51
|
Hoffmann A, Griffin P, Dillon S, Catullo R, Rane R, Byrne M, Jordan R, Oakeshott J, Weeks A, Joseph L, Lockhart P, Borevitz J, Sgrò C. A framework for incorporating evolutionary genomics into biodiversity conservation and management. ACTA ACUST UNITED AC 2015. [DOI: 10.1186/s40665-014-0009-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
52
|
Lefort MC, Brown S, Boyer S, Worner S, Armstrong K. The PGI enzyme system and fitness response to temperature as a measure of environmental tolerance in an invasive species. PeerJ 2014; 2:e676. [PMID: 25469320 PMCID: PMC4250065 DOI: 10.7717/peerj.676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/03/2014] [Indexed: 12/02/2022] Open
Abstract
In the field of invasion ecology, the determination of a species’ environmental tolerance, is a key parameter in the prediction of its potential distribution, particularly in the context of global warming. In poikilothermic species such as insects, temperature is often considered the most important abiotic factor that affects numerous life-history and fitness traits through its effect on metabolic rate. Therefore the response of an insect to challenging temperatures may provide key information as to its climatic and therefore spatial distribution. Variation in the phosphoglucose-6-isomerase (PGI) metabolic enzyme-system has been proposed in some insects to underlie their relative fitness, and is recognised as a key enzyme in their thermal adaptation. However, in this context it has not been considered as a potential mechanism contributing to a species invasive cability. The present study aimed to compare the thermal tolerance of an invasive scarabaeid beetle, Costelytra zealandica (White) with that of the closely related, and in part sympatrically occurring, congeneric non-invasive species C. brunneum (Broun), and to consider whether any correlation with particular PGI genotypes was apparent. Third instar larvae of each species were exposed to one of three different temperatures (10, 15 and 20 °C) over six weeks and their fitness (survival and growth rate) measured and PGI phenotyping performed via cellulose acetate electrophoresis. No consistent relationship between PGI genotypes and fitness was detected, suggesting that PGI may not be contributing to the invasion success and pest status of C. zealandica.
Collapse
Affiliation(s)
- Marie-Caroline Lefort
- Bio-Protection Research Centre, Lincoln University , Lincoln, Christchurch , New Zealand
| | - Samuel Brown
- Bio-Protection Research Centre, Lincoln University , Lincoln, Christchurch , New Zealand
| | - Stéphane Boyer
- Bio-Protection Research Centre, Lincoln University , Lincoln, Christchurch , New Zealand ; Department of Ecology, Faculty of Agricultural and Life Sciences, Lincoln University , Lincoln , New Zealand
| | - Susan Worner
- Bio-Protection Research Centre, Lincoln University , Lincoln, Christchurch , New Zealand
| | - Karen Armstrong
- Bio-Protection Research Centre, Lincoln University , Lincoln, Christchurch , New Zealand
| |
Collapse
|
53
|
Bay RA, Palumbi SR. Multilocus adaptation associated with heat resistance in reef-building corals. Curr Biol 2014; 24:2952-6. [PMID: 25454780 DOI: 10.1016/j.cub.2014.10.044] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/08/2014] [Accepted: 10/14/2014] [Indexed: 11/28/2022]
Abstract
The evolution of tolerance to future climate change depends on the standing stock of genetic variation for resistance to climate-related impacts, but genes contributing to climate tolerance in wild populations are poorly described in number and effect. Physiology and gene expression patterns have shown that corals living in naturally high-temperature microclimates are more resistant to bleaching because of both acclimation and fixed effects, including adaptation. To search for potential genetic correlates of these fixed effects, we genotyped 15,399 single nucleotide polymorphisms (SNPs) in 23 individual tabletop corals, Acropora hyacinthus, within a natural temperature mosaic in backreef lagoons on Ofu Island, American Samoa. Despite overall lack of population substructure, we identified 114 highly divergent SNPs as candidates for environmental selection, via multiple stringent outlier tests, and correlations with temperature. Corals from the warmest reef location had higher minor allele frequencies across these candidate SNPs, a pattern not seen for noncandidate loci. Furthermore, within backreef pools, colonies in the warmest microclimates had a higher number and frequency of alternative alleles at candidate loci. These data suggest mild selection for alternate alleles at many loci in these corals during high heat episodes and possible maintenance of extensive polymorphism through multilocus balancing selection in a heterogeneous environment. In this case, a natural population harbors a reservoir of alleles preadapted to high temperatures, suggesting potential for future evolutionary response to climate change.
Collapse
Affiliation(s)
- Rachael A Bay
- Department of Biology, Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA.
| | - Stephen R Palumbi
- Department of Biology, Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA
| |
Collapse
|
54
|
Montgomery SL, Vorojeikina D, Huang W, Mackay TFC, Anholt RRH, Rand MD. Genome-wide association analysis of tolerance to methylmercury toxicity in Drosophila implicates myogenic and neuromuscular developmental pathways. PLoS One 2014; 9:e110375. [PMID: 25360876 PMCID: PMC4215868 DOI: 10.1371/journal.pone.0110375] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/11/2014] [Indexed: 11/30/2022] Open
Abstract
Methylmercury (MeHg) is a persistent environmental toxin present in seafood that can compromise the developing nervous system in humans. The effects of MeHg toxicity varies among individuals, despite similar levels of exposure, indicating that genetic differences contribute to MeHg susceptibility. To examine how genetic variation impacts MeHg tolerance, we assessed developmental tolerance to MeHg using the sequenced, inbred lines of the Drosophila melanogaster Genetic Reference Panel (DGRP). We found significant genetic variation in the effects of MeHg on development, measured by eclosion rate, giving a broad sense heritability of 0.86. To investigate the influence of dietary factors, we measured MeHg toxicity with caffeine supplementation in the DGRP lines. We found that caffeine counteracts the deleterious effects of MeHg in the majority of lines, and there is significant genetic variance in the magnitude of this effect, with a broad sense heritability of 0.80. We performed genome-wide association (GWA) analysis for both traits, and identified candidate genes that fall into several gene ontology categories, with enrichment for genes involved in muscle and neuromuscular development. Overexpression of glutamate-cysteine ligase, a MeHg protective enzyme, in a muscle-specific manner leads to a robust rescue of eclosion of flies reared on MeHg food. Conversely, mutations in kirre, a pivotal myogenic gene identified in our GWA analyses, modulate tolerance to MeHg during development in accordance with kirre expression levels. Finally, we observe disruptions of indirect flight muscle morphogenesis in MeHg-exposed pupae. Since the pathways for muscle development are evolutionarily conserved, it is likely that the effects of MeHg observed in Drosophila can be generalized across phyla, implicating muscle as an additional hitherto unrecognized target for MeHg toxicity. Furthermore, our observations that caffeine can ameliorate the toxic effects of MeHg show that nutritional factors and dietary manipulations may offer protection against the deleterious effects of MeHg exposure.
Collapse
Affiliation(s)
- Sara L. Montgomery
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Daria Vorojeikina
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Wen Huang
- Department of Biological Sciences, Genetics Program, and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Trudy F. C. Mackay
- Department of Biological Sciences, Genetics Program, and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Robert R. H. Anholt
- Department of Biological Sciences, Genetics Program, and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Matthew D. Rand
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| |
Collapse
|
55
|
Sajjanar B, Deb R, Singh U, Kumar S, Brahmane M, Nirmale A, Bal SK, Minhas PS. Identification of SNP inHSP90AB1and its Association with the Relative Thermotolerance and Milk Production Traits in Indian Dairy Cattle. Anim Biotechnol 2014; 26:45-50. [DOI: 10.1080/10495398.2014.882846] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
56
|
Lardies MA, Arias MB, Poupin MJ, Bacigalupe LD. Heritability of hsp70 expression in the beetle Tenebrio molitor: Ontogenetic and environmental effects. JOURNAL OF INSECT PHYSIOLOGY 2014; 67:70-75. [PMID: 24968147 DOI: 10.1016/j.jinsphys.2014.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/03/2014] [Accepted: 06/06/2014] [Indexed: 06/03/2023]
Abstract
Ectotherms constitute the vast majority of terrestrial biodiversity and are especially likely to be vulnerable to climate warming because their basic physiological functions such as locomotion, growth, and reproduction are strongly influenced by environmental temperature. An integrated view about the effects of global warming will be reached not just establishing how the increase in mean temperature impacts the natural populations but also establishing the effects of the increase in temperature variance. One of the molecular responses that are activated in a cell under a temperature stress is the heat shock protein response (HSP). Some studies that have detected consistent differences among thermal treatments and ontogenetic stages in HSP70 expression have assumed that these differences had a genetic basis and consequently expression would be heritable. We tested for changes in quantitative genetic parameters of HSP70 expression in a half-sib design where individuals of the beetle Tenebrio molitor were maintained in constant and varying thermal environments. We estimated heritability of HSP70 expression using a linear mixed modelling approach in different ontogenetic stages. Expression levels of HSP70 were consistently higher in the variable environment and heritability estimates were low to moderate. The results imply that within each ontogenetic stage additive genetic variance was higher in the variable environment and in adults compared with constant environment and larvae stage, respectively. We found that almost all the genetic correlations across ontogenetic stages and environment were positive. These suggest that directional selection for higher levels of expression in one environment will result in higher expression levels of HSP70 on the other environment for the same ontogenetic stage.
Collapse
Affiliation(s)
- Marco A Lardies
- Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibañez, Santiago, Chile; Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibañez, Diagonal Las Torres 2640, Peñalolen, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Chile.
| | | | - María Josefina Poupin
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibañez, Diagonal Las Torres 2640, Peñalolen, Santiago, Chile
| | - Leonardo D Bacigalupe
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| |
Collapse
|
57
|
Fine-mapping and selective sweep analysis of QTL for cold tolerance in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2014; 4:1635-45. [PMID: 24970882 PMCID: PMC4169155 DOI: 10.1534/g3.114.012757] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
There is a growing interest in investigating the relationship between genes with signatures of natural selection and genes identified in QTL mapping studies using combined population and quantitative genetics approaches. We dissected an X-linked interval of 6.2 Mb, which contains two QTL underlying variation in chill coma recovery time (CCRT) in Drosophila melanogaster from temperate (European) and tropical (African) regions. This resulted in two relatively small regions of 131 kb and 124 kb. The latter one co-localizes with a very strong selective sweep in the European population. We examined the genes within and near the sweep region individually using gene expression analysis and P-element insertion lines. Of the genes overlapping with the sweep, none appears to be related to CCRT. However, we have identified a new candidate gene of CCRT, brinker, which is located just outside the sweep region and is inducible by cold stress. We discuss these results in light of recent population genetics theories on quantitative traits.
Collapse
|
58
|
Fallis LC, Fanara JJ, Morgan TJ. Developmental thermal plasticity among Drosophila melanogaster populations. J Evol Biol 2014; 27:557-64. [PMID: 26230171 DOI: 10.1111/jeb.12321] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 11/30/2022]
Abstract
Many biotic and abiotic variables influence the dispersal and distribution of organisms. Temperature has a major role in determining these patterns because it changes daily, seasonally and spatially, and these fluctuations have a significant impact on an organism's behaviour and fitness. Most ecologically relevant phenotypes that are adaptive are also complex and thus they are influenced by many underlying loci that interact with the environment. In this study, we quantified the degree of thermal phenotypic plasticity within and among populations by measuring chill-coma recovery times of lines reared from egg to adult at two different environmental temperatures. We used sixty genotypes from six natural populations of Drosophila melanogaster sampled along a latitudinal gradient in South America. We found significant variation in thermal plasticity both within and among populations. All populations exhibit a cold acclimation response, with flies reared at lower temperatures having increased resistance to cold. We tested a series of environmental parameters against the variation in population mean thermal plasticity and discovered the mean thermal plasticity was significantly correlated with altitude of origin of the population. Pairing our data with previous experiments on viability fitness assays in the same populations in fixed and variable environments suggests an adaptive role of this thermal plasticity in variable laboratory environments. Altogether, these data demonstrate abundant variation in adaptive thermal plasticity within and among populations.
Collapse
Affiliation(s)
- L C Fallis
- The Division of Biology, The Ecological Genomics Institute, Kansas State University, Manhattan, KS, USA
| | - J J Fanara
- Departamento de Ecologia, Genetica y Evolucion-IEGEBA (CONICET-UBA), FCEN, UBA, Buenos Aires, Argentina
| | - T J Morgan
- The Division of Biology, The Ecological Genomics Institute, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
59
|
Deb R, Sajjanar B, Singh U, Kumar S, Singh R, Sengar G, Sharma A. Effect of heat stress on the expression profile of Hsp90 among Sahiwal (Bos indicus) and Frieswal (Bos indicus × Bos taurus) breed of cattle: a comparative study. Gene 2013; 536:435-40. [PMID: 24333856 DOI: 10.1016/j.gene.2013.11.086] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/12/2013] [Accepted: 11/30/2013] [Indexed: 12/24/2022]
Abstract
We evaluated the effect of thermal challenge on the expression profile of heat shock protein 90 (Hsp90) among Sahiwal (Bos indicus) and Frieswal (Bos indicus × Bos taurus) breeds of cattle. The present investigation was focused on the comparative studies on Hsp90 expression among Frieswal and Sahiwal under in vitro and environmental heat stress. Measured immediately after the in vitro heat shock to the peripheral blood mononuclear cells (PBMCs), the relative expression of Hsp90 mRNA was significantly (P<0.05) higher in Sahiwal compared to those in Frieswal. In later intervals of time, the differences in the expression levels between the two breeds become negligible coming down towards the basal level. A similar pattern was observed in the protein concentration showing significantly (P<0.05) higher levels in Sahiwal compared to those in Frieswal. The second sets of experiments were undertaken during summer months (March to May) when temperature peaked from 37 to 45 °C. During these months, Frieswal cows consistently recorded higher rectal temperatures than the Sahiwal breed. Further during this peak summer stress, Sahiwal showed significantly higher levels of mRNA transcripts as well as protein concentration compared to the Frieswal breed. Our findings also interestingly showed that, the cell viability of PBMC are significantly higher among the Sahiwal than Frieswal. Taken together, the experiments of both induced in vitro and environmental stress conditions indicate that, Sahiwal may express higher levels of Hsp90 then Frieswal to regulate their body temperature and increase cell survivality under heat stressed conditions.
Collapse
Affiliation(s)
- Rajib Deb
- Molecular Genetics Laboratory, Animal Genetics & Breeding Section, Project Directorate on Cattle, Indian Council of Agricultural Research, Grass Farm Road, P. O. Box 17, Meerut Cantt., Meerut 250 001, Uttar Pradesh, India.
| | - Basavaraj Sajjanar
- Molecular Genetics Laboratory, Animal Genetics & Breeding Section, Project Directorate on Cattle, Indian Council of Agricultural Research, Grass Farm Road, P. O. Box 17, Meerut Cantt., Meerut 250 001, Uttar Pradesh, India
| | - Umesh Singh
- Molecular Genetics Laboratory, Animal Genetics & Breeding Section, Project Directorate on Cattle, Indian Council of Agricultural Research, Grass Farm Road, P. O. Box 17, Meerut Cantt., Meerut 250 001, Uttar Pradesh, India
| | - Sushil Kumar
- Molecular Genetics Laboratory, Animal Genetics & Breeding Section, Project Directorate on Cattle, Indian Council of Agricultural Research, Grass Farm Road, P. O. Box 17, Meerut Cantt., Meerut 250 001, Uttar Pradesh, India
| | - Rani Singh
- Molecular Genetics Laboratory, Animal Genetics & Breeding Section, Project Directorate on Cattle, Indian Council of Agricultural Research, Grass Farm Road, P. O. Box 17, Meerut Cantt., Meerut 250 001, Uttar Pradesh, India
| | - G Sengar
- Molecular Genetics Laboratory, Animal Genetics & Breeding Section, Project Directorate on Cattle, Indian Council of Agricultural Research, Grass Farm Road, P. O. Box 17, Meerut Cantt., Meerut 250 001, Uttar Pradesh, India
| | - Arjava Sharma
- Molecular Genetics Laboratory, Animal Genetics & Breeding Section, Project Directorate on Cattle, Indian Council of Agricultural Research, Grass Farm Road, P. O. Box 17, Meerut Cantt., Meerut 250 001, Uttar Pradesh, India
| |
Collapse
|
60
|
Udaka H, Percival-Smith A, Sinclair BJ. Increased abundance of frost mRNA during recovery from cold stress is not essential for cold tolerance in adult Drosophila melanogaster. INSECT MOLECULAR BIOLOGY 2013; 22:541-550. [PMID: 23901849 DOI: 10.1111/imb.12044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Frost (Fst) is a candidate gene associated with the response to cold in Drosophila melanogaster because Fst mRNA accumulation increases during recovery from low temperature exposure. We investigated the contribution of Fst expression to chill-coma recovery time, acute cold tolerance and rapid cold hardening (RCH) in adult D. melanogaster by knocking down Fst mRNA expression using GAL4/UAS-mediated RNA interference. In this experiment, four UAS-Fst and one tubulin-GAL4 lines were used. We predicted that if Fst is essential for cold tolerance phenotypes, flies with low Fst mRNA levels should be less cold tolerant than flies with normal levels of cold-induced Fst mRNA. Cold-induced Fst abundance and recovery time from chill-coma were not negatively correlated in male or female flies. Survival of 2 h exposures to sub-zero temperatures in Fst knockdown lines was not lower than that in a control line. Moreover, a low temperature pretreatment increased survival of severe cold exposure in flies regardless of Fst abundance level during recovery from cold stress, suggesting that Fst expression is not essential for RCH. Thus, cold-induced Fst accumulation is not essential for cold tolerance measured as chill-coma recovery time, survival to acute cold stress and RCH response in adult D. melanogaster.
Collapse
Affiliation(s)
- H Udaka
- Department of Biology, The University of Western Ontario, London, ON, Canada.
| | | | | |
Collapse
|
61
|
Astakhova LN, Zatsepina OG, Przhiboro AA, Evgen'ev MB, Garbuz DG. Novel arrangement and comparative analysis of hsp90 family genes in three thermotolerant species of Stratiomyidae (Diptera). INSECT MOLECULAR BIOLOGY 2013; 22:284-296. [PMID: 23521688 DOI: 10.1111/imb.12020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The heat shock proteins belonging to the Hsp90 family (Hsp83 in Diptera) play a crucial role in the protection of cells due to their chaperoning functions. We sequenced hsp90 genes from three species of the family Stratiomyidae (Diptera) living in thermally different habitats and characterized by extraordinarily high thermotolerance. The sequence variation and structure of the hsp90 family genes were compared with previously described features of hsp70 copies isolated from the same species. Two functional hsp83 genes were found in the species studied, that are arranged in tandem orientation at least in one of them. This organization was not previously described. Stratiomyidae hsp83 genes share a high level of identity with hsp83 of Drosophila, and the deduced protein possesses five conserved amino acid sequence motifs characteristic of the Hsp90 family as well as the C-terminus MEEVD sequence characteristic of the cytosolic isoform. A comparison of the hsp83 promoters of two Stratiomyidae species from thermally contrasting habitats demonstrated that while both species contain canonical heat shock elements in the same position, only one of the species contains functional GAF-binding elements. Our data indicate that in the same species, hsp83 family genes show a higher evolution rate than the hsp70 family.
Collapse
|
62
|
Grillo MA, Li C, Hammond M, Wang L, Schemske DW. Genetic architecture of flowering time differentiation between locally adapted populations of Arabidopsis thaliana. THE NEW PHYTOLOGIST 2013; 197:1321-1331. [PMID: 23311994 DOI: 10.1111/nph.12109] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 11/15/2012] [Indexed: 05/18/2023]
Abstract
To gain an understanding of the genetic basis of adaptation, we conducted quantitative trait locus (QTL) mapping for flowering time variation between two winter annual populations of Arabidopsis thaliana that are locally adapted and display distinct flowering times. QTL mapping was performed with large (n = 384) F(2) populations with and without vernalization, in order to reveal both the genetic basis of a vernalization requirement and that of variation in flowering time given vernalization. In the nonvernalization treatment, none of the Sweden parents flowered, whereas all of the Italy parents and 42% of the F(2)s flowered. We identified three QTLs for flowering without vernalization, with much of the variation being attributed to a QTL co-localizing with FLOWERING LOCUS C (FLC). In the vernalization treatment, all parents and F(2)s flowered, and six QTLs of small to moderate effect were revealed, with underlying candidate genes that are members of the vernalization pathway. We found no evidence for a role of FRIGIDA in the regulation of flowering times. These results contribute to a growing body of evidence aimed at the identification of ecologically relevant genetic variation for flowering time in Arabidopsis, and set the stage for functional studies to determine the link between flowering time loci and fitness.
Collapse
Affiliation(s)
- Michael A Grillo
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Changbao Li
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Mark Hammond
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Lijuan Wang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Douglas W Schemske
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
63
|
Sambucetti P, Scannapieco AC, Loeschcke V, Norry FM. Heat stress survival in the pre-adult stage of the life cycle in an intercontinental set of recombinant inbred lines of Drosophila melanogaster. J Exp Biol 2013; 216:2953-9. [DOI: 10.1242/jeb.079830] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
In insects, pre-adult stages of the life cycle are exposed to variation in temperature that may differ from that in adults. However, the genetic basis for adaptation to environmental temperature could be similar between the pre-adult and the adult stages of the life cycle. Here, we tested quantitative trait loci (QTL) for heat-stress survival in larvae of D. melanogaster, with and without a mild-heat-stress pre-treatment. Two sets of recombinant inbred lines derived from lines artificially selected for high and low levels of knockdown resistance to high temperature in young flies were used as mapping population. There was no apparent increase in heat-shock survival between heat-pretreated and non-pretreated larvae. There was a positive correlation between the two experimental conditions of heat-shock survival (with and without a heat pre-treatment) except for males from one set of lines. Several QTL were identified involving all three major chromosomes. Many QTL for larval thermotolerance overlapped with thermotolerance-QTL identified in previous studies for adults. One new thermotolerance-QTL was found but these QTL explained only a small fraction of the phenotypic variance and were only significant in larvae that received no heat pre-treatment. Several candidate genes mapped within QTL ranges. We discuss an overall co-localization for thermotolerance-QTL between the adult fly in previous studies and the pre-adult stage of the life cycle in this study.
Collapse
|
64
|
Quantitative trait loci for response to ethanol in an intercontinental set of recombinant inbred lines of Drosophila melanogaster. Alcohol 2012; 46:737-45. [PMID: 22925826 DOI: 10.1016/j.alcohol.2012.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 07/12/2012] [Accepted: 07/19/2012] [Indexed: 11/23/2022]
Abstract
Alcohol, a drug widely abused, impacts the central nervous system functioning of diverse organisms. The behavioral responses to acute alcohol exposure are remarkably similar among humans and fruit flies. In its natural environment, rich in fermentation products, the fruit fly Drosophila melanogaster encounters relatively high levels of ethanol. The effects of ethanol and its metabolites on Drosophila have been studied for decades, as a model for adaptive evolution. Although extensive work has been done for elucidating patterns of genetic variation, substantially less is known about the genomic regions or genes that underlie the genetic variation of this important trait. To identify regions containing genes involved in the responses to ethanol, we used a mapping population of recombinant inbred (RIL) lines to map quantitative trait loci (QTL) that affect variation in resistance and recovery from ethanol sedation in adults and ethanol resistance in larvae. We mapped fourteen QTL affecting the response to ethanol on the three chromosomes. Seven of the QTL influence the resistance to ethanol in adults, two QTL are related to ethanol-coma recovery in adults and five affect the survival to ethanol in larvae. Most of the QTL were trait specific, suggesting that overlapping but generally unique genetic architectures underlie each trait. Each QTL explained up to 16.8% of the genetic variance among lines. Potential candidate loci contained within our QTL regions were identified and analyzed.
Collapse
|
65
|
Reestablishment of ion homeostasis during chill-coma recovery in the cricket Gryllus pennsylvanicus. Proc Natl Acad Sci U S A 2012. [PMID: 23184963 DOI: 10.1073/pnas.1212788109] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The time required to recover from cold-induced paralysis (chill-coma) is a common measure of insect cold tolerance used to test central questions in thermal biology and predict the effects of climate change on insect populations. The onset of chill-coma in the fall field cricket (Gryllus pennsylvanicus, Orthoptera: Gryllidae) is accompanied by a progressive drift of Na(+) and water from the hemolymph to the gut, but the physiological mechanisms underlying recovery from chill-coma are not understood for any insect. Using a combination of gravimetric methods and atomic absorption spectroscopy, we demonstrate that recovery from chill-coma involves a reestablishment of hemolymph ion content and volume driven by removal of Na(+) and water from the gut. Recovery is associated with a transient elevation of metabolic rate, the time span of which increases with increasing cold exposure duration and closely matches the duration of complete osmotic recovery. Thus, complete recovery from chill-coma is metabolically costly and encompasses a longer period than is required for the recovery of muscle potentials and movement. These findings provide evidence that physiological mechanisms of hemolymph ion content and volume regulation, such as ion-motive ATPase activity, are instrumental in chill-coma recovery and may underlie natural variation in insect cold tolerance.
Collapse
|
66
|
Sinclair BJ, Williams CM, Terblanche JS. Variation in Thermal Performance among Insect Populations. Physiol Biochem Zool 2012; 85:594-606. [DOI: 10.1086/665388] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
67
|
Orozco-terWengel P, Kapun M, Nolte V, Kofler R, Flatt T, Schlötterer C. Adaptation of Drosophila to a novel laboratory environment reveals temporally heterogeneous trajectories of selected alleles. Mol Ecol 2012; 21:4931-41. [PMID: 22726122 PMCID: PMC3533796 DOI: 10.1111/j.1365-294x.2012.05673.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 05/10/2012] [Indexed: 12/12/2022]
Abstract
The genomic basis of adaptation to novel environments is a fundamental problem in evolutionary biology that has gained additional importance in the light of the recent global change discussion. Here, we combined laboratory natural selection (experimental evolution) in Drosophila melanogaster with genome-wide next generation sequencing of DNA pools (Pool-Seq) to identify alleles that are favourable in a novel laboratory environment and traced their trajectories during the adaptive process. Already after 15 generations, we identified a pronounced genomic response to selection, with almost 5000 single nucleotide polymorphisms (SNP; genome-wide false discovery rates < 0.005%) deviating from neutral expectation. Importantly, the evolutionary trajectories of the selected alleles were heterogeneous, with the alleles falling into two distinct classes: (i) alleles that continuously rise in frequency; and (ii) alleles that at first increase rapidly but whose frequencies then reach a plateau. Our data thus suggest that the genomic response to selection can involve a large number of selected SNPs that show unexpectedly complex evolutionary trajectories, possibly due to nonadditive effects.
Collapse
|
68
|
Abstract
The rapid rate of current global climate change is having strong effects on many species and, at least in some cases, is driving evolution, particularly when changes in conditions alter patterns of selection. Climate change thus provides an opportunity for the study of the genetic basis of adaptation. Such studies include a variety of observational and experimental approaches, such as sampling across clines, artificial evolution experiments, and resurrection studies. These approaches can be combined with a number of techniques in genetics and genomics, including association and mapping analyses, genome scans, and transcription profiling. Recent research has revealed a number of candidate genes potentially involved in climate change adaptation and has also illustrated that genetic regulatory networks and epigenetic effects may be particularly relevant for evolution driven by climate change. Although genetic and genomic data are rapidly accumulating, we still have much to learn about the genetic architecture of climate change adaptation.
Collapse
Affiliation(s)
- Steven J Franks
- Department of Biological Sciences, Fordham University, Bronx, New York 10458, USA.
| | | |
Collapse
|
69
|
Gomez FH, Loeschcke V, Norry FM. QTL for survival to UV-C radiation in Drosophila melanogaster. Int J Radiat Biol 2012; 89:583-9. [PMID: 22788381 DOI: 10.3109/09553002.2012.711503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The aim of this study was to investigate tolerance to UV-C (ultraviolet C, 280-100 nm) radiation in Drosophila melanogaster, implementing a quantitative trait locus (QTL) mapping approach. This is of interest to test for genetic variation in survival to UV (ultraviolet) radiation. MATERIALS AND METHODS We performed a QTL scan in D. melanogaster recombinant inbred lines (RIL) constructed from parental stocks derived from a crossing between northern and southern hemisphere populations that segregated substantial genetic variation in thermal resistance in a previous study. Here, two experimental treatments were implemented: Continuous and cyclic UV-C radiation. RESULTS Significant QTL were detected on all three major chromosomes. Among these, multiple trait composite interval mapping revealed a significant QTL in the pericentromeric region of chromosome 2, a genome region consistently implicated in thermotolerance in previous studies. CONCLUSIONS This study shows substantial genetic variation for UV-C radiation resistance in D. melanogaster, with QTL for survival to UV-C radiation generally overlapping with major thermotolerance QTL. The genetic architecture of UV-C radiation resistance appears to be more complex in continuously irradiated individuals.
Collapse
Affiliation(s)
- Federico H Gomez
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C-1428-EHA Buenos Aires, Argentina
| | | | | |
Collapse
|
70
|
Tattersall GJ, Sinclair BJ, Withers PC, Fields PA, Seebacher F, Cooper CE, Maloney SK. Coping with Thermal Challenges: Physiological Adaptations to Environmental Temperatures. Compr Physiol 2012; 2:2151-202. [DOI: 10.1002/cphy.c110055] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
71
|
Arias LN, Sambucetti P, Scannapieco AC, Loeschcke V, Norry FM. Survival of heat stress with and without heat hardening in Drosophila melanogaster: interactions with larval density. J Exp Biol 2012; 215:2220-5. [DOI: 10.1242/jeb.069831] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Survival of a potentially lethal high temperature stress is a genetically variable thermal adaptation trait in many organisms. Organisms cope with heat stress by basal or induced thermoresistance. Here, we tested quantitative trait loci (QTL) for heat stress survival (HSS) in Drosophila melanogaster, with and without a cyclic heat-hardening pre-treatment, for flies that were reared at low (LD) or high (HD) density. Mapping populations were two panels of recombinant inbred lines (RIL), which were previously constructed from heat stress-selected stocks: RIL-D48 and RIL-SH2, derived from backcrosses to stocks of low and high heat resistance, respectively. HSS increased with heat hardening in both LD and HD flies. In addition, HSS increased consistently with density in non-hardened flies. There was a significant interaction between heat hardening and density effects in RIL-D48. Several QTL were significant for both density and hardening treatments. Many QTL overlapped with thermotolerance QTL identified for other traits in previous studies based on LD cultures only. However, three new QTL were found in HD only (cytological ranges: 12E–16F6; 30A3–34C2; 49C–50C). Previously found thermotolerance QTL were also significant for flies from HD cultures.
Collapse
Affiliation(s)
- Leticia N. Arias
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C-1428-EHA Buenos Aires, Argentina
| | - Pablo Sambucetti
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C-1428-EHA Buenos Aires, Argentina
| | - Alejandra C. Scannapieco
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C-1428-EHA Buenos Aires, Argentina
| | - Volker Loeschcke
- Department of Bioscience, Aarhus University, Ny Munkegade 114, Building 1540, DK-8000 Aarhus C, Denmark
| | - Fabian M. Norry
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C-1428-EHA Buenos Aires, Argentina
| |
Collapse
|
72
|
KETOLA T, KRISTENSEN TN, KELLERMANN VM, LOESCHCKE V. Can evolution of sexual dimorphism be triggered by developmental temperatures? J Evol Biol 2012; 25:847-55. [DOI: 10.1111/j.1420-9101.2012.02475.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
73
|
Fallis LC, Fanara JJ, Morgan TJ. Genetic variation in heat-stress tolerance among South American Drosophila populations. Genetica 2012; 139:1331-7. [PMID: 22350564 DOI: 10.1007/s10709-012-9635-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 02/02/2012] [Indexed: 10/14/2022]
Abstract
Spatial or temporal differences in environmental variables, such as temperature, are ubiquitous in nature and impose stress on organisms. This is especially true for organisms that are isothermal with the environment, such as insects. Understanding the means by which insects respond to temperature and how they will react to novel changes in environmental temperature is important for understanding the adaptive capacity of populations and to predict future trajectories of evolutionary change. The organismal response to heat has been identified as an important environmental variable for insects that can dramatically influence life history characters and geographic range. In the current study we surveyed the amount of variation in heat tolerance among Drosophila melanogaster populations collected at diverse sites along a latitudinal gradient in Argentina (24°-38°S). This is the first study to quantify heat tolerance in South American populations and our work demonstrates that most of the populations surveyed have abundant within-population phenotypic variation, while still exhibiting significant variation among populations. The one exception was the most heat tolerant population that comes from a climate exhibiting the warmest annual mean temperature. All together our results suggest there is abundant genetic variation for heat-tolerance phenotypes within and among natural populations of Drosophila and this variation has likely been shaped by environmental temperature.
Collapse
Affiliation(s)
- Lindsey C Fallis
- The Division of Biology, The Ecological Genomics Institute, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | | | | |
Collapse
|
74
|
Vesala L, Salminen TS, Laiho A, Hoikkala A, Kankare M. Cold tolerance and cold-induced modulation of gene expression in two Drosophila virilis group species with different distributions. INSECT MOLECULAR BIOLOGY 2012; 21:107-118. [PMID: 22122733 DOI: 10.1111/j.1365-2583.2011.01119.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The importance of high and low temperature tolerance in adaptation to changing environmental conditions has evoked new interest in modulations in gene expression and metabolism linked with stress tolerance. We investigated the effects of rapid cold hardening and cold acclimatization on the chill coma recovery times of two Drosophila virilis group species, Drosophila montana and D. virilis, with different distributions and utilized a candidate gene approach to trace changes in their gene expression during and after the cold treatments. The study showed that cold acclimatization clearly decreases chill coma recovery times in both species, whereas rapid cold hardening did not have a significant effect. Microarray analysis revealed several genes showing expression changes during different stages of cold response. Amongst the 219 genes studied, two genes showed rather consistent expression changes: hsr-omega, which was up-regulated in both study species during cold acclimatization, and Eip71CD, which was down-regulated in nearly all of the cold treatments. In addition, 29 genes showed expression changes that were more treatment- and/or species specific. Overall, different stages of cold response elicited changes mainly in genes involved in heat shock response, circadian rhythm and metabolism.
Collapse
Affiliation(s)
- Laura Vesala
- Department of Biological and Environmental Science, Centre of Excellence in Evolutionary Research, University of Jyväskylä, Finland.
| | | | | | | | | |
Collapse
|
75
|
Boardman L, Sørensen JG, Johnson SA, Terblanche JS. Interactions between Controlled Atmospheres and Low Temperature Tolerance: A Review of Biochemical Mechanisms. Front Physiol 2011; 2:92. [PMID: 22144965 PMCID: PMC3228967 DOI: 10.3389/fphys.2011.00092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 11/15/2011] [Indexed: 11/13/2022] Open
Abstract
Controlled atmosphere treatments using carbon dioxide, oxygen, and/or nitrogen, together with controlled temperature and humidity, form an important method for post-harvest sterilization against insect-infested fruit. However, in insects, the cross tolerance and biochemical interactions between the various stresses of modified gas conditions and low temperature may either elicit or block standard stress responses which can potentiate (or limit) lethal low temperature exposure. Thus, the success of such treatments is sometimes erratic and does not always result in the desired pest mortality. This review focuses on the biochemical modes of action whereby controlled atmospheres affect insects low temperature tolerance, making them more (or occasionally, less) susceptible to cold sterilization. Insights into the integrated biochemical modes of action may be used together with the pests' low temperature tolerance physiology to determine which treatments may be of value in post-harvest sterilization.
Collapse
Affiliation(s)
- Leigh Boardman
- Department of Conservation Ecology and Entomology, Stellenbosch University Stellenbosch, South Africa
| | | | | | | |
Collapse
|
76
|
Zhang J, Marshall KE, Westwood JT, Clark MS, Sinclair BJ. Divergent transcriptomic responses to repeated and single cold exposures in Drosophila melanogaster. J Exp Biol 2011; 214:4021-9. [DOI: 10.1242/jeb.059535] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SUMMARY
Insects in the field are exposed to multiple bouts of cold, and there is increasing evidence that the fitness consequences of repeated cold exposure differ from the impacts of a single cold exposure. We tested the hypothesis that different kinds of cold exposure (in this case, single short, prolonged and repeated cold exposure) would result in differential gene expression. We exposed 3 day old adult female wild-type Drosophila melanogaster (Diptera: Drosophilidae) to –0.5°C for a single 2 h exposure, a single 10 h exposure, or five 2 h exposures on consecutive days, and extracted RNA after 6 h of recovery. Global gene expression was quantified using an oligonucleotide microarray and validated with real-time PCR using different biological replicates. We identified 76 genes upregulated in response to multiple cold exposure, 69 in response to prolonged cold exposure and 20 genes upregulated in response to a single short cold exposure, with a small amount of overlap between treatments. Three genes – Turandot A, Hephaestus and CG11374 – were upregulated in response to all three cold exposure treatments. Key functional groups upregulated include genes associated with muscle structure and function, the immune response, stress response, carbohydrate metabolism and egg production. We conclude that cold exposure has wide-ranging effects on gene expression in D. melanogaster and that increased duration or frequency of cold exposure has impacts different to those of a single short cold exposure. This has important implications for extrapolating laboratory studies of insect overwintering that are based on only a single cold exposure.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Katie E. Marshall
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - J. Timothy Westwood
- Canadian Drosophila Microarray Centre, Department of Biology, The University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Melody S. Clark
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB1 9XU, UK
| | - Brent J. Sinclair
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
77
|
Polymorphisms in the bovine HSP90AB1 gene are associated with heat tolerance in Thai indigenous cattle. Trop Anim Health Prod 2011; 44:921-8. [PMID: 22008953 PMCID: PMC3289787 DOI: 10.1007/s11250-011-9989-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2011] [Indexed: 01/05/2023]
Abstract
Heat shock proteins act as molecular chaperones that have preferentially been transcribed in response to severe perturbations of the cellular homeostasis such as heat stress. Here the traits respiration rate (RR), rectal temperature (RT), pack cell volume (PCV) and the individual heat tolerance coefficient (HTC) were recorded as physiological responses on heat stress (environmental temperatures) in Bos taurus (crossbred Holstein Friesian; HF) and B. indicus (Thai native cattle: White Lamphun; WL and Mountain cattle; MT) animals (n = 47) in Thailand. Polymorphisms of the heat shock protein 90-kDa beta gene (HSP90AB1) were evaluated by comparative sequencing. Nine single nucleotide polymorphisms (SNP) were identified, i.e. three in exons 10 and 11, five in introns 8, 9, 10 and 11, and one in the 3′UTR. The exon 11 SNP g.5082C>T led to a missense mutation (alanine to valine). During the period of extreme heat (in the afternoon) RR and RT were elevated in each of the three breeds, whereas the PCV decreased. Mountain cattle and White Lamphun heifers recorded significantly better physiologic parameters (p < 0.05) in all traits considered, including or particularly HTC than Holstein Friesian heifers. The association analysis revealed that the T allele at SNP g.4338T>C within intron 3 improved the heat tolerance (p < 0.05). Allele T was exclusively found in White Lamphun animals and to 84% in Mountain cattle. Holstein Friesian heifers revealed an allele frequency of only 18%. Polymorphisms within HSP90AB1 were not causative for the physiological responses; however, we propose that they should at least be used as genetic markers to select appropriate breeds for hot climates.
Collapse
|
78
|
Reis M, Vieira CP, Morales-Hojas R, Aguiar B, Rocha H, Schlötterer C, Vieira J. A comparative study of the short term cold resistance response in distantly related Drosophila species: the role of regucalcin and frost. PLoS One 2011; 6:e25520. [PMID: 21991316 PMCID: PMC3184994 DOI: 10.1371/journal.pone.0025520] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 09/05/2011] [Indexed: 01/24/2023] Open
Abstract
The molecular basis of short term cold resistance (indexed as chill-coma recovery time) has been mostly addressed in D. melanogaster, where candidate genes (Dca (also known as smp-30) and Frost (Fst)) have been identified. Nevertheless, in Drosophila, the ability to tolerate short term exposure to low temperatures evolved several times independently. Therefore, it is unclear whether variation in the same candidate genes is also responsible for short term cold resistance in distantly related Drosophila species. It should be noted that Dca is a candidate gene for cold resistance in the Sophophora subgenus only, since there is no orthologous gene copy in the Drosophila subgenus. Here we show that, in D. americana (Drosophila subgenus), there is a north-south gradient for a variant at the 5′ non-coding region of regucalcin (a Dca-like gene; in D. melanogaster the proteins encoded by the two genes share 71.9% amino acid identities) but in our D. americana F2 association experiment there is no association between this polymorphism and chill-coma recovery times. Moreover, we found no convincing evidence that this gene is up-regulated after cold shock in both D. americana and D. melanogaster. Size variation in the Fst PEST domain (putatively involved in rapid protein degradation) is observed when comparing distantly related Drosophila species, and is associated with short term cold resistance differences in D. americana. Nevertheless, this effect is likely through body size variation. Moreover, we show that, even at two hours after cold shock, when up-regulation of this gene is maximal in D. melanogaster (about 48 fold expression change), in D. americana this gene is only moderately up-regulated (about 3 fold expression change). Our work thus shows that there are important differences regarding the molecular basis of cold resistance in distantly related Drosophila species.
Collapse
Affiliation(s)
- Micael Reis
- IBMC-Instituto de Biologia Celular e Molecular, University of Porto, Porto, Portugal
| | - Cristina P. Vieira
- IBMC-Instituto de Biologia Celular e Molecular, University of Porto, Porto, Portugal
| | - Ramiro Morales-Hojas
- IBMC-Instituto de Biologia Celular e Molecular, University of Porto, Porto, Portugal
| | - Bruno Aguiar
- IBMC-Instituto de Biologia Celular e Molecular, University of Porto, Porto, Portugal
| | - Hélder Rocha
- IBMC-Instituto de Biologia Celular e Molecular, University of Porto, Porto, Portugal
| | | | - Jorge Vieira
- IBMC-Instituto de Biologia Celular e Molecular, University of Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
79
|
Loeschcke V, Kristensen TN, Norry FM. Consistent effects of a major QTL for thermal resistance in field-released Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1227-1231. [PMID: 21708160 DOI: 10.1016/j.jinsphys.2011.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/19/2011] [Accepted: 05/24/2011] [Indexed: 05/31/2023]
Abstract
Molecular genetic markers can be used to identify quantitative trait loci (QTL) for thermal resistance and this has allowed characterization of a major QTL for knockdown resistance to high temperature in Drosophila melanogaster. The QTL showed trade-off associations with cold resistance under laboratory conditions. However, assays of thermal tolerance conducted in the laboratory may not necessarily reflect performance at varying temperatures in the field. Here we tested if lines with different genotypes in this QTL show different thermal performance under high and low temperatures in the field using a release recapture assay. We found that lines carrying the QTL genotype for high thermal tolerance were significantly better at locating resources in the field releases under hot temperatures while the QTL line carrying the contrasting genotype were superior at cold temperatures. Further, we studied copulatory success between the different QTL genotypes at different temperatures. We found higher copulatory success in males of the high tolerance QTL genotype under hot temperature conditions, while there was no difference in females at cold temperatures. The results allow relating components of field fitness at different environmental temperatures with genotypic variation in a QTL for thermal tolerance.
Collapse
Affiliation(s)
- Volker Loeschcke
- Department of Biological Sciences, Aarhus University, Ny Munkegade 114-116, Aarhus C, Denmark.
| | | | | |
Collapse
|
80
|
Nystrand M, Dowling DK, Simmons LW. Complex genotype by environment interactions and changing genetic architectures across thermal environments in the Australian field cricket, Teleogryllus oceanicus. BMC Evol Biol 2011; 11:222. [PMID: 21791118 PMCID: PMC3161011 DOI: 10.1186/1471-2148-11-222] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 07/27/2011] [Indexed: 12/02/2022] Open
Abstract
Background Biologists studying adaptation under sexual selection have spent considerable effort assessing the relative importance of two groups of models, which hinge on the idea that females gain indirect benefits via mate discrimination. These are the good genes and genetic compatibility models. Quantitative genetic studies have advanced our understanding of these models by enabling assessment of whether the genetic architectures underlying focal phenotypes are congruent with either model. In this context, good genes models require underlying additive genetic variance, while compatibility models require non-additive variance. Currently, we know very little about how the expression of genotypes comprised of distinct parental haplotypes, or how levels and types of genetic variance underlying key phenotypes, change across environments. Such knowledge is important, however, because genotype-environment interactions can have major implications on the potential for evolutionary responses to selection. Results We used a full diallel breeding design to screen for complex genotype-environment interactions, and genetic architectures underlying key morphological traits, across two thermal environments (the lab standard 27°C, and the cooler 23°C) in the Australian field cricket, Teleogryllus oceanicus. In males, complex three-way interactions between sire and dam parental haplotypes and the rearing environment accounted for up to 23 per cent of the scaled phenotypic variance in the traits we measured (body mass, pronotum width and testes mass), and each trait harboured significant additive genetic variance in the standard temperature (27°C) only. In females, these three-way interactions were less important, with interactions between the paternal haplotype and rearing environment accounting for about ten per cent of the phenotypic variance (in body mass, pronotum width and ovary mass). Of the female traits measured, only ovary mass for crickets reared at the cooler temperature (23°C), exhibited significant levels of additive genetic variance. Conclusions Our results show that the genetics underlying phenotypic expression can be complex, context-dependent and different in each of the sexes. We discuss the implications of these results, particularly in terms of the evolutionary processes that hinge on good and compatible genes models.
Collapse
Affiliation(s)
- Magdalena Nystrand
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia.
| | | | | |
Collapse
|
81
|
Defays R, Gómez FH, Sambucetti P, Scannapieco AC, Loeschcke V, Norry FM. Quantitative trait loci for longevity in heat-stressed Drosophila melanogaster. Exp Gerontol 2011; 46:819-26. [PMID: 21798333 DOI: 10.1016/j.exger.2011.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 06/04/2011] [Accepted: 07/11/2011] [Indexed: 02/02/2023]
Abstract
Longevity is a typical quantitative trait which is influenced by multiple genes. Here we explore the genetic variation in longevity of Drosophila melanogaster in both mildly heat-stressed and control flies. Quantitative trait loci (QTL) analysis for longevity was performed in a single-sex environment at 25°C with and without a mild heat-stress pre-treatment, using a previously reported set of recombinant inbred lines (RIL). QTL regions for longevity in heat-stressed flies overlapped with QTL for longevity in control flies. All longevity QTL co-localized with QTL for longevity identified in previous studies using very different sets of RIL in mixed sex environments, though the genome is nearly saturated with QTL for longevity when considering all previous studies. Heat stress decreased the number of significant QTL for longevity if compared to the control environment. Our mild heat-stress pre-treatment had a beneficial effect (hormesis) more often in shorter-lived than in longer-lived RIL.
Collapse
Affiliation(s)
- Raquel Defays
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (C-1428-EHA) Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
82
|
Takahashi KH, Okada Y, Teramura K. Genome-wide deficiency screen for the genomic regions responsible for heat resistance in Drosophila melanogaster. BMC Genet 2011; 12:57. [PMID: 21696597 PMCID: PMC3146426 DOI: 10.1186/1471-2156-12-57] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 06/22/2011] [Indexed: 11/10/2022] Open
Abstract
Background Temperature adaptation is one of the most important determinants of distribution and population size of organisms in nature. Recently, quantitative trait loci (QTL) mapping and gene expression profiling approaches have been used for detecting candidate genes for heat resistance. However, the resolution of QTL mapping is not high enough to examine the individual effects of various genes in each QTL. Heat stress-responsive genes, characterized by gene expression profiling studies, are not necessarily responsible for heat resistance. Some of these genes may be regulated in association with the heat stress response of other genes. Results To evaluate which heat-responsive genes are potential candidates for heat resistance with higher resolution than previous QTL mapping studies, we performed genome-wide deficiency screen for QTL for heat resistance. We screened 439 isogenic deficiency strains from the DrosDel project, covering 65.6% of the Drosophila melanogaster genome in order to map QTL for thermal resistance. As a result, we found 19 QTL for heat resistance, including 3 novel QTL outside the QTL found in previous studies. Conclusion The QTL found in this study encompassed 19 heat-responsive genes found in the previous gene expression profiling studies, suggesting that they were strong candidates for heat resistance. This result provides new insights into the genetic architecture of heat resistance. It also emphasizes the advantages of genome-wide deficiency screen using isogenic deficiency libraries.
Collapse
Affiliation(s)
- Kazuo H Takahashi
- Research Core for Interdisciplinary Sciences, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, Japan.
| | | | | |
Collapse
|
83
|
Johnson TK, Cockerell FE, McKechnie SW. Transcripts from the Drosophila heat-shock gene hsr-omega influence rates of protein synthesis but hardly affect resistance to heat knockdown. Mol Genet Genomics 2011; 285:313-23. [DOI: 10.1007/s00438-011-0610-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 02/27/2011] [Indexed: 10/18/2022]
|
84
|
Arboleda-Bustos CE, Segarra C. The Dca Gene Involved in Cold Adaptation in Drosophila melanogaster Arose by Duplication of the Ancestral regucalcin Gene. Mol Biol Evol 2011; 28:2185-95. [DOI: 10.1093/molbev/msr040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
85
|
Macmillan HA, Sinclair BJ. Mechanisms underlying insect chill-coma. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:12-20. [PMID: 20969872 DOI: 10.1016/j.jinsphys.2010.10.004] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 10/12/2010] [Accepted: 10/12/2010] [Indexed: 05/30/2023]
Abstract
At their critical thermal minimum (CT(min)) insects enter chill-coma, a reversible state where neuromuscular transmission and movement cease. The physiological mechanisms responsible for the insect CT(min) remain poorly understood despite the regular use of chill-coma onset and recovery as a means to assess evolved or acquired variation in low temperature tolerance. In this review, we summarize the use of chill-coma as a metric of thermal tolerance to date, and synthesise current knowledge on the nature and plasticity of lower thermal limits to present probable physiological mechanisms of cold-induced failure. Chill-coma is likely to be driven by an inability to maintain ionic homeostasis through the effects of temperature on ion-motive ATPases, ion channel gating mechanisms, and/or the lipid membrane, leading to a loss of nerve and muscle excitability.
Collapse
Affiliation(s)
- Heath A Macmillan
- Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada.
| | | |
Collapse
|
86
|
Svetec N, Werzner A, Wilches R, Pavlidis P, Alvarez-Castro JM, Broman KW, Metzler D, Stephan W. Identification of X-linked quantitative trait loci affecting cold tolerance in Drosophila melanogaster and fine mapping by selective sweep analysis. Mol Ecol 2010; 20:530-44. [PMID: 21199023 DOI: 10.1111/j.1365-294x.2010.04951.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Drosophila melanogaster is a cosmopolitan species that colonizes a great variety of environments. One trait that shows abundant evidence for naturally segregating genetic variance in different populations of D. melanogaster is cold tolerance. Previous work has found quantitative trait loci (QTL) exclusively on the second and the third chromosomes. To gain insight into the genetic architecture of cold tolerance on the X chromosome and to compare the results with our analyses of selective sweeps, a mapping population was derived from a cross between substitution lines that solely differed in the origin of their X chromosome: one originates from a European inbred line and the other one from an African inbred line. We found a total of six QTL for cold tolerance factors on the X chromosome of D. melanogaster. Although the composite interval mapping revealed slightly different QTL profiles between sexes, a coherent model suggests that most QTL overlapped between sexes, and each explained around 5-14% of the genetic variance (which may be slightly overestimated). The allelic effects were largely additive, but we also detected two significant interactions. Taken together, this provides evidence for multiple QTL that are spread along the entire X chromosome and whose effects range from low to intermediate. One detected transgressive QTL influences cold tolerance in different ways for the two sexes. While females benefit from the European allele increasing their cold tolerance, males tend to do better with the African allele. Finally, using selective sweep mapping, the candidate gene CG16700 for cold tolerance colocalizing with a QTL was identified.
Collapse
Affiliation(s)
- Nicolas Svetec
- Section of Evolutionary Biology, Biocenter, University of Munich, 82152 Planegg-Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Zhong JF, Wang SP, Shi XQ, Mu LL, Li GQ. Hydrogen sulfide exposure increases desiccation tolerance in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1777-1782. [PMID: 20670629 DOI: 10.1016/j.jinsphys.2010.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 07/16/2010] [Accepted: 07/19/2010] [Indexed: 05/29/2023]
Abstract
Hydrogen sulfide (H(2)S) has been shown to effect physiological alterations in several animals, frequently leading to an improvement in survival in otherwise lethal conditions. In the present paper, a volatility bioassay system was developed to evaluate the survivorship of Drosophila melanogaster adults exposed to H(2)S gas that emanated from a K(2)S donor. Using this bioassay system, we found that H(2)S exposure significantly increased the survival of flies under arid and food-free conditions, but not under humid and food-free conditions. This suggests that H(2)S plays a role in desiccation tolerance but not in nutritional stress alleviation. To further confirm the suggestion, the mRNA levels of two desiccation tolerance-related genes Frost and Desat2, and a starvation-related gene Smp-30, from the control and treated flies were measured by quantitative real-time PCR. These genes were up-regulated within 2h when the flies transferred to the arid and food-free bioassay system. Addition of H(2)S further increased Frost and Desat2 mRNA levels, in contrast to Smp-30. Thus, our molecular results were consistent with our bioassay findings. Because of the molecular and genetic tools available for Drosophila, the fly will be a useful system for determining how H(2)S regulates various physiological alterations.
Collapse
Affiliation(s)
- Jian-Feng Zhong
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, China
| | | | | | | | | |
Collapse
|
88
|
Genetic variation in senescence marker protein-30 is associated with natural variation in cold tolerance in Drosophila. Genet Res (Camb) 2010; 92:103-13. [PMID: 20515514 DOI: 10.1017/s0016672310000108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A comprehensive understanding of the genetic basis of phenotypic adaptation in nature requires the identification of the functional allelic variation underlying adaptive phenotypes. The manner in which organisms respond to temperature extremes is an adaptation in many species. In the current study, we investigate the role of molecular variation in senescence marker protein-30 (Smp-30) on natural phenotypic variation in cold tolerance in Drosophila melanogaster. Smp-30 encodes a product that is thought to be involved in the regulation of Ca2+ ion homeostasis and has been shown previously to be differentially expressed in response to cold stress. Thus, we sought to assess whether molecular variation in Smp-30 was associated with natural phenotypic variation in cold tolerance in a panel of naturally derived inbred lines from a population in Raleigh, North Carolina. We identified four non-coding polymorphisms that were strongly associated with natural phenotypic variation in cold tolerance. Interestingly, two polymorphisms that were in close proximity to one another (2 bp apart) exhibited opposite phenotypic effects. Consistent with the maintenance of a pair of antagonistically acting polymorphisms, tests of molecular evolution identified a significant excess of maintained variation in this region, suggesting balancing selection is acting to maintain this variation. These results suggest that multiple mutations in non-coding regions can have significant effects on phenotypic variation in adaptive traits within natural populations, and that balancing selection can maintain polymorphisms with opposite effects on phenotypic variation.
Collapse
|
89
|
A quantitative genetic study of starvation resistance at different geographic scales in natural populations of Drosophila melanogaster. Genet Res (Camb) 2010; 92:253-9. [DOI: 10.1017/s0016672310000327] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
SummaryFood shortage is a stress factor that commonly affects organisms in nature. Resistance to food shortage or starvation resistance (SR) is a complex quantitative trait with direct implications on fitness. However, surveys of natural genetic variation in SR at different geographic scales are scarce. Here, we have measured variation in SR in sets of lines derived from nine natural populations of Drosophila melanogaster collected in western Argentina. Our study shows that within population variation explained a larger proportion of overall phenotypic variance (80%) than among populations (7·2%). We also noticed that an important fraction of variation was sex-specific. Overall females were more resistant to starvation than males; however, the magnitude of the sexual dimorphism (SD) in SR varied among lines and explained a significant fraction of phenotypic variance in all populations. Estimates of cross-sex genetic correlations suggest that the genetic architecture of SR is only partially shared between sexes in the populations examined, thus, facilitating further evolution of the SD.
Collapse
|
90
|
Rand DM, Weinreich DM, Lerman D, Folk D, Gilchrist GW. Three selections are better than one: clinal variation of thermal QTL from independent selection experiments in Drosophila. Evolution 2010; 64:2921-34. [PMID: 20497214 PMCID: PMC3148135 DOI: 10.1111/j.1558-5646.2010.01039.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We report the results of two independent selection experiments that have exposed distinct populations of Drosophila melanogaster to different forms of thermal selection. A recombinant population derived from Arvin California and Zimbabwe isofemale lines was exposed to laboratory natural selection at two temperatures (T(AZ): 18°C and 28°C). Microsatellite mapping identified quantitative trait loci (QTL) on the X-chromosome between the replicate "Hot" and "Cold" populations. In a separate experiment, disruptive selection was imposed on an outbred California population for the "knockdown" temperature (T(KD)) in a thermal column. Microsatellite mapping of the "High" and "Low" populations also uncovered primarily X-linked QTL. Notably, a marker in the shaggy locus at band 3A was significantly differentiated in both experiments. Finer scale mapping of the 3A region has narrowed the QTL to the shaggy gene region, which contains several candidate genes that function in circadian rhythms. The same allele that was increased in frequency in the High T(KD) populations is significantly clinal in North America and is more common at the warm end of the cline (Florida vs. Maine; however, the cline was not apparent in Australia). Together, these studies show that independent selection experiments can uncover the same target of selection and that evolution in the laboratory can recapitulate putatively adaptive clinal variation in nature.
Collapse
Affiliation(s)
- David M Rand
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912, USA.
| | | | | | | | | |
Collapse
|
91
|
Mackay TFC. Mutations and quantitative genetic variation: lessons from Drosophila. Philos Trans R Soc Lond B Biol Sci 2010; 365:1229-39. [PMID: 20308098 DOI: 10.1098/rstb.2009.0315] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A central issue in evolutionary quantitative genetics is to understand how genetic variation for quantitative traits is maintained in natural populations. Estimates of genetic variation and of genetic correlations and pleiotropy among multiple traits, inbreeding depression, mutation rates for fitness and quantitative traits and of the strength and nature of selection are all required to evaluate theoretical models of the maintenance of genetic variation. Studies in Drosophila melanogaster have shown that a substantial fraction of segregating variation for fitness-related traits in Drosophila is due to rare deleterious alleles maintained by mutation-selection balance, with a smaller but significant fraction attributable to intermediate frequency alleles maintained by alleles with antagonistic pleiotropic effects, and late-age-specific effects. However, the nature of segregating variation for traits under stabilizing selection is less clear and requires more detailed knowledge of the loci, mutation rates, allelic effects and frequencies of molecular polymorphisms affecting variation in suites of pleiotropically connected traits. Recent studies in D. melanogaster have revealed unexpectedly complex genetic architectures of many quantitative traits, with large numbers of pleiotropic genes and alleles with sex-, environment- and genetic background-specific effects. Future genome wide association analyses of many quantitative traits on a common panel of fully sequenced Drosophila strains will provide much needed empirical data on the molecular genetic basis of quantitative traits.
Collapse
Affiliation(s)
- Trudy F C Mackay
- Department of Genetics, W. M. Keck Center for Behavioral Biology, North Carolina State University, , Campus Box 7614, Raleigh, NC 27697, USA.
| |
Collapse
|
92
|
Mahapatra CT, Bond J, Rand DM, Rand MD. Identification of methylmercury tolerance gene candidates in Drosophila. Toxicol Sci 2010; 116:225-38. [PMID: 20375079 PMCID: PMC2902855 DOI: 10.1093/toxsci/kfq097] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 03/19/2010] [Indexed: 11/14/2022] Open
Abstract
Methylmercury (MeHg) is a ubiquitous environmental contaminant that preferentially targets the developing nervous system. Variable outcomes of prenatal MeHg exposure within a population point to a genetic component that regulates MeHg toxicity. We therefore sought to identify fundamental MeHg tolerance genes using the Drosophila model for genetic and molecular dissection of a MeHg tolerance trait. We observe autosomal dominance in a MeHg tolerance trait (development on MeHg food) in both wild-derived and laboratory-selected MeHg-tolerant strains of flies. We performed whole-genome transcript profiling of larval brains of tolerant (laboratory selected) and nontolerant (control) strains in the presence and absence of MeHg stress. Pairwise transcriptome comparisons of four conditions (+/-selection and +/-MeHg) identified a "down-down-up" expression signature, whereby MeHg alone and selection alone resulted in a greater number of downregulated transcripts, and the combination of selection + MeHg resulted in a greater number of upregulated transcripts. Functional annotation cluster analyses showed enrichment for monooxygenases/oxidoreductases, which include cytochrome P450 (CYP) family members. Among the 10 CYPs upregulated with selection + MeHg in tolerant strains, CYP6g1, previously identified as the dichlorodiphenyl trichloroethane resistance allele in flies, was the most highly expressed and responsive to MeHg. Among all the genes, Turandot A (TotA), an immune pathway-regulated humoral response gene, showed the greatest upregulation with selection + MeHg. Neural-specific transgenic overexpression of TotA enhanced MeHg tolerance during pupal development. Identification of TotA and CYP genes as MeHg tolerance genes is an inroad to investigating the conserved function of immune signaling and phase I metabolism pathways in MeHg toxicity and tolerance in higher organisms.
Collapse
Affiliation(s)
- Cecon T. Mahapatra
- Department of Anatomy and Neurobiology, College of Medicine, University of Vermont
| | - Jeffrey Bond
- Bioinformatics Core, Department of Microbiology and Molecular Genetics, College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - David M. Rand
- Department of Ecology & Evolutionary Biology, Brown University, Providence, Rhode Island 02912
| | - Matthew D. Rand
- Department of Anatomy and Neurobiology, College of Medicine, University of Vermont
| |
Collapse
|
93
|
Direct and correlated responses to artificial selection for high and low knockdown resistance to high temperature in Drosophila buzzatii. J Therm Biol 2010. [DOI: 10.1016/j.jtherbio.2010.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
94
|
Functional characterization of the Frost gene in Drosophila melanogaster: importance for recovery from chill coma. PLoS One 2010; 5:e10925. [PMID: 20532197 PMCID: PMC2880008 DOI: 10.1371/journal.pone.0010925] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 05/12/2010] [Indexed: 11/25/2022] Open
Abstract
Background Almost all animals, including insects, need to adapt to temperature fluctuations. The molecular basis of thermal adaptation is not well understood, although a number of candidate genes have been proposed. However, a functional link between candidate genes and thermal tolerance has rarely been established. The gene Frost (Fst) was first discovered when Drosophila flies were exposed to cold stress, but the biological function(s) of Fst has so far not been characterized. Because Fst is up-regulated after a cold stress, we tested whether it was essential for chill-coma recovery. Methodology/Principal Findings A marked increase in Fst expression was detected (by RT-PCR) during recovery from cold stress, peaking at 42-fold after 2 h. The GAL4/UAS system was used to knock down expression of Fst and recovery ability was assessed in transgenic adults following 12 h of chill coma at 0°C. The ability to recover from cold stress (short-, medium- and long-term) was significantly altered in the transgenic adults that had Fst silenced. These findings show that Fst plays an essential role in the recovery from chill coma in both males and females. Conclusions/Significance The Frost gene is essential for cold tolerance in Drosophila melanogaster and may play an important role in thermal adaptation.
Collapse
|
95
|
Rand MD. Drosophotoxicology: the growing potential for Drosophila in neurotoxicology. Neurotoxicol Teratol 2010; 32:74-83. [PMID: 19559084 PMCID: PMC2818018 DOI: 10.1016/j.ntt.2009.06.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 05/26/2009] [Accepted: 06/08/2009] [Indexed: 02/04/2023]
Abstract
Understanding neurotoxic mechanisms is a challenge of deciphering which genes and gene products in the developing or mature nervous system are targeted for disruption by chemicals we encounter in our environment. Our understanding of nervous system development and physiology is highly advanced due in large part to studies conducted in simple non-mammalian models. The paucity of toxicological data for the more than 80,000 chemicals in commercial use today, and the approximately 2000 new chemicals introduced each year, makes development of sensitive and rapid assays to screen for neurotoxicity paramount. In this article I advocate the use of Drosophila in the modern regimen of toxicological testing, emphasizing its unique attributes for assaying neurodevelopment and behavior. Features of the Drosophila model are reviewed and a generalized overall scheme for its use in toxicology is presented. Examples of where the fly has proven fruitful in evaluating common toxicants in our environment are also highlighted. Attention is drawn to three areas where development and application of the fly model might benefit toxicology the most: 1) optimizing sensitive endpoints for pathway-specific screening, 2) accommodating high throughput demands for analysis of chemical toxicant libraries, 3) optimizing genetic and molecular protocols for more rapid identification toxicant-by-gene interactions. While there are shortcomings in the Drosophila model, which exclude it from effective toxicological testing in certain arenas, conservation of fundamental cellular and developmental mechanisms between flies and man is extensive enough to warrant a central role for the Drosophila model in toxicological testing of today.
Collapse
Affiliation(s)
- Matthew D Rand
- Department of Anatomy and Neurobiology, College of Medicine, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
96
|
Marcos-Carcavilla A, Mutikainen M, González C, Calvo JH, Kantanen J, Sanz A, Marzanov NS, Pérez-Guzmán MD, Serrano M. A SNP in the HSP90AA1 gene 5' flanking region is associated with the adaptation to differential thermal conditions in the ovine species. Cell Stress Chaperones 2010; 15:67-81. [PMID: 19496025 PMCID: PMC2866970 DOI: 10.1007/s12192-009-0123-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 05/13/2009] [Indexed: 12/01/2022] Open
Abstract
Molecular chaperones have long been understood to be preferentially transcribed in response to multiple perturbations of the cellular homeostasis. In this study, several polymorphisms in the gene encoding the inducible form of the cytoplasmic Hsp90 (HSP90AA1) were addressed in 24 sheep breeds reared in different climatic regions of Europe, Africa, and Asia. Significant differences in the genotype frequencies for a C/G single nucleotide polymorphism (SNP) located at position -660 in the HSP90AA1 5'flanking region were found between the different breeds. Regression analyses reflected significant correlations (from 0.41 to 0.62) between the alternative genotypes of this polymorphism and several climatic and geographic variables characteristic of the regions where these breeds are reared. Real-time analysis revealed that animals bearing the CC(-660) genotype presented higher expression levels than those presenting the CG(-660) or GG(-660) in summer, but not in spring. Mutation at -660 site seems to affect HSP90AA1 transcription rates which could have important effects on the adaptation to different environmental conditions in sheep. Thus, the variability found in the genotype frequencies for the SNP at -660 in the ovine HSP90AA1 locus could be the result of the different environmental pressures occurring in the regions where these breed are maintained.
Collapse
Affiliation(s)
- Ane Marcos-Carcavilla
- Departamento de Mejora Genética Animal, INIA, Ctra. De La Coruña km 7,5, 28040 Madrid, Spain
| | - Mari Mutikainen
- Biotechnology and Food Research, MTT Agrifood Research Finland, 31600 Jokioinen, Finland
| | - Carmen González
- Departamento de Mejora Genética Animal, INIA, Ctra. De La Coruña km 7,5, 28040 Madrid, Spain
| | - Jorge H. Calvo
- Unidad de Tecnología en Producción Animal, CITA, 50059 Zaragoza, Spain
| | - Juha Kantanen
- Biotechnology and Food Research, MTT Agrifood Research Finland, 31600 Jokioinen, Finland
| | - Albina Sanz
- Unidad de Tecnología en Producción Animal, CITA, 50059 Zaragoza, Spain
| | - Nurbiy S. Marzanov
- All-Russian Research Institute of Animal Husbandry, Russian Academy of Agricultural Sciences, Dubrovitsy, 142132 Russia
| | | | - Magdalena Serrano
- Departamento de Mejora Genética Animal, INIA, Ctra. De La Coruña km 7,5, 28040 Madrid, Spain
| |
Collapse
|
97
|
Poissant J, Wilson AJ, Coltman DW. Sex-specific genetic variance and the evolution of sexual dimorphism: a systematic review of cross-sex genetic correlations. Evolution 2010; 64:97-107. [PMID: 19659596 DOI: 10.1111/j.1558-5646.2009.00793.x] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The independent evolution of the sexes may often be constrained if male and female homologous traits share a similar genetic architecture. Thus, cross-sex genetic covariance is assumed to play a key role in the evolution of sexual dimorphism (SD) with consequent impacts on sexual selection, population dynamics, and speciation processes. We compiled cross-sex genetic correlations (r(MF)) estimates from 114 sources to assess the extent to which the evolution of SD is typically constrained and test several specific hypotheses. First, we tested if r(MF) differed among trait types and especially between fitness components and other traits. We also tested the theoretical prediction of a negative relationship between r(MF) and SD based on the expectation that increases in SD should be facilitated by sex-specific genetic variance. We show that r(MF) is usually large and positive but that it is typically smaller for fitness components. This demonstrates that the evolution of SD is typically genetically constrained and that sex-specific selection coefficients may often be opposite in sign due to sub-optimal levels of SD. Most importantly, we confirm that sex-specific genetic variance is an important contributor to the evolution of SD by validating the prediction of a negative correlation between r(MF) and SD.
Collapse
Affiliation(s)
- Jocelyn Poissant
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| | | | | |
Collapse
|
98
|
Norry FM, Larsen PF, Liu Y, Loeschcke V. Combined expression patterns of QTL-linked candidate genes best predict thermotolerance in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:1050-1057. [PMID: 19651134 DOI: 10.1016/j.jinsphys.2009.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 07/22/2009] [Accepted: 07/23/2009] [Indexed: 05/28/2023]
Abstract
Knockdown resistance to high temperature (KRHT) is a thermal adaptation trait in Drosophila melanogaster. Here we used quantitative real-time PCR (qRT-PCR) to test for possible associations between KRHT and the expression of candidate genes within quantitative trait loci (QTL) in eight recombinant inbred lines (RIL). hsp60 and hsc70-3 map within an X-linked QTL, while CG10383, catsup, ddc, trap1, and cyp6a13 are linked in a KRHT-QTL on chromosome 2. hsc70-3 expression increased by heat-hardening. Principal Components analysis revealed that catsup, ddc and trap1 were either co-expressed or combined in their expression levels. This composite expression variable (e-PC1) was positively associated to KRHT in non-hardened RIL. In heat-hardened flies, hsp60 was negatively related to hsc70-3 on e-PC2, with effects on KRHT. These results are consistent with the notion that QTL can be shaped by expression variation in combined candidate loci. We found composite variables of gene expression (e-PCs) that best correlated to KRHT. Network effects with other untested linked loci are apparent because, in spite of their associations with KRHT phenotypes, e-PCs were sometimes uncorrelated with their QTL genotype.
Collapse
Affiliation(s)
- Fabian M Norry
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
99
|
Johnson TK, Cockerell FE, Carrington LB, Rako L, Hoffmann AA, McKechnie SW. The capacity of Drosophila to heat harden associates with low rates of heat-shocked protein synthesis. J Therm Biol 2009. [DOI: 10.1016/j.jtherbio.2009.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
100
|
Pb2+: an endocrine disruptor in Drosophila? Physiol Behav 2009; 99:254-9. [PMID: 19800356 DOI: 10.1016/j.physbeh.2009.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 09/10/2009] [Accepted: 09/17/2009] [Indexed: 11/24/2022]
Abstract
Environmental exposure to Pb(2+) affects hormone-mediated responses in vertebrates. To help establish the fruit fly, Drosophila melanogaster, as a model system for studying such disruption, we describe effects of Pb(2+) on hormonally regulated traits. These include duration of development, longevity, females' willingness to mate, fecundity and adult locomotor activity. Developmental Pb(2+) exposure has been shown to affect gene expression in a specific region of the Drosophila genome (approximately 122 genes) involved in lead-induced changes in adult locomotion and to affect regulation of intracellular calcium levels associated with neuronal activity at identified synapses in the larval neuromuscular junction. We suggest ways in which Drosophila could become a new model system for the study of endocrine disruptors at genetic, neural and behavioral levels of analysis, particularly by use of genomic methods. This will facilitate efforts to distinguish between behavioral effects of Pb(2+) caused by direct action on neural mechanisms versus effects of Pb(+2) on behavior mediated through endocrine disruption.
Collapse
|