51
|
Receptor binding proteins of Listeria monocytogenes bacteriophages A118 and P35 recognize serovar-specific teichoic acids. Virology 2015; 477:110-118. [DOI: 10.1016/j.virol.2014.12.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 01/06/2023]
|
52
|
González-García VA, Pulido-Cid M, Garcia-Doval C, Bocanegra R, van Raaij MJ, Martín-Benito J, Cuervo A, Carrascosa JL. Conformational changes leading to T7 DNA delivery upon interaction with the bacterial receptor. J Biol Chem 2015; 290:10038-44. [PMID: 25697363 DOI: 10.1074/jbc.m114.614222] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Indexed: 01/31/2023] Open
Abstract
The majority of bacteriophages protect their genetic material by packaging the nucleic acid in concentric layers to an almost crystalline concentration inside protein shells (capsid). This highly condensed genome also has to be efficiently injected into the host bacterium in a process named ejection. Most phages use a specialized complex (often a tail) to deliver the genome without disrupting cell integrity. Bacteriophage T7 belongs to the Podoviridae family and has a short, non-contractile tail formed by a tubular structure surrounded by fibers. Here we characterize the kinetics and structure of bacteriophage T7 DNA delivery process. We show that T7 recognizes lipopolysaccharides (LPS) from Escherichia coli rough strains through the fibers. Rough LPS acts as the main phage receptor and drives DNA ejection in vitro. The structural characterization of the phage tail after ejection using cryo-electron microscopy (cryo-EM) and single particle reconstruction methods revealed the major conformational changes needed for DNA delivery at low resolution. Interaction with the receptor causes fiber tilting and opening of the internal tail channel by untwisting the nozzle domain, allowing release of DNA and probably of the internal head proteins.
Collapse
Affiliation(s)
- Verónica A González-García
- From the Structure of Macromolecules Department, Centro Nacional de Biotecnología (CSIC), Darwin 3, Cantoblanco, 28049 Madrid and
| | - Mar Pulido-Cid
- From the Structure of Macromolecules Department, Centro Nacional de Biotecnología (CSIC), Darwin 3, Cantoblanco, 28049 Madrid and
| | - Carmela Garcia-Doval
- From the Structure of Macromolecules Department, Centro Nacional de Biotecnología (CSIC), Darwin 3, Cantoblanco, 28049 Madrid and
| | - Rebeca Bocanegra
- From the Structure of Macromolecules Department, Centro Nacional de Biotecnología (CSIC), Darwin 3, Cantoblanco, 28049 Madrid and
| | - Mark J van Raaij
- From the Structure of Macromolecules Department, Centro Nacional de Biotecnología (CSIC), Darwin 3, Cantoblanco, 28049 Madrid and
| | - Jaime Martín-Benito
- From the Structure of Macromolecules Department, Centro Nacional de Biotecnología (CSIC), Darwin 3, Cantoblanco, 28049 Madrid and
| | - Ana Cuervo
- From the Structure of Macromolecules Department, Centro Nacional de Biotecnología (CSIC), Darwin 3, Cantoblanco, 28049 Madrid and
| | - José L Carrascosa
- From the Structure of Macromolecules Department, Centro Nacional de Biotecnología (CSIC), Darwin 3, Cantoblanco, 28049 Madrid and Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
53
|
Virus evolution toward limited dependence on nonessential functions of the host: the case of bacteriophage SPP1. J Virol 2014; 89:2875-83. [PMID: 25540376 DOI: 10.1128/jvi.03540-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED All viruses are obligate intracellular parasites and depend on certain host cell functions for multiplication. However, the extent of such dependence and the exact nature of the functions provided by the host cell remain poorly understood. Here, we investigated if nonessential Bacillus subtilis genes are necessary for multiplication of bacteriophage SPP1. Screening of a collection of 2,514 single-gene knockouts of nonessential B. subtilis genes yielded only a few genes necessary for efficient SPP1 propagation. Among these were genes belonging to the yuk operon, which codes for the Esat-6-like secretion system, including the SPP1 receptor protein YueB. In addition, we found that SPP1 multiplication was negatively affected by the absence of two other genes, putB and efp. The gene efp encodes elongation factor P, which enhances ribosome activity by alleviating translational stalling during the synthesis of polyproline-containing proteins. PutB is an enzyme involved in the proline degradation pathway that is required for infection in the post-exponential growth phase of B. subtilis, when the bacterium undergoes a complex genetic reprogramming. The putB knockout shortens significantly the window of opportunity for SPP1 infection during the host cell life cycle. This window is a critical parameter for competitive phage multiplication in the soil environment, where B. subtilis rarely meets conditions for exponential growth. Our results in combination with those reported for other virus-host systems suggest that bacterial viruses have evolved toward limited dependence on nonessential host functions. IMPORTANCE A successful viral infection largely depends on the ability of the virus to hijack cellular machineries and to redirect the flow of building blocks and energy resources toward viral progeny production. However, the specific virus-host interactions underlying this fundamental transformation are poorly understood. Here, we report on the first systematic analysis of virus-host cross talk during bacteriophage infection in Gram-positive bacteria. We show that lytic bacteriophage SPP1 is remarkably independent of nonessential genes of its host, Bacillus subtilis, with only a few cellular genes being necessary for efficient phage propagation. We hypothesize that such limited dependence of the virus on its host results from a constant "evolutionary arms race" and might be much more widespread than currently thought.
Collapse
|
54
|
Langlois C, Ramboarina S, Cukkemane A, Auzat I, Chagot B, Gilquin B, Ignatiou A, Petitpas I, Kasotakis E, Paternostre M, White HE, Orlova EV, Baldus M, Tavares P, Zinn-Justin S. Bacteriophage SPP1 tail tube protein self-assembles into β-structure-rich tubes. J Biol Chem 2014; 290:3836-49. [PMID: 25525268 DOI: 10.1074/jbc.m114.613166] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The majority of known bacteriophages have long tails that serve for bacterial target recognition and viral DNA delivery into the host. These structures form a tube from the viral capsid to the bacterial cell. The tube is formed primarily by a helical array of tail tube protein (TTP) subunits. In phages with a contractile tail, the TTP tube is surrounded by a sheath structure. Here, we report the first evidence that a phage TTP, gp17.1 of siphophage SPP1, self-assembles into long tubes in the absence of other viral proteins. gp17.1 does not exhibit a stable globular structure when monomeric in solution, even if it was confidently predicted to adopt the β-sandwich fold of phage λ TTP. However, Fourier transform infrared and nuclear magnetic resonance spectroscopy analyses showed that its β-sheet content increases significantly during tube assembly, suggesting that gp17.1 acquires a stable β-sandwich fold only after self-assembly. EM analyses revealed that the tube is formed by hexameric rings stacked helicoidally with the same organization and helical parameters found for the tail of SPP1 virions. These parameters were used to build a pseudo-atomic model of the TTP tube. The large loop spanning residues 40-56 is located on the inner surface of the tube, at the interface between adjacent monomers and hexamers. In line with our structural predictions, deletion of this loop hinders gp17.1 tube assembly in vitro and interferes with SPP1 tail assembly during phage particle morphogenesis in bacteria.
Collapse
Affiliation(s)
- Chantal Langlois
- From the Laboratoire de Biologie Structurale et Radiobiologie, UMR CNRS 8221 and CEA IBITECS, Commissariat à l'Energie Atomique, Saclay 91191 Gif-sur-Yvette Cedex, France
| | - Stéphanie Ramboarina
- From the Laboratoire de Biologie Structurale et Radiobiologie, UMR CNRS 8221 and CEA IBITECS, Commissariat à l'Energie Atomique, Saclay 91191 Gif-sur-Yvette Cedex, France
| | - Abhishek Cukkemane
- the NMR Spectroscopy Group, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, the Microbiology Department, Tuljaram Chaturchand College, Baramati-413102, India
| | - Isabelle Auzat
- the Unité de Virologie Moléculaire et Structurale, CNRS UPR3296, Centre de Recherche de Gif, Bâtiment 14B, CNRS, 91198 Gif-sur-Yvette, France, and
| | - Benjamin Chagot
- From the Laboratoire de Biologie Structurale et Radiobiologie, UMR CNRS 8221 and CEA IBITECS, Commissariat à l'Energie Atomique, Saclay 91191 Gif-sur-Yvette Cedex, France
| | - Bernard Gilquin
- From the Laboratoire de Biologie Structurale et Radiobiologie, UMR CNRS 8221 and CEA IBITECS, Commissariat à l'Energie Atomique, Saclay 91191 Gif-sur-Yvette Cedex, France
| | - Athanasios Ignatiou
- the Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, United Kingdom
| | - Isabelle Petitpas
- the Unité de Virologie Moléculaire et Structurale, CNRS UPR3296, Centre de Recherche de Gif, Bâtiment 14B, CNRS, 91198 Gif-sur-Yvette, France, and
| | - Emmanouil Kasotakis
- From the Laboratoire de Biologie Structurale et Radiobiologie, UMR CNRS 8221 and CEA IBITECS, Commissariat à l'Energie Atomique, Saclay 91191 Gif-sur-Yvette Cedex, France
| | - Maïté Paternostre
- From the Laboratoire de Biologie Structurale et Radiobiologie, UMR CNRS 8221 and CEA IBITECS, Commissariat à l'Energie Atomique, Saclay 91191 Gif-sur-Yvette Cedex, France
| | - Helen E White
- the Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, United Kingdom
| | - Elena V Orlova
- the Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, United Kingdom
| | - Marc Baldus
- the NMR Spectroscopy Group, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Paulo Tavares
- the Unité de Virologie Moléculaire et Structurale, CNRS UPR3296, Centre de Recherche de Gif, Bâtiment 14B, CNRS, 91198 Gif-sur-Yvette, France, and
| | - Sophie Zinn-Justin
- From the Laboratoire de Biologie Structurale et Radiobiologie, UMR CNRS 8221 and CEA IBITECS, Commissariat à l'Energie Atomique, Saclay 91191 Gif-sur-Yvette Cedex, France,
| |
Collapse
|
55
|
Verdaguer N, Ferrero D, Murthy MRN. Viruses and viral proteins. IUCRJ 2014; 1:492-504. [PMID: 25485129 PMCID: PMC4224467 DOI: 10.1107/s205225251402003x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/04/2014] [Indexed: 05/30/2023]
Abstract
For more than 30 years X-ray crystallography has been by far the most powerful approach for determining the structures of viruses and viral proteins at atomic resolution. The information provided by these structures, which covers many important aspects of the viral life cycle such as cell-receptor recognition, viral entry, nucleic acid transfer and genome replication, has extensively enriched our vision of the virus world. Many of the structures available correspond to potential targets for antiviral drugs against important human pathogens. This article provides an overview of the current knowledge of different structural aspects of the above-mentioned processes.
Collapse
Affiliation(s)
- Nuria Verdaguer
- Institut de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, Baldiri i Reixac 15, 08028-Barcelona, Spain
| | - Diego Ferrero
- Institut de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, Baldiri i Reixac 15, 08028-Barcelona, Spain
| | - Mathur R. N. Murthy
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
56
|
Zairi M, Stiege AC, Nhiri N, Jacquet E, Tavares P. The collagen-like protein gp12 is a temperature-dependent reversible binder of SPP1 viral capsids. J Biol Chem 2014; 289:27169-27181. [PMID: 25074929 DOI: 10.1074/jbc.m114.590877] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Icosahedral capsids of viruses are lattices of defined geometry and homogeneous size. The (quasi-)equivalent organization of their protein building blocks provides, in numerous systems, the binding sites to assemble arrays of viral polypeptides organized with nanometer precision that protrude from the capsid surface. The capsid of bacterial virus (bacteriophage) SPP1 exposes, at its surface, the 6.6-kDa viral polypeptide gp12 that binds to the center of hexamers of the major capsid protein. Gp12 forms an elongated trimer with collagen-like properties. This is consistent with the fold of eight internal GXY repeats of gp12 to build a stable intersubunit triple helix in a prokaryotic setting. The trimer dissociates and unfolds at near physiological temperatures, as reported for eukaryotic collagen. Its structural organization is reacquired within seconds upon cooling. Interaction with the SPP1 capsid hexamers strongly stabilizes gp12, increasing its Tm to 54 °C. Above this temperature, gp12 dissociates from its binding sites and unfolds reversibly. Multivalent binding of gp12 trimers to the capsid is highly cooperative. The capsid lattice also provides a platform to assist folding and association of unfolded gp12 polypeptides. The original physicochemical properties of gp12 offer a thermoswitchable system for multivalent binding of the polypeptide to the SPP1 capsid surface.
Collapse
Affiliation(s)
- Mohamed Zairi
- Unité de Virologie Moléculaire et Structurale, UPR 3296 CNRS, Centre de Recherche de Gif, 91190 Gif-sur-Yvette, France
| | - Asita C Stiege
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | - Naima Nhiri
- Institut de Chimie des Substances Naturelles, UPR 2301 CNRS, Centre de Recherche de Gif, Gif-sur-Yvette, France, and
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, UPR 2301 CNRS, Centre de Recherche de Gif, Gif-sur-Yvette, France, and; IMAGIF CTPF and qPCR Platform, Centre de Recherche de Gif, 91190 Gif-sur-Yvette, France
| | - Paulo Tavares
- Unité de Virologie Moléculaire et Structurale, UPR 3296 CNRS, Centre de Recherche de Gif, 91190 Gif-sur-Yvette, France,.
| |
Collapse
|
57
|
Abstract
UNLABELLED Lactococcus lactis, a Gram(+) lactic acid-producing bacterium used for the manufacture of several fermented dairy products, is subject to infection by diverse virulent tailed phages, leading to industrial fermentation failures. This constant viral risk has led to a sustained interest in the study of their biology, diversity, and evolution. Lactococcal phages now constitute a wide ensemble of at least 10 distinct genotypes within the Caudovirales order, many of them belonging to the Siphoviridae family. Lactococcal siphophage 1358, currently the only member of its group, displays a noticeably high genomic similarity to some Listeria phages as well as a host range limited to a few L. lactis strains. These genomic and functional characteristics stimulated our interest in this phage. Here, we report the cryo-electron microscopy structure of the complete 1358 virion. Phage 1358 exhibits noteworthy features, such as a capsid with dextro handedness and protruding decorations on its capsid and tail. Observations of the baseplate of virion particles revealed at least two conformations, a closed and an open, activated form. Functional assays uncovered that the adsorption of phage 1358 to its host is Ca(2+) independent, but this cation is necessary to complete its lytic cycle. Taken together, our results provide the complete structural picture of a unique lactococcal phage and expand our knowledge on the complex baseplate of phages of the Siphoviridae family. IMPORTANCE Phages of Lactococcus lactis are investigated mainly because they are sources of milk fermentation failures in the dairy industry. Despite the availability of several antiphage measures, new phages keep emerging in this ecosystem. In this study, we provide the cryo-electron microscopy reconstruction of a unique lactococcal phage that possesses genomic similarity to particular Listeria phages and has a host range restricted to only a minority of L. lactis strains. The capsid of phage 1358 displays the almost unique characteristic of being dextro handed. Its capsid and tail exhibit decorations that we assigned to nonspecific sugar binding modules. We observed the baseplate of 1358 in two conformations, a closed and an open form. We also found that the adsorption to its host, but not infection, is Ca(2+) independent. Overall, this study advances our understanding of the adhesion mechanisms of siphophages.
Collapse
|
58
|
Fokine A, Rossmann MG. Molecular architecture of tailed double-stranded DNA phages. BACTERIOPHAGE 2014; 4:e28281. [PMID: 24616838 DOI: 10.4161/bact.28281] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/18/2014] [Accepted: 02/18/2014] [Indexed: 01/21/2023]
Abstract
The tailed double-stranded DNA bacteriophages, or Caudovirales, constitute ~96% of all the known phages. Although these phages come in a great variety of sizes and morphology, their virions are mainly constructed of similar molecular building blocks via similar assembly pathways. Here we review the structure of tailed double-stranded DNA bacteriophages at a molecular level, emphasizing the structural similarity and common evolutionary origin of proteins that constitute these virions.
Collapse
Affiliation(s)
- Andrei Fokine
- Department of Biological Sciences; Purdue University; West Lafayette, IN USA
| | - Michael G Rossmann
- Department of Biological Sciences; Purdue University; West Lafayette, IN USA
| |
Collapse
|
59
|
Auzat I, Petitpas I, Lurz R, Weise F, Tavares P. A touch of glue to complete bacteriophage assembly: the tail-to-head joining protein (THJP) family. Mol Microbiol 2014; 91:1164-78. [DOI: 10.1111/mmi.12526] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Isabelle Auzat
- Laboratoire de Virologie Moléculaire et Structurale; Centre de Recherche de Gif; CNRS UPR 3296 and IFR115; 91198 Gif-sur-Yvette France
| | - Isabelle Petitpas
- Laboratoire de Virologie Moléculaire et Structurale; Centre de Recherche de Gif; CNRS UPR 3296 and IFR115; 91198 Gif-sur-Yvette France
| | - Rudi Lurz
- Max Planck Institute for Molecular Genetics; Ihnestraße 63-73 D-14195 Berlin Germany
| | - Frank Weise
- Max Planck Institute for Molecular Genetics; Ihnestraße 63-73 D-14195 Berlin Germany
| | - Paulo Tavares
- Laboratoire de Virologie Moléculaire et Structurale; Centre de Recherche de Gif; CNRS UPR 3296 and IFR115; 91198 Gif-sur-Yvette France
| |
Collapse
|
60
|
Spinelli S, Veesler D, Bebeacua C, Cambillau C. Structures and host-adhesion mechanisms of lactococcal siphophages. Front Microbiol 2014; 5:3. [PMID: 24474948 PMCID: PMC3893620 DOI: 10.3389/fmicb.2014.00003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 01/04/2014] [Indexed: 12/29/2022] Open
Abstract
The Siphoviridae family of bacteriophages is the largest viral family on earth and comprises members infecting both bacteria and archaea. Lactococcal siphophages infect the Gram-positive bacterium Lactococcus lactis, which is widely used for industrial milk fermentation processes (e.g., cheese production). As a result, lactococcal phages have become one of the most thoroughly characterized class of phages from a genomic standpoint. They exhibit amazing and intriguing characteristics. First, each phage has a strict specificity toward a unique or a handful of L. lactis host strains. Second, most lactococcal phages possess a large organelle at their tail tip (termed the baseplate), bearing the receptor binding proteins (RBPs) and mediating host adsorption. The recent accumulation of structural and functional data revealed the modular structure of their building blocks, their different mechanisms of activation and the fine specificity of their RBPs. These results also illustrate similarities and differences between lactococcal Siphoviridae and Gram-negative infecting Myoviridae.
Collapse
Affiliation(s)
- Silvia Spinelli
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Aix-Marseille Université Marseille, France ; Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Centre National de la Recherche Scientifique Marseille, France
| | - David Veesler
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Aix-Marseille Université Marseille, France ; Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Centre National de la Recherche Scientifique Marseille, France
| | - Cecilia Bebeacua
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Aix-Marseille Université Marseille, France ; Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Centre National de la Recherche Scientifique Marseille, France
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Aix-Marseille Université Marseille, France ; Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Centre National de la Recherche Scientifique Marseille, France
| |
Collapse
|
61
|
Munsch-Alatossava P, Alatossava T. The extracellular phage-host interactions involved in the bacteriophage LL-H infection of Lactobacillus delbrueckii ssp. lactis ATCC 15808. Front Microbiol 2013; 4:408. [PMID: 24400001 PMCID: PMC3870949 DOI: 10.3389/fmicb.2013.00408] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/10/2013] [Indexed: 11/26/2022] Open
Abstract
The complete genome sequence of Lactobacillus bacteriophage LL-H was determined in 1996. Accordingly, LL-H has been used as a model phage for the infection of dairy Lactobacillus, specifically for thermophilic Lactobacillus delbrueckii ssp. lactis host strains, such as ATCC 15808. One of the major goals of phage LL-H research consisted of the characterization of the first phage-host interactions at the level of phage adsorption and phage DNA injection steps to determine effective and practical methods to minimize the risks associated with the appearance and attack of phages in the manufacture of yogurt, and Swiss or Italian hard type cheeses, which typically use thermophilic lactic acid bacteria starter cultures containing L. delbrueckii strains among others. This mini review article summarizes the present data concerning (i) the special features, particle structure, and components of phage LL-H and (ii) the structure and properties of lipoteichoic acids (LTAs), which are the phage LL-H receptor components of L. delbrueckii ssp. lactis host strains. Moreover, a model of the first, extracellular, phage-host interactions for the infection of L. delbrueckii ssp. lactis ATCC 15808 by phage LL-H is presented and further discussed.
Collapse
Affiliation(s)
| | - Tapani Alatossava
- Department of Food and Environmental Sciences, University of Helsinki Helsinki, Finland
| |
Collapse
|
62
|
Structural ensemble and dynamics of toroidal-like DNA shapes in bacteriophage ϕ29 exit cavity. Biophys J 2013; 104:2058-67. [PMID: 23663849 DOI: 10.1016/j.bpj.2013.03.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 01/14/2023] Open
Abstract
In the bacteriophage ϕ29, DNA is packed into a preassembled capsid from which it ejects under high pressure. A recent cryo-EM reconstruction of ϕ29 revealed a compact toroidal DNA structure (30-40 basepairs) lodged within the exit cavity formed by the connector-lower collar protein complex. Using multiscale models, we compute a detailed structural ensemble of intriguing DNA toroids of various lengths, all highly compatible with experimental observations. In particular, coarse-grained (elastic rod) and atomistic (molecular dynamics) models predict the formation of DNA toroids under significant compression, a largely unexplored state of DNA. Model predictions confirm that a biologically attainable compressive force of 25 pN sustains the toroid and yields DNA electron density maps highly consistent with the experimental reconstruction. The subsequent simulation of dynamic toroid ejection reveals large reactions on the connector that may signal genome release.
Collapse
|
63
|
Crystal structure of pb9, the distal tail protein of bacteriophage T5: a conserved structural motif among all siphophages. J Virol 2013; 88:820-8. [PMID: 24155371 DOI: 10.1128/jvi.02135-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tail of Caudovirales bacteriophages serves as an adsorption device, a host cell wall-perforating machine, and a genome delivery pathway. In Siphoviridae, the assembly of the long and flexible tail is a highly cooperative and regulated process that is initiated from the proteins forming the distal tail tip complex. In Gram-positive-bacterium-infecting siphophages, the distal tail (Dit) protein has been structurally characterized and is proposed to represent a baseplate hub docking structure. It is organized as a hexameric ring that connects the tail tube and the adsorption device. In this study, we report the characterization of pb9, a tail tip protein of Escherichia coli bacteriophage T5. By immunolocalization, we show that pb9 is located in the upper part of the cone of the T5 tail tip, at the end of the tail tube. The crystal structure of pb9 reveals a two-domain protein. Domain A exhibits remarkable structural similarity with the N-terminal domain of known Dit proteins, while domain B adopts an oligosaccharide/oligonucleotide-binding fold (OB-fold) that is not shared by these proteins. We thus propose that pb9 is the Dit protein of T5, making it the first Dit protein described for a Gram-negative-bacterium-infecting siphophage. Multiple sequence alignments suggest that pb9 is a paradigm for a large family of Dit proteins of siphophages infecting mostly Gram-negative hosts. The modular structure of the Dit protein maintains the basic building block that would be conserved among all siphophages, combining it with a more divergent domain that might serve specific host adhesion properties.
Collapse
|
64
|
Structure, adsorption to host, and infection mechanism of virulent lactococcal phage p2. J Virol 2013; 87:12302-12. [PMID: 24027307 DOI: 10.1128/jvi.02033-13] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactococcal siphophages from the 936 and P335 groups infect the Gram-positive bacterium Lactococcus lactis using receptor binding proteins (RBPs) attached to their baseplate, a large multiprotein complex at the distal part of the tail. We have previously reported the crystal and electron microscopy (EM) structures of the baseplates of phages p2 (936 group) and TP901-1 (P335 group) as well as the full EM structure of the TP901-1 virion. Here, we report the complete EM structure of siphophage p2, including its capsid, connector complex, tail, and baseplate. Furthermore, we show that the p2 tail is characterized by the presence of protruding decorations, which are related to adhesins and are likely contributed by the major tail protein C-terminal domains. This feature is reminiscent of the tail of Escherichia coli phage λ and Bacillus subtilis phage SPP1 and might point to a common mechanism for establishing initial interactions with their bacterial hosts. Comparative analyses showed that the architecture of the phage p2 baseplate differs largely from that of lactococcal phage TP901-1. We quantified the interaction of its RBP with the saccharidic receptor and determined that specificity is due to lower k(off) values of the RBP/saccharidic dissociation. Taken together, these results suggest that the infection of L. lactis strains by phage p2 is a multistep process that involves reversible attachment, followed by baseplate activation, specific attachment of the RBPs to the saccharidic receptor, and DNA ejection.
Collapse
|
65
|
Breyton C, Flayhan A, Gabel F, Lethier M, Durand G, Boulanger P, Chami M, Ebel C. Assessing the conformational changes of pb5, the receptor-binding protein of phage T5, upon binding to its Escherichia coli receptor FhuA. J Biol Chem 2013; 288:30763-30772. [PMID: 24014030 DOI: 10.1074/jbc.m113.501536] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Within tailed bacteriophages, interaction of the receptor-binding protein (RBP) with the target cell triggers viral DNA ejection into the host cytoplasm. In the case of phage T5, the RBP pb5 and the receptor FhuA, an outer membrane protein of Escherichia coli, have been identified. Here, we use small angle neutron scattering and electron microscopy to investigate the FhuA-pb5 complex. Specific deuteration of one of the partners allows the complete masking in small angle neutron scattering of the surfactant and unlabeled proteins when the complex is solubilized in the fluorinated surfactant F6-DigluM. Thus, individual structures within a membrane protein complex can be described. The solution structure of FhuA agrees with its crystal structure; that of pb5 shows an elongated shape. Neither displays significant conformational changes upon interaction. The mechanism of signal transduction within phage T5 thus appears different from that of phages binding cell wall saccharides, for which structural information is available.
Collapse
Affiliation(s)
- Cécile Breyton
- From the Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France,; CNRS, UMR5075, IBS, F-38027 Grenoble, France,; the Commissariat à l'Energie Atomique, DSV, IBS, F-38027 Grenoble, France,.
| | - Ali Flayhan
- From the Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France,; CNRS, UMR5075, IBS, F-38027 Grenoble, France,; the Commissariat à l'Energie Atomique, DSV, IBS, F-38027 Grenoble, France
| | - Frank Gabel
- From the Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France,; CNRS, UMR5075, IBS, F-38027 Grenoble, France,; the Commissariat à l'Energie Atomique, DSV, IBS, F-38027 Grenoble, France
| | - Mathilde Lethier
- From the Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France,; CNRS, UMR5075, IBS, F-38027 Grenoble, France,; the Commissariat à l'Energie Atomique, DSV, IBS, F-38027 Grenoble, France
| | - Grégory Durand
- the Université d'Avignon, Equipe Chimie Bioorganique et Systèmes Amphiphiles, F-84029 Avignon, France,; the Institut des Biomolécules Max Mousseron, UMR 5247, F-34093 Montpellier, France
| | - Pascale Boulanger
- the Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université Paris-Sud, UMR CNRS 8619, F-91405 Orsay, France, and
| | - Mohamed Chami
- the Center for Cellular Imaging and NanoAnalytics, Biozentrum, University Basel, CH-4058 Basel, Switzerland
| | - Christine Ebel
- From the Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France,; CNRS, UMR5075, IBS, F-38027 Grenoble, France,; the Commissariat à l'Energie Atomique, DSV, IBS, F-38027 Grenoble, France
| |
Collapse
|
66
|
Le S, He X, Tan Y, Huang G, Zhang L, Lux R, Shi W, Hu F. Mapping the tail fiber as the receptor binding protein responsible for differential host specificity of Pseudomonas aeruginosa bacteriophages PaP1 and JG004. PLoS One 2013; 8:e68562. [PMID: 23874674 PMCID: PMC3706319 DOI: 10.1371/journal.pone.0068562] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/29/2013] [Indexed: 12/21/2022] Open
Abstract
The first step in bacteriophage infection is recognition and binding to the host receptor, which is mediated by the phage receptor binding protein (RBP). Different RBPs can lead to differential host specificity. In many bacteriophages, such as Escherichia coli and Lactococcal phages, RBPs have been identified as the tail fiber or protruding baseplate proteins. However, the tail fiber-dependent host specificity in Pseudomonas aeruginosa phages has not been well studied. This study aimed to identify and investigate the binding specificity of the RBP of P. aeruginosa phages PaP1 and JG004. These two phages share high DNA sequence homology but exhibit different host specificities. A spontaneous mutant phage was isolated and exhibited broader host range compared with the parental phage JG004. Sequencing of its putative tail fiber and baseplate region indicated a single point mutation in ORF84 (a putative tail fiber gene), which resulted in the replacement of a positively charged lysine (K) by an uncharged asparagine (N). We further demonstrated that the replacement of the tail fiber gene (ORF69) of PaP1 with the corresponding gene from phage JG004 resulted in a recombinant phage that displayed altered host specificity. Our study revealed the tail fiber-dependent host specificity in P. aeruginosa phages and provided an effective tool for its alteration. These contributions may have potential value in phage therapy.
Collapse
Affiliation(s)
- Shuai Le
- Department of Microbiology, Third Military Medical University, Chongqing, China
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Xuesong He
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yinling Tan
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | - Guangtao Huang
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | - Lin Zhang
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | - Renate Lux
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Wenyuan Shi
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (FH); (WS)
| | - Fuquan Hu
- Department of Microbiology, Third Military Medical University, Chongqing, China
- * E-mail: (FH); (WS)
| |
Collapse
|
67
|
Bebeacua C, Lorenzo Fajardo JC, Blangy S, Spinelli S, Bollmann S, Neve H, Cambillau C, Heller KJ. X-ray structure of a superinfection exclusion lipoprotein from phage TP-J34 and identification of the tape measure protein as its target. Mol Microbiol 2013; 89:152-65. [PMID: 23692331 DOI: 10.1111/mmi.12267] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2013] [Indexed: 11/29/2022]
Abstract
Lipoproteins of temperate phage are a broad family of membrane proteins encoded in the lysogeny module of temperate phages. Expression of the ltp(TP-J34) gene of temperate Streptococcus thermophilus phage TP-J34 interferes with phage infection at the stage of triggering DNA release and injection into the cell. Here, we report the first structure of a superinfection exclusion protein. We have expressed and determined the X-ray structure of Ltp(TP-J34). The soluble domain of Ltp(TP-J34) is composed of a tandem of three-helix helix-turn-helix (HTH) domains exhibiting a highly negatively charged surface. By isolating mutants of lactococcal phage P008wt with reduced sensitivities to Ltp(TP-J34) and by genome sequencing of such mutants we obtained evidence supporting the notion that Ltp(TP-J34) targets the phage's tape measure protein (TMP) and blocks its insertion into the cytoplasmic membrane.
Collapse
Affiliation(s)
- Cecilia Bebeacua
- Architecture et Fonction des Macromolecules Biologiques, UMR 7257, CNRS and Aix-Marseille University, Case 932, 163 Avenue de Luminy, 13288, Marseille, Cedex 09, France
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Structure and functional analysis of the host recognition device of lactococcal phage tuc2009. J Virol 2013; 87:8429-40. [PMID: 23698314 DOI: 10.1128/jvi.00907-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Many phages employ a large heteropolymeric organelle located at the tip of the tail, termed the baseplate, for host recognition. Contrast electron microscopy (EM) of the lactococcal phage Tuc2009 baseplate and its host-binding subunits, the so-called tripods, allowed us to obtain a low-resolution structural image of this organelle. Structural comparisons between the baseplate of the related phage TP901-1 and that of Tuc2009 demonstrated that they are highly similar, except for the presence of an additional protein in the Tuc2009 baseplate (BppATuc2009), which is attached to the top of the Tuc2009 tripod structure. Recombinantly produced Tuc2009 or TP901-1 tripods were shown to bind specifically to their particular host cell surfaces and are capable of almost fully and specifically eliminating Tuc2009 or TP901-1 phage adsorption, respectively. In the case of Tuc2009, such adsorption-blocking ability was reduced in tripods that lacked BppATuc2009, indicating that this protein increases the binding specificity and/or affinity of the Tuc2009 tripod to its host receptor.
Collapse
|
69
|
The first structure of a mycobacteriophage, the Mycobacterium abscessus subsp. bolletii phage Araucaria. J Virol 2013; 87:8099-109. [PMID: 23678183 DOI: 10.1128/jvi.01209-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The unique characteristics of the waxy mycobacterial cell wall raise questions about specific structural features of their bacteriophages. No structure of any mycobacteriophage is available, although ∼3,500 have been described to date. To fill this gap, we embarked in a genomic and structural study of a bacteriophage from Mycobacterium abscessus subsp. bolletii, a member of the Mycobacterium abscessus group. This opportunistic pathogen is responsible for respiratory tract infections in patients with lung disorders, particularly cystic fibrosis. M. abscessus subsp. bolletii was isolated from respiratory tract specimens, and bacteriophages were observed in the cultures. We report here the genome annotation and characterization of the M. abscessus subsp. bolletii prophage Araucaria, as well as the first single-particle electron microscopy reconstruction of the whole virion. Araucaria belongs to Siphoviridae and possesses a 64-kb genome containing 89 open reading frames (ORFs), among which 27 could be annotated with certainty. Although its capsid and connector share close similarity with those of several phages from Gram-negative (Gram(-)) or Gram(+) bacteria, its most distinctive characteristic is the helical tail decorated by radial spikes, possibly host adhesion devices, according to which the phage name was chosen. Its host adsorption device, at the tail tip, assembles features observed in phages binding to protein receptors, such as phage SPP1. All together, these results suggest that Araucaria may infect its mycobacterial host using a mechanism involving adhesion to cell wall saccharides and protein, a feature that remains to be further explored.
Collapse
|
70
|
Oliveira L, Tavares P, Alonso JC. Headful DNA packaging: Bacteriophage SPP1 as a model system. Virus Res 2013; 173:247-59. [DOI: 10.1016/j.virusres.2013.01.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 01/15/2023]
|
71
|
Tam W, Pell LG, Bona D, Tsai A, Dai XX, Edwards AM, Hendrix RW, Maxwell KL, Davidson AR. Tail tip proteins related to bacteriophage λ gpL coordinate an iron-sulfur cluster. J Mol Biol 2013; 425:2450-62. [PMID: 23542343 DOI: 10.1016/j.jmb.2013.03.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/12/2013] [Accepted: 03/23/2013] [Indexed: 01/20/2023]
Abstract
The assembly of long non-contractile phage tails begins with the formation of the tail tip complex (TTC). TTCs are multi-functional protein structures that mediate host cell adsorption and genome injection. The TTC of phage λ is assembled from multiple copies of eight different proteins, including gpL. Purified preparations of gpL and several homologues all displayed a distinct reddish color, suggesting the binding of iron by these proteins. Further characterization of the gpL homologue from phage N15, which was most amenable to in vitro analyses, showed that it contains two domains. The C-terminal domain was demonstrated to coordinate an iron-sulfur cluster, providing the first example of a viral structural protein binding to this type of metal group. We characterized the iron-sulfur cluster using inductively coupled plasma-atomic emission spectroscopy, absorbance spectroscopy, and electron paramagnetic resonance spectroscopy and found that it is an oxygen-sensitive [4Fe-4S](2+) cluster. Four highly conserved cysteine residues were shown to be required for coordinating the iron-sulfur cluster, and substitution of any of these Cys residues with Ser or Ala within the context of λ gpL abolished biological activity. These data imply that the intact iron-sulfur cluster is required for function. The presence of four conserved Cys residues in the C-terminal regions of very diverse gpL homologues suggest that utilization of an iron-sulfur cluster is a widespread feature of non-contractile tailed phages that infect Gram-negative bacteria. In addition, this is the first example of a viral structural protein that binds an iron-sulfur cluster.
Collapse
Affiliation(s)
- William Tam
- Department of Biochemistry, University of Toronto, Medical Sciences Building, Toronto, ON, Canada M5S 1A8
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Viral infection modulation and neutralization by camelid nanobodies. Proc Natl Acad Sci U S A 2013; 110:E1371-9. [PMID: 23530214 DOI: 10.1073/pnas.1301336110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Lactococcal phages belong to a large family of Siphoviridae and infect Lactococcus lactis, a gram-positive bacterium used in commercial dairy fermentations. These phages are believed to recognize and bind specifically to pellicle polysaccharides covering the entire bacterium. The phage TP901-1 baseplate, located at the tip of the tail, harbors 18 trimeric receptor binding proteins (RBPs) promoting adhesion to a specific lactococcal strain. Phage TP901-1 adhesion does not require major conformational changes or Ca(2+), which contrasts other lactococcal phages. Here, we produced and characterized llama nanobodies raised against the purified baseplate and the Tal protein of phage TP901-1 as tools to dissect the molecular determinants of phage TP901-1 infection. Using a set of complementary techniques, surface plasmon resonance, EM, and X-ray crystallography in a hybrid approach, we identified binders to the three components of the baseplate, analyzed their affinity for their targets, and determined their epitopes as well as their functional impact on TP901-1 phage infectivity. We determined the X-ray structures of three nanobodies in complex with the RBP. Two of them bind to the saccharide binding site of the RBP and are able to fully neutralize TP901-1 phage infectivity, even after 15 passages. These results provide clear evidence for a practical use of nanobodies in circumventing lactococcal phages viral infection in dairy fermentation.
Collapse
|
73
|
Stockdale SR, Mahony J, Courtin P, Chapot-Chartier MP, van Pijkeren JP, Britton RA, Neve H, Heller KJ, Aideh B, Vogensen FK, van Sinderen D. The lactococcal phages Tuc2009 and TP901-1 incorporate two alternate forms of their tail fiber into their virions for infection specialization. J Biol Chem 2013; 288:5581-90. [PMID: 23300085 PMCID: PMC3581408 DOI: 10.1074/jbc.m112.444901] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/07/2013] [Indexed: 01/04/2023] Open
Abstract
Lactococcal phages Tuc2009 and TP901-1 possess a conserved tail fiber called a tail-associated lysin (referred to as Tal(2009) for Tuc2009, and Tal(901-1) for TP901-1), suspended from their tail tips that projects a peptidoglycan hydrolase domain toward a potential host bacterium. Tal(2009) and Tal(901-1) can undergo proteolytic processing mid-protein at the glycine-rich sequence GG(S/N)SGGG, removing their C-terminal structural lysin. In this study, we show that the peptidoglycan hydrolase of these Tal proteins is an M23 peptidase that exhibits D-Ala-D-Asp endopeptidase activity and that this activity is required for efficient infection of stationary phase cells. Interestingly, the observed proteolytic processing of Tal(2009) and Tal(901-1) facilitates increased host adsorption efficiencies of the resulting phages. This represents, to the best of our knowledge, the first example of tail fiber proteolytic processing that results in a heterogeneous population of two phage types. Phages that possess a full-length tail fiber, or a truncated derivative, are better adapted to efficiently infect cells with an extensively cross-linked cell wall or infect with increased host-adsorption efficiencies, respectively.
Collapse
Affiliation(s)
| | | | - Pascal Courtin
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | | | - Jan-Peter van Pijkeren
- the Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824
| | - Robert A. Britton
- the Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824
| | - Horst Neve
- the Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany, and the Department of Food Science
| | - Knut J. Heller
- the Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany, and the Department of Food Science
| | | | | | - Douwe van Sinderen
- From the Department of Microbiology and
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| |
Collapse
|
74
|
Abstract
Correct host cell recognition is important in the replication cycle for any virus, including bacterial viruses. This essential step should occur before the bacteriophage commits to transfer its genomic material into the host. In this chapter we will discuss the proteins and mechanisms bacteriophages use for receptor recognition (just before full commitment to infection) and nucleic acid injection, which occurs just after commitment. Some bacteriophages use proteins of the capsid proper for host cell recognition, others use specialised spikes or fibres. Usually, several identical recognition events take place, and the information that a suitable host cell has been encountered is somehow transferred to the part of the bacteriophage capsid involved in nucleic acid transfer. The main part of the capsids of bacteriophages stay on the cell surface after transferring their genome, although a few specialised proteins move with the DNA, either forming a conduit, protecting the nucleic acids after transfer and/or functioning in the process of transcription and translation.
Collapse
Affiliation(s)
- Carmela Garcia-Doval
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CSIC), c/Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | | |
Collapse
|
75
|
Visualizing a complete Siphoviridae member by single-particle electron microscopy: the structure of lactococcal phage TP901-1. J Virol 2012; 87:1061-8. [PMID: 23135714 DOI: 10.1128/jvi.02836-12] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Tailed phages are genome delivery machines exhibiting unequaled efficiency acquired over more than 3 billion years of evolution. Siphophages from the P335 and 936 families infect the Gram-positive bacterium Lactococcus lactis using receptor-binding proteins anchored to the host adsorption apparatus (baseplate). Crystallographic and electron microscopy (EM) studies have shed light on the distinct adsorption strategies used by phages of these two families, suggesting that they might also rely on different infection mechanisms. Here, we report electron microscopy reconstructions of the whole phage TP901-1 (P335 species) and propose a composite EM model of this gigantic molecular machine. Our results suggest conservation of structural proteins among tailed phages and add to the growing body of evidence pointing to a common evolutionary origin for these virions. Finally, we propose that host adsorption apparatus architectures have evolved in correlation with the nature of the receptors used during infection.
Collapse
|
76
|
Mahony J, van Sinderen D. Structural aspects of the interaction of dairy phages with their host bacteria. Viruses 2012; 4:1410-24. [PMID: 23170165 PMCID: PMC3499812 DOI: 10.3390/v4091410] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 12/25/2022] Open
Abstract
Knowledge of phage-host interactions at a fundamental level is central to the design of rational strategies for the development of phage-resistant strains that may be applied in industrial settings. Phages infecting lactic acid bacteria, in particular Lactococcus lactis and Streptococcus thermophilus, negatively impact on dairy fermentation processes with serious economic implications. In recent years a wealth of information on structural protein assembly and topology has become available relating to phages infecting Escherichia coli, Bacillus subtilis and Lactococcus lactis, which act as models for structural analyses of dairy phages. In this review, we explore the role of model tailed phages, such as T4 and SPP1, in advancing our knowledge regarding interactions between dairy phages and their hosts. Furthermore, the potential of currently investigated dairy phages to in turn serve as model systems for this particular group of phages is discussed.
Collapse
Affiliation(s)
- Jennifer Mahony
- Department of Microbiology, University College Cork, Western Road, Cork, Ireland;
| | - Douwe van Sinderen
- Department of Microbiology, University College Cork, Western Road, Cork, Ireland;
- Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Western Road, Cork, Ireland
- Author to whom correspondence should be addressed: ; Tel.: +353-21-4901365; Fax: +353-21-4903101
| |
Collapse
|
77
|
Structural investigations of a Podoviridae streptococcus phage C1, implications for the mechanism of viral entry. Proc Natl Acad Sci U S A 2012; 109:14001-6. [PMID: 22891295 DOI: 10.1073/pnas.1207730109] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Podoviridae phage C1 was one of the earliest isolated bacteriophages and the first virus documented to be active against streptococci. The icosahedral and asymmetric reconstructions of the virus were calculated using cryo-electron microscopy. The capsid protein has an HK97 fold arranged into a T = 4 icosahedral lattice. The C1 tail is terminated with a ϕ29-like knob, surrounded by a skirt of twelve long appendages with novel morphology. Several C1 structural proteins have been identified, including a candidate for an appendage. The crystal structure of the knob has an N-terminal domain with a fold observed previously in tube forming proteins of Siphoviridae and Myoviridae phages. The structure of C1 suggests the mechanisms by which the virus digests the cell wall and ejects its genome. Although there is little sequence similarity to other phages, conservation of the structural proteins demonstrates a common origin of the head and tail, but more recent evolution of the appendages.
Collapse
|
78
|
Flayhan A, Wien F, Paternostre M, Boulanger P, Breyton C. New insights into pb5, the receptor binding protein of bacteriophage T5, and its interaction with its Escherichia coli receptor FhuA. Biochimie 2012; 94:1982-9. [PMID: 22659573 DOI: 10.1016/j.biochi.2012.05.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 05/22/2012] [Indexed: 01/13/2023]
Abstract
The majority of bacterial viruses are bacteriophages bearing a tail that serves to recognise the bacterial surface and deliver the genome into the host cell. Infection is initiated by the irreversible interaction between the viral receptor binding protein (RBP) and a receptor at the surface of the bacterium. This interaction results ultimately in the phage DNA release in the host cytoplasm. Phage T5 infects Escherichia coli after binding of its RBP pb5 to the outer membrane ferrichrome transporter FhuA. Here, we have studied the complex formed by pb5 and FhuA by a variety of biophysical and biochemical techniques. We show that unlike RBPs of known structures, pb5 probably folds as a unique domain fulfilling both functions of binding to the host receptor and interaction with the rest of the phage. Pb5 likely binds to the domain occluding the β-barrel of FhuA as well as to external loops of the barrel. Furthermore, upon binding to FhuA, pb5 undergoes conformational changes, at the secondary and tertiary structure level that would be the key to the transmission of the signal through the tail to the capsid, triggering DNA release. This is the first structural information regarding the binding of a RBP to a proteic receptor.
Collapse
Affiliation(s)
- Ali Flayhan
- CEA, Institut de Biologie Structurale Jean-Pierre Ebel, Grenoble, France
| | | | | | | | | |
Collapse
|
79
|
Structure of the phage TP901-1 1.8 MDa baseplate suggests an alternative host adhesion mechanism. Proc Natl Acad Sci U S A 2012; 109:8954-8. [PMID: 22611190 DOI: 10.1073/pnas.1200966109] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Phages of the Caudovirales order possess a tail that recognizes the host and ensures genome delivery upon infection. The X-ray structure of the approximately 1.8 MDa host adsorption device (baseplate) from the lactococcal phage TP901-1 shows that the receptor-binding proteins are pointing in the direction of the host, suggesting that this organelle is in a conformation ready for host adhesion. This result is in marked contrast with the lactococcal phage p2 situation, whose baseplate is known to undergo huge conformational changes in the presence of Ca(2+) to reach its active state. In vivo infection experiments confirmed these structural observations by demonstrating that Ca(2+) ions are required for host adhesion among p2-like phages (936-species) but have no influence on TP901-1-like phages (P335-species). These data suggest that these two families rely on diverse adhesion strategies which may lead to different signaling for genome release.
Collapse
|
80
|
Andres D, Roske Y, Doering C, Heinemann U, Seckler R, Barbirz S. Tail morphology controls DNA release in two Salmonella phages with one lipopolysaccharide receptor recognition system. Mol Microbiol 2012; 83:1244-53. [PMID: 22364412 DOI: 10.1111/j.1365-2958.2012.08006.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacteriophages use specific tail proteins to recognize host cells. It is still not understood to molecular detail how the signal is transmitted over the tail to initiate infection. We have analysed in vitro DNA ejection in long-tailed siphovirus 9NA and short-tailed podovirus P22 upon incubation with Salmonella typhimurium lipopolysaccharide (LPS). We showed for the first time that LPS alone was sufficient to elicit DNA release from a siphovirus in vitro. Crystal structure analysis revealed that both phages use similar tailspike proteins for LPS recognition. Tailspike proteins hydrolyse LPS O antigen to position the phage on the cell surface. Thus we were able to compare in vitro DNA ejection processes from two phages with different morphologies with the same receptor under identical experimental conditions. Siphovirus 9NA ejected its DNA about 30 times faster than podovirus P22. DNA ejection is under control of the conformational opening of the particle and has a similar activation barrier in 9NA and P22. Our data suggest that tail morphology influences the efficiencies of particle opening given an identical initial receptor interaction event.
Collapse
Affiliation(s)
- Dorothee Andres
- Physikalische Biochemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | | | | | | | | | | |
Collapse
|
81
|
A common evolutionary origin for tailed-bacteriophage functional modules and bacterial machineries. Microbiol Mol Biol Rev 2012; 75:423-33, first page of table of contents. [PMID: 21885679 DOI: 10.1128/mmbr.00014-11] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteriophages belonging to the order Caudovirales possess a tail acting as a molecular nanomachine used during infection to recognize the host cell wall, attach to it, pierce it, and ensure the high-efficiency delivery of the genomic DNA to the host cytoplasm. In this review, we provide a comprehensive analysis of the various proteins constituting tailed bacteriophages from a structural viewpoint. To this end, we had in mind to pinpoint the resemblances within and between functional modules such as capsid/tail connectors, the tails themselves, or the tail distal host recognition devices, termed baseplates. This comparison has been extended to bacterial machineries embedded in the cell wall, for which shared molecular homology with phages has been recently revealed. This is the case for the type VI secretion system (T6SS), an inverted phage tail at the bacterial surface, or bacteriocins. Gathering all these data, we propose that a unique ancestral protein fold may have given rise to a large number of bacteriophage modules as well as to some related bacterial machinery components.
Collapse
|
82
|
First steps of bacteriophage SPP1 entry into Bacillus subtilis. Virology 2012; 422:425-34. [DOI: 10.1016/j.virol.2011.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 10/20/2011] [Accepted: 11/11/2011] [Indexed: 01/13/2023]
|
83
|
Davidson AR, Cardarelli L, Pell LG, Radford DR, Maxwell KL. Long noncontractile tail machines of bacteriophages. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:115-42. [PMID: 22297512 DOI: 10.1007/978-1-4614-0980-9_6] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this chapter, we describe the structure, assembly, function, and evolution of the long, noncontractile tail of the siphophages, which comprise ∼60% of the phages on earth. We place -particular emphasis on features that are conserved among all siphophages, and trace evolutionary connections between these phages and myophages, which possess long contractile tails. The large number of high-resolution structures of tail proteins solved recently coupled to studies of tail-related complexes by electron microscopy have provided many new insights in this area. In addition, the availability of thousands of phage and prophage genome sequences has allowed the delineation of several large families of tail proteins that were previously unrecognized. We also summarize current knowledge pertaining to the mechanisms by which siphophage tails recognize the bacterial cell surface and mediate DNA injection through the cell envelope. We show that phages infecting Gram-positive and Gram-negative bacteria possess distinct families of proteins at their tail tips that are involved in this process. Finally, we speculate on the evolutionary advantages provided by long phage tails.
Collapse
Affiliation(s)
- Alan R Davidson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | | | | | | | | |
Collapse
|
84
|
Tavares P, Zinn-Justin S, Orlova EV. Genome gating in tailed bacteriophage capsids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:585-600. [PMID: 22297531 DOI: 10.1007/978-1-4614-0980-9_25] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tailed bacteriophages use a portal system for genome entry and exit from viral capsids. Here, we review the mechanisms how these movements are controlled by the genome gatekeeper that assembles at the portal structure. Phage DNA is packaged at high pressure inside the viral capsid by a powerful motor. The viral genome is translocated through the central channel of the portal protein found at a single vertex of the capsid. Packaging is normally terminated by endonucleolytic cleavage of the substrate DNA followed by disassembly of the packaging motor and closure of the portal system, preventing leakage of the viral genome. This can be achieved either by conformational changes in the portal protein or by sequential addition of proteins that extend the portal channel (adaptors) and physically close it preventing DNA exit (stoppers). The resulting connector structure provides the interface for assembly of short tails (podoviruses) or for attachment of preformed long tails (siphoviruses and myoviruses). The connector maintains the viral DNA correctly positioned for ejection that is triggered by interaction of the phage particle with bacterial receptors. Recent exciting advances are providing new molecular insights on the mechanisms that ensure precise coordination of these critical steps required both for stable viral genome packaging and for its efficient release to initiate infection.
Collapse
Affiliation(s)
- Paulo Tavares
- Unité de Virologie Moléculaire et Structurale, Gif-sur-Yvette, France.
| | | | | |
Collapse
|
85
|
Cuervo A, Carrascosa JL. Viral connectors for DNA encapsulation. Curr Opin Biotechnol 2011; 23:529-36. [PMID: 22186221 DOI: 10.1016/j.copbio.2011.11.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 11/14/2011] [Accepted: 11/25/2011] [Indexed: 01/04/2023]
Abstract
Viral connectors are key components of the life cycle of bacteriophages and other viral systems. They participate in procapsid assembly, and they are instrumental in DNA packaging and release. Connector proteins build hollow cylindrical dodecamers that show an overall morphological similarity among different viral systems including a remarkable conserved domain in the central part of the protein. These domains build the wall of the channel forming a 24 α-helices stretch together with an α-β extension. A similar α-helical arrangement is found in other unspecific DNA translocating complexes, suggesting the existence of a common structural signature for channel formation. Preliminary experiments suggest that connectors might be ideal candidates as nanopores for synthetic applications in nanotechnology.
Collapse
Affiliation(s)
- Ana Cuervo
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología, CNB-CSIC, c/Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
86
|
Vinga I, Baptista C, Auzat I, Petipas I, Lurz R, Tavares P, Santos MA, São-José C. Role of bacteriophage SPP1 tail spike protein gp21 on host cell receptor binding and trigger of phage DNA ejection. Mol Microbiol 2011; 83:289-303. [DOI: 10.1111/j.1365-2958.2011.07931.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
87
|
Chagot B, Auzat I, Gallopin M, Petitpas I, Gilquin B, Tavares P, Zinn-Justin S. Solution structure of gp17 from the Siphoviridae
bacteriophage SPP1: Insights into its role in virion assembly. Proteins 2011; 80:319-26. [DOI: 10.1002/prot.23191] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 09/02/2011] [Accepted: 09/07/2011] [Indexed: 01/08/2023]
|
88
|
Fu X, Walter MH, Paredes A, Morais MC, Liu J. The mechanism of DNA ejection in the Bacillus anthracis spore-binding phage 8a revealed by cryo-electron tomography. Virology 2011; 421:141-8. [PMID: 22018785 DOI: 10.1016/j.virol.2011.08.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/27/2011] [Accepted: 08/30/2011] [Indexed: 10/16/2022]
Abstract
The structure of the Bacillus anthracis spore-binding phage 8a was determined by cryo-electron tomography. The phage capsid forms a T=16 icosahedron attached to a contractile tail via a head-tail connector protein. The tail consists of a six-start helical sheath surrounding a central tail tube, and a structurally novel baseplate at the distal end of the tail that recognizes and attaches to host cells. The parameters of the icosahedral capsid lattice and the helical tail sheath suggest protein folds for the capsid and tail-sheath proteins, respectively, and indicate evolutionary relationships to other dsDNA viruses. Analysis of 2518 intact phage particles show four distinct conformations that likely correspond to four sequential states of the DNA ejection process during infection. Comparison of the four observed conformations suggests a mechanism for DNA ejection, including the molecular basis underlying coordination of tail sheath contraction and genome release from the capsid.
Collapse
Affiliation(s)
- Xiaofeng Fu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
89
|
Bacteriophage F336 recognizes the capsular phosphoramidate modification of Campylobacter jejuni NCTC11168. J Bacteriol 2011; 193:6742-9. [PMID: 21965558 DOI: 10.1128/jb.05276-11] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bacteriophages infecting the food-borne human pathogen Campylobacter jejuni could potentially be exploited to reduce bacterial counts in poultry prior to slaughter. This bacterium colonizes the intestinal tract of poultry in high numbers, and contaminated poultry meat is regarded as the major source of human campylobacteriosis. In this study, we used phage F336 belonging to the Myoviridae family to select a C. jejuni NCTC11168 phage-resistant strain, called 11168R, with the aim of investigating the mechanisms of phage resistance. We found that phage F336 has reduced adsorption to 11168R, thus indicating that the receptor is altered. While proteinase K-treated C. jejuni cells did not affect adsorption, periodate treatment resulted in reduced adsorption, suggesting that the phage binds to a carbohydrate moiety. Using high-resolution magic angle spinning nuclear magnetic resonance (NMR) spectroscopy, we found that 11168R lacks an O-methyl phosphoramidate (MeOPN) moiety attached to the GalfNAc on the capsular polysaccharide (CPS), which was further confirmed by mass spectroscopy. Sequence analysis of 11168R showed that the potentially hypervariable gene cj1421, which encodes the GalfNAc MeOPN transferase, contains a tract of 10 Gs, resulting in a nonfunctional gene product. However, when 11168R reverted back to phage sensitive, cj1421 contained 9 Gs, and the GalfNAc MeOPN was regained in this strain. In summary, we have identified the phase-variable MeOPN moiety, a common component of the diverse capsular polysaccharides of C. jejuni, as a novel receptor of phages infecting this bacterium.
Collapse
|
90
|
Bhardwaj A, Molineux IJ, Casjens SR, Cingolani G. Atomic structure of bacteriophage Sf6 tail needle knob. J Biol Chem 2011; 286:30867-30877. [PMID: 21705802 PMCID: PMC3162447 DOI: 10.1074/jbc.m111.260877] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/22/2011] [Indexed: 11/06/2022] Open
Abstract
Podoviridae are double-stranded DNA bacteriophages that use short, non-contractile tails to adsorb to the host cell surface. Within the tail apparatus of P22-like phages, a dedicated fiber known as the "tail needle" likely functions as a cell envelope-penetrating device to promote ejection of viral DNA inside the host. In Sf6, a P22-like phage that infects Shigella flexneri, the tail needle presents a C-terminal globular knob. This knob, absent in phage P22 but shared in other members of the P22-like genus, represents the outermost exposed tip of the virion that contacts the host cell surface. Here, we report a crystal structure of the Sf6 tail needle knob determined at 1.0 Å resolution. The structure reveals a trimeric globular domain of the TNF fold structurally superimposable with that of the tail-less phage PRD1 spike protein P5 and the adenovirus knob, domains that in both viruses function in receptor binding. However, P22-like phages are not known to utilize a protein receptor and are thought to directly penetrate the host surface. At 1.0 Å resolution, we identified three equivalents of l-glutamic acid (l-Glu) bound to each subunit interface. Although intimately bound to the protein, l-Glu does not increase the structural stability of the trimer nor it affects its ability to self-trimerize in vitro. In analogy to P22 gp26, we suggest the tail needle of phage Sf6 is ejected through the bacterial cell envelope during infection and its C-terminal knob is threaded through peptidoglycan pores formed by glycan strands.
Collapse
Affiliation(s)
- Anshul Bhardwaj
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Ian J Molineux
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas 78712
| | - Sherwood R Casjens
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
| |
Collapse
|
91
|
Abstract
Tailed bacteriophages use nanomotors, or molecular machines that convert chemical energy into physical movement of molecules, to insert their double-stranded DNA genomes into virus particles. These viral nanomotors are powered by ATP hydrolysis and pump the DNA into a preformed protein container called a procapsid. As a result, the virions contain very highly compacted chromosomes. Here, I review recent progress in obtaining structural information for virions, procapsids and the individual motor protein components, and discuss single-molecule in vitro packaging reactions, which have yielded important new information about the mechanism by which these powerful molecular machines translocate DNA.
Collapse
|
92
|
Bacteriophage infection in rod-shaped gram-positive bacteria: evidence for a preferential polar route for phage SPP1 entry in Bacillus subtilis. J Bacteriol 2011; 193:4893-903. [PMID: 21705600 DOI: 10.1128/jb.05104-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Entry into the host bacterial cell is one of the least understood steps in the life cycle of bacteriophages. The different envelopes of Gram-negative and Gram-positive bacteria, with a fluid outer membrane and exposing a thick peptidoglycan wall to the environment respectively, impose distinct challenges for bacteriophage binding and (re)distribution on the bacterial surface. Here, infection of the Gram-positive rod-shaped bacterium Bacillus subtilis by bacteriophage SPP1 was monitored in space and time. We found that SPP1 reversible adsorption occurs preferentially at the cell poles. This initial binding facilitates irreversible adsorption to the SPP1 phage receptor protein YueB, which is encoded by a putative type VII secretion system gene cluster. YueB was found to concentrate at the cell poles and to display a punctate peripheral distribution along the sidewalls of B. subtilis cells. The kinetics of SPP1 DNA entry and replication were visualized during infection. Most of the infecting phages DNA entered and initiated replication near the cell poles. Altogether, our results reveal that the preferentially polar topology of SPP1 receptors on the surface of the host cell determines the site of phage DNA entry and subsequent replication, which occurs in discrete foci.
Collapse
|
93
|
Shepherd DA, Veesler D, Lichière J, Ashcroft AE, Cambillau C. Unraveling lactococcal phage baseplate assembly by mass spectrometry. Mol Cell Proteomics 2011; 10:M111.009787. [PMID: 21646642 PMCID: PMC3186816 DOI: 10.1074/mcp.m111.009787] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Bacteriophages belonging to the Caudovirales order possess a tail acting as a molecular machine used during infection to recognize the host and ensure high-efficiency genome delivery to the cell cytoplasm. They bear a large and sophisticated multiprotein organelle at their distal tail end, either a baseplate or a tail-tip, which is the control center for infectivity. We report here insights into the baseplate assembly pathways of two lactoccocal phages (p2 and TP901-1) using electrospray ionization-mass spectrometry. Based on our "block cloning" strategy we have expressed large complexes of their baseplates as well as several significant structural subcomplexes. Previous biophysical characterization using size-exclusion chromatography coupled with on-line light scattering and refractometry demonstrated that the overproduced recombinant proteins interact with each other to form large (up to 1.9 MDa) and stable assemblies. The structures of several of these complexes have been determined by x-ray diffraction or by electron microscopy. In this contribution, we demonstrate that electrospray ionization-mass spectrometry yields accurate mass measurements for the different baseplate complexes studied from which their stoichiometries can be discerned, and that the subspecies observed in the spectra provide valuable information on the assembly mechanisms of these large organelles.
Collapse
Affiliation(s)
- Dale A Shepherd
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | |
Collapse
|
94
|
Goulet A, Lai-Kee-Him J, Veesler D, Auzat I, Robin G, Shepherd DA, Ashcroft AE, Richard E, Lichière J, Tavares P, Cambillau C, Bron P. The opening of the SPP1 bacteriophage tail, a prevalent mechanism in Gram-positive-infecting siphophages. J Biol Chem 2011; 286:25397-405. [PMID: 21622577 DOI: 10.1074/jbc.m111.243360] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The SPP1 siphophage uses its long non-contractile tail and tail tip to recognize and infect the Gram-positive bacterium Bacillus subtilis. The tail-end cap and its attached tip are the critical components for host recognition and opening of the tail tube for genome exit. In the present work, we determined the cryo-electron microscopic (cryo-EM) structure of a complex formed by the cap protein gp19.1 (Dit) and the N terminus of the downstream protein of gp19.1 in the SPP1 genome, gp21(1-552) (Tal). This complex assembles two back-to-back stacked gp19.1 ring hexamers, interacting loosely, and two gp21(1-552) trimers interacting with gp19.1 at both ends of the stack. Remarkably, one gp21(1-552) trimer displays a "closed" conformation, whereas the second is "open" delineating a central channel. The two conformational states dock nicely into the EM map of the SPP1 cap domain, respectively, before and after DNA release. Moreover, the open/closed conformations of gp19.1-gp21(1-552) are consistent with the structures of the corresponding proteins in the siphophage p2 baseplate, where the Tal protein (ORF16) attached to the ring of Dit (ORF15) was also found to adopt these two conformations. Therefore, the present contribution allowed us to revisit the SPP1 tail distal-end architectural organization. Considering the sequence conservation among Dit and the N-terminal region of Tal-like proteins in Gram-positive-infecting Siphoviridae, it also reveals the Tal opening mechanism as a hallmark of siphophages probably involved in the generation of the firing signal initiating the cascade of events that lead to phage DNA release in vivo.
Collapse
Affiliation(s)
- Adeline Goulet
- Centre de Biochimie Structurale, INSERM UMR 1054/CNRS UMR 5048 and Universités Montpellier I & II, 29 rue de Navacelles, Montpellier 34090, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Abstract
Bacteriophages have been a model system to study assembly processes for over half a century. Formation of infectious phage particles involves specific protein-protein and protein-nucleic acid interactions, as well as large conformational changes of assembly precursors. The sequence and molecular mechanisms of phage assembly have been elucidated by a variety of methods. Differences and similarities of assembly processes in several different groups of bacteriophages are discussed in this review. The general principles of phage assembly are applicable to many macromolecular complexes.
Collapse
|
96
|
Bebeacua C, Bron P, Lai L, Vegge CS, Brøndsted L, Spinelli S, Campanacci V, Veesler D, van Heel M, Cambillau C. Structure and molecular assignment of lactococcal phage TP901-1 baseplate. J Biol Chem 2010; 285:39079-86. [PMID: 20937834 PMCID: PMC2998104 DOI: 10.1074/jbc.m110.175646] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/23/2010] [Indexed: 12/28/2022] Open
Abstract
P335 lactococcal phages infect the gram(+) bacterium Lactococcus lactis using a large multiprotein complex located at the distal part of the tail and termed baseplate (BP). The BP harbors the receptor-binding proteins (RBPs), which allow the specific recognition of saccharidic receptors localized on the host cell surface. We report here the electron microscopic structure of the phage TP901-1 wild-type BP as well as those of two mutants bppL (-) and bppU(-), lacking BppL (the RBPs) or both peripheral BP components (BppL and BppU), respectively. We also achieved an electron microscopic reconstruction of a partial BP complex, formed by BppU and BppL. This complex exhibits a tripod shape and is composed of nine BppLs and three BppUs. These structures, combined with light-scattering measurements, led us to propose that the TP901-1 BP harbors six tripods at its periphery, located around the central tube formed by ORF46 (Dit) hexamers, at its proximal end, and a ORF47 (Tal) trimer at its distal extremity. A total of 54 BppLs (18 RBPs) are thus available to mediate host anchoring with a large apparent avidity. TP901-1 BP exhibits an infection-ready conformation and differs strikingly from the lactococcal phage p2 BP, bearing only 6 RBPs, and which needs a conformational change to reach its activated state. The comparison of several Siphoviridae structures uncovers a close organization of their central BP core whereas striking differences occur at the periphery, leading to diverse mechanisms of host recognition.
Collapse
Affiliation(s)
- Cecilia Bebeacua
- From the Department of Biological Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Patrick Bron
- the Centre de Biochimie Structurale, INSERM U554/CNRS UMR 5048, 29 rue de Navacelles, 34090 Montpellier, France
| | - Livia Lai
- From the Department of Biological Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Christina Skovgaard Vegge
- the Department of Veterinary Disease Biology, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark, and
| | - Lone Brøndsted
- the Department of Veterinary Disease Biology, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark, and
| | - Silvia Spinelli
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS and Universités Aix-Marseille I and II, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | - Valérie Campanacci
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS and Universités Aix-Marseille I and II, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | - David Veesler
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS and Universités Aix-Marseille I and II, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | - Marin van Heel
- From the Department of Biological Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS and Universités Aix-Marseille I and II, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| |
Collapse
|
97
|
Is the in vitro ejection of bacteriophage DNA quasistatic? A bulk to single virus study. Biophys J 2010; 99:447-55. [PMID: 20643062 DOI: 10.1016/j.bpj.2010.04.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/24/2010] [Accepted: 04/12/2010] [Indexed: 01/03/2023] Open
Abstract
Bacteriophage T5 DNA ejection is a complex process that occurs on several timescales in vitro. By using a combination of bulk and single phage measurements, we quantitatively study the three steps of the ejection-binding to the host receptor, channel-opening, and DNA release. Each step is separately addressed and its kinetics parameters evaluated. We reconstruct the bulk kinetics from the distribution of single phage events by following individual DNA molecules with unprecedented time resolution. We show that, at the single phage level, the ejection kinetics of the DNA happens by rapid transient bursts that are not correlated to any genome sequence defects. We speculate that these transient pauses are due to local phase transitions of the DNA inside the capsid. We predict that such pauses should be seen for other phages with similar DNA packing ratios.
Collapse
|
98
|
Chang JT, Schmid MF, Haase-Pettingell C, Weigele PR, King JA, Chiu W. Visualizing the structural changes of bacteriophage Epsilon15 and its Salmonella host during infection. J Mol Biol 2010; 402:731-40. [PMID: 20709082 PMCID: PMC3164490 DOI: 10.1016/j.jmb.2010.07.058] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/26/2010] [Accepted: 07/29/2010] [Indexed: 01/12/2023]
Abstract
The efficient mechanism by which double-stranded DNA bacteriophages deliver their chromosome across the outer membrane, cell wall, and inner membrane of Gram-negative bacteria remains obscure. Advances in single-particle electron cryomicroscopy have recently revealed details of the organization of the DNA injection apparatus within the mature virion for various bacteriophages, including epsilon15 (ɛ15) and P-SSP7. We have used electron cryotomography and three-dimensional subvolume averaging to capture snapshots of ɛ15 infecting its host Salmonella anatum. These structures suggest the following stages of infection. In the first stage, the tailspikes of ɛ15 attach to the surface of the host cell. Next, ɛ15's tail hub attaches to a putative cell receptor and establishes a tunnel through which the injection core proteins behind the portal exit the virion. A tube spanning the periplasmic space is formed for viral DNA passage, presumably from the rearrangement of core proteins or from cellular components. This tube would direct the DNA into the cytoplasm and protect it from periplasmic nucleases. Once the DNA has been injected into the cell, the tube and portal seals, and the empty bacteriophage remains at the cell surface.
Collapse
Affiliation(s)
- Juan T. Chang
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael F. Schmid
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Peter R. Weigele
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jonathan A. King
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wah Chiu
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
99
|
Veesler D, Blangy S, Spinelli S, Tavares P, Campanacci V, Cambillau C. Crystal structure of Bacillus subtilis SPP1 phage gp22 shares fold similarity with a domain of lactococcal phage p2 RBP. Protein Sci 2010; 19:1439-43. [PMID: 20506290 DOI: 10.1002/pro.416] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SPP1 is a siphophage infecting the gram-positive bacterium Bacillus subtilis. It is constituted by an icosahedric head and a long non-contractile tail formed by gene products (gp) 17-21. A group of 5 small genes (gp 22-24.1) follows in the genome those coding for the main tail components. However, the belonging of the corresponding gp to the tail or to other parts of the phage is not documented. Among these, gp22 lacks sequence identity to any known protein. We report here the gp22 structure solved by X-ray crystallography at 2.35 A resolution. We found that gp22 is a monomer in solution and possesses a significant structural similarity with lactococcal phage p2 ORF 18 N-terminal "shoulder" domain.
Collapse
Affiliation(s)
- David Veesler
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS and Universités d'Aix-Marseille I and II, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | | | | | | | | | | |
Collapse
|
100
|
Veesler D, Robin G, Lichière J, Auzat I, Tavares P, Bron P, Campanacci V, Cambillau C. Crystal structure of bacteriophage SPP1 distal tail protein (gp19.1): a baseplate hub paradigm in gram-positive infecting phages. J Biol Chem 2010; 285:36666-73. [PMID: 20843802 DOI: 10.1074/jbc.m110.157529] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Siphophage SPP1 infects the gram-positive bacterium Bacillus subtilis using its long non-contractile tail and tail-tip. Electron microscopy (EM) previously allowed a low resolution assignment of most orf products belonging to these regions. We report here the structure of the SPP1 distal tail protein (Dit, gp19.1). The combination of x-ray crystallography, EM, and light scattering established that Dit is a back-to-back dimer of hexamers. However, Dit fitting in the virion EM maps was only possible with a hexamer located between the tail-tube and the tail-tip. Structure comparison revealed high similarity between Dit and a central component of lactophage baseplates. Sequence similarity search expanded its relatedness to several phage proteins, suggesting that Dit is a docking platform for the tail adsorption apparatus in Siphoviridae infecting gram-positive bacteria and that its architecture is a paradigm for these hub proteins. Dit structural similarity extends also to non-contractile and contractile phage tail proteins (gpV(N) and XkdM) as well as to components of the bacterial type 6 secretion system, supporting an evolutionary connection between all these devices.
Collapse
Affiliation(s)
- David Veesler
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS and Universités d'Aix-Marseille I & II, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | | | | | | | | | | | | | | |
Collapse
|