kappaB-responsive elements in their regulatory regions, their expression pattern can significantly vary from both a kinetic and quantitative point of view, reflecting the impact of environmental and differentiative cues. At the transcription level, selectivity is conferred by the expression of specific NF-kappaB subunits and their respective posttranslational modifications, and by combinatorial interactions between NF-kappaB and other transcription factors and coactivators, that form specific enhanceosome complexes in association with particular promoters. These enhanceosome complexes represent another level of signaling integration, whereby the activities of multiple upstream pathways converge to impress a distinct pattern of gene expression upon the NF-kappaB-dependent transcriptional network. Today, several pieces of evidence suggest that the chromatin structure and epigenetic settings are the ultimate integration sites of both environmental and differentiative inputs, determining proper expression of each NF-kappaB-dependent gene. We will therefore discuss in this review the multilayered interplay of NF-kappaB signaling and epigenome dynamics, in achieving appropriate gene expression responses and transcriptional activity.
Collapse
Affiliation(s)
- Wim Vanden Berghe
- Laboratory for Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Molecular Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium.
| | | | | | | | | | | |
Collapse
|
67
|
Jung EJ, Lee YM, Lee BL, Chang MS, Kim WH. Lytic induction and apoptosis of Epstein-Barr virus-associated gastric cancer cell line with epigenetic modifiers and ganciclovir. Cancer Lett 2006; 247:77-83. [PMID: 16647201 DOI: 10.1016/j.canlet.2006.03.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 03/19/2006] [Accepted: 03/24/2006] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV) is an oncogenic herpes virus. EBV gene transcription is regulated by an epigenetic mechanism to establish a persistent infection and to evade the host immune system. We found that low concentrations of epigenetic modifying agents, 5-aza-2'-deoxycytidine (5-aza-CdR) or trichostatin A (TSA), induced the expression of BMRF1, BZLF1, and BRLF1 genes, which are found in the lytic form of the virus, in an EBV-positive gastric cancer cell line. This effect did not involve PI3 kinase, MAP/ERK kinase, protein kinase C delta, or p38 MAPK signaling pathway. The cytotoxic effect of ganciclovir (GCV) was enhanced after the lytic induction by epigenetic modifiers, and the combination of GCV and epigenetic modifiers induced apoptosis, which is dependent on caspases. In conclusion, the combination of GCV with 5-aza-CdR or TSA might be a useful therapeutic strategy for EBV-induced human gastric cancer.
Collapse
Affiliation(s)
- Eun Ji Jung
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | | | | | | | | |
Collapse
|