51
|
Halbert J, Ayong L, Equinet L, Le Roch K, Hardy M, Goldring D, Reininger L, Waters N, Chakrabarti D, Doerig C. A Plasmodium falciparum transcriptional cyclin-dependent kinase-related kinase with a crucial role in parasite proliferation associates with histone deacetylase activity. EUKARYOTIC CELL 2010; 9:952-9. [PMID: 20305001 PMCID: PMC2901647 DOI: 10.1128/ec.00005-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 03/13/2010] [Indexed: 11/20/2022]
Abstract
Cyclin-dependent protein kinases (CDKs) are key regulators of the eukaryotic cell cycle and of the eukaryotic transcription machinery. Here we report the characterization of Pfcrk-3 (Plasmodium falciparum CDK-related kinase 3; PlasmoDB identifier PFD0740w), an unusually large CDK-related protein whose kinase domain displays maximal homology to those CDKs which, in other eukaryotes, are involved in the control of transcription. The closest enzyme in Saccharomyces cerevisiae is BUR1 (bypass upstream activating sequence requirement 1), known to control gene expression through interaction with chromatin modification enzymes. Consistent with this, immunofluorescence data show that Pfcrk-3 colocalizes with histones. We show that recombinant Pfcrk-3 associates with histone H1 kinase activity in parasite extracts and that this association is detectable even if the catalytic domain of Pfcrk-3 is rendered inactive by site-directed mutagenesis, indicating that Pfcrk-3 is part of a complex that includes other protein kinases. Immunoprecipitates obtained from extracts of transgenic parasites expressing hemagglutinin (HA)-tagged Pfcrk-3 by using an anti-HA antibody displayed both protein kinase and histone deacetylase activities. Reverse genetics data show that the pfcrk-3 locus can be targeted only if the genetic modification does not cause a loss of function. Taken together, our data strongly suggest that Pfcrk-3 fulfils a crucial role in the intraerythrocytic development of P. falciparum, presumably through chromatin modification-dependent regulation of gene expression.
Collapse
Affiliation(s)
- Jean Halbert
- Inserm-EPFL Joint Laboratory, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Lawrence Ayong
- Department of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826
| | - Leila Equinet
- Inserm-EPFL Joint Laboratory, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Karine Le Roch
- Inserm-EPFL Joint Laboratory, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Mary Hardy
- Department of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826
| | - Dean Goldring
- Department of Biochemistry, School of Biochemistry, Genetics and Microbiology, University of KwaZulu-Natal, Scottsville, South Africa; and
| | - Luc Reininger
- Inserm-EPFL Joint Laboratory, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Norman Waters
- Australian Army Malaria Institute, Enoggera, Queensland, Australia 4051
| | - Debopam Chakrabarti
- Department of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826
| | - Christian Doerig
- Inserm-EPFL Joint Laboratory, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow G12 8TA, United Kingdom
| |
Collapse
|
52
|
Leman ES, Magheli A, Yong KMA, Netto G, Hinz S, Getzenberg RH. Identification of nuclear structural protein alterations associated with seminomas. J Cell Biochem 2009; 108:1274-9. [DOI: 10.1002/jcb.22357] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
53
|
Iorns E, Martens-de Kemp SR, Lord CJ, Ashworth A. CRK7 modifies the MAPK pathway and influences the response to endocrine therapy. Carcinogenesis 2009; 30:1696-701. [PMID: 19651820 DOI: 10.1093/carcin/bgp187] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025] Open
Abstract
Endocrine therapies, which inhibit estrogen receptor (ER)alpha signaling, are the most common and effective treatment for ERalpha-positive breast cancer. However, the use of these agents is limited by the frequent development of resistance. The cyclin-dependent kinase family member CRK7 (aka CRKRS) was identified from an RNA interference screen for modifiers of tamoxifen sensitivity. Here, we demonstrate that silencing of CRK7 not only causes resistance to tamoxifen but also leads to resistance to additional endocrine therapies including ICI 182780 and estrogen deprivation, a model of aromatase inhibition. We show that CRK7 silencing activates the mitogen-activated protein kinase (MAPK)-signaling pathway, which causes a loss of ER dependence, resulting in endocrine therapy resistance. This study identifies a novel role for CRK7 in MAPK regulation and resistance to estrogen signaling inhibitors.
Collapse
Affiliation(s)
- Elizabeth Iorns
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK.
| | | | | | | |
Collapse
|
54
|
Leitch AE, Haslett C, Rossi AG. Cyclin-dependent kinase inhibitor drugs as potential novel anti-inflammatory and pro-resolution agents. Br J Pharmacol 2009; 158:1004-16. [PMID: 19775281 DOI: 10.1111/j.1476-5381.2009.00402.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The cyclin-dependent kinase inhibitor (CDKi) drugs such as R-roscovitine have emerged as potential anti-inflammatory, pharmacological agents that can influence the resolution of inflammation. Usually, once an inciting inflammatory stimulus has been eliminated, resolution proceeds by prompt, safe removal of dominant inflammatory cells. This is accomplished by programmed cell death (apoptosis) of prominent effector, inflammatory cells typified by the neutrophil. Apoptosis of neutrophils ensures that toxic neutrophil granule contents are securely packaged in apoptotic bodies and expedites phagocytosis by professional phagocytes such as macrophages. A panel of CDKi drugs have been shown to promote neutrophil apoptosis in a concentration- and time-dependent manner and the archetypal CDKi drug, R-roscovitine, overrides the anti-apoptotic effects of powerful survival factors [including lipopolysaccharide (LPS) and granulocyte macrophage-colony stimulating factor (GM-CSF)]. Inflammatory cell longevity and survival signalling is integral to the inflammatory process and any putative anti-inflammatory agent must unravel a complex web of redundancy in order to be effective. CDKi drugs have also been demonstrated to have significant effects on other cell types including lymphocytes and fibroblasts indicating that they may have pleiotropic anti-inflammatory, pro-resolution activity. In keeping with this, CDKi drugs like R-roscovitine have been reported to be efficacious in resolving established animal models of neutrophil-dominant and lymphocyte-driven inflammation. However, the mechanism of action behind these powerful effects has not yet been fully elucidated. CDKs play an integral role in the regulation of the cell cycle but are also recognized as participants in processes such as apoptosis and transcriptional regulation. Neutrophils have functional CDKs, are transcriptionally active and demonstrate augmented apoptosis in response to CDKi drugs, while lymphocyte proliferation and secretory function are inhibited. This review will discuss current understanding of the processes of inflammation and resolution but will focus on CDKis and their potential mechanisms of action.
Collapse
Affiliation(s)
- A E Leitch
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, 47 Little France Crescent, Edinburgh, UK
| | | | | |
Collapse
|
55
|
Doonan JH, Kitsios G. Functional evolution of cyclin-dependent kinases. Mol Biotechnol 2009; 42:14-29. [PMID: 19145493 DOI: 10.1007/s12033-008-9126-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 11/01/2008] [Indexed: 10/21/2022]
Abstract
Cyclin-dependent kinases (CDKs) are serine/threonine protein kinases with a well established role in the regulation of the eukaryotic cell cycle. Recent studies with animal cells have implicated CDK activity in additional diverse cellular processes, including transcription, translation and mRNA processing. In plants, such CDK functions are poorly characterized and the implication of CDK phosphorylation in regulation of gene expression is just begining to emerge. In this review we compare CDK functions in plants, animals and yeasts with particular focus on the biological processes that different members participate in and regulate. Finally, based on the available information of CDK function, we propose an alternative evolutionary scenario for the CDK gene family.
Collapse
Affiliation(s)
- John H Doonan
- Department of Cell & Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK.
| | | |
Collapse
|
56
|
Schurko AM, Logsdon JM, Eads BD. Meiosis genes in Daphnia pulex and the role of parthenogenesis in genome evolution. BMC Evol Biol 2009; 9:78. [PMID: 19383157 PMCID: PMC2680839 DOI: 10.1186/1471-2148-9-78] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 04/21/2009] [Indexed: 11/21/2022] Open
Abstract
Background Thousands of parthenogenetic animal species have been described and cytogenetic manifestations of this reproductive mode are well known. However, little is understood about the molecular determinants of parthenogenesis. The Daphnia pulex genome must contain the molecular machinery for different reproductive modes: sexual (both male and female meiosis) and parthenogenetic (which is either cyclical or obligate). This feature makes D. pulex an ideal model to investigate the genetic basis of parthenogenesis and its consequences for gene and genome evolution. Here we describe the inventory of meiotic genes and their expression patterns during meiotic and parthenogenetic reproduction to help address whether parthenogenesis uses existing meiotic and mitotic machinery, or whether novel processes may be involved. Results We report an inventory of 130 homologs representing over 40 genes encoding proteins with diverse roles in meiotic processes in the genome of D. pulex. Many genes involved in cell cycle regulation and sister chromatid cohesion are characterized by expansions in copy number. In contrast, most genes involved in DNA replication and homologous recombination are present as single copies. Notably, RECQ2 (which suppresses homologous recombination) is present in multiple copies while DMC1 is the only gene in our inventory that is absent in the Daphnia genome. Expression patterns for 44 gene copies were similar during meiosis versus parthenogenesis, although several genes displayed marked differences in expression level in germline and somatic tissues. Conclusion We propose that expansions in meiotic gene families in D. pulex may be associated with parthenogenesis. Taking into account our findings, we provide a mechanistic model of parthenogenesis, highlighting steps that must differ from meiosis including sister chromatid cohesion and kinetochore attachment.
Collapse
Affiliation(s)
- Andrew M Schurko
- Roy J Carver Center for Comparative Genomics and Department of Biology, The University of Iowa, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
57
|
Stagner EE, Bouvrette DJ, Cheng J, Bryda EC. The polycystic kidney disease-related proteins Bicc1 and SamCystin interact. Biochem Biophys Res Commun 2009; 383:16-21. [PMID: 19324013 DOI: 10.1016/j.bbrc.2009.03.113] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 03/19/2009] [Indexed: 12/27/2022]
Abstract
Mutations in either the Bicaudal-C or the Anks6 gene which encode the Bicc1 and SamCystin proteins respectively cause formation of renal cysts in rodent models of polycystic kidney disease, however their role in the mammalian kidney is unknown. Immunolocalization studies demonstrated that, unlike many other PKD-related proteins, SamCystin and Bicc1 do not localize to the primary cilia of cultured kidney cells. Epitope-tagged recombinant SamCystin and Bicc1 proteins were transiently transfected into inner medullary collecting duct (IMCD) cells and co-immunoprecipitated. The results showed that SamCystin self-associates, Bicc1 and SamCystin interact, the mutation responsible for PKD in the Han:SPRD-Cy rat disrupts the self-association of SamCystin but not the Bicc1-SamCystin interaction, and RNA may be an important component of the Bicc1-SamCystin complex. These studies provide the first evidence that Bicc1 and SamCystin interact at the protein level suggesting that they function in a common molecular pathway that when perturbed, is involved in cystogenesis.
Collapse
Affiliation(s)
- Emily E Stagner
- Department of Veterinary Pathobiology, University of Missouri, Columbia, 65211, USA
| | | | | | | |
Collapse
|
58
|
Cho JY, Lee M, Ahn JM, Park ES, Cho JH, Lee SJ, Kim BG, Heo SH, Park HJ, Zerbini LF, Hwang D, Libermann TA. Proteomic Analysis of a PDEF Ets Transcription Factor-Interacting Protein Complex. J Proteome Res 2009; 8:1327-37. [DOI: 10.1021/pr800683b] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Je-Yoel Cho
- Department of Biochemistry, School of Dentistry, Kyungpook National University and ProtAn, Daegu 700-422, Korea, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Kyungpook, 790-784, Korea, and BIDMC Genomics Center, Harvard Medical School, Boston, Massachusetts 02115
| | - Minjung Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University and ProtAn, Daegu 700-422, Korea, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Kyungpook, 790-784, Korea, and BIDMC Genomics Center, Harvard Medical School, Boston, Massachusetts 02115
| | - Jung-Mo Ahn
- Department of Biochemistry, School of Dentistry, Kyungpook National University and ProtAn, Daegu 700-422, Korea, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Kyungpook, 790-784, Korea, and BIDMC Genomics Center, Harvard Medical School, Boston, Massachusetts 02115
| | - Eun-Sung Park
- Department of Biochemistry, School of Dentistry, Kyungpook National University and ProtAn, Daegu 700-422, Korea, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Kyungpook, 790-784, Korea, and BIDMC Genomics Center, Harvard Medical School, Boston, Massachusetts 02115
| | - Ji-Hoon Cho
- Department of Biochemistry, School of Dentistry, Kyungpook National University and ProtAn, Daegu 700-422, Korea, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Kyungpook, 790-784, Korea, and BIDMC Genomics Center, Harvard Medical School, Boston, Massachusetts 02115
| | - Seung-Jin Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University and ProtAn, Daegu 700-422, Korea, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Kyungpook, 790-784, Korea, and BIDMC Genomics Center, Harvard Medical School, Boston, Massachusetts 02115
| | - Byung-Gyu Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University and ProtAn, Daegu 700-422, Korea, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Kyungpook, 790-784, Korea, and BIDMC Genomics Center, Harvard Medical School, Boston, Massachusetts 02115
| | - Sun-Hee Heo
- Department of Biochemistry, School of Dentistry, Kyungpook National University and ProtAn, Daegu 700-422, Korea, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Kyungpook, 790-784, Korea, and BIDMC Genomics Center, Harvard Medical School, Boston, Massachusetts 02115
| | - Hye-Jeong Park
- Department of Biochemistry, School of Dentistry, Kyungpook National University and ProtAn, Daegu 700-422, Korea, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Kyungpook, 790-784, Korea, and BIDMC Genomics Center, Harvard Medical School, Boston, Massachusetts 02115
| | - Luiz F. Zerbini
- Department of Biochemistry, School of Dentistry, Kyungpook National University and ProtAn, Daegu 700-422, Korea, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Kyungpook, 790-784, Korea, and BIDMC Genomics Center, Harvard Medical School, Boston, Massachusetts 02115
| | - Daehee Hwang
- Department of Biochemistry, School of Dentistry, Kyungpook National University and ProtAn, Daegu 700-422, Korea, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Kyungpook, 790-784, Korea, and BIDMC Genomics Center, Harvard Medical School, Boston, Massachusetts 02115
| | - Towia A. Libermann
- Department of Biochemistry, School of Dentistry, Kyungpook National University and ProtAn, Daegu 700-422, Korea, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Kyungpook, 790-784, Korea, and BIDMC Genomics Center, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
59
|
Bhunia A, Domadia PN, Mohanram H, Bhattacharjya S. NMR structural studies of the Ste11 SAM domain in the dodecyl phosphocholine micelle. Proteins 2009; 74:328-43. [PMID: 18618697 DOI: 10.1002/prot.22166] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The sterile alpha-motif (SAM), a relatively small ( approximately 70 amino acids) interaction domain, is found in a variety of proteins involved in cell signaling, transcription regulation, and scaffolding. The Ste11 protein kinase from the mitogen activated protein kinase (MAPK) signaling cascades of the budding yeast is regulated by a SAM domain located at the N-terminus of full-length protein. In solution, the Ste11 SAM domain exists as a well-folded dimeric structure that is involved in interaction with the cognate SAM domain from an adaptor protein Ste50. In this work, we show that the Ste11 SAM domain has an intrinsic affinity towards the lipid membranes. The solution conformation of the Ste11 SAM determined in perdeuterated DPC micelle, using NMR spectroscopy, is defined by five helices of different lengths connected by a number of loops. In the micelle bound state, the non-polar and aromatic residues of the Ste11 SAM lack a native-like packing and are presumably engaged in interactions with the micelle. Using two different paramagnetic doxyl-lipids; we have mapped out localization of Ste11 SAM residues at the micelle surface. Most of the residues appear to localize at the interfacial region of the micelle. However, a number of non-polar residues from the central region of the domain are found to be located inside the core of the micelle including residues from the helix 4 and a loop between helix 2 and helix 3. Isothermal titration calorimetry studies demonstrate that a facile insertion of the Ste11 SAM into the DPC micelle is primarily driven by a large change in enthalpy, -50 kcal/mol with an apparent equilibrium association constant (Ka) of 7.86 x 10(6) M(-1). Interestingly, an interfacial mutant L60R of the Ste11 SAM lacking the dimeric structure does not show detectable interactions with the lipid micelle. The micelle-bound structure of the Ste11 SAM domain described in this work may have potential implications in the regulation of MAPK signaling whereby positioning of the Ste11 protein in close proximity to the membrane may facilitate efficient phosphorylation of the Ste11 kinase by the membrane attached upstream Ste20/pak kinase.
Collapse
Affiliation(s)
- Anirban Bhunia
- Biomolecular NMR and Drug Discovery Laboratory, Division of Structural and Computational Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | | | | | | |
Collapse
|
60
|
Abstract
Despite the proven benefit of antiestrogen drugs in breast cancer treatment, resistant disease ultimately develops in advanced breast cancer. In this issue of Cancer Cell, Iorns et al. find that loss of CDK10 expression promotes resistance of cells to tamoxifen and is associated with poor outcome in breast cancer patients treated with the drug. CDK10 loss increases the activity of the transcription factor ETS2 on the promoter of the RAF1 gene, elevating ERK/MAPK kinase pathway activity and relieving tamoxifen-induced G1 arrest. CDK10 is thus a potential biomarker for sensitivity in prospective clinical trials of patients treated with endocrine therapies.
Collapse
|
61
|
Iorns E, Turner NC, Elliott R, Syed N, Garrone O, Gasco M, Tutt ANJ, Crook T, Lord CJ, Ashworth A. Identification of CDK10 as an important determinant of resistance to endocrine therapy for breast cancer. Cancer Cell 2008; 13:91-104. [PMID: 18242510 DOI: 10.1016/j.ccr.2008.01.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 11/20/2007] [Accepted: 01/03/2008] [Indexed: 01/05/2023]
Abstract
Therapies that target estrogen signaling have transformed the treatment of breast cancer. However, the effectiveness of these agents is limited by the development of resistance. Here, an RNAi screen was used to identify modifiers of tamoxifen sensitivity. We demonstrate that CDK10 is an important determinant of resistance to endocrine therapies and show that CDK10 silencing increases ETS2-driven transcription of c-RAF, resulting in MAPK pathway activation and loss of tumor cell reliance upon estrogen signaling. Patients with ER alpha-positive tumors that express low levels of CDK10 relapse early on tamoxifen, demonstrating the clinical significance of these observations. The association of low levels of CDK10 with methylation of the CDK10 promoter suggests a mechanism by which CDK10 expression is reduced in tumors.
Collapse
Affiliation(s)
- Elizabeth Iorns
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Bagella L, Giacinti C, Simone C, Giordano A. Identification of murine cdk10: association with Ets2 transcription factor and effects on the cell cycle. J Cell Biochem 2007; 99:978-85. [PMID: 16741970 DOI: 10.1002/jcb.20981] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyclin-dependent kinases (cdks) are the catalytic subunits of a large family of serine/threonine protein kinases whose best-characterized members are key regulators of eukaryotic cell cycle progression. They are activated by binding to regulatory subunits generally termed as cyclins. Cdk10 is a cdc2-related kinase that contains the canonical regulatory Tyr and Thr residues present in all protein kinases and a PSTAIRE-like motif named PISSLRE. Although little is known about this protein, human cdk10 has been shown to encode two different isoforms, each having a distinct function. They differ at both the carboxy- and amino-terminals, although most of the amino acid sequence is predicted to be identical for the two isoforms. A role at the G2/M transition has been suggested for an isoform of cdk10, while the alternative splicing form interacts with the N-terminus of the Ets2 transcription factor. Here we report the cloning and the functional characterization of a cDNA encoding the murine homologue of cdk10. Unlike its human counterpart, only one murine cdk10 protein has been identified, and this unique murine cdk10 cDNA encodes a putative protein of 360 amino acids. Comparison of the amino acid sequences of murine and human cdk10 shows high homology. Murine cdk10 binds Ets2 transcription factors in vitro, does not show a direct involvement in the G2/M transition and, therefore, does not affect the proliferation rate of the cell lines analyzed.
Collapse
Affiliation(s)
- Luigi Bagella
- Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA.
| | | | | | | |
Collapse
|
63
|
Roignant JY, Hamel S, Janody F, Treisman JE. The novel SAM domain protein Aveugle is required for Raf activation in the Drosophila EGF receptor signaling pathway. Genes Dev 2006; 20:795-806. [PMID: 16600911 PMCID: PMC1447592 DOI: 10.1101/gad.1390506] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Activation of the Raf kinase by GTP-bound Ras is a poorly understood step in receptor tyrosine kinase signaling pathways. One such pathway, the epidermal growth factor receptor (EGFR) pathway, is critical for cell differentiation, survival, and cell cycle regulation in many systems, including the Drosophila eye. We have identified a mutation in a novel gene, aveugle, based on its requirement for normal photoreceptor differentiation. The phenotypes of aveugle mutant cells in the eye and wing imaginal discs resemble those caused by reduction of EGFR pathway function. We show that aveugle is required between ras and raf for EGFR signaling in the eye and for mitogen-activated protein kinase phosphorylation in cell culture. aveugle encodes a small protein with a sterile alpha motif (SAM) domain that can physically interact with the scaffold protein connector enhancer of Ksr (Cnk). We propose that Aveugle acts together with Cnk to promote Raf activation, perhaps by recruiting an activating kinase.
Collapse
Affiliation(s)
- Jean-Yves Roignant
- Skirball Institute for Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | |
Collapse
|
64
|
Sridhar J, Akula N, Pattabiraman N. Selectivity and potency of cyclin-dependent kinase inhibitors. AAPS JOURNAL 2006; 8:E204-21. [PMID: 16584130 PMCID: PMC2751441 DOI: 10.1208/aapsj080125] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Members of the cyclin-dependent kinase (CDK) family play key roles in various cellular processes. There are 11 members of the CDK family known till now. CDKs are activated by forming noncovalent complexes with cyclins such as A-, B-, C-, D- (D1, D2, and D3), and E-type cyclins. Each isozyme of this family is responsible for particular aspects (cell signaling, transcription, etc) of the cell cycle, and some of the CDK isozymes are specific to certain kinds of tissues. Aberrant expression and overexpression of these kinases are evidenced in many disease conditions. Inhibition of isozymes of CDKs specifically can yield beneficiary treatment modalities with minimum side effects. More than 80 3-dimensional structures of CDK2, CDK5, and CDK6 complexed with inhibitors have been published. This review provides an understanding of the structural aspects of CDK isozymes and binding modes of various known CDK inhibitors so that these kinases can be better targeted for drug discovery and design. The amino acid residues that constitute the cyclin binding region, the substrate binding region, and the area around the adenosine triphosphate (ATP) binding site have been compared for CDK isozymes. Those amino acids at the ATP binding site that could be used to improve the potency and subtype specificity have been described.
Collapse
Affiliation(s)
- Jayalakshmi Sridhar
- />Laboratory for In-silico Biology and Drug Discovery, Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Room W417, 3970 Reservoir Rd NW, 20005 Washington, DC
| | - Nagaraju Akula
- />Laboratory for In-silico Biology and Drug Discovery, Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Room W417, 3970 Reservoir Rd NW, 20005 Washington, DC
| | - Nagarajan Pattabiraman
- />Laboratory for In-silico Biology and Drug Discovery, Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Room W417, 3970 Reservoir Rd NW, 20005 Washington, DC
- />Department of Biochemistry & Molecular Biology, Georgetown University, Washington DC
| |
Collapse
|
65
|
Buggy Y, Maguire TM, McDermott E, Hill ADK, O'Higgins N, Duffy MJ. Ets2 transcription factor in normal and neoplastic human breast tissue. Eur J Cancer 2005; 42:485-91. [PMID: 16380248 DOI: 10.1016/j.ejca.2005.10.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 10/13/2005] [Accepted: 10/27/2005] [Indexed: 11/25/2022]
Abstract
The Ets family of transcription factors regulate the expression of multiple genes involved in tumour formation and progression. The aim of this work was to test the hypothesis that the expression of Ets2 in breast cancers was associated with parameters of tumour progression and metastasis. Using reverse-transcriptase polymerase chain reaction (RT-PCR), Ets2 mRNA was detected in 69% of 181 breast carcinomas, 63% of 43 fibroadenomas and 47% of 43 specimens of normal breast tissue. Levels were significantly higher in carcinomas compared with normal breast tissue (P = 0.006). Using Western blotting, Ets2 protein was found to migrate as two bands with molecular masses of 52 kDa (p52) and 54kDa (p54). Levels of both proteins were significantly higher in the carcinomas compared with both fibroadenomas (P = 0.0001) and normal breast tissue (P = 0.0001). In the carcinomas, a significant relationship was found between the p52 and p54 form of Ets2 (r = 0.51, P < 0.0001; Spearman correlation). Also, in the carcinomas, a significant correlation was found between both forms of Ets2 protein and urokinase plasminogen activator (uPA) (for p52, r = 0.43, P = 0.0005, n = 68; for p54, r = 0.50, P = 0.0001, n = 68). As Ets2 binding sites are present on the uPA promoter, Ets2 may be one of the transcription factors regulating uPA expression in human breast cancer.
Collapse
Affiliation(s)
- Y Buggy
- UCD School of Medicine and Medical Science, Conway Institute of Biomolecular and Biomedical Research, Dublin 4, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
66
|
Sun M, Li Z, Zhang Y, Zheng Q, Sun CC. Homology modeling and docking study of cyclin-dependent kinase (CDK) 10. Bioorg Med Chem Lett 2005; 15:2851-6. [PMID: 15911267 DOI: 10.1016/j.bmcl.2005.03.088] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 03/19/2005] [Accepted: 03/23/2005] [Indexed: 11/18/2022]
Abstract
In order to understand the mechanisms of ligand binding and the interaction between the ligand and the cyclin-dependent kinase 10 (CDK10), a three-dimensional (3D) model of the CDK10 is generated based on the crystal structure of the cyclin-dependent kinase 2 (CDK2) (PDB code 1AQ1) by using InsightII/Homology module. With the aid of the molecular mechanics and molecular dynamics methods, the last refined model is obtained and is further assessed by PROFILE-3D and PROSTAT, which show that the refined model is reliable. With this model, a flexible docking study is performed and the results indicate that the Lys39 and Asp94 form hydrogen bonds and have strong nonbonding interaction with adenosine 5'-triphosphate (ATP). From the docking studies, we also suggest that the Leu141, Tyr21, and Val24 in CDK10 are three important determinant residues in binding as they have strong nonbonding interaction with ATP. The hydrogen bonding interactions also play an important role for the stability of the complex. Our results may be helpful for further experimental investigations.
Collapse
Affiliation(s)
- Miao Sun
- Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun, PR China
| | | | | | | | | |
Collapse
|
67
|
Malumbres M, Barbacid M. Mammalian cyclin-dependent kinases. Trends Biochem Sci 2005; 30:630-41. [PMID: 16236519 DOI: 10.1016/j.tibs.2005.09.005] [Citation(s) in RCA: 899] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2005] [Revised: 08/11/2005] [Accepted: 09/15/2005] [Indexed: 02/02/2023]
Abstract
Cyclin-dependent kinases (Cdks) are the catalytic subunits of a family of mammalian heterodimeric serine/threonine kinases that have been implicated in the control of cell-cycle progression, transcription and neuronal function. Recent genetic evidence obtained with gene-targeted mice has shown that Cdk4 and Cdk6 are not needed for entry into the cell cycle after mitogenic stimuli and organogenesis; however, they are essential for the proliferation of some endocrine and hematopoietic cells. Cdk2 is also dispensable for the mitotic cell cycle. Indeed, mice without Cdk2 are normal except for their complete sterility: unexpectedly, Cdk2 is crucial for the first meiotic division of male and female germ cells. These findings have important implications both for our current understanding of the role of Cdks in regulating the mammalian cell cycle and for their potential use as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Marcos Malumbres
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, Melchor Fernández Almagro 3, E-28029 Madrid, Spain.
| | | |
Collapse
|
68
|
Brown JH, Bihoreau MT, Hoffmann S, Kränzlin B, Tychinskaya I, Obermüller N, Podlich D, Boehn SN, Kaisaki PJ, Megel N, Danoy P, Copley RR, Broxholme J, Witzgall R, Lathrop M, Gretz N, Gauguier D. Missense mutation in sterile alpha motif of novel protein SamCystin is associated with polycystic kidney disease in (cy/+) rat. J Am Soc Nephrol 2005; 16:3517-26. [PMID: 16207829 DOI: 10.1681/asn.2005060601] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (PKD) is the most common genetic disease that leads to kidney failure in humans. In addition to the known causative genes PKD1 and PKD2, there are mutations that result in cystic changes in the kidney, such as nephronophthisis, autosomal recessive polycystic kidney disease, or medullary cystic kidney disease. Recent efforts to improve the understanding of renal cystogenesis have been greatly enhanced by studies in rodent models of PKD. Genetic studies in the (cy/+) rat showed that PKD spontaneously develops as a consequence of a mutation in a gene different from the rat orthologs of PKD1 and PKD2 or other genes that are known to be involved in human cystic kidney diseases. This article reports the positional cloning and mutation analysis of the rat PKD gene, which revealed a C to T transition that replaces an arginine by a tryptophan at amino acid 823 in the protein sequence. It was determined that Pkdr1 is specifically expressed in renal proximal tubules and encodes a novel protein, SamCystin, that contains ankyrin repeats and a sterile alpha motif. The characterization of this protein, which does not share structural homologies with known polycystins, may give new insights into the pathophysiology of renal cyst development in patients.
Collapse
Affiliation(s)
- Joanna H Brown
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Kim CA, Sawaya MR, Cascio D, Kim W, Bowie JU. Structural Organization of a Sex-comb-on-midleg/Polyhomeotic Copolymer. J Biol Chem 2005; 280:27769-75. [PMID: 15905166 DOI: 10.1074/jbc.m503055200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The polycomb group proteins are required for the stable maintenance of gene repression patterns established during development. They function as part of large multiprotein complexes created via a multitude of protein-protein interaction domains. Here we examine the interaction between the SAM domains of the polycomb group proteins polyhomeotic (Ph) and Sex-comb-on-midleg (Scm). Previously we showed that Ph-SAM polymerizes as a helical structure. We find that Scm-SAM also polymerizes, and a crystal structure reveals an architecture similar to the Ph-SAM polymer. These results suggest that Ph-SAM and Scm-SAM form a copolymer. Binding affinity measurements between Scm-SAM and Ph-SAM subunits in different orientations indicate a preference for the formation of a single junction copolymer. To provide a model of the copolymer, we determined the structure of the Ph-SAM/Scm-SAM junction. Similar binding modes are observed in both homo- and heterocomplex formation with minimal change in helix axis direction at the polymer joint. The copolymer model suggests that polymeric Scm complexes could extend beyond the local domains of polymeric Ph complexes on chromatin, possibly playing a role in long range repression.
Collapse
Affiliation(s)
- Chongwoo A Kim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
70
|
Qiao F, Bowie JU. The many faces of SAM. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2005; 2005:re7. [PMID: 15928333 DOI: 10.1126/stke.2862005re7] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Protein-protein interactions are essential for the assembly, regulation, and localization of functional protein complexes in the cell. SAM domains are among the most abundant protein-protein interaction motifs in organisms from yeast to humans. Although SAM domains adopt similar folds, they are remarkably versatile in their binding properties. Some identical SAM domains can interact with each other to form homodimers or polymers. In other cases, SAM domains can bind to other related SAM domains, to non-SAM domain-containing proteins, and even to RNA. Such versatility earns them functional roles in myriad biological processes, from signal transduction to transcriptional and translational regulation. In this review, we describe the structural basis of SAM domain interactions and highlight their roles in the scaffolding of protein complexes in normal and pathological processes.
Collapse
Affiliation(s)
- Feng Qiao
- U.S. Department of Energy (UCLA-DOE) Institute of Genomics and Proteomics, Molecular Biology Institute, Department of Chemistry and Biochemistry, UCLA, CA 90095, USA
| | | |
Collapse
|
71
|
Busold CH, Winter S, Hauser N, Bauer A, Dippon J, Hoheisel JD, Fellenberg K. Integration of GO annotations in Correspondence Analysis: facilitating the interpretation of microarray data. Bioinformatics 2005; 21:2424-9. [PMID: 15746280 DOI: 10.1093/bioinformatics/bti367] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION The functional interpretation of microarray datasets still represents a time-consuming and challenging task. Up to now functional categories that are relevant for one or more experimental context(s) have been commonly extracted from a set of regulated genes and presented in long lists. RESULTS To facilitate interpretation, we integrated Gene Ontology (GO) annotations into Correspondence Analysis to display genes, experimental conditions and gene-annotations in a single plot. The position of the annotations in these plots can be directly used for the functional interpretation of clusters of genes or experimental conditions without the need for comparing long lists of annotations. Correspondence Analysis is not limited in the number of experimental conditions that can be compared simultaneously, allowing an easy identification of characterizing annotations even in complex experimental settings. Due to the rapidly increasing amount of annotation data available, we apply an annotation filter. Hereby the number of displayed annotations can be significantly reduced to a set of descriptive ones, further enhancing the interpretability of the plot. We validated the method on transcription data from Saccharomyces cerevisiae and human pancreatic adenocarcinomas. AVAILABILITY The M-CHiPS software is accessible for collaborators at http://www.mchips.org
Collapse
Affiliation(s)
- Christian H Busold
- Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
72
|
Bhattacharjya S, Xu P, Gingras R, Shaykhutdinov R, Wu C, Whiteway M, Ni F. Solution structure of the dimeric SAM domain of MAPKKK Ste11 and its interactions with the adaptor protein Ste50 from the budding yeast: implications for Ste11 activation and signal transmission through the Ste50-Ste11 complex. J Mol Biol 2005; 344:1071-87. [PMID: 15544813 DOI: 10.1016/j.jmb.2004.09.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 09/08/2004] [Accepted: 09/12/2004] [Indexed: 11/18/2022]
Abstract
Ste11, a homologue of mammalian MAPKKKs, together with its binding partner Ste50 works in a number of MAPK signaling pathways of Saccharomyces cerevisiae. Ste11/Ste50 binding is mediated by their sterile alpha motifs or SAM domains, of which homologues are also found in many other intracellular signaling and regulatory proteins. Here, we present the solution structure of the SAM domain or residues D37-R104 of Ste11 and its interactions with the cognate SAM domain-containing region of Ste50, residues M27-Q131. NMR pulse-field-gradient (PFG) and rotational correlation time measurements (tauc) establish that the Ste11 SAM domain exists predominantly as a symmetric dimer in solution. The solution structure of the dimeric Ste11 SAM domain consists of five well-defined helices per monomer packed into a compact globular structure. The dimeric structure of the SAM domain is maintained by a novel dimer interface involving interactions between a number of hydrophobic residues situated on helix 4 and at the beginning of the C-terminal long helix (helix 5). The dimer structure may also be stabilized by potential salt bridge interactions across the interface. NMR H/2H exchange experiments showed that binding of the Ste50 SAM to the Ste11 SAM very likely involves the positively charged extreme C-terminal region as well as exposed hydrophobic patches of the dimeric Ste11 SAM domain. The dimeric structure of the Ste11 SAM and its interactions with the Ste50 SAM may have important roles in the regulation and activation of the Ste11 kinase and signal transmission and amplifications through the Ste50-Ste11 complex.
Collapse
Affiliation(s)
- Surajit Bhattacharjya
- Biomolecular NMR and Protein Research, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Que., H4P 2R2, Canada
| | | | | | | | | | | | | |
Collapse
|
73
|
Foulds CE, Nelson ML, Blaszczak AG, Graves BJ. Ras/mitogen-activated protein kinase signaling activates Ets-1 and Ets-2 by CBP/p300 recruitment. Mol Cell Biol 2004; 24:10954-64. [PMID: 15572696 PMCID: PMC533975 DOI: 10.1128/mcb.24.24.10954-10964.2004] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cell signaling affects gene expression by regulating the activity of transcription factors. Here, we report that mitogen-activated protein kinase (MAPK) phosphorylation of Ets-1 and Ets-2, at a conserved site N terminal to their Pointed (PNT) domains, resulted in enhanced transactivation by preferential recruitment of the coactivators CREB binding protein (CBP) and p300. We discovered this phosphorylation-augmented interaction in an unbiased affinity chromatography screen of HeLa nuclear extracts by using either mock-treated or ERK2-phosphorylated ETS proteins as ligands. Binding between purified proteins demonstrated a direct interaction. Both the phosphoacceptor site, which lies in an unstructured region, and the PNT domain were required for the interaction. Minimal regions that were competent for induced CBP/p300 binding in vitro also supported MAPK-enhanced transcription in vivo. CBP coexpression potentiated MEK1-stimulated Ets-2 transactivation of promoters with Ras-responsive elements. Furthermore, CBP and Ets-2 interacted in a phosphorylation-enhanced manner in vivo. This study describes a distinctive interface for a transcription factor-coactivator complex and demonstrates a functional role for inducible CBP/p300 binding. In addition, our findings decipher the mechanistic link between Ras/MAPK signaling and two specific transcription factors that are relevant to both normal development and tumorigenesis.
Collapse
Affiliation(s)
- Charles E Foulds
- Huntsman Cancer Institute, 2000 Circle of Hope, University of Utah, Salt Lake City, UT 84112-5550, USA
| | | | | | | |
Collapse
|
74
|
Moore PS, Barbi S, Donadelli M, Costanzo C, Bassi C, Palmieri M, Scarpa A. Gene expression profiling after treatment with the histone deacetylase inhibitor trichostatin A reveals altered expression of both pro- and anti-apoptotic genes in pancreatic adenocarcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1693:167-76. [PMID: 15363630 DOI: 10.1016/j.bbamcr.2004.07.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 06/24/2004] [Accepted: 07/12/2004] [Indexed: 12/17/2022]
Abstract
The histone deacetylase inhibitor trichostatin A (TSA) has been previously shown to block cellular growth in G2 and induce apoptosis in human pancreatic cancer cell lines. In order to better understand this phenomenon, we have analyzed the gene expression profiles in PaCa44 cells after treatment with TSA using microarrays containing 22,283 probesets. TSA was found to cause both the induction and repression of a large number of genes, although the number whose expression was up-regulated was greater than the number of genes that were down-regulated. When a threshold value of 3 was used as a cutoff level, a total of 306 (3.4%) of the detectable genes had altered expression. When categorized according to cellular function, the differentially expressed genes were found to be involved in a wide variety of cellular processes, including cell proliferation, signaling, regulation of transcription, and apoptosis. Moreover, Sp1/Sp3 transcription factor binding sites were significantly more abundant among TSA-induced genes. One prominent feature was the increased ratio between the levels of expression of pro-apoptotic (BIM) and anti-apoptotic (Bcl-XL and Bcl-W) genes. This result was confirmed in eight additional pancreatic cancer cell lines after treatment with TSA, suggesting that this event may be a strong determinant for the induction of apoptosis by TSA.
Collapse
Affiliation(s)
- Patrick S Moore
- Dipartimento di Patologia, Università degli Studi di Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | | | | | | | | | | | | |
Collapse
|
75
|
Guo Z, Stiller JW. Comparative genomics of cyclin-dependent kinases suggest co-evolution of the RNAP II C-terminal domain and CTD-directed CDKs. BMC Genomics 2004; 5:69. [PMID: 15380029 PMCID: PMC521075 DOI: 10.1186/1471-2164-5-69] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Accepted: 09/20/2004] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cyclin-dependent kinases (CDKs) are a large family of proteins that function in a variety of key regulatory pathways in eukaryotic cells, including control over the cell cycle and gene transcription. Among the most important and broadly studied of these roles is reversible phosphorylation of the C-terminal domain (CTD) of RNA polymerase II, part of a complex array of CTD/protein interactions that coordinate the RNAP II transcription cycle. The RNAP CTD is strongly conserved in some groups of eukaryotes, but highly degenerate or absent in others; the reasons for these differences in stabilizing selection on CTD structure are not clear. Given the importance of reversible phosphorylation for CTD-based transcription, the distribution and evolutionary history of CDKs may be a key to understanding differences in constraints on CTD structure; however, the origins and evolutionary relationships of CTD kinases have not been investigated thoroughly. Moreover, although the functions of most CDKs are reasonably well studied in mammals and yeasts, very little is known from most other eukaryotes. RESULTS Here we identify 123 CDK family members from animals, plants, yeasts, and four protists from which genome sequences have been completed, and 10 additional CDKs from incomplete genome sequences of organisms with known CTD sequences. Comparative genomic and phylogenetic analyses suggest that cell-cycle CDKs are present in all organisms sampled in this study. In contrast, no clear orthologs of transcription-related CDKs are identified in the most putatively ancestral eukaryotes, Trypanosoma or Giardia. Kinases involved in CTD phosphorylation, CDK7, CDK8 and CDK9, all are recovered as well-supported and distinct orthologous families, but their relationships to each other and other CDKs are not well-resolved. Significantly, clear orthologs of CDK7 and CDK8 are restricted to only those organisms belonging to groups in which the RNAP II CTD is strongly conserved. CONCLUSIONS The apparent origins of CDK7 and CDK8, or at least their conservation as clearly recognizable orthologous families, correlate with strong stabilizing selection on RNAP II CTD structure. This suggests co-evolution of the CTD and these CTD-directed CDKs. This observation is consistent with the hypothesis that CDK7 and CDK8 originated at about the same time that the CTD was canalized as the staging platform RNAP II transcription. Alternatively, extensive CTD phosphorylation may occur in only a subset of eukaryotes and, when present, this interaction results in greater stabilizing selection on both CTD and CDK sequences. Overall, our results suggest that transcription-related kinases originated after cell-cycle related CDKs, and became more evolutionarily and functionally diverse as transcriptional complexity increased.
Collapse
Affiliation(s)
- Zhenhua Guo
- Department of Biology, East Carolina University, Howell Science Complex N 108, Greenville, NC 27858, USA
| | - John W Stiller
- Department of Biology, East Carolina University, Howell Science Complex N 108, Greenville, NC 27858, USA
| |
Collapse
|
76
|
Shojaei F, Gallacher L, Bhatia M. Differential gene expression of human stem progenitor cells derived from early stages of in utero human hematopoiesis. Blood 2004; 103:2530-40. [PMID: 14656878 DOI: 10.1182/blood-2003-09-3209] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractHematopoietic stem progenitor cells (HSPCs) are highly enriched in a rare subset of Lin-CD34+CD38- cells. Independent of stage of human development, HSPC function segregates to the subset of Lin-CD34+CD38- cells. However, fetal-derived HSPCs demonstrate distinct self-renewal and differentiation capacities compared with their adult counterparts. Here, to characterize the molecular nature of fetal HSPCs, suppressive subtractive hybridization was used to compare gene expression of HSPCs isolated from fetal blood (FB-HSPCs) versus adult mobilized peripheral blood (MPB-HSPCs). We identified 97 differentially expressed genes that could be annotated into distinct groups that include transcription factors, cell cycle regulators, and genes involved in signal transduction. Candidate regulators, such as Lim only domain-2 (LMO2), nuclear factor–kappa B (NF-κB), tripartite motif 28 (Trim28), and N-myc protooncogene (MYCN), and a novel homeobox gene product were among transcripts that were found to be differentially expressed and could be associated with specific proliferation and differentiation properties unique to FB-HSPCs. Interestingly, the majority of genes associated with signal transduction belong to Ras pathway, highlighting the significance of Ras signaling in FB-HSPCs. Genes differentially expressed in FB-HSPCs versus adult MPB-HSPCs were verified using quantitative real-time polymerase chain reaction (Q-PCR). This approach also resulted in the identification of a transcript that is highly expressed in FB-HSPCs but not detectable in more differentiated Lin-CD34+CD38+ FB progenitors. Our investigation represents the first study to compare phenotypically similar, but functionally distinct, HSPC populations and to provide a gene profile of unique human HSPCs with higher proliferative capacity derived from early in utero human blood development.
Collapse
Affiliation(s)
- Farbod Shojaei
- Robarts Research Institute, Stem Cell Biology and Regenerative Medicine, London, ON, Canada
| | | | | |
Collapse
|
77
|
Abstract
Targeted therapies for hematological malignancies have come of age since the advent of all trans retinoic acid (ATRA) for treating APL and STI571/Imatinib Mesylate/Gleevec for CML. There are good molecular targets for other malignancies and several new drugs are in clinical trials. In this review, we will concentrate on individual abnormalities that exist in the myelodysplastic syndromes (MDS) and myeloid leukemias that are targets for small molecule therapies (summarised in Fig. 1). We will cover fusion proteins that are produced as a result of translocations, including BCR-ABL, the FLT3 tyrosine kinase receptor and RAS. Progression of diseases such as MDS to secondary AML occur as a result of changes in the balance between cell proliferation and apoptosis and we will review targets in both these areas, including reversal of epigenetic silencing of genes such as p15(INK4B).
Collapse
Affiliation(s)
- Alison M John
- Leukaemia Sciences Laboratories, Department of Haematological Medicine, Guy's, King's and St Thomas' School of Medicine, King's College London, The Rayne Institute, 123 Coldharbour Lane, London SE5 9NU, UK
| | | | | | | |
Collapse
|
78
|
Abstract
The Ets family of transcription factors characterized by an evolutionarily-conserved DNA-binding domain regulates expression of a variety of viral and cellular genes by binding to a purine-rich GGAA/T core sequence in cooperation with other transcriptional factors and co-factors. Most Ets family proteins are nuclear targets for activation of Ras-MAP kinase signaling pathway and some of them affect proliferation of cells by regulating the immediate early response genes and other growth-related genes. Some of them also regulate apoptosis-related genes. Several Ets family proteins are preferentially expressed in specific cell lineages and are involved in their development and differentiation by increasing the enhancer or promoter activities of the genes encoding growth factor receptors and integrin families specific for the cell lineages. Many Ets family proteins also modulate gene expression through protein-protein interactions with other cellular partners. Deregulated expression or formation of chimeric fusion proteins of Ets family due to proviral insertion or chromosome translocation is associated with leukemias and specific types of solid tumors. Several Ets family proteins also participate in malignancy of tumor cells including invasion and metastasis by activating the transcription of several protease genes and angiogenesis-related genes.
Collapse
Affiliation(s)
- Tsuneyuki Oikawa
- Department of Cell Genetics, Sasaki Institute, 2-2 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | | |
Collapse
|
79
|
Ramachander R, Kim CA, Phillips ML, Mackereth CD, Thanos CD, McIntosh LP, Bowie JU. Oligomerization-dependent association of the SAM domains from Schizosaccharomyces pombe Byr2 and Ste4. J Biol Chem 2002; 277:39585-93. [PMID: 12171939 DOI: 10.1074/jbc.m207273200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SAM (sterile alpha motif) domains are protein-protein interaction modules found in a large number of regulatory proteins. Byr2 and Ste4 are two SAM domain-containing proteins in the mating pheromone response pathway of the fission yeast, Schizosaccharomyces pombe. Byr2 is a mitogen-activated protein kinase kinase kinase that is regulated by Ste4. Tu et al. (Tu, H., Barr, M., Dong, D. L., and Wigler, M. (1997) Mol. Cell. Biol. 17, 5876-5887) showed that the isolated SAM domain of Byr2 binds a fragment of Ste4 that contains both a leucine zipper (Ste4-LZ) domain as well as a SAM domain, suggesting that Byr2-SAM and Ste4-SAM may form a hetero-oligomer. Here, we show that the individual SAM domains of Ste4 and Byr2 are monomeric at low concentrations and bind to each other in a 1:1 stoichiometry with a relatively weak dissociation constant of 56 +/- 3 microm. Inclusion of the Ste4-LZ domain, which determines the oligomeric state of Ste4, has a dramatic effect on binding affinity, however. We find that the Ste4-LZ domain is trimeric and, when included with the Ste4-SAM domain, yields a 3:1 Ste4-LZ-SAM:Byr2-SAM complex with a tight dissociation constant of 19 +/- 4 nm. These results suggest that the Ste4-LZ-SAM protein may recognize multiple binding sites on Byr2-SAM, indicating a new mode of oligomeric organization for SAM domains. The fact that high affinity binding occurs only with the addition of an oligomerization domain suggests that it may be necessary to include ancillary oligomerization modules when searching for binding partners of SAM domains.
Collapse
Affiliation(s)
- Ranjini Ramachander
- Department of Chemistry and Biochemistry, Molecular Biology Institute, and the UCLA-DOE Laboratory of Structural Biology and Molecular Medicine, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
80
|
Abstract
Abnormalities in the normal regulation of the cell cycle are a hallmark of neoplasia. Drugs directed against the cyclin-dependent kinases (CDKs), which govern the normal orderly progression through the cell cycle, have been proposed to address the pathogenic defect in tumors. Recently, CDK family members that do not regulate the cell cycle directly but instead influence transcription (CDK7, CDK8, and CDK9) and neuronal and secretory cell function (CDK5) have been described. Continued synthetic chemistry efforts have defined important new selective inhibitors of CDKs, and strategies directed at newly described CDK-related targets, such as transcription control, can now be envisaged. CDKs remain important and novel targets whose potential needs to be more fully explored, albeit in light of the newly emerging complexities of their cellular physiology.
Collapse
Affiliation(s)
- Edward A Sausville
- Developmental Therapeutics Program, National Cancer Institute, Executive Plaza North Room 8018, 6130 Executive Boulevard, Rockville, MD 20852, USA.
| |
Collapse
|
81
|
Wasylyk C, Schlumberger SE, Criqui-Filipe P, Wasylyk B. Sp100 interacts with ETS-1 and stimulates its transcriptional activity. Mol Cell Biol 2002; 22:2687-702. [PMID: 11909962 PMCID: PMC133711 DOI: 10.1128/mcb.22.8.2687-2702.2002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2001] [Revised: 09/10/2001] [Accepted: 01/04/2002] [Indexed: 12/12/2022] Open
Abstract
The cell nucleus is highly organized into distinct domains that spatially separate physiological processes. One of these domains, the Sp100-promyelocytic leukemia protein nuclear body (NB), is implicated in pathological processes, such as cancer and viral infection, yet its functions remain poorly understood. We show here that Sp100 interacts physically and functionally with ETS-1 and that NB morphology is affected by ETS-1. ETS-1 is a member of the ets family of transcription factors, which are key mediators of physiological and pathological processes. We have found that Sp100 interacts with two regions of ETS-1 (domains A+B and D+E+F). ETS-1 alters NBs while remaining localized throughout the nucleus, apparently by recruitment of the core component Sp100 away from the NBs. Sp100 strongly increases ETS-1 activation of natural and ets-focused promoters, through a mechanism involving the activation (C) domain of ETS-1 in addition to the interaction domains. Sp100 acts as a novel coactivator that potentiates the activator function of ETS-1. Our results provide an important new connection between nuclear structures and an important regulator of gene expression.
Collapse
Affiliation(s)
- Christine Wasylyk
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 67404 Illkirch Cedex, France
| | | | | | | |
Collapse
|