51
|
A novel role of human holliday junction resolvase GEN1 in the maintenance of centrosome integrity. PLoS One 2012; 7:e49687. [PMID: 23166748 PMCID: PMC3500319 DOI: 10.1371/journal.pone.0049687] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/11/2012] [Indexed: 02/07/2023] Open
Abstract
The maintenance of genomic stability requires accurate genome replication, repair of DNA damage, and the precise segregation of chromosomes in mitosis. GEN1 possesses Holliday junction resolvase activity in vitro and presumably functions in homology driven repair of DNA double strand breaks. However, little is currently known about the cellular functions of human GEN1. In the present study we demonstrate that GEN1 is a novel centrosome associated protein and we characterize the various phenotypes associated with GEN1 deficiency. We identify an N-terminal centrosome localization signal in GEN1, which is required and sufficient for centrosome localization. We report that GEN1 depletion results in aberrant centrosome numbers associated with the formation of multiple spindle poles in mitosis, an increased number of cells with multi-nuclei, increased apoptosis and an elevated level of spontaneous DNA damage. We find homologous recombination severely impaired in GEN1 deficient cells, suggesting that GEN1 functions as a Holliday junction resolvase in vivo as well as in vitro. Complementation of GEN1 depleted cells with various GEN1 constructs revealed that centrosome association but not catalytic activity of GEN1 is required for preventing centrosome hyper-amplification, formation of multiple mitotic spindles, and multi-nucleation. Our findings provide novel insight into the biological functions of GEN1 by uncovering an important role of GEN1 in the regulation of centrosome integrity.
Collapse
|
52
|
Prosser SL, Samant MD, Baxter JE, Morrison CG, Fry AM. Oscillation of APC/C activity during cell cycle arrest promotes centrosome amplification. J Cell Sci 2012; 125:5353-68. [PMID: 22956538 PMCID: PMC3939426 DOI: 10.1242/jcs.106096] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Centrosome duplication is licensed by the disengagement, or 'uncoupling', of centrioles during late mitosis. However, arrest of cells in G2 can trigger premature centriole disengagement. Here, we show that premature disengagement results from untimely activation of the anaphase-promoting complex (APC/C), leading to securin degradation and release of active separase. Although APC/C activation during G2 arrest is dependent on polo-like kinase 1 (Plk1)-mediated degradation of the APC/C inhibitor, early mitotic inhibitor 1 (Emi1), Plk1 also has a second APC/C-independent role in promoting disengagement. Importantly, APC/C and Plk1 activity also stimulates centriole disengagement in response to hydroxyurea or DNA damage-induced cell-cycle arrest and this leads to centrosome amplification. However, the reduplication of disengaged centrioles is dependent on cyclin-dependent kinase 2 (Cdk2) activity and Cdk2 activation coincides with a subsequent inactivation of the APC/C and re-accumulation of cyclin A. Although release from these arrests leads to mitotic entry, the presence of disengaged and/or amplified centrosomes results in the formation of abnormal mitotic spindles that lead to chromosome mis-segregation. Thus, oscillation of APC/C activity during cell cycle arrest promotes both centrosome amplification and genome instability.
Collapse
Affiliation(s)
- Suzanna L. Prosser
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, U.K
- Center for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland
| | - Mugdha D. Samant
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, U.K
| | - Joanne E. Baxter
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, U.K
| | - Ciaran G. Morrison
- Center for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland
| | - Andrew M. Fry
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, U.K
| |
Collapse
|
53
|
Kleylein-Sohn J, Pöllinger B, Ohmer M, Hofmann F, Nigg EA, Hemmings BA, Wartmann M. Acentrosomal spindle organization renders cancer cells dependent on the kinesin HSET. J Cell Sci 2012; 125:5391-402. [PMID: 22946058 DOI: 10.1242/jcs.107474] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Centrosomes represent the major microtubule organizing centers (MTOCs) of animal somatic cells and orchestrate bipolar spindle assembly during mitotic cell division. In meiotic cells, the kinesin HSET compensates for the lack of centrosomes by focusing acentrosomal MTOCs into two spindle poles. By clustering multiple centrosomes into two spindle poles, HSET also mediates bipolar mitosis in cancer cells with supernumerary centrosomes. However, although dispensable in non-transformed human cells, the role of HSET in cancer cells with two centrosomes has remained elusive. In this study, we demonstrate that HSET is required for proper spindle assembly, stable pole-focusing and survival of cancer cells irrespective of normal or supernumerary centrosome number. Strikingly, we detected pronounced acentrosomal MTOC structures in untreated mitotic cancer cells. While in most cancer cells these acentrosomal MTOCs were rapidly incorporated into the assembling bipolar spindle, some cells eventually established bipolar spindles with acentrosomal poles and free centrosomes. These observations demonstrate that acentrosomal MTOCs were functional and that both centrosomal and acentrosomal mechanisms were required for bipolar spindle organization. Our study shows that HSET is critical for clustering acentrosomal and centrosomal MTOCs during spindle formation in human cancer cells with two bona fide centrosomes. Furthermore, we show that in checkpoint-defective cancer cells, acentrosomal spindle formation and HSET-dependence are partially mediated by a constitutive activation of the DNA damage response. In summary, we propose that acentrosomal spindle assembly mechanisms are hyperactive in cancer cells and promote HSET, a key driver of acentrosomal spindle organization, as an attractive target for cancer therapy.
Collapse
|
54
|
Dantas TJ, Daly OM, Morrison CG. Such small hands: the roles of centrins/caltractins in the centriole and in genome maintenance. Cell Mol Life Sci 2012; 69:2979-97. [PMID: 22460578 PMCID: PMC11114748 DOI: 10.1007/s00018-012-0961-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/20/2012] [Accepted: 03/12/2012] [Indexed: 01/11/2023]
Abstract
Centrins are small, highly conserved members of the EF-hand superfamily of calcium-binding proteins that are found throughout eukaryotes. They play a major role in ensuring the duplication and appropriate functioning of the ciliary basal bodies in ciliated cells. They have also been localised to the centrosome, which is the major microtubule organising centre in animal somatic cells. We describe the identification, cloning and characterisation of centrins in multiple eukaryotic species. Although centrins have been implicated in centriole biogenesis, recent results have indicated that centrosome duplication can, in fact, occur in the absence of centrins. We discuss these data and the non-centrosomal functions that are emerging for the centrins. In particular, we discuss the involvement of centrins in nucleotide excision repair, a process that repairs the DNA lesions that are induced primarily by ultraviolet irradiation. We discuss how centrin may be involved in these diverse processes and contribute to nuclear and cytoplasmic events.
Collapse
Affiliation(s)
- Tiago J. Dantas
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland
| | - Owen M. Daly
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland
| | - Ciaran G. Morrison
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland
| |
Collapse
|
55
|
Zhang J, Lu K, Xiang Y, Islam M, Kotian S, Kais Z, Lee C, Arora M, Liu HW, Parvin JD, Huang K. Weighted frequent gene co-expression network mining to identify genes involved in genome stability. PLoS Comput Biol 2012; 8:e1002656. [PMID: 22956898 PMCID: PMC3431293 DOI: 10.1371/journal.pcbi.1002656] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 07/09/2012] [Indexed: 12/20/2022] Open
Abstract
Gene co-expression network analysis is an effective method for predicting gene functions and disease biomarkers. However, few studies have systematically identified co-expressed genes involved in the molecular origin and development of various types of tumors. In this study, we used a network mining algorithm to identify tightly connected gene co-expression networks that are frequently present in microarray datasets from 33 types of cancer which were derived from 16 organs/tissues. We compared the results with networks found in multiple normal tissue types and discovered 18 tightly connected frequent networks in cancers, with highly enriched functions on cancer-related activities. Most networks identified also formed physically interacting networks. In contrast, only 6 networks were found in normal tissues, which were highly enriched for housekeeping functions. The largest cancer network contained many genes with genome stability maintenance functions. We tested 13 selected genes from this network for their involvement in genome maintenance using two cell-based assays. Among them, 10 were shown to be involved in either homology-directed DNA repair or centrosome duplication control including the well-known cancer marker MKI67. Our results suggest that the commonly recognized characteristics of cancers are supported by highly coordinated transcriptomic activities. This study also demonstrated that the co-expression network directed approach provides a powerful tool for understanding cancer physiology, predicting new gene functions, as well as providing new target candidates for cancer therapeutics.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Karakaya K, Herbst F, Ball C, Glimm H, Krämer A, Löffler H. Overexpression of EVI1 interferes with cytokinesis and leads to accumulation of cells with supernumerary centrosomes in G0/1 phase. Cell Cycle 2012; 11:3492-503. [PMID: 22894935 DOI: 10.4161/cc.21801] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Ectopic viral integration site 1 (EVI1), a transcription factor frequently overexpressed in myeloid neoplasias, has been implicated in the generation of malignancy-associated centrosomal aberrations and chromosomal instability. Here, we sought to investigate the underlying cause of centrosome amplification in EVI1-overexpressing cells. We found that overexpression of EVI1-HA in U2OS cells induced supernumerary centrosomes, which were consistently associated with enlarged nuclei or binuclear cells. Live cell imaging experiments identified cytokinesis failure as the underlying cause of this phenotype. In accordance with previous reports, EVI1 overexpression induced a partial cell cycle arrest in G0/1 phase, accompanied by elevated cyclin D1 and p21 levels, reduced Cdk2 activity and activation of the p53 pathway. Supernumerary centrosomes predominantly occurred in resting cells, as identified by low levels of the proliferation marker Ki-67, leading to the conclusion that they result from tetraploidization after cytokinesis failure and are confined to G0/1-arrested tetraploid cells. Depletion of p53 using siRNA revealed that further polyploidization of these cells was inhibited by the p53-dependent tetraploidy checkpoint.
Collapse
Affiliation(s)
- Kadin Karakaya
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg; Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
57
|
Löffler H, Fechter A, Liu FY, Poppelreuther S, Krämer A. DNA damage-induced centrosome amplification occurs via excessive formation of centriolar satellites. Oncogene 2012; 32:2963-72. [PMID: 22824794 DOI: 10.1038/onc.2012.310] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Centrosome amplification is a frequent phenomenon in malignancies and may facilitate tumorigenesis by promoting chromosomal instability. On the other hand, a centrosome inactivation checkpoint comprising centrosome amplification leading to elimination of cells by mitotic catastrophe has been described in response to DNA damage by ionizing radiation or cytostatic drugs. So far, the exact nature of DNA damage-induced centrosome amplification, which might be overduplication or fragmentation of existing centrosomes, has been controversial. To solve this controversy, we have established a method to distinguish between these two possibilities using A549 cells expressing photoconvertible CETN2-Dendra2. In response to various DNA-damaging treatments, centrosome amplification but not fragmentation was observed. Moreover, centrosome amplification was preceded by excessive formation of centrin-containing centriolar satellites, which were identified as de novo-generated atypical centrin dots staining positive for centriolar satellite markers but negative or only weakly positive for other established centrosomal markers, and which could be verified as centriolar satellites using immunogold electron microscopy. In line with this notion, disruption of dynein-mediated recruitment of centrosomal proteins via centriolar satellites suppressed centrosome amplification after DNA damage, and excessive formation of centriolar satellites could be inhibited by interference with Chk1, a known mediator of centrosome amplification in response to DNA damage. In conclusion, we provide a model in which a Chk1-mediated DNA damage checkpoint induces excessive formation of centriolar satellites constituting assembly platforms for centrosomal proteins, which subsequently leads to centrosome amplification.
Collapse
Affiliation(s)
- H Löffler
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
58
|
Induction of robust de novo centrosome amplification, high-grade spindle multipolarity and metaphase catastrophe: a novel chemotherapeutic approach. Cell Death Dis 2012; 3:e346. [PMID: 22785532 PMCID: PMC3406581 DOI: 10.1038/cddis.2012.82] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Centrosome amplification (CA) and resultant chromosomal instability have long been associated with tumorigenesis. However, exacerbation of CA and relentless centrosome declustering engender robust spindle multipolarity (SM) during mitosis and may induce cell death. Recently, we demonstrated that a noscapinoid member, reduced bromonoscapine, (S)-3-(R)-9-bromo-5-(4,5-dimethoxy-1,3-dihydroisobenzofuran-1-yl)-4-methoxy-6-methyl-5,6,7,8-tetrahydro-[1,3]dioxolo-[4,5-g]isoquinoline (Red-Br-nos), induces reactive oxygen species (ROS)-mediated autophagy and caspase-independent death in prostate cancer PC-3 cells. Herein, we show that Red-Br-nos induces ROS-dependent DNA damage that resulted in high-grade CA and SM in PC-3 cells. Unlike doxorubicin, which causes double-stranded DNA breaks and chronic G2 arrest accompanied by ‘templated' CA, Red-Br-nos-mediated DNA damage elicits de novo CA during a transient S/G2 stall, followed by checkpoint abrogation and mitotic entry to form aberrant mitotic figures with supernumerary spindle poles. Attenuation of multipolar phenotype in the presence of tiron, a ROS inhibitor, indicated that ROS-mediated DNA damage was partly responsible for driving CA and SM. Although a few cells (∼5%) yielded to aberrant cytokinesis following an ‘anaphase catastrophe', most mitotically arrested cells (∼70%) succumbed to ‘metaphase catastrophe,' which was caspase-independent. This report is the first documentation of rapid de novo centrosome formation in the presence of parent centrosome by a noscapinoid family member, which triggers death-inducing SM via a unique mechanism that distinguishes it from other ROS-inducers, conventional DNA-damaging agents, as well as other microtubule-binding drugs.
Collapse
|
59
|
Computational investigation of pathogenic nsSNPs in CEP63 protein. Gene 2012; 503:75-82. [DOI: 10.1016/j.gene.2012.04.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/01/2012] [Accepted: 04/11/2012] [Indexed: 12/11/2022]
|
60
|
Thompson LH. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res 2012; 751:158-246. [PMID: 22743550 DOI: 10.1016/j.mrrev.2012.06.002] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 06/09/2012] [Accepted: 06/16/2012] [Indexed: 12/15/2022]
Abstract
The faithful maintenance of chromosome continuity in human cells during DNA replication and repair is critical for preventing the conversion of normal diploid cells to an oncogenic state. The evolution of higher eukaryotic cells endowed them with a large genetic investment in the molecular machinery that ensures chromosome stability. In mammalian and other vertebrate cells, the elimination of double-strand breaks with minimal nucleotide sequence change involves the spatiotemporal orchestration of a seemingly endless number of proteins ranging in their action from the nucleotide level to nucleosome organization and chromosome architecture. DNA DSBs trigger a myriad of post-translational modifications that alter catalytic activities and the specificity of protein interactions: phosphorylation, acetylation, methylation, ubiquitylation, and SUMOylation, followed by the reversal of these changes as repair is completed. "Superfluous" protein recruitment to damage sites, functional redundancy, and alternative pathways ensure that DSB repair is extremely efficient, both quantitatively and qualitatively. This review strives to integrate the information about the molecular mechanisms of DSB repair that has emerged over the last two decades with a focus on DSBs produced by the prototype agent ionizing radiation (IR). The exponential growth of molecular studies, heavily driven by RNA knockdown technology, now reveals an outline of how many key protein players in genome stability and cancer biology perform their interwoven tasks, e.g. ATM, ATR, DNA-PK, Chk1, Chk2, PARP1/2/3, 53BP1, BRCA1, BRCA2, BLM, RAD51, and the MRE11-RAD50-NBS1 complex. Thus, the nature of the intricate coordination of repair processes with cell cycle progression is becoming apparent. This review also links molecular abnormalities to cellular pathology as much a possible and provides a framework of temporal relationships.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology & Biotechnology Division, L452, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, United States.
| |
Collapse
|
61
|
Yang C, Tang X, Guo X, Niikura Y, Kitagawa K, Cui K, Wong STC, Fu L, Xu B. Aurora-B mediated ATM serine 1403 phosphorylation is required for mitotic ATM activation and the spindle checkpoint. Mol Cell 2012; 44:597-608. [PMID: 22099307 DOI: 10.1016/j.molcel.2011.09.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/23/2011] [Accepted: 09/07/2011] [Indexed: 11/18/2022]
Abstract
The ATM kinase plays a critical role in the maintenance of genetic stability. ATM is activated in response to DNA damage and is essential for cell-cycle checkpoints. Here, we report that ATM is activated in mitosis in the absence of DNA damage. We demonstrate that mitotic ATM activation is dependent on the Aurora-B kinase and that Aurora-B phosphorylates ATM on serine 1403. This phosphorylation event is required for mitotic ATM activation. Further, we show that loss of ATM function results in shortened mitotic timing and a defective spindle checkpoint, and that abrogation of ATM Ser1403 phosphorylation leads to this spindle checkpoint defect. We also demonstrate that mitotically activated ATM phosphorylates Bub1, a critical kinetochore protein, on Ser314. ATM-mediated Bub1 Ser314 phosphorylation is required for Bub1 activity and is essential for the activation of the spindle checkpoint. Collectively, our data highlight mechanisms of a critical function of ATM in mitosis.
Collapse
Affiliation(s)
- Chunying Yang
- Department of Radiation Oncology, The Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Tsuda M, Tanaka M, Mushiake M, Takahashi J, Tanaka K, Watase J, Fujisawa JI, Miwa M. Novel pathway of centrosome amplification that does not require DNA lesions. Cancer Sci 2011; 103:191-6. [PMID: 22085410 DOI: 10.1111/j.1349-7006.2011.02152.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Centrosome amplification (also known as centrosome overduplication) is common in cancer cells and can be induced by DNA damaging agents. However, the mechanism and significance of centrosome amplification during carcinogenesis or after DNA damage are not clear. Previously, we showed that centrosome amplification could be induced by 3-aminobenzamide (3-AB), an inhibitor of poly(ADP-ribose) polymerases (PARPs) in mouse embryonic fibroblasts. In this paper, we determined if the effect of 3-AB on centrosome amplification was dependent on DNA damage in CHO-K1 cells. We used the well-known mutagen/carcinogen N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Ten micromolar MNNG and 10 mM 3-AB induced significant centrosome amplification in 18.1 ± 1.1% and 19.4 ± 1.8% of CHO-K1 cells, respectively, compared to 7.0 ± 0.5% of untreated CHO-K1 cells. AG14361, another potent inhibitor of PARPs, also induced centrosome amplification. We then used γ-H2AX analysis and alkaline comet assays to show that 10 μM MNNG induced a significant number of DNA lesions and cell cycle arrest at the G(2) /M phase. However, 10 mM 3-AB neither induced DNA lesions nor altered cell cycle progression. In the umu test, 10 μM MNNG was mutagenic, but 10 mM 3-AB was not. In addition, 10 μM MNNG induced significant accumulation of ataxia telangiectasia mutated protein in the nuclei, but 10 mM 3-AB did not. Thus, we found no association between apparent DNA lesions and centrosome amplification after 3-AB treatment. Therefore, we propose the presence of a novel pathway for centrosome amplification that does not necessarily require DNA lesions but involves regulation of epigenetic changes or post-translational modifications including polyADP-ribosylation.
Collapse
Affiliation(s)
- Masataka Tsuda
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Shimada M, Kato A, Habu T, Komatsu K. Genistein, isoflavonoids in soybeans, prevents the formation of excess radiation-induced centrosomes via p21 up-regulation. Mutat Res 2011; 716:27-32. [PMID: 21843532 DOI: 10.1016/j.mrfmmm.2011.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 07/04/2011] [Accepted: 07/28/2011] [Indexed: 10/17/2022]
Abstract
The centrosome is a cytoplasmic organelle which duplicates once during each cell cycle, and the presence of excess centrosomes promote chromosome instability through chromosome missegregation following cytokinesis. Ionizing radiation (IR) can induce extra centrosomes by permitting the continuation of CDK2/Cyclin-A/E-mediated centrosome duplication when cells are arrested in the cell cycle after irradiation. The work described here shows that, in addition to IR, extra centrosomes were induced in human U2OS and mouse NIH3T3 cells after treatment with agents which include DNA adduct-forming chemicals: benzopyrene (BP), 4-nitroquinoline 1-oxide (4NQO), a DNA cross linker: cis-diamminedichloro-platinum (cisplatin), topoisomerase inhibitors: camptothecin, etoposide, genistein, and ultra-violet light (UV). These agents were divided into two categories with respect to the regulation of p21, which is an inhibitor of CDK2/Cyclin-A/E: specifically, p21 was up-regulated by an IR exposure and treatment with topoisomerase inhibitors. However, UV, BP, 4NQO and cisplatin down-regulated p21 below basal levels. When cells were irradiated with IR in combination with all of these agents, except genistein, enhanced induction of extra centrosomes was observed, regardless of the nature of p21 expression. Genistein significantly suppressed the frequency of IR-induced extra centrosomes in a dose-dependent manner, and 20μg/ml of genistein reduced this frequency to 66%. Consistent with this, genistein substantially up-regulated p21 expression over the induction caused by IR alone, while other agents down-regulated or marginally affected this. This suggests the inhibitory effect of genistein on the induction of extra centrosomes occurs through the inactivation of CDK2/Cyclin-A/E via p21 up-regulation. This hypothesis is supported by the observation that p21 knockdown with siRNA reduced the activity of CDK2/Cyclin-A/E and restored the enhanced effect of a combined treatment with genistein and IR. These results demonstrate the preventive effect of genistein and a crucial role for p21 in IR-induced excess centrosomes.
Collapse
Affiliation(s)
- Mikio Shimada
- Department of Genome Repair Dynamics, Kyoto University, Yoshida-konoe, Sakyo, Kyoto, Japan
| | | | | | | |
Collapse
|
64
|
Bettencourt-Dias M, Hildebrandt F, Pellman D, Woods G, Godinho SA. Centrosomes and cilia in human disease. Trends Genet 2011; 27:307-15. [PMID: 21680046 PMCID: PMC3144269 DOI: 10.1016/j.tig.2011.05.004] [Citation(s) in RCA: 284] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 05/03/2011] [Accepted: 05/03/2011] [Indexed: 11/20/2022]
Abstract
Centrioles are microtubule-derived structures that are essential for the formation of centrosomes, cilia and flagella. The centrosome is the major microtubule organiser in animal cells, participating in a variety of processes, from cell polarisation to cell division, whereas cilia and flagella contribute to several mechanisms in eukaryotic cells, from motility to sensing. Although it was suggested more than a century ago that these microtubule-derived structures are involved in human disease, the molecular bases of this association have only recently been discovered. Surprisingly, there is very little overlap between the genes affected in the different diseases, suggesting that there are tissue-specific requirements for these microtubule-derived structures. Knowledge of these requirements and disease mechanisms has opened new avenues for therapeutical strategies. Here, we give an overview of recent developments in this field, focusing on cancer, diseases of brain development and ciliopathies.
Collapse
|
65
|
Megraw TL, Sharkey JT, Nowakowski RS. Cdk5rap2 exposes the centrosomal root of microcephaly syndromes. Trends Cell Biol 2011; 21:470-80. [PMID: 21632253 PMCID: PMC3371655 DOI: 10.1016/j.tcb.2011.04.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 04/26/2011] [Accepted: 04/27/2011] [Indexed: 01/27/2023]
Abstract
Autosomal recessive primary microcephaly (MCPH) is characterized by small brain size as a result of deficient neuron production in the developing cerebral cortex. Although MCPH is a rare disease, the questions surrounding its etiology strike at the core of stem cell biology. The seven genes implicated in MCPH all encode centrosomal proteins and disruption of the MCPH gene Cdk5rap2 in mice revealed its role in neural progenitor proliferation and in maintaining normal centriole replication control. We discuss here the impact that centrosome regulation has upon neural progenitors in the developing brain. We integrate the impact of centriole replication defects with the functions of Cdk5rap2 and other MCPH proteins, propose mechanisms for progenitor loss in MCPH, and discuss links to two other microcephaly syndromes.
Collapse
Affiliation(s)
- Timothy L Megraw
- Department of Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, USA.
| | | | | |
Collapse
|
66
|
Dantas TJ, Wang Y, Lalor P, Dockery P, Morrison CG. Defective nucleotide excision repair with normal centrosome structures and functions in the absence of all vertebrate centrins. ACTA ACUST UNITED AC 2011; 193:307-18. [PMID: 21482720 PMCID: PMC3080269 DOI: 10.1083/jcb.201012093] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Centrin-null cells undergo normal division but are highly sensitive to UV irradiation as a result of impaired DNA repair. The principal microtubule-organizing center in animal cells, the centrosome, contains centrin, a small, conserved calcium-binding protein unique to eukaryotes. Several centrin isoforms exist and have been implicated in various cellular processes including nuclear export and deoxyribonucleic acid (DNA) repair. Although centrins are required for centriole/basal body duplication in lower eukaryotes, centrin functions in vertebrate centrosome duplication are less clear. To define these roles, we used gene targeting in the hyperrecombinogenic chicken DT40 cell line to delete all three centrin genes in individual clones. Unexpectedly, centrin-deficient cells underwent normal cellular division with no detectable cell cycle defects. Light and electron microscopy analyses revealed no significant difference in centrosome composition or ultrastructure. However, centrin deficiency made DT40 cells highly sensitive to ultraviolet (UV) irradiation, with Cetn3 deficiency exacerbating the sensitivity of Cetn4/Cetn2 double mutants. DNA damage checkpoints were intact, but repair of UV-induced DNA damage was delayed in centrin nulls. These data demonstrate a role for vertebrate centrin in nucleotide excision repair.
Collapse
Affiliation(s)
- Tiago J Dantas
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway 091 524 411, Ireland
| | | | | | | | | |
Collapse
|
67
|
Cortez BDA, Quassollo G, Caceres A, Machado-Santelli GM. The fate of chrysotile-induced multipolar mitosis and aneuploid population in cultured lung cancer cells. PLoS One 2011; 6:e18600. [PMID: 21483691 PMCID: PMC3071733 DOI: 10.1371/journal.pone.0018600] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 03/07/2011] [Indexed: 01/09/2023] Open
Abstract
Chrysotile is one of the six types of asbestos, and it is the only one that can still be commercialized in many countries. Exposure to other types of asbestos has been associated with serious diseases, such as lung carcinomas and pleural mesotheliomas. The association of chrysotile exposure with disease is controversial. However, in vitro studies show the mutagenic potential of chrysotile, which can induce DNA and cell damage. The present work aimed to analyze alterations in lung small cell carcinoma cultures after 48 h of chrysotile exposure, followed by 2, 4 and 8 days of recovery in fiber-free culture medium. Some alterations, such as aneuploid cell formation, increased number of cells in G2/M phase and cells in multipolar mitosis were observed even after 8 days of recovery. The presence of chrysotile fibers in the cell cultures was detected and cell morphology was observed by laser scanning confocal microscopy. After 4 and 8 days of recovery, only a few chrysotile fragments were present in some cells, and the cellular morphology was similar to that of control cells. Cells transfected with the GFP-tagged α-tubulin plasmid were treated with chrysotile for 24 or 48 h and cells in multipolar mitosis were observed by time-lapse microscopy. Fates of these cells were established: retention in metaphase, cell death, progression through M phase generating more than two daughter cells or cell fusion during telophase or cytokinesis. Some of them were related to the formation of aneuploid cells and cells with abnormal number of centrosomes.
Collapse
Affiliation(s)
- Beatriz de Araujo Cortez
- Departamento Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
- Departamento Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brasil
| | - Gonzalo Quassollo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET), Córdoba, Argentina
| | - Alfredo Caceres
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET), Córdoba, Argentina
| | - Glaucia Maria Machado-Santelli
- Departamento Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
- * E-mail:
| |
Collapse
|
68
|
Löffler H, Fechter A, Matuszewska M, Saffrich R, Mistrik M, Marhold J, Hornung C, Westermann F, Bartek J, Krämer A. Cep63 Recruits Cdk1 to the Centrosome: Implications for Regulation of Mitotic Entry, Centrosome Amplification, and Genome Maintenance. Cancer Res 2011; 71:2129-39. [DOI: 10.1158/0008-5472.can-10-2684] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
69
|
Abstract
Exposure to toxic and carcinogenic metals is widespread; however, their mechanisms of action remain largely unknown. One potential mechanism for metal-induced carcinogenicity and toxicity is centrosome amplification. Here we review the mechanisms for metal-induced centrosome amplification, including arsenic, chromium, mercury and nano-titanium dioxide.
Collapse
|
70
|
Cappelli E, Townsend S, Griffin C, Thacker J. Homologous recombination proteins are associated with centrosomes and are required for mitotic stability. Exp Cell Res 2011; 317:1203-13. [PMID: 21276791 DOI: 10.1016/j.yexcr.2011.01.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 01/13/2011] [Accepted: 01/20/2011] [Indexed: 11/27/2022]
Abstract
In response to DNA damage, cells need robust repair mechanisms to complete the cell cycle successfully. Severe forms of DNA damage are repaired by homologous recombination (HR), in which the XRCC2 protein plays a vital role. Cells deficient in XRCC2 also show disruption of the centrosome, a key component of the mitotic apparatus. We find that this centrosome disruption is dynamic and when it occurs during mitosis it is linked directly to the onset of mitotic catastrophe in a significant fraction of the XRCC2-deficient cells. However, we also show for the first time that XRCC2 and other HR proteins, including the key recombinase RAD51, co-localize with the centrosome. Co-localization is maintained throughout the cell cycle, except when cells are finishing mitosis when RAD51 accumulates in the midbody between the separating cells. Taken together, these data suggest a tight functional linkage between the centrosome and HR proteins, potentially to coordinate the deployment of a DNA damage response at vulnerable phases of the cell cycle.
Collapse
Affiliation(s)
- Enrico Cappelli
- Medical Research Council, Radiation & Genome Stability Unit, Oxon OX11 0RD, UK
| | | | | | | |
Collapse
|
71
|
Shimada M, Kobayashi J, Hirayama R, Komatsu K. Differential role of repair proteins, BRCA1/NBS1 and Ku70/DNA-PKcs, in radiation-induced centrosome overduplication. Cancer Sci 2010; 101:2531-7. [PMID: 20825415 PMCID: PMC11159506 DOI: 10.1111/j.1349-7006.2010.01702.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Centrosomes are important cytoplasmic organelles involved in chromosome segregation, defects in which can result in aneuploidy, and contribute to tumorigenesis. It is known that DNA damage causes the supernumerary centrosomes by a mechanism in which centrosomes continue to duplicate during cell cycle arrest at checkpoints. We show here that ionizing radiation induces the overduplication of centrosomes in a dose-dependent manner, and that the level of overduplication is pronounced in BRCA1- and NBS1-deficient cells, even though their checkpoint control is abrogated. Conversely, marginal increases in overduplication were observed in Ku70- and DNA-PKcs-deficient cells, which are intact in checkpoint control. The frequency of radiation-induced overduplication of centrosomes might be associated with DNA repair, as it was decreased with reduced cell killing after protracted exposures to radiation. As a result, when the frequency of radiation-induced centrosome overduplication was plotted against radiation-induced cell killing, similar curves were seen for both protracted and acute exposures in wild-type cells, Ku70-deficient, and DNA-PKcs-deficient cells, indicating a common mechanism for centrosome overduplication. However, the absence of either BRCA1 or NBS1 enhanced radiation-induced overduplication frequencies by 2-4-fold on the basis of the same cell killing. These results suggest that radiation-induced centrosome overduplication is regulated by at least two mechanisms: a checkpoint-dependent pathway involved in wild-type cells, Ku70-deficient and DNA-PKcs-deficient cells; and a checkpoint-independent pathway as observed in BRCA1-deficient and NBS1-deficient cells.
Collapse
Affiliation(s)
- Mikio Shimada
- Radiation Biology Center, Kyoto University, Kyoto, Japan
| | | | | | | |
Collapse
|
72
|
Koledova Z, Krämer A, Kafkova LR, Divoky V. Cell-cycle regulation in embryonic stem cells: centrosomal decisions on self-renewal. Stem Cells Dev 2010; 19:1663-78. [PMID: 20594031 DOI: 10.1089/scd.2010.0136] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Embryonic stem cells seem to have the intriguing capacity to divide indefinitely while retaining their pluripotency. This self-renewal is accomplished by specialized mechanisms of cell-cycle control. In the last few years, several studies have provided evidence for a direct link between cell-cycle regulation and cell-fate decisions in stem cells. In this review, we discuss the peculiarities of embryonic stem cell-cycle control mechanisms, implicate their involvement in cell-fate decisions, and distinguish centrosomes as important players in the self-renewal versus differentiation roulette.
Collapse
Affiliation(s)
- Zuzana Koledova
- Department of Biology, Faculty of Medicine, Palacky University, Olomouc, Czech Republic.
| | | | | | | |
Collapse
|
73
|
Inanç B, Dodson H, Morrison CG. A centrosome-autonomous signal that involves centriole disengagement permits centrosome duplication in G2 phase after DNA damage. Mol Biol Cell 2010; 21:3866-77. [PMID: 20861312 PMCID: PMC2982117 DOI: 10.1091/mbc.e10-02-0124] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
DNA damage can induce centrosome overduplication in a manner that requires G2-to-M checkpoint function, suggesting that genotoxic stress can decouple the centrosome and chromosome cycles. How this happens is unclear. Using live-cell imaging of cells that express fluorescently tagged NEDD1/GCP-WD and proliferating cell nuclear antigen, we found that ionizing radiation (IR)-induced centrosome amplification can occur outside S phase. Analysis of synchronized populations showed that significantly more centrosome amplification occurred after irradiation of G2-enriched populations compared with G1-enriched or asynchronous cells, consistent with G2 phase centrosome amplification. Irradiated and control populations of G2 cells were then fused to test whether centrosome overduplication is allowed through a diffusible stimulatory signal, or the loss of a duplication-inhibiting signal. Irradiated G2/irradiated G2 cell fusions showed significantly higher centrosome amplification levels than irradiated G2/unirradiated G2 fusions. Chicken-human cell fusions demonstrated that centrosome amplification was limited to the irradiated partner. Our finding that only the irradiated centrosome can duplicate supports a model where a centrosome-autonomous inhibitory signal is lost upon irradiation of G2 cells. We observed centriole disengagement after irradiation. Although overexpression of dominant-negative securin did not affect IR-induced centrosome amplification, Plk1 inhibition reduced radiation-induced amplification. Together, our data support centriole disengagement as a licensing signal for DNA damage-induced centrosome amplification.
Collapse
Affiliation(s)
- Burcu Inanç
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | | | | |
Collapse
|
74
|
Zamora R, Espinosa M, Ceballos-Cancino G, Segura B, Maldonado V, Melendez-Zajgla J. Depletion of the oncoprotein Bcl-3 induces centrosome amplification and aneuploidy in cancer cells. Mol Cancer 2010; 9:223. [PMID: 20731879 PMCID: PMC2933622 DOI: 10.1186/1476-4598-9-223] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 08/24/2010] [Indexed: 11/10/2022] Open
Abstract
Bcl-3 is an atypical member of the inhibitor of NF-kappa B family of proteins since it can function as a coactivator of transcription. Although this oncogene was described in leukemia, it is overexpressed in a number of solid tumors as well. The oncogenic potential of Bcl-3 has been associated with its capacity to increase proliferation by means of activating the cyclin D1 promoter and to its antiapoptotic role mediated by the inhibiton of p53 activity. In the course of dissecting these properties, we found that depleting Bcl-3 protein using shRNAs induce a decrease of proliferation and clonogenic survival associated with the induction of multinucleation and increased ploidy. These effects were associated with a DNA damage response, a delay in G2/M checkpoint and the induction of centrosome amplification
Collapse
Affiliation(s)
- Ruben Zamora
- Biotechnology Unit, Grupo Farmacéutico Neolpharma, Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|
75
|
|
76
|
Cunha-Ferreira I, Bento I, Bettencourt-Dias M. From zero to many: control of centriole number in development and disease. Traffic 2010; 10:482-98. [PMID: 19416494 DOI: 10.1111/j.1600-0854.2009.00905.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Centrioles are essential for the formation of microtubule-derived structures, including cilia, flagella and centrosomes. These structures are involved in a variety of functions, from cell motility to division. In most dividing animal cells, centriole formation is coupled to the chromosome cycle. However, this is not the case in certain specialized divisions, such as meiosis, and in some differentiating cells. For example, oocytes loose their centrioles upon differentiation, whereas multiciliated epithelial cells make several of those structures after they exit the cell cycle. Aberrations of centriole number are seen in many cancer cells. Recent studies began to shed light on the molecular control of centriole number, its variations in development, and how centriole number changes in human disease. Here we review the recent developments in this field.
Collapse
Affiliation(s)
- Inês Cunha-Ferreira
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6P-2780-156 Oeiras, Portugal
| | | | | |
Collapse
|
77
|
Mocciaro A, Berdougo E, Zeng K, Black E, Vagnarelli P, Earnshaw W, Gillespie D, Jallepalli P, Schiebel E. Vertebrate cells genetically deficient for Cdc14A or Cdc14B retain DNA damage checkpoint proficiency but are impaired in DNA repair. ACTA ACUST UNITED AC 2010; 189:631-9. [PMID: 20479464 PMCID: PMC2872905 DOI: 10.1083/jcb.200910057] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cdc14A and Cdc14B knockout cells with double-strand breaks still arrest in G2, but they fail to repair the damage. A recent study suggested that human Cdc14B phosphatase has a central function in the G2 DNA damage checkpoint. In this study, we show that chicken DT40, human HCT116, and human telomerase reverse transcription–immortalized retinal pigment epithelial cells deleted for the Cdc14A or Cdc14B gene are DNA damage checkpoint proficient and arrest efficiently in G2 in response to irradiation. Cdc14A knockout (KO) or Cdc14B-KO cells also maintain normal levels of Chk1 and Chk2 activation after irradiation. Surprisingly, however, irradiation-induced γ-H2A.X foci and DNA double-strand breaks persist longer in Cdc14A-KO or Cdc14B-KO cells than controls, suggesting that Cdc14 phosphatases are required for efficient DNA repair.
Collapse
Affiliation(s)
- Annamaria Mocciaro
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Barr AR, Kilmartin JV, Gergely F. CDK5RAP2 functions in centrosome to spindle pole attachment and DNA damage response. ACTA ACUST UNITED AC 2010; 189:23-39. [PMID: 20368616 PMCID: PMC2854379 DOI: 10.1083/jcb.200912163] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two domains of centrosomal protein CDK5RAP2, CNN1 and CNN2, link centrosomes to mitotic spindle poles. CNN1 lacking centrosomes are unable to recruit pericentriolar matrix components that mediate attachment to spindle poles. The centrosomal protein, CDK5RAP2, is mutated in primary microcephaly, a neurodevelopmental disorder characterized by reduced brain size. The Drosophila melanogaster homologue of CDK5RAP2, centrosomin (Cnn), maintains the pericentriolar matrix (PCM) around centrioles during mitosis. In this study, we demonstrate a similar role for CDK5RAP2 in vertebrate cells. By disrupting two evolutionarily conserved domains of CDK5RAP2, CNN1 and CNN2, in the avian B cell line DT40, we find that both domains are essential for linking centrosomes to mitotic spindle poles. Although structurally intact, centrosomes lacking the CNN1 domain fail to recruit specific PCM components that mediate attachment to spindle poles. Furthermore, we show that the CNN1 domain enforces cohesion between parental centrioles during interphase and promotes efficient DNA damage–induced G2 cell cycle arrest. Because mitotic spindle positioning, asymmetric centrosome inheritance, and DNA damage signaling have all been implicated in cell fate determination during neurogenesis, our findings provide novel insight into how impaired CDK5RAP2 function could cause premature depletion of neural stem cells and thereby microcephaly.
Collapse
Affiliation(s)
- Alexis R Barr
- Cancer Research UK Cambridge Research Institute, Cambridge CB2 0RE, England, UK
| | | | | |
Collapse
|
79
|
Radiation-induced cell death mechanisms. Tumour Biol 2010; 31:363-72. [PMID: 20490962 DOI: 10.1007/s13277-010-0042-8] [Citation(s) in RCA: 466] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 04/18/2010] [Indexed: 12/31/2022] Open
Abstract
The main goal when treating malignancies with radiation therapy is to deprive tumor cells of their reproductive potential. One approach to achieve this is by inducing tumor cell apoptosis. Accumulating evidences suggest that induction of apoptosis alone is insufficient to account for the therapeutic effect of radiotherapy. It has become obvious in the last few years that inhibition of the proliferative capacity of malignant cells following irradiation, especially with solid tumors, can occur via alternative cell death modalities or permanent cell cycle arrests, i.e., senescence. In this review, apoptosis and mitotic catastrophe, the two major cell deaths induced by radiation, are described and dissected in terms of activating mechanisms. Furthermore, treatment-induced senescence and its relevance for the outcome of radiotherapy of cancer will be discussed. The importance of p53 for the induction and execution of these different types of cell deaths is highlighted. The efficiency of radiotherapy and radioimmunotherapy has much to gain by understanding the cell death mechanisms that are induced in tumor cells following irradiation. Strategies to use specific inhibitors that will manipulate key molecules in these pathways in combination with radiation might potentiate therapy and enhance tumor cell kill.
Collapse
|
80
|
Utani KI, Kohno Y, Okamoto A, Shimizu N. Emergence of micronuclei and their effects on the fate of cells under replication stress. PLoS One 2010; 5:e10089. [PMID: 20386692 PMCID: PMC2851613 DOI: 10.1371/journal.pone.0010089] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 03/16/2010] [Indexed: 11/19/2022] Open
Abstract
The presence of micronuclei in mammalian cells is related to several mutagenetic stresses. In order to understand how micronuclei emerge, behave in cells, and affect cell fate, we performed extensive time-lapse microscopy of HeLa H2B-GFP cells in the presence of hydroxyurea at low concentration. Micronuclei formed after mitosis from lagging chromatids or chromatin bridges between anaphase chromosomes and were stably maintained in the cells for up to one cell cycle. Nuclear buds also formed from chromatin bridges or during interphase. If the micronuclei-bearing cells entered mitosis, they either produced daughter cells without micronuclei or, more frequently, produced cells with additional micronuclei. Low concentrations of hydroxyurea efficiently induced multipolar mitosis, which generated lagging chromatids or chromatin bridges, and also generated multinuclear cells that were tightly linked to apoptosis. We found that the presence of micronuclei is related to apoptosis but not to multipolar mitosis. Furthermore, the structural heterogeneity among micronuclei, with respect to chromatin condensation or the presence of lamin B, derived from the mechanism of micronuclei formation. Our study reinforces the notion that micronucleation has important implications in the genomic plasticity of tumor cells.
Collapse
Affiliation(s)
- Koh-ichi Utani
- Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan
| | - Yuka Kohno
- Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan
| | - Atsushi Okamoto
- Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan
| | - Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
81
|
Ingemarsdotter C, Keller D, Beard P. The DNA damage response to non-replicating adeno-associated virus: Centriole overduplication and mitotic catastrophe independent of the spindle checkpoint. Virology 2010; 400:271-86. [PMID: 20199789 DOI: 10.1016/j.virol.2010.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 01/25/2010] [Accepted: 02/03/2010] [Indexed: 12/17/2022]
Abstract
Adeno-associated virus (AAV) type 2 or UV-inactivated AAV (UV-AAV2) infection provokes a DNA damage response that leads to cell cycle arrest at the G2/M border. p53-deficient cells cannot sustain the G2 arrest, enter prolonged impaired mitosis, and die. Here, we studied how non-replicating AAV2 kills p53-deficient osteosarcoma cells. We found that the virus uncouples centriole duplication from the cell cycle, inducing centrosome overamplification that is dependent on Chk1, ATR and CDK kinases, and on G2 arrest. Interference with spindle checkpoint components Mad2 and BubR1 revealed unexpectedly that mitotic catastrophe occurs independently of spindle checkpoint function. We conclude that, in the p53-deficient cells, UV-AAV2 triggers mitotic catastrophe associated with a dramatic Chk1-dependent overduplication of centrioles and the consequent formation of multiple spindle poles in mitosis. As AAV2 acts through cellular damage response pathways, the results provide information on the role of Chk1 in mitotic catastrophe after DNA damage signaling in general.
Collapse
Affiliation(s)
- Carin Ingemarsdotter
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Institute for Experimental Cancer Research (ISREC), 1015 Lausanne, Switzerland.
| | | | | |
Collapse
|
82
|
Astrinidis A, Kim J, Kelly CM, Olofsson BA, Torabi B, Sorokina EM, Azizkhan-Clifford J. The transcription factor SP1 regulates centriole function and chromosomal stability through a functional interaction with the mammalian target of rapamycin/raptor complex. Genes Chromosomes Cancer 2010; 49:282-97. [PMID: 20013896 DOI: 10.1002/gcc.20739] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Specificity protein 1 (SP1) is an essential transcription factor implicated in the regulation of genes that control multiple cellular processes, including cell cycle, apoptosis, and DNA damage. Very few nontranscriptional roles for SP1 have been reported thus far. Using confocal microscopy and centrosome fractionation, we identified SP1 as a centrosomal protein. Sp1-deficient mouse embryonic fibroblasts and cells depleted of SP1 by RNAi have increased centrosome number associated with centriole splitting, decreased microtubule nucleation, chromosome misalignment, formation of multipolar mitotic spindles and micronuclei, and increased incidence of aneuploidy. Using mass spectrometry, we identified P70S6K, an effector of the mTOR/raptor (mTORC1) kinase complex, as a novel interacting protein of SP1. We found that SP1-deficient cells have increased phosphorylation of the P70S6K effector ribosomal protein S6, suggesting that SP1 participates in the regulation of the mTORC1/P70S6K/S6 signaling pathway. We previously reported that aberrant mTORC1 activation leads to supernumerary centrosomes, a phenotype rescued by the mTORC1 inhibitor rapamycin. Similarly, treatment with rapamycin rescued the multiple centrosome phenotype of SP1-deficient cells. Taken together, these data strongly support the hypothesis that SP1 is involved in the control of centrosome number via regulation of the mTORC1 pathway, and predict that loss of SP1 function can lead to aberrant centriole splitting, deregulated mTORC1 signaling, and aneuploidy, thereby contributing to malignant transformation.
Collapse
Affiliation(s)
- Aristotelis Astrinidis
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | | | | | | | | | | |
Collapse
|
83
|
DNA damage induces Chk1-dependent threonine-160 phosphorylation and activation of Cdk2. Oncogene 2009; 29:616-24. [PMID: 19838212 DOI: 10.1038/onc.2009.340] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abnormal centrosome numbers arise in tumours and can cause multipolar mitoses and genome instability. Cdk2 controls normal centrosome duplication, but Chk1-dependent centrosome amplification also occurs after DNA damage. We investigated the involvement of cyclin-dependent kinases (Cdks) in DNA damage-induced centrosome amplification using cells lacking either Cdk2, or both Cdk1 and Cdk2 activity. Cdk2(-/-) DT40 cells showed robust centrosome amplification after ionizing radiation (IR), whereas Cdk1-deficient Cdk2(-/-) cells showed no centrosome amplification, demonstrating that Cdk1 can substitute for Cdk2 in this pathway. Surprisingly, we found that Cdk2 activity was upregulated by IR in wild-type but not in Chk1(-/-) DT40 cells. Cdk2 upregulation also occurred in HeLa cells after IR treatment. Chk1-dependent Cdk2 induction was not accompanied by increased levels of Cdk1, Cdk2, cyclin A or cyclin E, but activating T160 phosphorylation of Cdk2 increased after IR. Moreover, Cdk2 overexpression restored IR-induced centrosome amplification in Cdk1-deficient Cdk2(-/-) cells, but T160A mutation blocked this rescue. Our data suggest that Chk1 signalling causes centrosome amplification after IR by upregulating Cdk2 activity through activating phosphorylation.
Collapse
|
84
|
Saladino C, Bourke E, Conroy PC, Morrison CG. Centriole separation in DNA damage-induced centrosome amplification. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:725-732. [PMID: 19274769 DOI: 10.1002/em.20477] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Altered centrosome numbers are seen in tumor cells in response to DNA damaging treatments and are hypothesised to contribute to cancer development. The mechanism by which the centrosome and chromosome cycles become disconnected after DNA damage is not yet clear. Here, we show that centrosome amplification occurs after ionising radiation (IR) in chicken DT40 cells that lack DNA-PK, Ku70, H2AX, Xpa, and Scc1, demonstrating that these activities are not required for centrosome amplification. We show that inhibition of topoisomerase II induces Chk1-dependent centrosome amplification, a similar response to that seen after IR. In the immortalised, nontransformed hTERT-RPE1 line, we observed centriole splitting, followed by dose-dependent centrosome amplification, after IR. We found that IR results in the formation of single, not multiple, daughter centrioles during centrosome amplification in U2OS osteosarcoma cells. Analysis of BRCA1 and BRCA2 mutant tumor cells showed high levels of centriole splitting in the absence of any treatment. IR caused pronounced levels of centrosome amplification in BRCA1 mutant breast cancer cells. These data show that centrosome amplification occurs after different forms of DNA damage in chicken cells, in nontransformed human cells and in human tumor cell lines, indicating that this is a general response to DNA damaging treatments. Together, our data suggest that centriole splitting is a key step in potentiation of the centrosome amplification that is a general response to DNA damage.
Collapse
Affiliation(s)
- Chiara Saladino
- Centre for Chromosome Biology, Department of Biochemistry and NCBES, National University of Ireland-Galway, University Road, Galway, Ireland
| | | | | | | |
Collapse
|
85
|
Shimada M, Komatsu K. Emerging connection between centrosome and DNA repair machinery. JOURNAL OF RADIATION RESEARCH 2009; 50:295-301. [PMID: 19542690 DOI: 10.1269/jrr.09039] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Centrosomes function in proper cell division in animal cells. The centrosome consists of a pair of centrioles and the surrounding pericentriolar matrix (PCM). After cytokinesis, daughter cells each acquire one centrosome, which subsequently duplicates at the G1/S phase in a manner that is dependent upon CDK2/cyclin-E activity. Defects in the regulation of centrosome duplication lead to tumorigenesis through abnormal cell division and resulting inappropriate chromosome segregation. Therefore, maintenance of accurate centrosome number is important for cell fate. Excess number of centrosomes can be induced by several factors including ionizing radiation (IR). Recent studies have shown that several DNA repair proteins localize to the centrosome and are involved in the regulation of centrosome number possibly through cell cycle checkpoints or direct modification of centrosome proteins. Furthermore, it has been reported that the development of microcephaly is likely caused by defective expression of centrosome proteins, such as ASPM, which are also involved in the response to IR. The present review highlights centrosome duplication in association with genotoxic stresses and the regulatory mechanism mediated by DNA repair proteins.Translated and modified from Radiat. Biol. Res. Comm. Vol.43; 343-356 (2008.12, in Japanese).
Collapse
Affiliation(s)
- Mikio Shimada
- Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Kyoto, Japan.
| | | |
Collapse
|
86
|
Zyss D, Gergely F. Centrosome function in cancer: guilty or innocent? Trends Cell Biol 2009; 19:334-46. [PMID: 19570677 DOI: 10.1016/j.tcb.2009.04.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 04/10/2009] [Accepted: 04/14/2009] [Indexed: 01/01/2023]
Abstract
The regulation of centrosome number and function underlies bipolar mitotic spindle formation and genetic integrity. Cancer cells both in culture and in situ exhibit a wide range of centrosome abnormalities. Here, we briefly review advances in our understanding of the pathways that govern normal centrosome function and outline the potential causes and consequences of their deregulation in disease. There is ample observational but little experimental evidence to support the conventional model that centrosome dysfunction causes genomic instability and, as a result, cancer. This model has been challenged by recent studies that have uncovered evidence of a direct link between centrosome function in asymmetric cell division and tumourigenesis. Thus, it is timely to discuss the provocative idea that, in certain tissues, abnormal centrosomes drive malignant transformation not by generating genomic instability but by deregulating asymmetric cell division.
Collapse
Affiliation(s)
- Deborah Zyss
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | | |
Collapse
|
87
|
Amé JC, Fouquerel E, Gauthier LR, Biard D, Boussin FD, Dantzer F, de Murcia G, Schreiber V. Radiation-induced mitotic catastrophe in PARG-deficient cells. J Cell Sci 2009; 122:1990-2002. [PMID: 19454480 DOI: 10.1242/jcs.039115] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Poly(ADP-ribosyl)ation is a post-translational modification of proteins involved in the regulation of chromatin structure, DNA metabolism, cell division and cell death. Through the hydrolysis of poly(ADP-ribose) (PAR), Poly(ADP-ribose) glycohydrolase (PARG) has a crucial role in the control of life-and-death balance following DNA insult. Comprehension of PARG function has been hindered by the existence of many PARG isoforms encoded by a single gene and displaying various subcellular localizations. To gain insight into the function of PARG in response to irradiation, we constitutively and stably knocked down expression of PARG isoforms in HeLa cells. PARG depletion leading to PAR accumulation was not deleterious to undamaged cells and was in fact rather beneficial, because it protected cells from spontaneous single-strand breaks and telomeric abnormalities. By contrast, PARG-deficient cells showed increased radiosensitivity, caused by defects in the repair of single- and double-strand breaks and in mitotic spindle checkpoint, leading to alteration of progression of mitosis. Irradiated PARG-deficient cells displayed centrosome amplification leading to mitotic supernumerary spindle poles, and accumulated aberrant mitotic figures, which induced either polyploidy or cell death by mitotic catastrophe. Our results suggest that PARG could be a novel potential therapeutic target for radiotherapy.
Collapse
Affiliation(s)
- Jean-Christophe Amé
- IREBS-FRE3211 du CNRS, Université de Strasbourg, ESBS, Bd Sébastien Brant, BP 10413, 67412 Illkirch Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Katsura M, Tsuruga T, Date O, Yoshihara T, Ishida M, Tomoda Y, Okajima M, Takaku M, Kurumizaka H, Kinomura A, Mishima HK, Miyagawa K. The ATR-Chk1 pathway plays a role in the generation of centrosome aberrations induced by Rad51C dysfunction. Nucleic Acids Res 2009; 37:3959-68. [PMID: 19403737 PMCID: PMC2709562 DOI: 10.1093/nar/gkp262] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Rad51C is a central component of two complexes formed by five Rad51 paralogs in vertebrates. These complexes are involved in repairing DNA double-strand breaks through homologous recombination. Despite accumulating evidence suggesting that the paralogs may prevent aneuploidy by controlling centrosome integrity, Rad51C's role in maintaining chromosome stability remains unclear. Here we demonstrate that Rad51C deficiency leads to both centrosome aberrations in an ATR-Chk1-dependent manner and increased aneuploidy in human cells. While it was reported that Rad51C deficiency did not cause centrosome aberrations in interphase in hamster cells, such aberrations were observed in interphase in HCT116 cells with Rad51C dysfunction. Caffeine treatment and down-regulation of ATR, but not that of ATM, reduced the frequency of centrosome aberrations in the mutant cells. Silencing of Rad51C by RNA interference in HT1080 cells resulted in similar aberrations. Treatment with a Chk1 inhibitor and silencing of Chk1 also reduced the frequency in HCT116 mutants. Accumulation of Chk1 at the centrosome and nuclear foci of γH2AX were increased in the mutants. Moreover, the mutant cells had a higher frequency of aneuploidy. These findings indicate that the ATR-Chk1 pathway plays a role in increased centrosome aberrations induced by Rad51C dysfunction.
Collapse
Affiliation(s)
- Mari Katsura
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Shimada M, Sagae R, Kobayashi J, Habu T, Komatsu K. Inactivation of the Nijmegen breakage syndrome gene leads to excess centrosome duplication via the ATR/BRCA1 pathway. Cancer Res 2009; 69:1768-75. [PMID: 19244116 DOI: 10.1158/0008-5472.can-08-3016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nijmegen breakage syndrome is characterized by genomic instability and a predisposition for lymphoma and solid tumors. Nijmegen breakage syndrome 1 (NBS1), the protein which is mutated in these patients, functions in association with BRCA1 and ATR as part of the cellular response to DNA double-strand breaks. We show here that NBS1 forms foci at the centrosomes via an interaction with gamma-tubulin. Down-regulation of NBS1 by small interfering RNA induces supernumerary centrosomes, and this was confirmed with experiments using Nbs1 knockout mouse cells; the introduction of wild-type NBS1 (wt-NBS1) cDNA into these knockout mouse cells reduced the number of supernumerary centrosomes to normal levels. This phenotype in NBS1-deficient cells is caused by both centrosome duplication and impaired separation of centrioles, which have been observed in BRCA1-inhibited cells. In fact, supernumerary centrosomes were observed in Brca1 knockout mouse cells, and the frequency was not affected by NBS1 down-regulation, suggesting that NBS1 maintains centrosomes via a common pathway with BRCA1. This is consistent with findings that NBS1 physically interacts with BRCA1 at the centrosomes and is required for BRCA1-mediated ubiquitination of gamma-tubulin. Moreover, the ubiquitination of gamma-tubulin is compromised by either ATR depletion or an NBS1 mutation in the ATR interacting (FHA) domain, which is essential for ATR activation. These results suggest that, although centrosomes lack DNA, the NBS1/ATR/BRCA1 repair machinery affects centrosome behavior, and this might be a crucial role in the prevention of malignances.
Collapse
Affiliation(s)
- Mikio Shimada
- Radiation Biology Center, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
90
|
Wang Y, Ji P, Liu J, Broaddus RR, Xue F, Zhang W. Centrosome-associated regulators of the G(2)/M checkpoint as targets for cancer therapy. Mol Cancer 2009; 8:8. [PMID: 19216791 PMCID: PMC2657106 DOI: 10.1186/1476-4598-8-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 02/13/2009] [Indexed: 01/04/2023] Open
Abstract
In eukaryotic cells, control mechanisms have developed that restrain cell-cycle transitions in response to stress. These regulatory pathways are termed cell-cycle checkpoints. The G(2)/M checkpoint prevents cells from entering mitosis when DNA is damaged in order to afford these cells an opportunity to repair the damaged DNA before propagating genetic defects to the daughter cells. If the damage is irreparable, checkpoint signaling might activate pathways that lead to apoptosis. Since alteration of cell-cycle control is a hallmark of tumorigenesis, cell-cycle regulators represent potential targets for therapy. The centrosome has recently come into focus as a critical cellular organelle that integrates G(2)/M checkpoint control and repairs signals in response to DNA damage. A growing number of G(2)/M checkpoint regulators have been found in the centrosome, suggesting that centrosome has an important role in G(2)/M checkpoint function. In this review, we discuss centrosome-associated regulators of the G(2)/M checkpoint, the dysregulation of this checkpoint in cancer, and potential candidate targets for cancer therapy.
Collapse
Affiliation(s)
- Yingmei Wang
- Tianjin General Hospital, Tianjin Medical University, Tianjin, PR China.
| | | | | | | | | | | |
Collapse
|
91
|
Hemerly AS, Prasanth SG, Siddiqui K, Stillman B. Orc1 controls centriole and centrosome copy number in human cells. Science 2009; 323:789-93. [PMID: 19197067 PMCID: PMC2653626 DOI: 10.1126/science.1166745] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Centrosomes, each containing a pair of centrioles, organize microtubules in animal cells, particularly during mitosis. DNA and centrosomes are normally duplicated once before cell division to maintain optimal genome integrity. We report a new role for the Orc1 protein, a subunit of the origin recognition complex (ORC) that is a key component of the DNA replication licensing machinery, in controlling centriole and centrosome copy number in human cells, independent of its role in DNA replication. Cyclin A promotes Orc1 localization to centrosomes where Orc1 prevents Cyclin E-dependent reduplication of both centrioles and centrosomes in a single cell division cycle. The data suggest that Orc1 is a regulator of centriole and centrosome reduplication as well as the initiation of DNA replication.
Collapse
Affiliation(s)
- Adriana S. Hemerly
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor 11724, NY, USA
- Instituto de Bioquímica Médica, UFRJ, 21941-590, Rio de Janeiro, Brazil
| | - Supriya G. Prasanth
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor 11724, NY, USA
| | - Khalid Siddiqui
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor 11724, NY, USA
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor 11724, NY, USA
| |
Collapse
|
92
|
Evidence for regulation of mitotic progression through temporal phosphorylation and dephosphorylation of CK2alpha. Mol Cell Biol 2009; 29:2068-81. [PMID: 19188443 DOI: 10.1128/mcb.01563-08] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proper mitotic progression is crucial for maintenance of genomic integrity in proliferating cells and is regulated through an intricate series of events, including protein phosphorylation governed by a complex network of protein kinases. One kinase family implicated in the regulation of mitotic progression is protein kinase CK2, a small family of enzymes that is overexpressed in cancer and induces transformation in mice and cultured fibroblasts. CK2alpha, one isoform of the catalytic subunits of CK2, is maximally phosphorylated at four sites in nocodazole-treated cells. To investigate the effects of CK2alpha phosphorylation on mitotic progression, we generated phosphospecific antibodies against its mitotic phosphorylation sites. In U2OS cells released from S-phase arrest, these antibodies reveal that CK2alpha is most highly phosphorylated in prophase and metaphase. Phosphorylation gradually decreases during anaphase and becomes undetectable during telophase and cytokinesis. Stable expression of phosphomimetic CK2alpha (CK2alpha-4D, CK2alpha-4E) results in aberrant centrosome amplification and chromosomal segregation defects and loss of mitotic cells through mitotic catastrophe. Conversely, cells expressing nonphosphorylatable CK2alpha (CK2alpha-4A) show a decreased ability to arrest in mitosis following nocodazole treatment, suggesting involvement in the spindle assembly checkpoint. Collectively, these studies indicate that reversible phosphorylation of CK2alpha requires precise regulation to allow proper mitotic progression.
Collapse
|
93
|
Payne CM, Bernstein C, Dvorak K, Bernstein H. Hydrophobic bile acids, genomic instability, Darwinian selection, and colon carcinogenesis. Clin Exp Gastroenterol 2008; 1:19-47. [PMID: 21677822 PMCID: PMC3108627 DOI: 10.2147/ceg.s4343] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sporadic colon cancer is caused predominantly by dietary factors. We have selected bile acids as a focus of this review since high levels of hydrophobic bile acids accompany a Western-style diet, and play a key role in colon carcinogenesis. We describe how bile acid-induced stresses cause cell death in susceptible cells, contribute to genomic instability in surviving cells, impose Darwinian selection on survivors and enhance initiation and progression to colon cancer. The most likely major mechanisms by which hydrophobic bile acids induce stresses on cells (DNA damage, endoplasmic reticulum stress, mitochondrial damage) are described. Persistent exposure of colon epithelial cells to hydrophobic bile acids can result in the activation of pro-survival stress-response pathways, and the modulation of numerous genes/proteins associated with chromosome maintenance and mitosis. The multiple mechanisms by which hydrophobic bile acids contribute to genomic instability are discussed, and include oxidative DNA damage, p53 and other mutations, micronuclei formation and aneuploidy. Since bile acids and oxidative stress decrease DNA repair proteins, an increase in DNA damage and increased genomic instability through this mechanism is also described. This review provides a mechanistic explanation for the important link between a Western-style diet and associated increased levels of colon cancer.
Collapse
Affiliation(s)
- Claire M Payne
- Department of Cell Biology and Anatomy, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | | | | | | |
Collapse
|