51
|
Hawkins ED, Russell SM. Upsides and downsides to polarity and asymmetric cell division in leukemia. Oncogene 2009; 27:7003-17. [PMID: 19029941 DOI: 10.1038/onc.2008.350] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The notion that polarity regulators can act as tumor suppressors in epithelial cells is now well accepted. The function of these proteins in lymphocytes is less well explored, and their possible function as suppressors of leukemia has had little attention so far. We review the literature on lymphocyte polarity and the growing recognition that polarity proteins have an important function in lymphocyte function. We then describe molecular relationships between the polarity network and signaling pathways that have been implicated in leukemogenesis, which suggest mechanisms by which the polarity network might impact on leukemogenesis. We particularly focus on the possibility that disruption of polarity might alter asymmetric cell division (ACD), and that this might be a leukemia-initiating event. We also explore the converse possibility that leukemic stem cells might be produced or maintained by ACD, and therefore that Dlg, Scribble and Lgl might be important regulators of this process.
Collapse
Affiliation(s)
- E D Hawkins
- Immune Signalling Laboratory, Cancer Immunology, Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | | |
Collapse
|
52
|
Groen RWJ, Oud MECM, Schilder-Tol EJM, Overdijk MB, ten Berge D, Nusse R, Spaargaren M, Pals ST. Illegitimate WNT pathway activation by beta-catenin mutation or autocrine stimulation in T-cell malignancies. Cancer Res 2008; 68:6969-77. [PMID: 18757411 DOI: 10.1158/0008-5472.can-08-1322] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent studies in mice have shown a role for the canonical WNT pathway in lymphocyte development. Because cancers often arise as a result of aberrant activation of signaling cascades that normally promote the self-renewal and expansion of their progenitor cells, we hypothesized that activation of the WNT pathway might contribute to the pathogenesis of lymphoproliferative disease. Therefore, we screened a large panel (n = 162) of non-Hodgkin lymphomas (NHL), including all major WHO categories, for nuclear expression of beta-catenin, a hallmark of "active" WNT signaling. In 16 lymphomas, mostly of T-lineage origin, nuclear localization of beta-catenin was detected. Interestingly, some of these tumors contained established gain-of-function mutations in the gene encoding beta-catenin (CTNNB1); however, in the majority, mutations in either CTNNB1 or APC were not detected. Functional analysis of WNT signaling in precursor T-lymphoblastic lymphomas/leukemias, the NHL subset in which beta-catenin accumulation was most prevalent (33% positive), revealed a constitutively activated, but still responsive, WNT pathway, which controlled T-cell factor-mediated gene transcription and cell growth. Our data indicate that activation of the WNT pathway, either by CTNNB1 mutation or autocrine stimulation, plays a role in the pathogenesis of a subset of NHLs, in particular, those of T-cell origin.
Collapse
Affiliation(s)
- Richard W J Groen
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Staal FJT, Sen JM. The canonical Wnt signaling pathway plays an important role in lymphopoiesis and hematopoiesis. Eur J Immunol 2008; 38:1788-94. [PMID: 18581335 DOI: 10.1002/eji.200738118] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The evolutionarily conserved canonical Wnt-beta-catenin-T cell factor (TCF)/lymphocyte enhancer binding factor (LEF) signaling pathway regulates key checkpoints in the development of various tissues. Therefore, it is not surprising that a large body of gain-of-function and loss-of-function studies implicate Wnt-beta-catenin signaling in lymphopoiesis and hematopoiesis. In contrast, recent papers have reported that Mx-Cre-mediated conditional deletion of beta-catenin and/or its homolog gamma-catenin (plakoglobin) did not impair hematopoiesis or lymphopoiesis. However, these studies also report that TCF reporter activity remains active in beta-catenin- and gamma-catenin-deficient hematopoietic stem cells and all cells derived from these precursors, indicating that the canonical Wnt signaling pathway was not abrogated. Therefore, these studies in fact show that the canonical Wnt signaling pathway is important in hematopoiesis and lymphopoiesis, even though the molecular basis for the induction of the reporter activity is currently unknown. In this perspective, we provide a broad background to the field with a discussion of the available data and create a framework within which the available and future studies may be evaluated.
Collapse
Affiliation(s)
- Frank J T Staal
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | | |
Collapse
|
54
|
Falà F, Blalock WL, Tazzari PL, Cappellini A, Chiarini F, Martinelli G, Tafuri A, McCubrey JA, Cocco L, Martelli AM. Proapoptotic activity and chemosensitizing effect of the novel Akt inhibitor (2S)-1-(1H-Indol-3-yl)-3-[5-(3-methyl-2H-indazol-5-yl)pyridin-3-yl]oxypropan2-amine (A443654) in T-cell acute lymphoblastic leukemia. Mol Pharmacol 2008; 74:884-95. [PMID: 18577685 PMCID: PMC2659779 DOI: 10.1124/mol.108.047639] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Constitutively activated AKT kinase is a common feature of T-cell acute lymphoblastic leukemia (T-ALL). Here, we report that the novel AKT inhibitor (2S)-1-(1H-indol-3-yl)-3-[5-(3-methyl-2H-indazol-5-yl)pyridin-3-yl]oxypropan2-amine (A443654) leads to rapid cell death of T-ALL lines and patient samples. Treatment of CEM, Jurkat, and MOLT-4 cells with nanomolar doses of the inhibitor led to AKT phosphorylation accompanied by dephosphorylation and activation of the downstream target, glycogen synthase kinase-3beta. Effects were time- and dose-dependent, resulting in apoptotic cell death. Treatment of Jurkat cells with A443654 resulted in activation of caspase-2, -3, -6, -8, and -9. Apoptotic cell death was mostly dependent on caspase-2 activation, as demonstrated by preincubation with a selective pharmacological inhibitor. It is remarkable that A443654 was highly effective against the drug-resistant cell line CEM-VBL100, which expresses 170-kDa P-glycoprotein. Moreover, A443654 synergized with the DNA-damaging agent etoposide in both drug-sensitive and drug-resistant cell lines when coadministered [combination index (CI) = 0.39] or when pretreated with etoposide followed by A443654 (CI = 0.689). The efficacy of A443654 was confirmed using blasts from six patients with T-ALL, all of whom displayed low levels of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and constitutive phosphorylation of Akt on Ser473. At 1 microM, the inhibitor was able to induce apoptotic cell death of T-ALL blast cells, as indicated by flow cytometric analysis of samples immunostained for active (cleaved) caspase-3. Because activated AKT is seen in a large percentage of patients with T-ALL, A443654, either alone or in combination with existing drugs, may be a useful therapy for primary and drug-resistant T-ALL.
Collapse
Affiliation(s)
- Federica Falà
- Department of Human Anatomical Sciences, University of Bologna, 40126 Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Abstract
WNT proteins are secreted morphogens that are required for basic developmental processes, such as cell-fate specification, progenitor-cell proliferation and the control of asymmetric cell division, in many different species and organs. In blood and immune cells, WNT signalling controls the proliferation of progenitor cells and might also affect the cell-fate decisions of stem cells. Recent studies indicate that WNT proteins also regulate effector T-cell development, regulatory T-cell activation and dendritic-cell maturation. WNT signalling seems to function as a universal mechanism in leukocytes to establish a pool of undifferentiated cells for further selection, effector-cell maturation and terminal differentiation. WNT signalling is therefore subject to strict molecular control, and dysregulated WNT signalling is implicated in the development of haematological malignancies.
Collapse
|
56
|
Trajkovski I, Lavrač N, Tolar J. SEGS: Search for enriched gene sets in microarray data. J Biomed Inform 2008; 41:588-601. [DOI: 10.1016/j.jbi.2007.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 10/08/2007] [Accepted: 12/04/2007] [Indexed: 01/21/2023]
|
57
|
Bluestone JA, Hebrok M. Safer, longer-lasting regulatory T cells with beta-catenin. Nat Med 2008; 14:118-9. [PMID: 18256611 DOI: 10.1038/nm0208-118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
58
|
Chumsri S, Matsui W, Burger AM. Therapeutic implications of leukemic stem cell pathways. Clin Cancer Res 2008; 13:6549-54. [PMID: 18006753 DOI: 10.1158/1078-0432.ccr-07-1088] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
An emerging concept in cancer biology is that a rare population of cancer stem cells exists among the heterogeneous cell mass that constitutes a tumor. This concept is best understood in human myeloid leukemia. Normal and malignant hematopoietic stem cell functions are defined by a common set of critical stemness genes that regulate self-renewal and developmental pathways. Several stemness factors, such as Notch or telomerase, show differential activation in normal hematopoietic versus leukemia stem cells. These differences could be exploited therapeutically even with drugs that are already in clinical use for the treatment of leukemia. The translation of novel and existing leukemic stem cell-directed therapies into clinical practice, however, will require changes in clinical trial design and the inclusion of stem cell biomarkers as correlative end points.
Collapse
Affiliation(s)
- Saranya Chumsri
- Department of Medicine, University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, USA
| | | | | |
Collapse
|
59
|
Beta-catenin expression results in p53-independent DNA damage and oncogene-induced senescence in prelymphomagenic thymocytes in vivo. Mol Cell Biol 2007; 28:1713-23. [PMID: 18160717 DOI: 10.1128/mcb.01360-07] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of beta-catenin, a potent oncogene, is causally linked to tumorigenesis. Therefore, it was surprising that the transgenic expression of oncogenic beta-catenin in thymocytes resulted in thymic involution instead of lymphomagenesis. In this report, we demonstrate that this is because the expression of oncogenic beta-catenin induces DNA damage, growth arrest, oncogene-induced senescence (OIS), and apoptosis of immature thymocytes. In p53-deficient mice, the expression of oncogenic beta-catenin still results in DNA damage and OIS, but the thymocytes survive and eventually progress to thymic lymphoma. beta-Catenin-induced thymic lymphomas are distinct from lymphomas that arise in p53(-/-) mice. They are CD4(-) CD8(-), while p53-dependent lymphomas are largely CD4(+) CD8(+), and they develop at an earlier age and in the absence of c-Myc expression or Notch1 signaling. Thus, we report that oncogenic beta-catenin-induced, p53-independent growth arrest and OIS and p53-dependent apoptosis protect developing thymocytes from transformation by oncogenic beta-catenin.
Collapse
|
60
|
Abstract
The Wnt and Notch signalling pathways play major roles in mammary gland development and tumourigenesis. During development, these pathways have opposing effects. However, in a recent paper Ayyanan and coworkers show that expression of Wnt1 is sufficient to transform primary human mammary epithelial cells, and that this is in part due to activation of the Notch pathway. This indicates that during tumourigenesis the two pathways cooperate. Here we ask why activation of Wnt signalling alone is sufficient to cause transformation; whether there is evidence for inhibitory crosstalk between the pathways during tumourigenesis; and whether cooperation between these pathways occurs in other forms of cancer.
Collapse
Affiliation(s)
- Giovanna M Collu
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Keith Brennan
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
61
|
Crompton T, Outram SV, Hager-Theodorides AL. Sonic hedgehog signalling in T-cell development and activation. Nat Rev Immunol 2007; 7:726-35. [PMID: 17690714 DOI: 10.1038/nri2151] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The production of mature functional T cells in the thymus requires signals from the thymic epithelium. Here, we review recent experiments showing that one way in which the epithelium controls the production of mature T cells is by the secretion of sonic hedgehog (SHH). We consider the increasing evidence that SHH-induced signalling is not only important for the differentiation and proliferation of early thymocyte progenitors, but also for modulating T-cell receptor signalling during repertoire selection, with implications for positive selection, CD4 versus CD8 lineage commitment, and clonal deletion of autoreactive cells. We also review the influence of hedgehog signalling in peripheral T-cell activation.
Collapse
Affiliation(s)
- Tessa Crompton
- Immunobiology Unit, University College London Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
| | | | | |
Collapse
|
62
|
Uncontrolled Wnt signaling causes leukemia. Blood 2007. [DOI: 10.1182/blood-2007-04-081885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
63
|
Mikesch JH, Steffen B, Berdel WE, Serve H, Müller-Tidow C. The emerging role of Wnt signaling in the pathogenesis of acute myeloid leukemia. Leukemia 2007; 21:1638-47. [PMID: 17554387 DOI: 10.1038/sj.leu.2404732] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Wnt signaling plays an important role in stem cell self-renewal and proliferation. Aberrant activation of Wnt signaling and its downstream targets are intimately linked with several types of cancer with colon cancer being the best-studied example. However, recent results also suggest an important role of Wnt signaling in normal as well as leukemic hematopoietic stem cells. Aberrant activation of Wnt signaling and downstream effectors has been demonstrated in acute myeloid leukemia. Here, mutant receptor tyrosine kinases, such as Flt3 and chimeric transcription factors such as promyelocytic leukemia-retinoic acid receptor-alpha and acute myeloid leukemia1-ETO, induce downstream Wnt signaling events. These findings suggest that the Wnt signaling pathway is an important target in several leukemogenic pathways and may provide a novel opportunity for targeting leukemic stem cells.
Collapse
Affiliation(s)
- J-H Mikesch
- Department of Medicine, Hematology and Oncology, University of Muenster, Münster, Germany
| | | | | | | | | |
Collapse
|
64
|
Román-Gómez J, Cordeu L, Agirre X, Jiménez-Velasco A, San José-Eneriz E, Garate L, Calasanz MJ, Heiniger A, Torres A, Prosper F. Epigenetic regulation of Wnt-signaling pathway in acute lymphoblastic leukemia. Blood 2006; 109:3462-9. [PMID: 17148581 DOI: 10.1182/blood-2006-09-047043] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Activation of the Wnt/β-catenin signaling pathway is a hallmark of a number of solid tumors. We analyzed the regulation of the Wnt/β-catenin pathway in acute lymphoblastic leukemia (ALL) and its role in the pathogenesis of the disease. We found that expression of the Wnt inhibitors sFRP1, sFRP2, sFRP4, sFRP5, WIF1, Dkk3, and Hdpr1 was down-regulated due to abnormal promoter methylation in ALL cell lines and samples from patients with ALL. Methylation of Wnt inhibitors was associated with activation of the Wnt-signaling pathway as demonstrated by the up-regulation of the Wnt target genes WNT16, FZ3, TCF1, LEF1, and cyclin D1 in cell lines and samples and the nuclear localization of β-catenin in cell lines. Treatment of ALL cells with the Wnt inhibitor quercetin or with the demethylating agent 5-aza-2′-deoxycytidine induced an inactivation of the Wnt pathway and induced apoptosis of ALL cells. Finally, in a group of 261 patients with newly diagnosed ALL, abnormal methylation of Wnt inhibitors was associated with decreased 10-year disease-free survival (25% versus 66% respectively, P < .001) and overall survival (28% versus 61% respectively, P = .001). Our results indicate a role of abnormal Wnt signaling in ALL and establish a group of patients with a significantly worse prognosis (methylated group).
Collapse
|
65
|
Weerkamp F, Luis TC, Naber BAE, Koster EEL, Jeannotte L, van Dongen JJM, Staal FJT. Identification of Notch target genes in uncommitted T-cell progenitors: No direct induction of a T-cell specific gene program. Leukemia 2006; 20:1967-77. [PMID: 16990763 DOI: 10.1038/sj.leu.2404396] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Deregulated Notch signaling occurs in the majority of human T-ALL. During normal lymphoid development, activation of the Notch signaling pathway poses a T-cell fate on hematopoietic progenitors. However, the transcriptional targets of the Notch pathway are largely unknown. We sought to identify Notch target genes by inducing Notch signaling in human hematopoietic progenitors using two different methods: an intracellular signal through transfection of activated Notch and a Notch-receptor dependent signal by interaction with its ligand Delta1. Gene expression profiles were generated and evaluated with respect to expression profiles of immature thymic subpopulations. We confirmed HES1, NOTCH1 and NRARP as Notch target genes, but other reported Notch targets, including the genes for Deltex1, pre-T-cell receptor alpha and E2A, were not found to be differentially expressed. Remarkably, no induction of T-cell receptor gene rearrangements or transcription of known T-cell specific genes was found after activation of the Notch pathway. A number of novel Notch target genes, including the transcription factor TCFL5 and the HOXA cluster, were identified and functionally tested. Apparently, Notch signaling is essential to open the T-cell pathway, but does not initiate the T-cell program itself.
Collapse
Affiliation(s)
- F Weerkamp
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|