51
|
Kuai Q, Lu X, Qiao Z, Wang R, Wang Y, Ye S, He M, Wang Y, Zhang T, Wu H, Ren S, Yu Q. Histone deacetylase inhibitor chidamide promotes reactivation of latent human immunodeficiency virus by introducing histone acetylation. J Med Virol 2018; 90:1478-1485. [PMID: 29704439 DOI: 10.1002/jmv.25207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/18/2018] [Indexed: 01/30/2023]
Abstract
Highly active antiretroviral therapy can reduce the human immunodeficiency virus (HIV) viral load in the plasma to undetectable levels. However, because of the presence of latent HIV reservoirs, it is difficult to completely eradicate HIV in infected patients. Our objective was to assess the potency of chidamide, a novel histone deacetylase inhibitor recently approved for cancer treatment by the China Food and Drug Administration, to reactivate latent HIV-1 via histone acetylation. Viral reactivities of chidamide were accessed in 2 latent HIV pseudotype virus cell reporter systems (J-Lat Tat-green fluorescent protein clone A72 and TZM-bl), a latently infected full-length HIV virus cell system (U1/HIV), and resting CD4+ T cells from 9 HIV-infected patients under highly active antiretroviral therapy with undetectable viral load. Chidamide was able to increase HIV expression in each cell line, as evidenced by green fluorescent protein, luciferase activity, and p24, as well as to reactivate latent HIV-1 in primary CD4+ T cells of HIV-infected patients. Histone acetylation adjacent to the HIV promoter in A72 cells was determined by chromatin immunoprecipitation. Chidamide was able to increase histone H3 and H4 acetylation at the HIV promoter. In brief, chidamide induced the reactivation of latent HIV in pseudotype virus reporter cells, latently infected cells, and primary CD4+ T cells, making this compound an attractive option for future clinical trials.
Collapse
Affiliation(s)
- Qiyuan Kuai
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Xiaofan Lu
- STD/HIV Research Laboratory, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Zhixin Qiao
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Rui Wang
- Beijing Key Laboratory for HIV/AIDS Research, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Yanbing Wang
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Sanxian Ye
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Min He
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Yu Wang
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Tong Zhang
- STD/HIV Research Laboratory, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Center of Infectious Disease, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Suping Ren
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing, China.,Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Qun Yu
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing, China.,Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| |
Collapse
|
52
|
Meltzer B, Dabbagh D, Guo J, Kashanchi F, Tyagi M, Wu Y. Tat controls transcriptional persistence of unintegrated HIV genome in primary human macrophages. Virology 2018; 518:241-252. [PMID: 29549786 DOI: 10.1016/j.virol.2018.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 01/31/2023]
Abstract
In HIV infected macrophages, a large population of viral genomes persists as the unintegrated form (uDNA) that is transcriptionally active. However, how this transcriptional activity is controlled remains unclear. In this report, we investigated whether Tat, the viral transactivator of transcription, is involved in uDNA transcription. We demonstrate that de novo Tat activity is generated from uDNA, and this uDNA-derived Tat (uTat) transactivates the uDNA LTR. In addition, uTat is required for the transcriptional persistence of uDNA that is assembled into repressive episomal minichromatin. In the absence of uTat, uDNA minichromatin is gradually silenced, but remains highly inducible by HDAC inhibitors (HDACi). Therefore, functionally, uTat antagonizes uDNA minichromatin repression to maintain persistent viral transcription in macrophages. uTat-mediated viral persistence may establish a viral reservoir in macrophages where uDNA were found to persist.
Collapse
Affiliation(s)
- Beatrix Meltzer
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, USA
| | - Deemah Dabbagh
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, USA
| | - Jia Guo
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, George Mason University, Manassas, USA
| | - Mudit Tyagi
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, USA
| | - Yuntao Wu
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, USA.
| |
Collapse
|
53
|
Jiang G, Nguyen D, Archin NM, Yukl SA, Méndez-Lagares G, Tang Y, Elsheikh MM, Thompson GR, Hartigan-O'Connor DJ, Margolis DM, Wong JK, Dandekar S. HIV latency is reversed by ACSS2-driven histone crotonylation. J Clin Invest 2018; 128:1190-1198. [PMID: 29457784 DOI: 10.1172/jci98071] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022] Open
Abstract
Eradication of HIV-1 (HIV) is hindered by stable viral reservoirs. Viral latency is epigenetically regulated. While the effects of histone acetylation and methylation at the HIV long-terminal repeat (LTR) have been described, our knowledge of the proviral epigenetic landscape is incomplete. We report that a previously unrecognized epigenetic modification of the HIV LTR, histone crotonylation, is a regulator of HIV latency. Reactivation of latent HIV was achieved following the induction of histone crotonylation through increased expression of the crotonyl-CoA-producing enzyme acyl-CoA synthetase short-chain family member 2 (ACSS2). This reprogrammed the local chromatin at the HIV LTR through increased histone acetylation and reduced histone methylation. Pharmacologic inhibition or siRNA knockdown of ACSS2 diminished histone crotonylation-induced HIV replication and reactivation. ACSS2 induction was highly synergistic in combination with either a protein kinase C agonist (PEP005) or a histone deacetylase inhibitor (vorinostat) in reactivating latent HIV. In the SIV-infected nonhuman primate model of AIDS, the expression of ACSS2 was significantly induced in intestinal mucosa in vivo, which correlated with altered fatty acid metabolism. Our study links the HIV/SIV infection-induced fatty acid enzyme ACSS2 to HIV latency and identifies histone lysine crotonylation as a novel epigenetic regulator for HIV transcription that can be targeted for HIV eradication.
Collapse
Affiliation(s)
- Guochun Jiang
- Department of Medical Microbiology and Immunology, UCD, Davis, California, USA
| | - Don Nguyen
- Department of Medical Microbiology and Immunology, UCD, Davis, California, USA
| | - Nancie M Archin
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Steven A Yukl
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gema Méndez-Lagares
- Department of Medical Microbiology and Immunology, UCD, Davis, California, USA
| | - Yuyang Tang
- Department of Medical Microbiology and Immunology, UCD, Davis, California, USA
| | - Maher M Elsheikh
- Department of Medical Microbiology and Immunology, UCD, Davis, California, USA
| | - George R Thompson
- Department of Medical Microbiology and Immunology, UCD, Davis, California, USA
| | | | - David M Margolis
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joseph K Wong
- Department of Medicine, UCSF, and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology, UCD, Davis, California, USA
| |
Collapse
|
54
|
Multiple Inhibitory Factors Act in the Late Phase of HIV-1 Replication: a Systematic Review of the Literature. Microbiol Mol Biol Rev 2018; 82:82/1/e00051-17. [PMID: 29321222 DOI: 10.1128/mmbr.00051-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The use of lentiviral vectors for therapeutic purposes has shown promising results in clinical trials. The ability to produce a clinical-grade vector at high yields remains a critical issue. One possible obstacle could be cellular factors known to inhibit human immunodeficiency virus (HIV). To date, five HIV restriction factors have been identified, although it is likely that more factors are involved in the complex HIV-cell interaction. Inhibitory factors that have an adverse effect but do not abolish virus production are much less well described. Therefore, a gap exists in the knowledge of inhibitory factors acting late in the HIV life cycle (from transcription to infection of a new cell), which are relevant to the lentiviral vector production process. The objective was to review the HIV literature to identify cellular factors previously implicated as inhibitors of the late stages of lentivirus production. A search for publications was conducted on MEDLINE via the PubMed interface, using the keyword sequence "HIV restriction factor" or "HIV restriction" or "inhibit HIV" or "repress HIV" or "restrict HIV" or "suppress HIV" or "block HIV," with a publication date up to 31 December 2016. Cited papers from the identified records were investigated, and additional database searches were performed. A total of 260 candidate inhibitory factors were identified. These factors have been identified in the literature as having a negative impact on HIV replication. This study identified hundreds of candidate inhibitory factors for which the impact of modulating their expression in lentiviral vector production could be beneficial.
Collapse
|
55
|
Panagoulias I, Karagiannis F, Aggeletopoulou I, Georgakopoulos T, Argyropoulos CP, Akinosoglou K, Gogos C, Skoutelis A, Mouzaki A. Ets-2 Acts As a Transcriptional Repressor of the Human Immunodeficiency Virus Type 1 through Binding to a Repressor-Activator Target Sequence of 5'-LTR. Front Immunol 2018; 8:1924. [PMID: 29354130 PMCID: PMC5758550 DOI: 10.3389/fimmu.2017.01924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/15/2017] [Indexed: 01/02/2023] Open
Abstract
HIV-1 is transcriptionally active in activated T helper (Th)-cells and inactive in naive or resting memory Th-cells. Ets-2 is a preinduction transcriptional repressor of the IL-2 gene in naive Th-cells and a candidate transcriptional repressor of HIV-1 in the same cells, because the −279 to −250 upstream region of HIV-1-LTR [repressor–activator target sequence (RATS)], that participates in HIV-1-LTR transcriptional silencing, encompasses the AAGGAG Ets-2 binding site. In this proof of concept study, we investigated whether Ets-2 represses the expression of HIV-1. To assess whether Ets-2 can repress HIV-1 transcriptional activation acting through RATS, we transfected Jurkat cells with an Ets-2 overexpression plasmid (pCDNA3-ets-2) or Ets-2 silencing plasmids (ets-2-shRNA) and, as target genes, plasmids carrying the whole HIV-1-LTR sequence (HIV-1-LTR-CAT) or two copies of the RATS sequence (2× RATS-CAT) or a point mutation in the Ets-2 binding site (2× mutantRATS-CAT) or CMV-CAT (control). Ets-2 overexpression resulted in a significant reduction of HIV-1-LTR-CAT and 2× RATS-CAT activities in stimulated cells, but not of the 2× mutantRATS-CAT or CMV-CAT. Ets-2 silencing led to increased activities of HIV-1-LTR-CAT and 2× RATS-CAT in unstimulated cells, but had no effect on the activities of 2× mutantRATS-CAT and CMV-CAT. To assess Ets-2 binding to HIV-1-LTR–RATS in naive Th-cells, we isolated naive Th-cell nuclear proteins and passed them through an Ets-2 antibody column; electrophoretic mobility shift assays were performed using an RATS probe mixed with consecutive protein eluates. Ets-2 bound to the HIV-1-LTR–RATS in a dose-dependent manner. To assess Ets-2 binding to RATS in vivo, Jurkat cells were transfected with 2× RATS-CAT and stained for the Ets-2 protein and the RATS sequence by combining immunofluorescence and fluorescence in situ hybridization techniques. In unstimulated cells, Ets-2 bound to RATS, whereas no binding was observed in stimulated cells. To test for RATS specificity, the same experiments were performed with 2× mutantRATS-CAT, and no binding of Ets-2 was observed. The results were corroborated by chromatin immunoprecipitation assays performed with the same cells. Our results show that Ets-2 is a transcriptional repressor of HIV-1. Repression of HIV-LTR-RATS mediated by Ets-2 may account for the low-level transcription and replication of HIV-1 in naive Th-cells, and contribute to the viral latency and maintenance of viral reservoirs in patients, despite long-term therapy.
Collapse
Affiliation(s)
- Ioannis Panagoulias
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Fotios Karagiannis
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Ioanna Aggeletopoulou
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Tassos Georgakopoulos
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Christos P Argyropoulos
- Division of Nephrology, Department of Internal Medicine, Medical School, University of New Mexico, Albuquerque, NM, United States
| | - Karolina Akinosoglou
- Infectious Diseases Unit, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Charalambos Gogos
- Infectious Diseases Unit, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Athanasios Skoutelis
- Department of Internal Medicine and Infectious Diseases Unit, Evangelismos General Hospital, Athens, Greece
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
56
|
Ne E, Palstra RJ, Mahmoudi T. Transcription: Insights From the HIV-1 Promoter. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 335:191-243. [DOI: 10.1016/bs.ircmb.2017.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
57
|
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| |
Collapse
|
58
|
Datta PK, Kaminski R, Hu W, Pirrone V, Sullivan NT, Nonnemacher MR, Dampier W, Wigdahl B, Khalili K. HIV-1 Latency and Eradication: Past, Present and Future. Curr HIV Res 2017; 14:431-441. [PMID: 27009094 DOI: 10.2174/1570162x14666160324125536] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/04/2015] [Accepted: 01/16/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND It is well established that antiretroviral therapy (ART), while highly effective in controlling HIV replication, cannot eliminate virus from the body. Therefore, the majority of HIV-1-infected individuals remain at risk for developing AIDS due to persistence of infected reservoir cells serving as a source of virus re-emergence. Several reservoirs containing replication competent HIV-1 have been identified, most notably CD4+ T cells. Cells of the myeloid lineage, which are the first line of defense against pathogens and participate in HIV dissemination into sanctuary organs, also serve as cellular reservoirs of HIV-1. In latently infected resting CD4+ T cells, the integrated copies of proviral DNA remain in a dormant state, yet possess the ability to produce replication competent virus after cellular activation. Studies have demonstrated that modification of chromatin structure plays a role in establishing persistence, in part suggesting that latency is, controlled epigenetically. CONCLUSION Current efforts to eradicate HIV-1 from this cell population focus primarily on a "shock and kill" approach through cellular reactivation to trigger elimination of virus producing cells by cytolysis or host immune responses. However, studies revealed several limitations to this approach that require more investigation to assess its clinical application. Recent advances in gene editing technology prompted use of this approach for inactivating integrated proviral DNA in the genome of latently infected cells. This technology, which requires a detailed understanding of the viral genetics and robust delivery, may serve as a powerful strategy to eliminate the latent reservoir in the host leading to a sterile cure of AIDS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, 7th Floor, Philadelphia, PA 19140, USA.
| |
Collapse
|
59
|
Turner AMW, Margolis DM. Chromatin Regulation and the Histone Code in HIV Latency
. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:229-243. [PMID: 28656010 PMCID: PMC5482300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The formation of a latent reservoir of Human Immunodeficiency Virus (HIV) infection hidden from immune clearance remains a significant obstacle to approaches to eradicate HIV infection. Towards an understanding of the mechanisms of HIV persistence, there is a growing body of work implicating epigenetic regulation of chromatin in establishment and maintenance of this latent reservoir. Here we discuss recent advances in the field of chromatin regulation, specifically in our understanding of the histone code, and how these discoveries relate to our current knowledge of the chromatin mechanisms linked to HIV transcriptional repression and the reversal of latency. We also examine mechanisms unexplored in the context of HIV latency and briefly discuss current therapies aimed at the induction of proviral expression within latently infected cells. We aim to emphasize that a greater understanding of the epigenetic mechanisms which govern HIV latency could lead to new therapeutic targets for latency reversal and clearance cure strategies.
Collapse
Affiliation(s)
- Anne-Marie W. Turner
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC,Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - David M. Margolis
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC,Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC,Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC,To whom all correspondence should be addressed: David Margolis, University of North Carolina at Chapel Hill, 2016 Genetic Medicine Building, CB#7042, 120 Mason Farm Road, Chapel Hill, NC, 27599-7435, Tel: (919) 966-6388, .
| |
Collapse
|
60
|
Identification of HIV-1 Tat-Associated Proteins Contributing to HIV-1 Transcription and Latency. Viruses 2017; 9:v9040067. [PMID: 28368303 PMCID: PMC5408673 DOI: 10.3390/v9040067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/19/2017] [Accepted: 03/24/2017] [Indexed: 12/31/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Tat is a virus-encoded trans-activator that plays a central role in viral transcription. We used our recently developed parallel analysis of in vitro translated open reading frames (ORFs) (PLATO) approach to identify host proteins that associate with HIV-1 Tat. From this proteomic assay, we identify 89 Tat-associated proteins (TAPs). We combine our results with other datasets of Tat or long terminal repeat (LTR)-associated proteins. For some of these proteins (NAT10, TINP1, XRCC5, SIN3A), we confirm their strong association with Tat. These TAPs also suppress Tat-mediated HIV-1 transcription. Removing suppression of HIV-1 transcription benefits the reversal of post-integrated, latent HIV-1 proviruses. We demonstrate that these transcriptionally suppressing TAPs contribute to HIV-1 latency in Jurkat latency (J-LAT) cells. Therefore, our proteomic analysis highlights the previously unappreciated TAPs that play a role in maintaining HIV-1 latency and can be further studied as potential pharmacological targets for the “shock and kill” HIV-1 cure strategy.
Collapse
|
61
|
Zapata JC, Campilongo F, Barclay RA, DeMarino C, Iglesias-Ussel MD, Kashanchi F, Romerio F. The Human Immunodeficiency Virus 1 ASP RNA promotes viral latency by recruiting the Polycomb Repressor Complex 2 and promoting nucleosome assembly. Virology 2017; 506:34-44. [PMID: 28340355 PMCID: PMC5505171 DOI: 10.1016/j.virol.2017.03.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/03/2017] [Accepted: 03/05/2017] [Indexed: 01/04/2023]
Abstract
Various epigenetic marks at the HIV-1 5′LTR suppress proviral expression and promote latency. Cellular antisense transcripts known as long noncoding RNAs (lncRNAs) recruit the polycomb repressor complex 2 (PRC2) to gene promoters, which catalyzes trimethylation of lysine 27 on histone H3 (H3K27me3), thus promoting nucleosome assembly and suppressing gene expression. We found that an HIV-1 antisense transcript expressed from the 3′LTR and encoding the antisense protein ASP promotes proviral latency. Expression of ASP RNA reduced HIV-1 replication in Jurkat cells. Moreover, ASP RNA expression promoted the establishment and maintenance of HIV-1 latency in Jurkat E4 cells. We show that this transcript interacts with and recruits PRC2 to the HIV-1 5′LTR, increasing accumulation of the suppressive epigenetic mark H3K27me3, while reducing RNA Polymerase II and thus proviral transcription. Altogether, our results suggest that the HIV-1 ASP transcript promotes epigenetic silencing of the HIV-1 5′LTR and proviral latency through the PRC2 pathway.
Collapse
Affiliation(s)
- Juan C Zapata
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Federica Campilongo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robert A Barclay
- Laboratory of Molecular Virology, George Mason University, Manassas, VA, USA
| | - Catherine DeMarino
- Laboratory of Molecular Virology, George Mason University, Manassas, VA, USA
| | - Maria D Iglesias-Ussel
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, George Mason University, Manassas, VA, USA
| | - Fabio Romerio
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
62
|
Alvarez-Carbonell D, Garcia-Mesa Y, Milne S, Das B, Dobrowolski C, Rojas R, Karn J. Toll-like receptor 3 activation selectively reverses HIV latency in microglial cells. Retrovirology 2017; 14:9. [PMID: 28166799 PMCID: PMC5294768 DOI: 10.1186/s12977-017-0335-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/19/2017] [Indexed: 01/27/2023] Open
Abstract
Background Multiple toll-like receptors (TLRs) are expressed in cells of the monocytic lineage, including microglia, which constitute the major reservoir for human immunodeficiency virus (HIV) infection in the brain. We hypothesized that TLR receptor mediated responses to inflammatory conditions by microglial cells in the central nervous system (CNS) are able to induce latent HIV proviruses, and contribute to the etiology of HIV-associated neurocognitive disorders. Results Newly developed human microglial cell lines (hµglia), obtained by immortalizing human primary microglia with simian virus-40 (SV40) large T antigen and the human telomerase reverse transcriptase, were used to generate latently infected cells using a single-round HIV virus carrying a green fluorescence protein reporter (hµglia/HIV, clones HC01 and HC69). Treatment of these cells with a panel of TLR ligands showed surprisingly that two potent TLR3 agonists, poly (I:C) and bacterial ribosomal RNA potently reactivated HIV in hμglia/HIV cells. LPS (TLR4 agonist), flagellin (TLR5 agonist), and FSL-1 (TLR6 agonist) reactivated HIV to a lesser extent, while Pam3CSK4 (TLR2/1 agonist) and HKLM (TLR2 agonist) only weakly reversed HIV latency in these cells. While agonists for TLR2/1, 4, 5 and 6 reactivated HIV through transient NF-κB induction, poly (I:C), the TLR3 agonist, did not activate NF-κB, and instead induced the virus by a previously unreported mechanism mediated by IRF3. The selective induction of IRF3 by poly (I:C) was confirmed by chromatin immunoprecipitation (ChIP) analysis. In comparison, in latently infected rat-derived microglial cells (hT-CHME-5/HIV, clone HC14), poly (I:C), LPS and flagellin were only partially active. The TLR response profile in human microglial cells is also distinct from that shown by latently infected monocyte cell lines (THP-1/HIV, clone HA3, U937/HIV, clone HUC5, and SC/HIV, clone HSCC4), where TLR2/1, 4, 5, 6 or 8, but not for TLR3, 7 or 9, reactivated HIV. Conclusions TLR signaling, in particular TLR3 activation, can efficiently reactivate HIV transcription in infected microglia, but not in monocytes or T cells. The unique response profile of microglial cells to TLR3 is fundamental to understanding how the virus responds to continuous microbial exposure, especially during inflammatory episodes, that characterizes HIV infection in the CNS. Electronic supplementary material The online version of this article (doi:10.1186/s12977-017-0335-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Alvarez-Carbonell
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Yoelvis Garcia-Mesa
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Stephanie Milne
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Biswajit Das
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Curtis Dobrowolski
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Roxana Rojas
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA.
| |
Collapse
|
63
|
The Multifaceted Contributions of Chromatin to HIV-1 Integration, Transcription, and Latency. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 328:197-252. [PMID: 28069134 DOI: 10.1016/bs.ircmb.2016.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The capacity of the human immunodeficiency virus (HIV-1) to establish latent infections constitutes a major barrier to the development of a cure for HIV-1. In latent infection, replication competent HIV-1 provirus is integrated within the host genome but remains silent, masking the infected cells from the activity of the host immune response. Despite the progress in elucidating the molecular players that regulate HIV-1 gene expression, the mechanisms driving the establishment and maintenance of latency are still not fully understood. Transcription from the HIV-1 genome occurs in the context of chromatin and is subjected to the same regulatory mechanisms that drive cellular gene expression. Much like in eukaryotic genes, the nucleosomal landscape of the HIV-1 promoter and its position within genomic chromatin are determinants of its transcriptional activity. Understanding the multilayered chromatin-mediated mechanisms that underpin HIV-1 integration and expression is of utmost importance for the development of therapeutic strategies aimed at reducing the pool of latently infected cells. In this review, we discuss the impact of chromatin structure on viral integration, transcriptional regulation and latency, and the host factors that influence HIV-1 replication by regulating chromatin organization. Finally, we describe therapeutic strategies under development to target the chromatin-HIV-1 interplay.
Collapse
|
64
|
Melkova Z, Shankaran P, Madlenakova M, Bodor J. Current views on HIV-1 latency, persistence, and cure. Folia Microbiol (Praha) 2016; 62:73-87. [PMID: 27709447 DOI: 10.1007/s12223-016-0474-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/20/2016] [Indexed: 01/01/2023]
Abstract
HIV-1 infection cannot be cured as it persists in latently infected cells that are targeted neither by the immune system nor by available therapeutic approaches. Consequently, a lifelong therapy suppressing only the actively replicating virus is necessary. The latent reservoir has been defined and characterized in various experimental models and in human patients, allowing research and development of approaches targeting individual steps critical for HIV-1 latency establishment, maintenance, and reactivation. However, additional mechanisms and processes driving the remaining low-level HIV-1 replication in the presence of the suppressive therapy still remain to be identified and targeted. Current approaches toward HIV-1 cure involve namely attempts to reactivate and purge HIV latently infected cells (so-called "shock and kill" strategy), as well as approaches involving gene therapy and/or gene editing and stem cell transplantation aiming at generation of cells resistant to HIV-1. This review summarizes current views and concepts underlying different approaches aiming at functional or sterilizing cure of HIV-1 infection.
Collapse
Affiliation(s)
- Zora Melkova
- Department of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Studnickova 7, 128 00, Prague 2, Czech Republic. .,BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Průmyslová 595, 252 50, Vestec, Czech Republic.
| | - Prakash Shankaran
- Department of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Studnickova 7, 128 00, Prague 2, Czech Republic
| | - Michaela Madlenakova
- Department of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Studnickova 7, 128 00, Prague 2, Czech Republic.,BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Josef Bodor
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Průmyslová 595, 252 50, Vestec, Czech Republic
| |
Collapse
|
65
|
Luo Y, Jacobs EY, Greco TM, Mohammed KD, Tong T, Keegan S, Binley JM, Cristea IM, Fenyö D, Rout MP, Chait BT, Muesing MA. HIV-host interactome revealed directly from infected cells. Nat Microbiol 2016; 1:16068. [PMID: 27375898 PMCID: PMC4928716 DOI: 10.1038/nmicrobiol.2016.68] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 04/16/2016] [Indexed: 01/27/2023]
Abstract
Although genetically compact, HIV-1 commandeers vast arrays of cellular machinery to sustain and protect it during cycles of viral outgrowth. Transposon-mediated saturation linker scanning mutagenesis was used to isolate fully replication-competent viruses harbouring a potent foreign epitope tag. Using these viral isolates, we performed differential isotopic labelling and affinity-capture mass spectrometric analyses on samples obtained from cultures of human lymphocytes to classify the vicinal interactomes of the viral Env and Vif proteins as they occur during natural infection. Importantly, interacting proteins were recovered without bias, regardless of their potential for positive, negative or neutral impact on viral replication. We identified specific host associations made with trimerized Env during its biosynthesis, at virological synapses, with innate immune effectors (such as HLA-E) and with certain cellular signalling pathways (for example, Notch1). We also defined Vif associations with host proteins involved in the control of nuclear transcription and nucleoside biosynthesis as well as those interacting stably or transiently with the cytoplasmic protein degradation apparatus. Our approach is broadly applicable to elucidating pathogen-host interactomes, providing high-certainty identification of interactors by their direct access during cycling infection. Understanding the pathophysiological consequences of these associations is likely to provide strategic targets for antiviral intervention.
Collapse
Affiliation(s)
- Yang Luo
- Aaron Diamond AIDS Research Center, 455 1st Avenue, New York, New York 10016, USA
| | - Erica Y. Jacobs
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Todd M. Greco
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey 08540, USA
| | - Kevin D. Mohammed
- Aaron Diamond AIDS Research Center, 455 1st Avenue, New York, New York 10016, USA
| | - Tommy Tong
- San Diego Biomedical Research Institute, 10865 Road to the Cure, San Diego, California 92121, USA
| | - Sarah Keegan
- Department of Biochemistry, New York University Langone Medical Center, 227 East 30th Street, New York, New York 10016, USA
| | - James M. Binley
- San Diego Biomedical Research Institute, 10865 Road to the Cure, San Diego, California 92121, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey 08540, USA
| | - David Fenyö
- Department of Biochemistry, New York University Langone Medical Center, 227 East 30th Street, New York, New York 10016, USA
| | - Michael P. Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Brian T. Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Mark A. Muesing
- Aaron Diamond AIDS Research Center, 455 1st Avenue, New York, New York 10016, USA
| |
Collapse
|
66
|
Lucic B, Lusic M. Connecting HIV-1 integration and transcription: a step toward new treatments. FEBS Lett 2016; 590:1927-39. [PMID: 27224516 DOI: 10.1002/1873-3468.12226] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/17/2016] [Accepted: 05/24/2016] [Indexed: 12/12/2022]
Abstract
Thanks to the current combined antiretroviral therapy (cART), HIV-1 infection has become a manageable although chronic disease. The reason for this lies in the fact that long-lived cellular reservoirs persist in patients on cART. Despite numerous efforts to understand molecular mechanisms that contribute to viral latency, the important question of how and when latency is established remains unanswered. Related to this is the connection between HIV-1 integration and the capacity of the provirus to enter the latent state. In this review, we will give an overview of these nuclear events in the viral life cycle in the light of current therapeutic approaches, which aim to either reactivate the provirus or even excise the proviral DNA from the cellular genome.
Collapse
Affiliation(s)
- Bojana Lucic
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg and German Center for Infection Research (DZIF), Germany
| | - Marina Lusic
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg and German Center for Infection Research (DZIF), Germany
| |
Collapse
|
67
|
Herrmann K, Erokwu BO, Johansen ML, Basilion JP, Gulani V, Griswold MA, Flask CA, Brady-Kalnay SM. Dynamic Quantitative T1 Mapping in Orthotopic Brain Tumor Xenografts. Transl Oncol 2016; 9:147-154. [PMID: 27084431 PMCID: PMC4833967 DOI: 10.1016/j.tranon.2016.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/16/2016] [Accepted: 02/24/2016] [Indexed: 01/11/2023] Open
Abstract
Human brain tumors such as glioblastomas are typically detected using conventional, nonquantitative magnetic resonance imaging (MRI) techniques, such as T2-weighted and contrast enhanced T1-weighted MRI. In this manuscript, we tested whether dynamic quantitative T1 mapping by MRI can localize orthotopic glioma tumors in an objective manner. Quantitative T1 mapping was performed by MRI over multiple time points using the conventional contrast agent Optimark. We compared signal differences to determine the gadolinium concentration in tissues over time. The T1 parametric maps made it easy to identify the regions of contrast enhancement and thus tumor location. Doubling the typical human dose of contrast agent resulted in a clearer demarcation of these tumors. Therefore, T1 mapping of brain tumors is gadolinium dose dependent and improves detection of tumors by MRI. The use of T1 maps provides a quantitative means to evaluate tumor detection by gadolinium-based contrast agents over time. This dynamic quantitative T1 mapping technique will also enable future quantitative evaluation of various targeted MRI contrast agents.
Collapse
Affiliation(s)
- Kelsey Herrmann
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Bernadette O Erokwu
- Department of Radiology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Mette L Johansen
- Department of, Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106-4960, USA.
| | - James P Basilion
- Department of Radiology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; NFCR Center for Molecular Imaging at CWRU.
| | - Vikas Gulani
- Department of Radiology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Department of Urology, Case Western Reserve University, Cleveland, OH, USA.
| | - Mark A Griswold
- Department of Radiology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Chris A Flask
- Department of Radiology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA.
| | - Susann M Brady-Kalnay
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of, Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106-4960, USA.
| |
Collapse
|
68
|
Trejbalová K, Kovářová D, Blažková J, Machala L, Jilich D, Weber J, Kučerová D, Vencálek O, Hirsch I, Hejnar J. Development of 5' LTR DNA methylation of latent HIV-1 provirus in cell line models and in long-term-infected individuals. Clin Epigenetics 2016; 8:19. [PMID: 26900410 PMCID: PMC4759744 DOI: 10.1186/s13148-016-0185-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/10/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus type 1 (HIV-1) latency represents the major barrier to virus eradication in infected individuals because cells harboring latent HIV-1 provirus are not affected by current antiretroviral therapy (ART). We previously demonstrated that DNA methylation of HIV-1 long terminal repeat (5' LTR) restricts HIV-1 reactivation and, together with chromatin conformation, represents an important mechanism of HIV-1 latency maintenance. Here, we explored the new issue of temporal development of DNA methylation in latent HIV-1 5' LTR. RESULTS In the Jurkat CD4(+) T cell model of latency, we showed that the stimulation of host cells contributed to de novo DNA methylation of the latent HIV-1 5' LTR sequences. Consecutive stimulations of model CD4(+) T cell line with TNF-α and PMA or with SAHA contributed to the progressive accumulation of 5' LTR DNA methylation. Further, we showed that once established, the high DNA methylation level of the latent 5' LTR in the cell line model was a stable epigenetic mark. Finally, we explored the development of 5' LTR DNA methylation in the latent reservoir of HIV-1-infected individuals who were treated with ART. We detected low levels of 5' LTR DNA methylation in the resting CD4(+) T cells of the group of patients who were treated for up to 3 years. However, after long-term ART, we observed an accumulation of 5' LTR DNA methylation in the latent reservoir. Importantly, within the latent reservoir of some long-term-treated individuals, we uncovered populations of proviral molecules with a high density of 5' LTR CpG methylation. CONCLUSIONS Our data showed the presence of 5' LTR DNA methylation in the long-term reservoir of HIV-1-infected individuals and implied that the transient stimulation of cells harboring latent proviruses may contribute, at least in part, to the methylation of the HIV-1 promoter.
Collapse
Affiliation(s)
- Kateřina Trejbalová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Denisa Kovářová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Jana Blažková
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Ladislav Machala
- Department of Infectious Diseases, Third Faculty of Medicine, Charles University and Hospital Na Bulovce in Prague, Budínova 67/2, CZ-18081 Prague 8, Czech Republic
| | - David Jilich
- Department of Infectious, Tropical and Parasitic Diseases, First Faculty of Medicine, Charles University in Prague and Hospital Na Bulovce, Budínova 67/ 2, CZ-18081 Prague 8, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | - Dana Kučerová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Ondřej Vencálek
- Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science of the Palacky University in Olomouc, Olomouc, CZ-77146 Czech Republic
| | - Ivan Hirsch
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic ; Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic ; Faculty of Science, Department of Genetics and Microbiology, Charles University in Prague, Viničná 5, CZ-12844 Prague 2, Czech Republic ; Inserm, Centre de Recherche en Cancérologie de Marseille (CRCM), F-13273 Marseille, France ; Institut Paoli-Calmettes, F-13009 Marseille, France ; Aix-Marseille Univ., F-13284 Marseille, France ; CNRS, UMR7258, CRCM, F-13009 Marseille, France
| | - Jiří Hejnar
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| |
Collapse
|
69
|
Tyagi M, Weber J, Bukrinsky M, Simon GL. The effects of cocaine on HIV transcription. J Neurovirol 2015; 22:261-74. [PMID: 26572787 DOI: 10.1007/s13365-015-0398-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/01/2015] [Accepted: 10/21/2015] [Indexed: 11/29/2022]
Abstract
Illicit drug users are a high-risk population for infection with the human immunodeficiency virus (HIV). A strong correlation exists between prohibited drug use and an increased rate of HIV transmission. Cocaine stands out as one of the most frequently abused illicit drugs, and its use is correlated with HIV infection and disease progression. The central nervous system (CNS) is a common target for both drugs of abuse and HIV, and cocaine intake further accelerates neuronal injury in HIV patients. Although the high incidence of HIV infection in illicit drug abusers is primarily due to high-risk activities such as needle sharing and unprotected sex, several studies have demonstrated that cocaine enhances the rate of HIV gene expression and replication by activating various signal transduction pathways and downstream transcription factors. In order to generate mature HIV genomic transcript, HIV gene expression has to pass through both the initiation and elongation phases of transcription, which requires discrete transcription factors. In this review, we will provide a detailed analysis of the molecular mechanisms that regulate HIV transcription and discuss how cocaine modulates those mechanisms to upregulate HIV transcription and eventually HIV replication.
Collapse
Affiliation(s)
- Mudit Tyagi
- Division of Infectious Diseases, Department of Medicine, The George Washington University, 2300 Eye Street, N.W., Washington, DC, 20037, USA. .,Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, 20037, USA.
| | - Jaime Weber
- Division of Infectious Diseases, Department of Medicine, The George Washington University, 2300 Eye Street, N.W., Washington, DC, 20037, USA
| | - Michael Bukrinsky
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, 20037, USA
| | - Gary L Simon
- Division of Infectious Diseases, Department of Medicine, The George Washington University, 2300 Eye Street, N.W., Washington, DC, 20037, USA
| |
Collapse
|
70
|
Impact of Chromatin on HIV Replication. Genes (Basel) 2015; 6:957-76. [PMID: 26437430 PMCID: PMC4690024 DOI: 10.3390/genes6040957] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/14/2015] [Accepted: 09/22/2015] [Indexed: 12/22/2022] Open
Abstract
Chromatin influences Human Immunodeficiency Virus (HIV) integration and replication. This review highlights critical host factors that influence chromatin structure and organization and that also impact HIV integration, transcriptional regulation and latency. Furthermore, recent attempts to target chromatin associated factors to reduce the HIV proviral load are discussed.
Collapse
|
71
|
Bose D, Gagnon J, Chebloune Y. Comparative Analysis of Tat-Dependent and Tat-Deficient Natural Lentiviruses. Vet Sci 2015; 2:293-348. [PMID: 29061947 PMCID: PMC5644649 DOI: 10.3390/vetsci2040293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 01/10/2023] Open
Abstract
The emergence of human immunodeficiency virus (HIV) causing acquired immunodeficiency syndrome (AIDS) in infected humans has resulted in a global pandemic that has killed millions. HIV-1 and HIV-2 belong to the lentivirus genus of the Retroviridae family. This genus also includes viruses that infect other vertebrate animals, among them caprine arthritis-encephalitis virus (CAEV) and Maedi-Visna virus (MVV), the prototypes of a heterogeneous group of viruses known as small ruminant lentiviruses (SRLVs), affecting both goat and sheep worldwide. Despite their long host-SRLV natural history, SRLVs were never found to be responsible for immunodeficiency in contrast to primate lentiviruses. SRLVs only replicate productively in monocytes/macrophages in infected animals but not in CD4+ T cells. The focus of this review is to examine and compare the biological and pathological properties of SRLVs as prototypic Tat-independent lentiviruses with HIV-1 as prototypic Tat-dependent lentiviruses. Results from this analysis will help to improve the understanding of why and how these two prototypic lentiviruses evolved in opposite directions in term of virulence and pathogenicity. Results may also help develop new strategies based on the attenuation of SRLVs to control the highly pathogenic HIV-1 in humans.
Collapse
Affiliation(s)
- Deepanwita Bose
- Pathogénèse et Vaccination Lentivirales, PAVAL Lab., Université Joseph Fourier Grenoble 1, Bat. NanoBio2, 570 rue de la Chimie, BP 53, 38041, Grenoble Cedex 9, France.
| | - Jean Gagnon
- Pathogénèse et Vaccination Lentivirales, PAVAL Lab., Université Joseph Fourier Grenoble 1, Bat. NanoBio2, 570 rue de la Chimie, BP 53, 38041, Grenoble Cedex 9, France.
| | - Yahia Chebloune
- Pathogénèse et Vaccination Lentivirales, PAVAL Lab., Université Joseph Fourier Grenoble 1, Bat. NanoBio2, 570 rue de la Chimie, BP 53, 38041, Grenoble Cedex 9, France.
| |
Collapse
|
72
|
Huang H, Santoso N, Power D, Simpson S, Dieringer M, Miao H, Gurova K, Giam CZ, Elledge SJ, Zhu J. FACT Proteins, SUPT16H and SSRP1, Are Transcriptional Suppressors of HIV-1 and HTLV-1 That Facilitate Viral Latency. J Biol Chem 2015; 290:27297-27310. [PMID: 26378236 DOI: 10.1074/jbc.m115.652339] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Indexed: 11/06/2022] Open
Abstract
Our functional genomic RNAi screens have identified the protein components of the FACT (facilitates chromatin transcription) complex, SUPT16H and SSRP1, as top host factors that negatively regulate HIV-1 replication. FACT interacts specifically with histones H2A/H2B to affect assembly and disassembly of nucleosomes, as well as transcription elongation. We further investigated the suppressive role of FACT proteins in HIV-1 transcription. First, depletion of SUPT16H or SSRP1 protein enhances Tat-mediated HIV-1 LTR (long terminal repeat) promoter activity. Second, HIV-1 Tat interacts with SUPT16H but not SSRP1 protein. However, both SUPT16H and SSRP1 are recruited to LTR promoter. Third, the presence of SUPT16H interferes with the association of Cyclin T1 (CCNT1), a subunit of P-TEFb, with the Tat-LTR axis. Removing inhibitory mechanisms to permit HIV-1 transcription is an initial and key regulatory step to reverse post-integrated latent HIV-1 proviruses for purging of reservoir cells. We therefore evaluated the role of FACT proteins in HIV-1 latency and reactivation. Depletion of SUPT16H or SSRP1 protein affects both HIV-1 transcriptional initiation and elongation and spontaneously reverses latent HIV-1 in U1/HIV and J-LAT cells. Similar effects were observed with a primary CD4+ T cell model of HIV-1 latency. FACT proteins also interfere with HTLV-1 Tax-LTR-mediated transcription and viral latency, indicating that they may act as general transcriptional suppressors for retroviruses. We conclude that FACT proteins SUPT16H and SSRP1 play a key role in suppressing HIV-1 transcription and promoting viral latency, which may serve as promising gene targets for developing novel HIV-1 latency-reversing agents.
Collapse
Affiliation(s)
- Huachao Huang
- Departments of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642
| | - Netty Santoso
- Departments of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642
| | - Derek Power
- Departments of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642
| | - Sydney Simpson
- the School of Arts and Sciences, University of Rochester, Rochester, New York 14627
| | - Michael Dieringer
- the School of Arts and Sciences, University of Rochester, Rochester, New York 14627
| | - Hongyu Miao
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York 14642
| | - Katerina Gurova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Chou-Zen Giam
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Stephen J Elledge
- the Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, Massachusetts 02115; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Jian Zhu
- Departments of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642; Departments of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642.
| |
Collapse
|
73
|
Tyagi M, Iordanskiy S, Ammosova T, Kumari N, Smith K, Breuer D, Ilatovskiy AV, Kont YS, Ivanov A, Üren A, Kovalskyy D, Petukhov M, Kashanchi F, Nekhai S. Reactivation of latent HIV-1 provirus via targeting protein phosphatase-1. Retrovirology 2015; 12:63. [PMID: 26178009 PMCID: PMC4504130 DOI: 10.1186/s12977-015-0190-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 07/09/2015] [Indexed: 11/23/2022] Open
Abstract
Background HIV-1 escapes antiretroviral drugs by integrating into the host DNA and forming a latent transcriptionally silent HIV-1 provirus. This provirus presents the major hurdle in HIV-1 eradication and cure. Transcriptional activation, which is prerequisite for reactivation and the eradication of latent proviruses, is impaired in latently infected T cells due to the lack of host transcription factors, primarily NF-κB and P-TEFb (CDK9/cyclin T1). We and others previously showed that protein phosphatase-1 (PP1) regulates HIV-1 transcription by modulating CDK9 phosphorylation. Recently we have developed a panel of small molecular compounds targeting a non-catalytic site of PP1. Results Here we generated a new class of sulfonamide-containing compounds that activated HIV-1 in acute and latently infected cells. Among the tested molecules, a small molecule activator of PP1 (SMAPP1) induced both HIV-1 replication and reactivation of latent HIV-1 in chronically infected cultured and primary cells. In vitro, SMAPP1 interacted with PP1 and increased PP1 activity toward a recombinant substrate. Treatment with SMAPP1 increased phosphorylation of CDK9’s Ser90 and Thr186 residues, but not Ser175. Proteomic analysis showed upregulation of P-TEFb and PP1 related proteins, including PP1 regulatory subunit Sds22 in SMAPP1-treated T cells. Docking analysis identified a PP1 binding site for SMAPP1 located within the C-terminal binding pocket of PP1. Conclusion We identified a novel class of PP1-targeting compounds that reactivate latent HIV-1 provirus by targeting PP1, increasing CDK9 phosphorylation and enhancing HIV transcription. This compound represents a novel candidate for anti-HIV-1 therapeutics aiming at eradication of latent HIV-1 reservoirs.
Collapse
Affiliation(s)
- Mudit Tyagi
- Department of Medicine, The George Washington University, Washington, DC, 2003, USA.
| | - Sergey Iordanskiy
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, 20110, USA.
| | - Tatyana Ammosova
- Center for Sickle Cell Disease, Howard University, 1840 7th Street, N.W. HURB1, Suite 202, Washington, DC, 20059, USA. .,Department of Medicine, Howard University, Washington, DC, 20059, USA. .,Yakut Science Center for Complex Medical Problems, Yakutsk, 677019, Russia.
| | - Namita Kumari
- Center for Sickle Cell Disease, Howard University, 1840 7th Street, N.W. HURB1, Suite 202, Washington, DC, 20059, USA.
| | - Kahli Smith
- Center for Sickle Cell Disease, Howard University, 1840 7th Street, N.W. HURB1, Suite 202, Washington, DC, 20059, USA.
| | - Denitra Breuer
- Center for Sickle Cell Disease, Howard University, 1840 7th Street, N.W. HURB1, Suite 202, Washington, DC, 20059, USA.
| | - Andrey V Ilatovskiy
- Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, Gatchina, Russia. .,Instiute of Nanobiotechnologies, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
| | | | - Andrey Ivanov
- Center for Sickle Cell Disease, Howard University, 1840 7th Street, N.W. HURB1, Suite 202, Washington, DC, 20059, USA.
| | - Aykut Üren
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA.
| | - Dmytro Kovalskyy
- Department of Biochemistry and Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| | - Michael Petukhov
- Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, Gatchina, Russia. .,Instiute of Nanobiotechnologies, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
| | - Fatah Kashanchi
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, 20110, USA.
| | - Sergei Nekhai
- Center for Sickle Cell Disease, Howard University, 1840 7th Street, N.W. HURB1, Suite 202, Washington, DC, 20059, USA. .,Department of Medicine, Howard University, Washington, DC, 20059, USA.
| |
Collapse
|
74
|
Abstract
Antiretroviral therapy (ART) inhibits HIV-1 replication, but the virus persists in latently infected resting memory CD4+ T cells susceptible to viral reactivation. The virus-encoded early gene product Tat activates transcription of the viral genome and promotes exponential viral production. Here we show that the Tat inhibitor didehydro-cortistatin A (dCA), unlike other antiretrovirals, reduces residual levels of viral transcription in several models of HIV latency, breaks the Tat-mediated transcriptional feedback loop, and establishes a nearly permanent state of latency, which greatly diminishes the capacity for virus reactivation. Importantly, treatment with dCA induces inactivation of viral transcription even after its removal, suggesting that the HIV promoter is epigenetically repressed. Critically, dCA inhibits viral reactivation upon CD3/CD28 or prostratin stimulation of latently infected CD4+ T cells from HIV-infected subjects receiving suppressive ART. Our results suggest that inclusion of a Tat inhibitor in current ART regimens may contribute to a functional HIV-1 cure by reducing low-level viremia and preventing viral reactivation from latent reservoirs. Antiretroviral therapy (ART) reduces HIV-1 replication to very low levels, but the virus persists in latently infected memory CD4+ T cells, representing a long-lasting source of resurgent virus upon ART interruption. Based on the mode of action of didehydro-cortistatin A (dCA), a Tat-dependent transcription inhibitor, our work highlights an alternative approach to current HIV-1 eradication strategies to decrease the latent reservoir. In our model, dCA blocks the Tat feedback loop initiated after low-level basal reactivation, blocking transcriptional elongation and hence viral production from latently infected cells. Therefore, dCA combined with ART would be aimed at delaying or halting ongoing viral replication, reactivation, and replenishment of the latent viral reservoir. Thus, the latent pool of cells in an infected individual would be stabilized, and death of the long-lived infected memory T cells would result in a continuous decay of this pool over time, possibly culminating in the long-awaited sterilizing cure.
Collapse
|
75
|
Yin J, Park G, Kim TH, Hong JH, Kim YJ, Jin X, Kang S, Jung JE, Kim JY, Yun H, Lee JE, Kim M, Chung J, Kim H, Nakano I, Gwak HS, Yoo H, Yoo BC, Kim JH, Hur EM, Lee J, Lee SH, Park MJ, Park JB. Pigment Epithelium-Derived Factor (PEDF) Expression Induced by EGFRvIII Promotes Self-renewal and Tumor Progression of Glioma Stem Cells. PLoS Biol 2015; 13:e1002152. [PMID: 25992628 PMCID: PMC4439169 DOI: 10.1371/journal.pbio.1002152] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/10/2015] [Indexed: 12/29/2022] Open
Abstract
Epidermal growth factor receptor variant III (EGFRvIII) has been associated with glioma stemness, but the direct molecular mechanism linking the two is largely unknown. Here, we show that EGFRvIII induces the expression and secretion of pigment epithelium-derived factor (PEDF) via activation of signal transducer and activator of transcription 3 (STAT3), thereby promoting self-renewal and tumor progression of glioma stem cells (GSCs). Mechanistically, PEDF sustained GSC self-renewal by Notch1 cleavage, and the generated intracellular domain of Notch1 (NICD) induced the expression of Sox2 through interaction with its promoter region. Furthermore, a subpopulation with high levels of PEDF was capable of infiltration along corpus callosum. Inhibition of PEDF diminished GSC self-renewal and increased survival of orthotopic tumor-bearing mice. Together, these data indicate the novel role of PEDF as a key regulator of GSC and suggest clinical implications. A permanently activated mutant form of the epidermal growth factor receptor found in glioblastoma promotes self-renewal and tumor progression by inducing autocrine signalling via pigment epithelium-derived factor (PEDF). Malignant gliomas are among the most lethal types of cancer, due in part to the stem-cell-like characteristics and invasive properties of the brain tumor cells. However, little is known about the underlying molecular mechanisms that govern such processes. Here, we identify pigment epithelium-derived factor (PEDF) as a critical factor controlling stemness and tumor progression in glioma stem cells. We found that PEDF is secreted from glioblastoma expressing EGFRvIII, a frequently occurring mutation in primary glioblastoma that yields a permanently activated epidermal growth factor receptor. We delineate an EGFRvIII-STAT3-PEDF signaling axis as a signature profile of highly malignant gliomas, which promotes self-renewal of glioma stem cells. Our results demonstrate a previously unprecedented function of PEDF and implicate potential therapeutic approaches against malignant gliomas.
Collapse
Affiliation(s)
- Jinlong Yin
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
- Specific Organs Cancer Branch, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Gunwoo Park
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
- Specific Organs Cancer Branch, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Tae Hoon Kim
- Specific Organs Cancer Branch, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Jun Hee Hong
- Specific Organs Cancer Branch, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Youn-Jae Kim
- Specific Organs Cancer Branch, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Xiong Jin
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Sangjo Kang
- Specific Organs Cancer Branch, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Ji-Eun Jung
- Specific Organs Cancer Branch, Research Institute and Hospital, National Cancer Center, Goyang, Korea
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Jeong-Yub Kim
- Divisions of Radiation Cancer Research, Research Center for Radio-Senescence, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
- Department of Pathology, College of Medicine, Korea University, Seoul, Korea
| | - Hyeongsun Yun
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
- Specific Organs Cancer Branch, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Jeong Eun Lee
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
- Cancer Cell and Molecular Biology Branch, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Minkyung Kim
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Junho Chung
- Department of Biochemistry and Molecular Biology, Seoul National University, College of Medicine, Seoul, Korea
- Department of Cancer Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Hyunggee Kim
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Ichiro Nakano
- Department of Neurological Surgery, The Ohio State University, Columbus, Ohio, United States of America
- James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Ho-Shin Gwak
- Specific Organs Cancer Branch, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Heon Yoo
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
- Specific Organs Cancer Branch, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Byong Chul Yoo
- Colorectal Cancer Branch, Research Institute and Hospital, National Cancer Center, Goyangi, Korea
| | - Jong Heon Kim
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
- Cancer Cell and Molecular Biology Branch, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Eun-Mi Hur
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea
- Department of Neuroscience, Korea University of Science and Technology, Daejeon, Korea
| | - Jeongwu Lee
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Seung-Hoon Lee
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
- Specific Organs Cancer Branch, Research Institute and Hospital, National Cancer Center, Goyang, Korea
- * E-mail: (SHL); (MJP); (JBP)
| | - Myung-Jin Park
- Divisions of Radiation Cancer Research, Research Center for Radio-Senescence, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
- * E-mail: (SHL); (MJP); (JBP)
| | - Jong Bae Park
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
- Specific Organs Cancer Branch, Research Institute and Hospital, National Cancer Center, Goyang, Korea
- * E-mail: (SHL); (MJP); (JBP)
| |
Collapse
|
76
|
Sahu G, Farley K, El-Hage N, Aiamkitsumrit B, Fassnacht R, Kashanchi F, Ochem A, Simon GL, Karn J, Hauser KF, Tyagi M. Cocaine promotes both initiation and elongation phase of HIV-1 transcription by activating NF-κB and MSK1 and inducing selective epigenetic modifications at HIV-1 LTR. Virology 2015; 483:185-202. [PMID: 25980739 DOI: 10.1016/j.virol.2015.03.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 10/23/2022]
Abstract
Cocaine accelerates human immunodeficiency virus (HIV-1) replication by altering specific cell-signaling and epigenetic pathways. We have elucidated the underlying molecular mechanisms through which cocaine exerts its effect in myeloid cells, a major target of HIV-1 in central nervous system (CNS). We demonstrate that cocaine treatment promotes HIV-1 gene expression by activating both nuclear factor-kappa B (NF-ĸB) and mitogen- and stress-activated kinase 1 (MSK1). MSK1 subsequently catalyzes the phosphorylation of histone H3 at serine 10, and p65 subunit of NF-ĸB at 276th serine residue. These modifications enhance the interaction of NF-ĸB with P300 and promote the recruitment of the positive transcription elongation factor b (P-TEFb) to the HIV-1 LTR, supporting the development of an open/relaxed chromatin configuration, and facilitating the initiation and elongation phases of HIV-1 transcription. Results are also confirmed in primary monocyte derived macrophages (MDM). Overall, our study provides detailed insights into cocaine-driven HIV-1 transcription and replication.
Collapse
Affiliation(s)
- Geetaram Sahu
- Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC, United States
| | - Kalamo Farley
- Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC, United States
| | - Nazira El-Hage
- Virginia Commonwealth University, Richmond, VA, United States
| | - Benjamas Aiamkitsumrit
- Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC, United States
| | - Ryan Fassnacht
- Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC, United States
| | | | - Alex Ochem
- ICGEB, Wernher and Beit Building, Anzio Road, Observatory, 7925 Cape Town, South Africa
| | - Gary L Simon
- Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC, United States
| | - Jonathan Karn
- Case Western Reserve University, Cleveland, OH, United States
| | - Kurt F Hauser
- Virginia Commonwealth University, Richmond, VA, United States
| | - Mudit Tyagi
- Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC, United States; Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC 20037, United States.
| |
Collapse
|
77
|
Kulpa DA, Chomont N. HIV persistence in the setting of antiretroviral therapy: when, where and how does HIV hide? J Virus Erad 2015. [DOI: 10.1016/s2055-6640(20)30490-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
78
|
Kulpa DA, Chomont N. HIV persistence in the setting of antiretroviral therapy: when, where and how does HIV hide? J Virus Erad 2015; 1:59-66. [PMID: 26448966 PMCID: PMC4593515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Advances in the treatment of HIV infection have dramatically reduced the death rate from AIDS and improved the quality of life of many HIV-infected individuals. However, the possible long-term toxicity associated with antiretroviral therapy (ART), stigma and cost, all contribute to the necessity of finding a cure for HIV infection. In infected individuals taking ART, HIV persists in a small number of cells that can survive for the lifetime of the infected person. These persistently infected cells, usually referred as the 'reservoirs for HIV infection', are the main barriers to a cure. The diversity of the tissues and cellular types in which HIV persists, as well as the multiplicity of the molecular mechanisms contributing to HIV persistence, complicate the efforts to develop a safe, effective, and globally accessible cure for HIV. In this review, we summarise recent data that contribute to our understanding of HIV persistence during ART by addressing three questions pertaining to the HIV reservoir: (1) when is the reservoir established; (2) where is the reservoir maintained; and (3) how does the reservoir persist?
Collapse
Affiliation(s)
- Deanna A Kulpa
- Vaccine and Gene Therapy Institute Florida,
Port St Lucie,
Florida,
USA
| | - Nicolas Chomont
- Department of Microbiology, Infectiology and Immunology,
Université de Montréal, Faculty of Medicine, and ,Centre de Recherche du CHUM,
Montréal,
Quebec,
Canada,Corresponding author: Nicolas Chomont,
Université de Montréal,
Centre de recherche du CHUM,
900 rue St-Denis, Tour Viger, R09 430,
Montréal,
QC,
H2X 0A,
Canada
| |
Collapse
|
79
|
Epigenetic heterogeneity in HIV-1 latency establishment. Sci Rep 2015; 5:7701. [PMID: 25572573 PMCID: PMC4287722 DOI: 10.1038/srep07701] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 12/08/2014] [Indexed: 12/20/2022] Open
Abstract
Despite prolonged antiretroviral therapy, HIV-1 persists as transcriptionally inactive proviruses. The HIV-1 latency remains a principal obstacle in curing AIDS. It is important to understand mechanisms by which HIV-1 latency is established to make the latent reservoir smaller. We present a molecular characterization of distinct populations at an early phase of infection. We developed an original dual-color reporter virus to monitor LTR kinetics from establishment to maintenance stage. We found that there are two ways of latency establishment i.e., by immediate silencing and slow inactivation from active infection. Histone covalent modifications, particularly polycomb repressive complex 2 (PRC2)-mediated H3K27 trimethylation, appeared to dominate viral transcription at the early phase. PRC2 also contributes to time-dependent LTR dormancy in the chronic phase of the infection. Significant differences in sensitivity against several stimuli were observed between these two distinct populations. These results will expand our understanding of heterogeneous establishment of HIV-1 latency populations.
Collapse
|
80
|
Impact of viral activators and epigenetic regulators on HIV-1 LTRs containing naturally occurring single nucleotide polymorphisms. BIOMED RESEARCH INTERNATIONAL 2015; 2015:320642. [PMID: 25629043 PMCID: PMC4299542 DOI: 10.1155/2015/320642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 09/29/2014] [Accepted: 10/14/2014] [Indexed: 12/17/2022]
Abstract
Following human immunodeficiency virus type 1 (HIV-1) integration into host cell DNA, the viral promoter can become transcriptionally silent in the absence of appropriate signals and factors. HIV-1 gene expression is dependent on regulatory elements contained within the long terminal repeat (LTR) that drive the synthesis of viral RNAs and proteins through interaction with multiple host and viral factors. Previous studies identified single nucleotide polymorphisms (SNPs) within CCAAT/enhancer binding protein (C/EBP) site I and Sp site III (3T, C-to-T change at position 3, and 5T, C-to-T change at position 5 of the binding site, respectively, when compared to the consensus B sequence) that are low affinity binding sites and correlate with more advanced stages of HIV-1 disease. Stably transfected cell lines containing the wild type, 3T, 5T, and 3T5T LTRs were developed utilizing bone marrow progenitor, T, and monocytic cell lines to explore the LTR phenotypes associated with these genotypic changes from an integrated chromatin-based microenvironment. Results suggest that in nonexpressing cell clones LTR-driven gene expression occurs in a SNP-specific manner in response to LTR activation or treatment with trichostatin A treatment, indicating a possible cell type and SNP-specific mechanism behind the epigenetic control of LTR activation.
Collapse
|
81
|
De Crignis E, Mahmoudi T. HIV eradication: combinatorial approaches to activate latent viruses. Viruses 2014; 6:4581-608. [PMID: 25421889 PMCID: PMC4246239 DOI: 10.3390/v6114581] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/01/2014] [Accepted: 11/13/2014] [Indexed: 12/11/2022] Open
Abstract
The concept of eradication of the Human Immune Deficiency Virus (HIV) from infected patients has gained much attention in the last few years. While combination Anti-Retroviral Therapy (c-ART) has been extremely effective in suppressing viral replication, it is not curative. This is due to the presence of a reservoir of latent HIV infected cells, which persist in the presence of c-ART. Recently, pharmaceutical approaches have focused on the development of molecules able to induce HIV-1 replication from latently infected cells in order to render them susceptible to viral cytopathic effects and host immune responses. Alternative pathways and transcription complexes function to regulate the activity of the HIV promoter and might serve as molecular targets for compounds to activate latent HIV. A combined therapy coupling various depressors and activators will likely be the most effective in promoting HIV replication while avoiding pleiotropic effects at the cellular level. Moreover, in light of differences among HIV subtypes and variability in integration sites, the combination of multiple agents targeting multiple pathways will increase likelihood of therapeutic effectiveness and prevent mutational escape. This review provides an overview of the mechanisms that can be targeted to induce HIV activation focusing on potential combinatorial approaches.
Collapse
Affiliation(s)
- Elisa De Crignis
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands.
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands.
| |
Collapse
|
82
|
Murry JP, Godoy J, Mukim A, Swann J, Bruce JW, Ahlquist P, Bosque A, Planelles V, Spina CA, Young JAT. Sulfonation pathway inhibitors block reactivation of latent HIV-1. Virology 2014; 471-473:1-12. [PMID: 25310595 DOI: 10.1016/j.virol.2014.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/16/2014] [Accepted: 08/18/2014] [Indexed: 12/12/2022]
Abstract
Long-lived pools of latently infected cells are a significant barrier to the development of a cure for HIV-1 infection. A better understanding of the mechanisms of reactivation from latency is needed to facilitate the development of novel therapies that address this problem. Here we show that chemical inhibitors of the sulfonation pathway prevent virus reactivation, both in latently infected J-Lat and U1 cell lines and in a primary human CD4+ T cell model of latency. In each of these models, sulfonation inhibitors decreased transcription initiation from the HIV-1 promoter. These inhibitors block transcription initiation at a step that lies downstream of nucleosome remodeling and affects RNA polymerase II recruitment to the viral promoter. These results suggest that the sulfonation pathway acts by a novel mechanism to regulate efficient virus transcription initiation during reactivation from latency, and further that augmentation of this pathway could be therapeutically useful.
Collapse
Affiliation(s)
- Jeffrey P Murry
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA; Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Joseph Godoy
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA; Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Amey Mukim
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA; Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Justine Swann
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA; Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - James W Bruce
- Morgridge Institute for Research, Madison, WI, USA; Institute for Molecular Virology, University of Wisconsin, Madison, WI, USA; McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA; Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Paul Ahlquist
- Morgridge Institute for Research, Madison, WI, USA; Institute for Molecular Virology, University of Wisconsin, Madison, WI, USA; McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA; Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Alberto Bosque
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA; Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Vicente Planelles
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA; Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Celsa A Spina
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA; Department of Pathology, University of California, San Diego, La Jolla, CA, USA; Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - John A T Young
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA; Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
83
|
Selective HDAC inhibition for the disruption of latent HIV-1 infection. PLoS One 2014; 9:e102684. [PMID: 25136952 PMCID: PMC4138023 DOI: 10.1371/journal.pone.0102684] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 06/23/2014] [Indexed: 11/30/2022] Open
Abstract
Selective histone deacetylase (HDAC) inhibitors have emerged as a potential anti-latency therapy for persistent human immunodeficiency virus type 1 (HIV-1) infection. We utilized a combination of small molecule inhibitors and short hairpin (sh)RNA-mediated gene knockdown strategies to delineate the key HDAC(s) to be targeted for selective induction of latent HIV-1 expression. Individual depletion of HDAC3 significantly induced expression from the HIV-1 promoter in the 2D10 latency cell line model. However, depletion of HDAC1 or −2 alone or in combination did not significantly induce HIV-1 expression. Co-depletion of HDAC2 and −3 resulted in a significant increase in expression from the HIV-1 promoter. Furthermore, concurrent knockdown of HDAC1, −2, and −3 resulted in a significant increase in expression from the HIV-1 promoter. Using small molecule HDAC inhibitors of differing selectivity to ablate the residual HDAC activity that remained after (sh)RNA depletion, the effect of depletion of HDAC3 was further enhanced. Enzymatic inhibition of HDAC3 with the selective small-molecule inhibitor BRD3308 activated HIV-1 transcription in the 2D10 cell line. Furthermore, ex vivo exposure to BRD3308 induced outgrowth of HIV-1 from resting CD4+ T cells isolated from antiretroviral-treated, aviremic HIV+ patients. Taken together these findings suggest that HDAC3 is an essential target to disrupt HIV-1 latency, and inhibition of HDAC2 may also contribute to the effort to purge and eradicate latent HIV-1 infection.
Collapse
|
84
|
Lusic M, Giacca M. Regulation of HIV-1 latency by chromatin structure and nuclear architecture. J Mol Biol 2014; 427:688-94. [PMID: 25073101 DOI: 10.1016/j.jmb.2014.07.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/25/2014] [Accepted: 07/16/2014] [Indexed: 11/16/2022]
Abstract
Current antiretroviral therapies fail to cure HIV-1 (human immunodeficiency virus type 1) infection because HIV-1 persists as a transcriptionally inactive provirus in resting memory CD4(+) T cells. Multiple molecular events are known to regulate HIV-1 gene expression, yet the mechanisms governing the establishment and maintenance of latency remain incompletely understood. Here we summarize different molecular aspects of viral latency, from its establishment in resting CD4(+) T cells to the mechanisms involved in the reactivation of latent viral reservoirs. We focus on the relevance of chromatin structure and nuclear architecture in determining the transcriptional fate of integrated HIV-1 genomes, in light of recent findings indicating that proximity to specific subnuclear neighborhoods regulates HIV-1 gene expression.
Collapse
Affiliation(s)
- Marina Lusic
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany; Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy.
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy.
| |
Collapse
|
85
|
The histone deacetylase inhibitor vorinostat (SAHA) increases the susceptibility of uninfected CD4+ T cells to HIV by increasing the kinetics and efficiency of postentry viral events. J Virol 2014; 88:10803-12. [PMID: 25008921 DOI: 10.1128/jvi.00320-14] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Latently infected cells remain a primary barrier to eradication of HIV-1. Over the past decade, a better understanding of the molecular mechanisms by which latency is established and maintained has led to the discovery of a number of compounds that selectively reactivate latent proviruses without inducing polyclonal T cell activation. Recently, the histone deacetylase (HDAC) inhibitor vorinostat has been demonstrated to induce HIV transcription from latently infected cells when administered to patients. While vorinostat will be given in the context of antiretroviral therapy (ART), infection of new cells by induced virus remains a clinical concern. Here, we demonstrate that vorinostat significantly increases the susceptibility of CD4(+) T cells to infection by HIV in a dose- and time-dependent manner that is independent of receptor and coreceptor usage. Vorinostat does not enhance viral fusion with cells but rather enhances the kinetics and efficiency of postentry viral events, including reverse transcription, nuclear import, and integration, and enhances viral production in a spreading-infection assay. Selective inhibition of the cytoplasmic class IIb HDAC6 with tubacin recapitulated the effect of vorinostat. These findings reveal a previously unknown cytoplasmic effect of HDAC inhibitors promoting productive infection of CD4(+) T cells that is distinct from their well-characterized effects on nuclear histone acetylation and long-terminal-repeat (LTR) transcription. Our results indicate that careful monitoring of patients and ART intensification are warranted during vorinostat treatment and indicate that HDAC inhibitors that selectively target nuclear class I HDACs could reactivate latent HIV without increasing the susceptibility of uninfected cells to HIV. IMPORTANCE HDAC inhibitors, particularly vorinostat, are currently being investigated clinically as part of a "shock-and-kill" strategy to purge latent reservoirs of HIV. We demonstrate here that vorinostat increases the susceptibility of uninfected CD4(+) T cells to infection with HIV, raising clinical concerns that vorinostat may reseed the viral reservoirs it is meant to purge, particularly under conditions of suboptimal drug exposure. We demonstrate that vorinostat acts following viral fusion and enhances the kinetics and efficiency of reverse transcription, nuclear import, and integration. The effect of vorinostat was recapitulated using the cytoplasmic histone deacetylase 6 (HDAC6) inhibitor tubacin, revealing a novel and previously unknown cytoplasmic mechanism of HDAC inhibitors on HIV replication that is distinct from their well-characterized effects of long-terminal-repeat (LTR)-driven gene expression. Moreover, our results suggest that treatment of patients with class I-specific HDAC inhibitors could induce latent viruses without increasing the susceptibility of uninfected cells to HIV.
Collapse
|
86
|
Quantitative evaluation and optimization of co-drugging to improve anti-HIV latency therapy. Cell Mol Bioeng 2014; 7:320-333. [PMID: 26191086 DOI: 10.1007/s12195-014-0336-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human immunodeficiency virus 1 (HIV) latency remains a significant obstacle to curing infected patients. One promising therapeutic strategy is to purge the latent cellular reservoir by activating latent HIV with latency-reversing agents (LRAs). In some cases, co-drugging with multiple LRAs is necessary to activate latent infections, but few studies have established quantitative criteria for determining when co-drugging is required. Here we systematically quantified drug interactions between histone deacetylase inhibitors and transcriptional activators of HIV and found that the need for co-drugging is determined by the proximity of latent infections to the chromatin-regulated viral gene activation threshold at the viral promoter. Our results suggest two classes of latent viral integrations: those far from the activation threshold that benefit from co-drugging, and those close to the threshold that are efficiently activated by a single drug. Using a primary T cell model of latency, we further demonstrated that the requirement for co-drugging was donor dependent, suggesting that the host may set the level of repression of latent infections. Finally, we showed that single drug or co-drugging doses could be optimized, via repeat stimulations, to minimize unwanted side effects while maintaining robust viral activation. Our results motivate further study of patient-specific latency-reversing strategies.
Collapse
|
87
|
Colin L, Verdin E, Van Lint C. HIV-1 chromatin, transcription, and the regulatory protein Tat. Methods Mol Biol 2014; 1087:85-101. [PMID: 24158816 DOI: 10.1007/978-1-62703-670-2_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Upon integration into the host cell genome, the nucleosomal organization and epigenetic control of the HIV-1 provirus play an active role in its transcriptional regulation. Therefore, characterization of the chromatin changes that occur in the viral promoter region in response to different cellular stimuli or drug treatments represents an important aspect of our understanding of HIV-1 transcription. Moreover, the viral transactivator Tat protein potently activates HIV-1 transcription by recruiting the cellular positive transcription elongation factor p-TEFb to the TAR element located at the 5' end of all nascent viral transcripts, thereby promoting efficient elongation. This chapter describes two complementary techniques for analyzing chromatin structure. The first technique is called indirect end-labeling and uses DNase I, micrococcal nuclease (MNase) or specific restriction enzymes to provide a view of nucleosome positions and of nucleosome-free regions within genes that are usually associated with transcriptional regulatory elements. The second technique, called chromatin immunoprecipitation (ChIP), provides a detailed analysis of chromatin structure by determining the pattern of histone modification marks in the DNA region of interest and by identifying the transcription factors as well as the components of the transcriptional initiation and elongation machineries that are recruited in vivo to this chromosomal region.
Collapse
Affiliation(s)
- Laurence Colin
- Laboratory of Molecular Virology, Institut de Biologie et de Médecine Moléculaires (IBMM), University of Brussels (ULB), Brussels, Belgium
| | | | | |
Collapse
|
88
|
Kumar A, Abbas W, Herbein G. HIV-1 latency in monocytes/macrophages. Viruses 2014; 6:1837-60. [PMID: 24759213 PMCID: PMC4014723 DOI: 10.3390/v6041837] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/11/2014] [Accepted: 03/28/2014] [Indexed: 12/24/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) targets CD4+ T cells and cells of the monocyte/macrophage lineage. HIV pathogenesis is characterized by the depletion of T lymphocytes and by the presence of a population of cells in which latency has been established called the HIV-1 reservoir. Highly active antiretroviral therapy (HAART) has significantly improved the life of HIV-1 infected patients. However, complete eradication of HIV-1 from infected individuals is not possible without targeting latent sources of infection. HIV-1 establishes latent infection in resting CD4+ T cells and findings indicate that latency can also be established in the cells of monocyte/macrophage lineage. Monocyte/macrophage lineage includes among others, monocytes, macrophages and brain resident macrophages. These cells are relatively more resistant to apoptosis induced by HIV-1, thus are important stable hideouts of the virus. Much effort has been made in the direction of eliminating HIV-1 resting CD4+ T-cell reservoirs. However, it is impossible to achieve a cure for HIV-1 without considering these neglected latent reservoirs, the cells of monocyte/macrophage lineage. In this review we will describe our current understanding of the mechanism of latency in monocyte/macrophage lineage and how such cells can be specifically eliminated from the infected host.
Collapse
Affiliation(s)
- Amit Kumar
- UPRES EA4266, SFR FED 4234, Pathogens and Inflammation Laboratory, Department of Virology, CHRU Besançon, University of Franche-Comte, F-25030 Besançon, France.
| | - Wasim Abbas
- UPRES EA4266, SFR FED 4234, Pathogens and Inflammation Laboratory, Department of Virology, CHRU Besançon, University of Franche-Comte, F-25030 Besançon, France.
| | - Georges Herbein
- UPRES EA4266, SFR FED 4234, Pathogens and Inflammation Laboratory, Department of Virology, CHRU Besançon, University of Franche-Comte, F-25030 Besançon, France.
| |
Collapse
|
89
|
HIV-1 latency: an update of molecular mechanisms and therapeutic strategies. Viruses 2014; 6:1715-58. [PMID: 24736215 PMCID: PMC4014718 DOI: 10.3390/v6041715] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 02/06/2023] Open
Abstract
The major obstacle towards HIV-1 eradication is the life-long persistence of the virus in reservoirs of latently infected cells. In these cells the proviral DNA is integrated in the host’s genome but it does not actively replicate, becoming invisible to the host immune system and unaffected by existing antiviral drugs. Rebound of viremia and recovery of systemic infection that follows interruption of therapy, necessitates life-long treatments with problems of compliance, toxicity, and untenable costs, especially in developing countries where the infection hits worst. Extensive research efforts have led to the proposal and preliminary testing of several anti-latency compounds, however, overall, eradication strategies have had, so far, limited clinical success while posing several risks for patients. This review will briefly summarize the more recent advances in the elucidation of mechanisms that regulates the establishment/maintenance of latency and therapeutic strategies currently under evaluation in order to eradicate HIV persistence.
Collapse
|
90
|
Mbonye U, Karn J. Transcriptional control of HIV latency: cellular signaling pathways, epigenetics, happenstance and the hope for a cure. Virology 2014; 454-455:328-39. [PMID: 24565118 DOI: 10.1016/j.virol.2014.02.008] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 01/23/2014] [Accepted: 02/07/2014] [Indexed: 02/06/2023]
Abstract
Replication-competent latent HIV-1 proviruses that persist in the genomes of a very small subset of resting memory T cells in infected individuals under life-long antiretroviral therapy present a major barrier towards viral eradication. Multiple molecular mechanisms are required to repress the viral trans-activating factor Tat and disrupt the regulatory Tat feedback circuit leading to the establishment of the latent viral reservoir. In particular, latency is due to a combination of transcriptional silencing of proviruses via host epigenetic mechanisms and restrictions on the expression of P-TEFb, an essential co-factor for Tat. Induction of latent proviruses in the presence of antiretroviral therapy is expected to enable clearance of latently infected cells by viral cytopathic effects and host antiviral immune responses. An in-depth comprehensive understanding of the molecular control of HIV-1 transcription should inform the development of optimal combinatorial reactivation strategies that are intended to purge the latent viral reservoir.
Collapse
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, United States
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, United States.
| |
Collapse
|
91
|
Manson McManamy ME, Hakre S, Verdin EM, Margolis DM. Therapy for latent HIV-1 infection: the role of histone deacetylase inhibitors. Antivir Chem Chemother 2014; 23:145-9. [PMID: 24318952 DOI: 10.3851/imp2551] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2013] [Indexed: 01/06/2023] Open
Abstract
Persistence of HIV-1 in latently infected CD4(+) T-cells prevents eradication in HIV-infected treated patients. Latency is characterized by a reversible silencing of transcription of integrated HIV-1. Several molecular mechanisms have been described which contribute to latency, including the establishment and maintenance of repressive chromatin on the HIV-1 promoter. Histone deacetylation is a landmark modification associated with transcriptional repression of the HIV-1 promoter and inhibition of histone deacetylase enzymes (HDACs) reactivates latent HIV-1. Here, we review the different HDAC inhibitors that have been studied in HIV-1 latency and their therapeutic potential in reactivating latent HIV-1.
Collapse
|
92
|
Basak NP, Roy A, Banerjee S. Alteration of mitochondrial proteome due to activation of Notch1 signaling pathway. J Biol Chem 2014; 289:7320-34. [PMID: 24474689 DOI: 10.1074/jbc.m113.519405] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Notch signaling pathway, a known regulator of cell fate decisions, proliferation, and apoptosis, has recently been implicated in the regulation of glycolysis, which affects tumor progression. However, the impact of Notch on other metabolic pathways remains to be elucidated. To gain more insights into the Notch signaling and its role in regulation of metabolism, we studied the mitochondrial proteome in Notch1-activated K562 cells using a comparative proteomics approach. The proteomic study led to the identification of 10 unique proteins that were altered due to Notch1 activation. Eight of these proteins belonged to mitochondria-localized metabolic pathways like oxidative phosphorylation, glutamine metabolism, Krebs cycle, and fatty acid oxidation. Validation of some of these findings showed that constitutive activation of Notch1 deregulated glutamine metabolism and Complex 1 of the respiratory chain. Furthermore, the deregulation of glutamine metabolism involved the canonical Notch signaling and its downstream effectors. The study also reports the effect of Notch signaling on mitochondrial function and status of high energy intermediates ATP, NADH, and NADPH. Thus our study shows the effect of Notch signaling on mitochondrial proteome, which in turn affects the functioning of key metabolic pathways, thereby connecting an important signaling pathway to the regulation of cellular metabolism.
Collapse
Affiliation(s)
- Nandini Pal Basak
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | | | | |
Collapse
|
93
|
Kulpa DA, Brehm JH, Fromentin R, Cooper A, Cooper C, Ahlers J, Chomont N, Sékaly RP. The immunological synapse: the gateway to the HIV reservoir. Immunol Rev 2014; 254:305-25. [PMID: 23772628 PMCID: PMC3707302 DOI: 10.1111/imr.12080] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A major challenge in the development of a cure for human immunodeficiency virus (HIV) has been the incomplete understanding of the basic mechanisms underlying HIV persistence during antiretroviral therapy. It is now realized that the establishment of a latently infected reservoir refractory to immune system recognition has thus far hindered eradication efforts. Recent investigation into the innate immune response has shed light on signaling pathways downstream of the immunological synapse critical for T-cell activation and establishment of T-cell memory. This has led to the understanding that the cell-to-cell contacts observed in an immunological synapse that involve the CD4+ T cell and antigen-presenting cell or T-cell–T-cell interactions enhance efficient viral spread and facilitate the induction and maintenance of latency in HIV-infected memory T cells. This review focuses on recent work characterizing the immunological synapse and the signaling pathways involved in T-cell activation and gene regulation in the context of HIV persistence.
Collapse
Affiliation(s)
- Deanna A Kulpa
- Division of Infectious Diseases, Vaccine and Gene Therapy Institute-Florida (VGTI-FL), Port Saint Lucie, FL 34987, USA
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Abstract
HIV infiltrates the brain at early times postinfection and remains latent within astrocytes and macrophages. Because astrocytes are the most abundant cell type in the brain, we evaluated epigenetic regulation of HIV latency in astrocytes. We have shown that class I histone deacetylases (HDACs) and a lysine-specific histone methyltransferase, SU(VAR)3-9, play a significant role in silencing of HIV transcription in astrocytes. Our studies add to a growing body of evidence demonstrating that astrocytes are a reservoir for HIV.
Collapse
|
95
|
Shirazi J, Shah S, Sagar D, Nonnemacher MR, Wigdahl B, Khan ZK, Jain P. Epigenetics, drugs of abuse, and the retroviral promoter. J Neuroimmune Pharmacol 2013; 8:1181-96. [PMID: 24218017 PMCID: PMC3878082 DOI: 10.1007/s11481-013-9508-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/10/2013] [Indexed: 01/06/2023]
Abstract
Drug abuse alone has been shown to cause epigenetic changes in brain tissue that have been shown to play roles in addictive behaviors. In conjunction with HIV-1 infection, it can cause epigenetic changes at the viral promoter that can result in altered gene expression, and exacerbate disease progression overall. This review entails an in-depth look at research conducted on the epigenetic effects of three of the most widely abused drugs (cannabinoids, opioids, and cocaine), with a particular focus on the mechanisms through which these drugs interact with HIV-1 infection at the viral promoter. Here we discuss the impact of this interplay on disease progression from the point of view of the nature of gene regulation at the level of chromatin accessibility, chromatin remodeling, and nucleosome repositioning. Given the importance of chromatin remodeling and DNA methylation in controlling the retroviral promoter, and the high susceptibility of the drug abusing population of individuals to HIV infection, it would be beneficial to understand the way in which the host genome is modified and regulated by drugs of abuse.
Collapse
Affiliation(s)
- Jasmine Shirazi
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Sonia Shah
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Divya Sagar
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Zafar K. Khan
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Pooja Jain
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
96
|
Developing Combined HIV Vaccine Strategies for a Functional Cure. Vaccines (Basel) 2013; 1:481-96. [PMID: 26344343 PMCID: PMC4494210 DOI: 10.3390/vaccines1040481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/08/2013] [Accepted: 10/12/2013] [Indexed: 11/16/2022] Open
Abstract
Increasing numbers of HIV-infected individuals have access to potent antiretroviral drugs that control viral replication and decrease the risk of transmission. However, there is no cure for HIV and new strategies have to be developed to reach an eradication of the virus or a natural control of viral replication in the absence of drugs (functional cure). Therapeutic vaccines against HIV have been evaluated in many trials over the last 20 years and important knowledge has been gained from these trials. However, the major obstacle to HIV eradication is the persistence of latent proviral reservoirs. Different molecules are currently tested in ART-treated subjects to reactivate these latent reservoirs. Such anti-latency agents should be combined with a vaccination regimen in order to control or eradicate reactivated latently-infected cells. New in vitro assays should also be developed to assess the success of tested therapeutic vaccines by measuring the immune-mediated killing of replication-competent HIV reservoir cells. This review provides an overview of the current strategies to combine HIV vaccines with anti-latency agents that could act as adjuvant on the vaccine-induced immune response as well as new tools to assess the efficacy of these approaches.
Collapse
|
97
|
Abstract
Despite significant advances in our understanding of HIV, a cure has not been realized for the more than 34 million infected with this virus. HIV is incurable because infected individuals harbor cells where the HIV provirus is integrated into the host's DNA but is not actively replicating and thus is not inhibited by antiviral drugs. Similarly, these latent viruses are not detected by the immune system. In this Review, we discuss HIV-1 latency and the mechanisms that allow this pathogenic retrovirus to hide and persist by exploiting the cellular vehicles of immunological memory.
Collapse
Affiliation(s)
- Debbie S Ruelas
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
98
|
Kinase control of latent HIV-1 infection: PIM-1 kinase as a major contributor to HIV-1 reactivation. J Virol 2013; 88:364-76. [PMID: 24155393 DOI: 10.1128/jvi.02682-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Despite the clinical relevance of latent HIV-1 infection as a block to HIV-1 eradication, the molecular biology of HIV-1 latency remains incompletely understood. We recently demonstrated the presence of a gatekeeper kinase function that controls latent HIV-1 infection. Using kinase array analysis, we here expand on this finding and demonstrate that the kinase activity profile of latently HIV-1-infected T cells is altered relative to that of uninfected T cells. A ranking of altered kinases generated from these kinome profile data predicted PIM-1 kinase as a key switch involved in HIV-1 latency control. Using genetic and pharmacologic perturbation strategies, we demonstrate that PIM-1 activity is indeed required for HIV-1 reactivation in T cell lines and primary CD4 T cells. The presented results thus confirm that kinases are key contributors to HIV-1 latency control. In addition, through mutational studies we link the inhibitory effect of PIM-1 inhibitor IV (PIMi IV) on HIV-1 reactivation to an AP-1 motif in the CD28-responsive element of the HIV-1 long terminal repeat (LTR). The results expand our conceptual understanding of the dynamic interactions of the host cell and the latent HIV-1 integration event and position kinome profiling as a research tool to reveal novel molecular mechanisms that can eventually be targeted to therapeutically trigger HIV-1 reactivation.
Collapse
|
99
|
Abstract
PURPOSE OF REVIEW One of the seven key scientific priorities identified in the road map on HIV cure research is to 'determine the host mechanisms that control HIV replication in the absence of therapy'. This review summarizes the recent work in genomics and in epigenetic control of viral replication that is relevant for this mission. RECENT FINDINGS New technologies allow the joint analysis of host and viral transcripts. They identify the patterns of antisense transcription of the viral genome and its role in gene regulation. High-throughput studies facilitate the assessment of integration at the genome scale. Integration site, orientation and host genomic context modulate the transcription and should also be assessed at the level of single cells. The various models of latency in primary cells can be followed using dynamic study designs to acquire transcriptome and proteome data of the process of entry, maintenance and reactivation of latency. Dynamic studies can be applied to the study of transcription factors and chromatin modifications in latency and upon reactivation. SUMMARY The convergence of primary cell models of latency, new high-throughput quantitative technologies applied to the study of time series and the identification of compounds that reactivate viral transcription bring unprecedented precision to the study of viral latency.
Collapse
|
100
|
Natarajan M, Schiralli Lester GM, Lee C, Missra A, Wasserman GA, Steffen M, Gilmour DS, Henderson AJ. Negative elongation factor (NELF) coordinates RNA polymerase II pausing, premature termination, and chromatin remodeling to regulate HIV transcription. J Biol Chem 2013; 288:25995-26003. [PMID: 23884411 DOI: 10.1074/jbc.m113.496489] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A barrier to eradicating HIV infection is targeting and eliminating latently infected cells. Events that contribute to HIV transcriptional latency include repressive chromatin structure, transcriptional interference, the inability of Tat to recruit positive transcription factor b, and poor processivity of RNA polymerase II (RNAP II). In this study, we investigated mechanisms by which negative elongation factor (NELF) establishes and maintains HIV latency. Negative elongation factor (NELF) induces RNAP II promoter proximal pausing and limits provirus expression in HIV-infected primary CD4(+) T cells. Decreasing NELF expression overcomes RNAP II pausing to enhance HIV transcription elongation in infected primary T cells, demonstrating the importance of pausing in repressing HIV transcription. We also show that RNAP II pausing is coupled to premature transcription termination and chromatin remodeling. NELF interacts with Pcf11, a transcription termination factor, and diminishing Pcf11 in primary CD4(+) T cells induces HIV transcription elongation. In addition, we identify NCoR1-GPS2-HDAC3 as a NELF-interacting corepressor complex that is associated with repressed HIV long terminal repeats. We propose a model in which NELF recruits Pcf11 and NCoR1-GPS2-HDAC3 to paused RNAP II, reinforcing repression of HIV transcription and establishing a critical checkpoint for HIV transcription and latency.
Collapse
Affiliation(s)
- Malini Natarajan
- From the Immunology and Infectious Diseases, Integrated Biosciences Graduate Program, Penn State University, University Park, Pennsylvania 16802,; the Departments of Medicine and Infectious Diseases
| | | | - Chanhyo Lee
- the Departments of Medicine and Infectious Diseases
| | - Anamika Missra
- the Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania 16802
| | | | - Martin Steffen
- Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts 02118 and
| | - David S Gilmour
- the Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania 16802
| | - Andrew J Henderson
- the Departments of Medicine and Infectious Diseases,; Microbiology, and.
| |
Collapse
|