51
|
Li J, Li J, Jia Y. Levels of soluble delta-like ligand 1 in the serum and cerebrospinal fluid of tuberculous meningitis patients. Neural Regen Res 2015; 7:874-8. [PMID: 25737717 PMCID: PMC4342717 DOI: 10.3969/j.issn.1673-5374.2012.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 02/24/2012] [Indexed: 01/20/2023] Open
Abstract
In this study, the levels of soluble delta-like ligand 1 in cerebrospinal fluid and serum of 50 patients with tuberculous meningitis, 30 patients with viral meningitis, 20 patients with purulent meningitis and 40 subjects without central nervous system disease were determined using an enzyme-linked immunosorbent assay. The mean levels of soluble delta-like ligand 1 in both cerebrospinal fluid and serum from patients with tuberculous meningitis were significantly higher compared with those from patients with viral meningitis or purulent meningitis or from subjects without central nervous system disease. Meanwhile, the level of soluble delta-like ligand 1 gradually decreased as tuberculous meningitis patients recovered. If patients deteriorated after treatment, the level of soluble delta-like ligand 1 in cerebrospinal fluid gradually increased. There was no correlation between the level of soluble delta-like ligand 1 and the protein level/cell number in cerebrospinal fluid. Our findings indicate that the levels of soluble delta-like ligand 1 in cerebrospinal fluid and serum are reliable markers for the diagnosis of tuberculous meningitis and for monitoring treatment progress. At the same time, this index is not influenced by protein levels or cell numbers in cerebrospinal fluid.
Collapse
Affiliation(s)
- Jinghong Li
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Jinyi Li
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yanjie Jia
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
52
|
Nguyen D, Rubinstein L, Takebe N, Miele L, Tomaszewski JE, Ivy P, Doroshow JH, Yang SX. Notch1 phenotype and clinical stage progression in non-small cell lung cancer. J Hematol Oncol 2015; 8:9. [PMID: 25653136 PMCID: PMC4343190 DOI: 10.1186/s13045-014-0104-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/30/2014] [Indexed: 02/06/2023] Open
Abstract
Background Notch1 transmembrane receptor is activated through ligand-binding- triggered proteolytic cleavages and, upon release, the intracellular domain (N1-ICD) translocates into the nucleus and modulates target gene transcriptions. Notch activation has been implicated in tumorigenesis in an increasing number of human malignancies including non-small cell lung cancer (NSCLC). However, Notch1 in distinct expression patterns and activation status with tumor progression remains to be defined in NSCLC. Methods Notch1 and activated Notch1, N1-ICD, were examined by immunohistochemistry in 58 cases of stage I to IV NSCLC tumors. Association between Notch1 or N1-ICD expression and clinicopathological factors was assessed via correlation coefficient r statistics. P-values are two-sided. Results Detectable tumor Notch1, predominantly localized to the membrane and cytoplasm, was observed in 29 cases (50%, 95% Blyth-Still-Casella confidence interval 37 – 63%). It was negatively associated with stage (r = - 0.43, P < 0.001) and nodal status (r = - 0.33, P = 0.01), but not tumor size. In contrast, nuclear N1-ICD expression level was low and found in 12% of NSCLC patients, neither significantly associated with stage nor nodal status. Upon Notch1 activation in vitro, a mostly extra-nuclear staining was substantially turned into the nuclear signal in cancer cells. Conclusions Notch1 in the largely inactivated phenotype is inversely associated with clinical stage progression in NSCLC. Notch1, rather than activated N1-ICD, may be a context-dependent restrictive factor to nodal metastasis.
Collapse
Affiliation(s)
- Dat Nguyen
- National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Larry Rubinstein
- Biometric Research Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Naoko Takebe
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Lucio Miele
- Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, New Orleans, LA, USA.
| | - Joseph E Tomaszewski
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Percy Ivy
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Sherry X Yang
- National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
53
|
Shao S, Zhao X, Zhang X, Luo M, Zuo X, Huang S, Wang Y, Gu S, Zhao X. Notch1 signaling regulates the epithelial-mesenchymal transition and invasion of breast cancer in a Slug-dependent manner. Mol Cancer 2015; 14:28. [PMID: 25645291 PMCID: PMC4322803 DOI: 10.1186/s12943-015-0295-3] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/13/2015] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The epithelial-mesenchymal transition (EMT) is crucial for the invasion and metastasis of breast cancer. However, how Notch signaling regulates the EMT process and invasion in breast cancer remains largely unknown. METHODS The impact of Notch1 silencing by specific shRNAs on the EMT and invasion of human breast cancer MCF-7 and MDA-MB-231 cells as well as xenografts was tested by western blot, real-time polymerase chain reaction (RT-PCR), immunofluorescence, transwell, and immunohistochemistry assays. The effect of Slug silencing or upregulation on the EMT and invasion of breast cancer cells was analyzed, and the effect of Notch1 signaling on Slug expression was determined by the luciferase reporter assay. RESULTS The Notch1 intracellular domain (N1ICD) and Jagged1 were expressed in breast cancer cells. Notch1 silencing reversed the spontaneous EMT process and inhibited the migration and invasion of breast cancer cells and the growth of xenograft breast cancers. The expression of N1ICD was upregulated significantly by Jagged1-mediated Notch signaling activation. Moreover, Jagged1-mediated Notch signaling promoted the EMT process, migration, and invasion of breast cancer cells, which were abrogated by Notch silencing. Furthermore, the N1ICD positively regulated the Slug expression by inducing Slug promoter activation. Importantly, the knockdown of Slug weakened the invasion ability of breast cancer cells and reversed the Jagged1-induced EMT process with significantly decreased expression of vimentin and increased expression of E-cadherin. In addition, Slug overexpression restored the Notch1 knockdown-suppressed EMT process. CONCLUSIONS Our novel data indicate that Notch signaling positively regulates the EMT, invasion, and growth of breast cancer cells by inducing Slug expression. The Notch1-Slug signaling axis may represent a potential therapeutic target for breast cancer therapy.
Collapse
Affiliation(s)
- Shan Shao
- The Department of Oncology, the First Hospital Affiliated to the School of Medicine, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, China.
| | - Xiaoai Zhao
- The Department of Oncology, the First Hospital Affiliated to the School of Medicine, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, China.
| | - Xiaojin Zhang
- The Department of Oncology, the First Hospital Affiliated to the School of Medicine, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, China.
| | - Minna Luo
- The Department of Oncology, the First Hospital Affiliated to the School of Medicine, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, China.
| | - Xiaoxiao Zuo
- The Department of Oncology, the First Hospital Affiliated to the School of Medicine, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, China.
| | - Shangke Huang
- The Department of Oncology, the First Hospital Affiliated to the School of Medicine, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, China.
| | - Ying Wang
- The Department of Oncology, the First Hospital Affiliated to the School of Medicine, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, China.
| | - Shanzhi Gu
- The Department of Forensic Medicine, Medical School, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, 710061, Shaanxi Province, China.
| | - Xinhan Zhao
- The Department of Oncology, the First Hospital Affiliated to the School of Medicine, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
54
|
Bizama C, García P, Espinoza JA, Weber H, Leal P, Nervi B, Roa JC. Targeting specific molecular pathways holds promise for advanced gallbladder cancer therapy. Cancer Treat Rev 2015; 41:222-34. [PMID: 25639632 DOI: 10.1016/j.ctrv.2015.01.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 02/07/2023]
Abstract
Gallbladder cancer is the most common and aggressive malignancy of the biliary tract. The complete surgical resection is the only potentially curative approach in early stage; however, most cases are diagnosed in advanced stages and the response to traditional chemotherapy and radiotherapy is extremely limited, with modest impact in overall survival. The recent progress in understanding the molecular alterations of gallbladder cancer has shown great promise for the development of more effective treatment strategies. This has mainly resulted from the identification of molecular alterations in relevant intracellular signaling pathways-Hedgehog, PI3K/AKT/mTOR, Notch, ErbB, MAPK and angiogenesis-which are potential tailored targets for gallbladder cancer patients. This review discusses the recent remarkable progress in understanding the molecular alterations that represent novel prognosis molecular markers and therapeutic targets for gallbladder cancer, which will provide opportunities for research and for developing innovative strategies that may enhance the benefit of conventional chemotherapy, or eventually modify the fatal natural history of this orphan disease.
Collapse
Affiliation(s)
- Carolina Bizama
- Department of Pathology, Center for Investigation in Translational Oncology (CITO), School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Patricia García
- Department of Pathology, Center for Investigation in Translational Oncology (CITO), School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Jaime A Espinoza
- Department of Pathology, Center for Investigation in Translational Oncology (CITO), School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Helga Weber
- Department of Pathology, School of Medicine, Universidad de La Frontera, CEGIN-BIOREN, Temuco 4811230, Chile
| | - Pamela Leal
- Department of Pathology, School of Medicine, Universidad de La Frontera, CEGIN-BIOREN, Temuco 4811230, Chile
| | - Bruno Nervi
- Department of Hematology Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 26767000, Chile
| | - Juan Carlos Roa
- Department of Pathology, Center for Investigation in Translational Oncology (CITO), School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| |
Collapse
|
55
|
High CD133 expression in the nucleus and cytoplasm predicts poor prognosis in non-small cell lung cancer. DISEASE MARKERS 2015; 2015:986095. [PMID: 25691807 PMCID: PMC4323063 DOI: 10.1155/2015/986095] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/08/2014] [Accepted: 12/22/2014] [Indexed: 01/31/2023]
Abstract
Objective. The aim of this study was to investigate the expression of Prominin-1 (CD133) in cancer cells and its potential value as a prognostic indicator of survival in patients with non-small cell lung cancer (NSCLC). Methods. Cancerous tissues and matched normal tissues adjacent to the carcinoma from 239 NSCLC patients were obtained immediately after surgery. Immunohistochemistry of tissue microarrays was used to characterize the expression of CD133 in NSCLC and adjacent tissues. The correlation of CD133 expression with clinical characteristics and prognosis was determined by statistical analysis. Results. CD133 protein expression levels in both the cytoplasm and nucleus were significantly higher in NSCLC tissues compared with corresponding peritumoral tissue (P < 0.05). CD133 expression in the nucleus of NSCLC cells was related to tumor diameter (P = 0.027), tumor differentiation (P < 0.001), and TNM stage (P = 0.007). Kaplan-Meier survival and Cox regression analyses revealed that high CD133 expression in the nucleus was an independent predictor of poor prognosis of NSCLC, as was high cytoplasmic CD133 expression (P < 0.001). Conclusion. Our findings provide the first evidence that high expression of CD133 in both the nucleus and cytoplasm is associated with poor prognosis in NSCLC.
Collapse
|
56
|
Emerging Strategies for the Treatment of Tumor Stem Cells in Central Nervous System Malignancies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 853:167-87. [DOI: 10.1007/978-3-319-16537-0_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
57
|
Baker AT, Zlobin A, Osipo C. Notch-EGFR/HER2 Bidirectional Crosstalk in Breast Cancer. Front Oncol 2014; 4:360. [PMID: 25566499 PMCID: PMC4264417 DOI: 10.3389/fonc.2014.00360] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/27/2014] [Indexed: 12/14/2022] Open
Abstract
The Notch pathway is a well-established mediator of cell-cell communication that plays a critical role in stem cell survival, self-renewal, cell fate decisions, tumorigenesis, invasion, metastasis, and drug resistance in a variety of cancers. An interesting form of crosstalk exists between the Notch receptor and the Epidermal Growth Factor Receptor Tyrosine Kinase family, which consists of HER-1, -2, -3, and -4. Overexpression of HER and/or Notch occurs in several human cancers including brain, lung, breast, ovary, and skin making them potent oncogenes capable of advancing malignant disease. Continued assessment of interplay between these two critical signaling networks uncovers new insight into mechanisms used by HER-driven cancer cells to exploit Notch as a compensatory pathway. The compensatory Notch pathway maintains HER-induced downstream signals transmitted to pathways such as Mitogen Activated Protein Kinase and Phosphatidylinositol 3-Kinase (PI3K), thereby allowing cancer cells to survive molecular targeted therapies, undergo epithelial to mesenchymal transitioning, and increase cellular invasion. Uncovering the critical crosstalk between the HER and Notch pathways can lead to improved screening for the expression of these oncogenes enabling patients to optimize their personal treatment options and predict potential treatment resistance. This review will focus on the current state of crosstalk between the HER and Notch receptors and the effectiveness of current therapies targeting HER-driven cancers.
Collapse
Affiliation(s)
- Andrew T Baker
- Integrative Cell Biology Program, Health Sciences Division, Cardinal Bernardin Cancer Center, Loyola University Chicago , Maywood, IL , USA
| | - Andrei Zlobin
- Health Sciences Division, Cardinal Bernardin Cancer Center, Loyola University Chicago , Maywood, IL , USA
| | - Clodia Osipo
- Integrative Cell Biology Program, Health Sciences Division, Cardinal Bernardin Cancer Center, Loyola University Chicago , Maywood, IL , USA ; Health Sciences Division, Cardinal Bernardin Cancer Center, Loyola University Chicago , Maywood, IL , USA ; Department of Pathology, Health Sciences Division, Cardinal Bernardin Cancer Center, Loyola University Chicago , Maywood, IL , USA
| |
Collapse
|
58
|
Rooney P, Connolly M, Gao W, McCormick J, Biniecka M, Sullivan O, Kirby B, Sweeney C, Molloy E, Markham T, Fearon U, Veale DJ. Notch-1 mediates endothelial cell activation and invasion in psoriasis. Exp Dermatol 2014; 23:113-8. [PMID: 24330353 DOI: 10.1111/exd.12306] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2013] [Indexed: 01/20/2023]
Abstract
Notch receptor-ligand interactions are critical for cell proliferation, differentiation and survival; however, the role of Notch signalling in psoriasis remains to be elucidated. Serum amyloid A (A-SAA) is an acute-phase protein with cytokine-like properties, regulates cell survival pathways and is implicated in many inflammatory conditions. To examine the role of Notch-1 signalling in the pathogenesis of psoriasis, Notch-1, DLL-4, Jagged-1, Hrt-1/Hrt-2, A-SAA, Factor VIII and vascular endothelial growth factor (VEGF) mRNA and/or protein expression in psoriasis skin biopsies, serum and dHMVEC were assessed by immunohistology, dual-immunofluorescence, real-time PCR, ELISA and Western blotting. A-SAA-induced angiogenesis and invasion in the presence of Notch-1 siRNA was assessed by matrigel tube formation assays and Transwell invasion assay. Increased Notch-1, its ligand DLL-4 and Hrt-1 expression were demonstrated in lesional skin compared with non-lesional skin, with greatest expression observed in the dermal vasculature (P < 0.05). Dual-immunofluorescent staining demonstrated co-localization of Notch-1 to endothelial cell marker Factor VIII. A significant increase in A-SAA levels was demonstrated in psoriasis serum compared with healthy control serum (P < 0.05), and A-SAA expression was higher in lesional skin compared with non-lesional. In dHMVEC, A-SAA significantly induced Jagged-1, Hrt-1 and VEGF mRNA expression (P < 0.05) and activated Notch-1 IC indicative of transcriptional regulation. In contrast, A-SAA significantly inhibited DLL-4 mRNA expression (P < 0.05). Finally A-SAA-induced angiogenesis and invasion were inhibited by Notch-1 siRNA (P < 0.05). Notch receptor-ligand interactions mediate vascular dysfunction in psoriasis and may represent a potential therapeutic target.
Collapse
Affiliation(s)
- Peadar Rooney
- Department of Rheumatology, Dublin Academic Medical Centre and the Conway Institute of Biomolecular and Biomedical Research, UCD, Dublin 4, Ireland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
HES1 as an Independent Prognostic Marker in Esophageal Squamous Cell Carcinoma. J Gastrointest Cancer 2014; 45:466-71. [DOI: 10.1007/s12029-014-9648-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
60
|
Developmental pathways activated in melanocytes and melanoma. Arch Biochem Biophys 2014; 563:13-21. [PMID: 25109840 DOI: 10.1016/j.abb.2014.07.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 12/25/2022]
Abstract
Cutaneous malignant melanomas originate primarily within epidermal melanocytic cells. Melanoma cells share many characteristics with melanocyte precursors, suggesting that melanoma cells utilize the developmental programs of their normal counterpart for their own progression. The pigmentation system provides an advantageous model to assess survival pathway interactions in the melanocytic lineage, as genetic alterations controlling melanocyte development can be easily detectable by coat color phenotype that do not affect the viability of an animal. By integrating combinatorial gene knockout approaches, cell-based assays and immunohistochemical observations, recent studies have illustrated several genes and pathways that play important roles both in melanocyte specification and maintenance and in melanoma formation and progression. We are reviewing those genes and pathways to understand the connection between normal and cancerous development and to reveal therapeutic potential of targeting developmental pathways for melanoma therapy.
Collapse
|
61
|
Ishimoto T, Sawayama H, Sugihara H, Baba H. Interaction between gastric cancer stem cells and the tumor microenvironment. J Gastroenterol 2014; 49:1111-20. [PMID: 24652101 DOI: 10.1007/s00535-014-0952-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/05/2014] [Indexed: 02/04/2023]
Abstract
Gastric cancer (GC) remains a leading cause of cancer-related deaths worldwide. Cancer stem cells (CSCs) are selectively capable of tumor initiation and are implicated in tumor relapse and metastasis, thus, governing the prognosis of GC patients. Stromal cells and extracellular matrix adjacent to cancer cells are known to form a supportive environment for cancer progression. CSC properties are also regulated by their microenvironment through cell signaling and related factors. This review presents the current findings regarding the influence of the tumor microenvironment on GC stem cells, which will support the development of novel therapeutic strategies for patients with GC.
Collapse
Affiliation(s)
- Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | | | | | | |
Collapse
|
62
|
Weli SC, Fink T, Cetinkaya C, Prasad MS, Pennisi CP, Zachar V. Notch and hedgehog signaling cooperate to maintain self-renewal of human embryonic stem cells exposed to low oxygen concentration. Int J Stem Cells 2014; 3:129-37. [PMID: 24855550 DOI: 10.15283/ijsc.2010.3.2.129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2010] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Expansion and maintenance of human embryonic stem cells (hESCs) in undifferentiated state is influenced by complex signals in the microenvironment, including those contingent upon oxygen availability. Responses mediated by Notch and Hedgehog (Hh) have essential role in the growth and maintenance of hESCs, therefore this study examined their effect on the self-renewal of hESCs exposed to low oxygen. METHODS AND RESULTS Using potent antagonists γ-secretase inhibitor and cyclopamine, we inhibited Notch and Hh pathways, respectively, in the CLS1 hESC line expanded continuously in a hypoxic atmosphere of 5% oxygen. Immunohistochemical staining and protein assays revealed loss of Oct4 and gain of stage-specific embryonic antigen 1 (SSEA1) markers in the inhibited cells. Semiquantitative real-time RT-PCR, and bromodeoxyuridine and thymidine incorporation assays demonstrated low Oct4 and Nanog mRNA expression, and decreased DNA synthesis, respectively, resulting from the block of each of the pathways. The loss increased significantly with co-inhibition of both pathways. Importantly, Notch and Hh downstream targets, including Hes1, Hey1, GIi1, and Ptc1, were surprisingly suppressed not only by the pathway-specific but also the unrelated inhibitor. CONCLUSIONS These findings demonstrate complementary effect of Notch and Hh signaling in hypoxia enhanced maintenance of hESCs.
Collapse
Affiliation(s)
- Simon C Weli
- Laboratory for Stem Cell Research, Aalborg University, Fredrik Bajers Vej 3B, DK-9220 Aalborg, Denmark
| | - Trine Fink
- Laboratory for Stem Cell Research, Aalborg University, Fredrik Bajers Vej 3B, DK-9220 Aalborg, Denmark
| | - Cihan Cetinkaya
- Laboratory for Stem Cell Research, Aalborg University, Fredrik Bajers Vej 3B, DK-9220 Aalborg, Denmark
| | - Mayuri S Prasad
- Laboratory for Stem Cell Research, Aalborg University, Fredrik Bajers Vej 3B, DK-9220 Aalborg, Denmark
| | - Cristian P Pennisi
- Laboratory for Stem Cell Research, Aalborg University, Fredrik Bajers Vej 3B, DK-9220 Aalborg, Denmark
| | - Vladimir Zachar
- Laboratory for Stem Cell Research, Aalborg University, Fredrik Bajers Vej 3B, DK-9220 Aalborg, Denmark
| |
Collapse
|
63
|
Papagerakis S, Pannone G, Zheng L, About I, Taqi N, Nguyen NPT, Matossian M, McAlpin B, Santoro A, McHugh J, Prince ME, Papagerakis P. Oral epithelial stem cells - implications in normal development and cancer metastasis. Exp Cell Res 2014; 325:111-29. [PMID: 24803391 DOI: 10.1016/j.yexcr.2014.04.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 12/18/2022]
Abstract
Oral mucosa is continuously exposed to environmental forces and has to be constantly renewed. Accordingly, the oral mucosa epithelium contains a large reservoir of epithelial stem cells necessary for tissue homeostasis. Despite considerable scientific advances in stem cell behavior in a number of tissues, fewer studies have been devoted to the stem cells in the oral epithelium. Most of oral mucosa stem cells studies are focused on identifying cancer stem cells (CSC) in oral squamous cell carcinomas (OSCCs) among other head and neck cancers. OSCCs are the most prevalent epithelial tumors of the head and neck region, marked by their aggressiveness and invasiveness. Due to their highly tumorigenic properties, it has been suggested that CSC may be the critical population of cancer cells in the development of OSCC metastasis. This review presents a brief overview of epithelium stem cells with implications in oral health, and the clinical implications of the CSC concept in OSCC metastatic dissemination.
Collapse
Affiliation(s)
- Silvana Papagerakis
- Department of Otolaryngology, Medical School, University of Michigan, Ann Arbor, MI, USA; Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| | - Giuseppe Pannone
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Li Zheng
- Department of Otolaryngology, Medical School, University of Michigan, Ann Arbor, MI, USA; Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Imad About
- Aix-Marseille Université, CNRS, ISM UMR 7287, 13288, Marseille cedex 09, France
| | - Nawar Taqi
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Nghia P T Nguyen
- Department of Otolaryngology, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Margarite Matossian
- Department of Otolaryngology, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Blake McAlpin
- Department of Otolaryngology, Medical School, University of Michigan, Ann Arbor, MI, USA; Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Angela Santoro
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Jonathan McHugh
- Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Mark E Prince
- Department of Otolaryngology, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Petros Papagerakis
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Center for Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, MI, USA; Center for Organogenesis, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
64
|
Peng T, Zhou Y, Li J, Li J, Wan W, Jia Y. Detection of Delta-like 1 ligand for the diagnosis of tuberculous meningitis: An effective and rapid diagnostic method. J Int Med Res 2014; 42:728-36. [PMID: 24651996 DOI: 10.1177/0300060513498669] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/16/2013] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To investigate the diagnostic value of Delta-like 1 ligand (DLL1) in cerebrospinal fluid (CSF) and serum, in tuberculous meningitis (TBM). METHODS Patients with a definite diagnosis of central nervous system infection (TBM, viral meningitis/encephalitis or bacterial meningitis) were prospectively enrolled alongside patients with intracranial metastatic tumour and patients with no diagnosis (who served as controls). DLL1 content in CSF and serum was measured quantitatively by enzyme-linked immunosorbent assay; analyses were blinded. RESULTS A total of 173 patients were enrolled: 62 with TBM; 38 with viral meningitis/encephalitis; 26 with bacterial meningitis; 17 with intracranial metastatic tumour; 30 with no diagnosis. CSF DLL1 content was highest for TBM; there were no differences in CSF DLL1 between the other groups. Serum DLL1 content was highest for the TBM and intracranial metastatic tumour groups, with significant differences between the TBM group and the viral meningitis/encephalitis, bacterial meningitis and nondiagnosed groups. There were no differences in serum DLL1 between the viral meningitis/encephalitis, bacterial meningitis and nondiagnosed groups, or between the TBM group and the tumour group. CONCLUSION As a new biomarker, DLL1 may be of great clinical importance in the diagnosis of TBM.
Collapse
Affiliation(s)
- Tao Peng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Zhou
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinyi Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinghong Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wencui Wan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanjie Jia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
65
|
Wang M, Ma X, Wang J, Wang L, Wang Y. Pretreatment with the γ-secretase inhibitor DAPT sensitizes drug-resistant ovarian cancer cells to cisplatin by downregulation of Notch signaling. Int J Oncol 2014; 44:1401-9. [PMID: 24535252 DOI: 10.3892/ijo.2014.2301] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 01/30/2014] [Indexed: 11/05/2022] Open
Abstract
Notch signaling is implicated in ovarian cancer tumorigenesis and inhibition of Notch signaling with γ-secretase inhibitor DAPT resulted in reduction of tumor cell viability and induction of apoptosis in ovarian cancer cells. This study investigated whether DAPT has the same effect on ovarian cancer cells that are resistant to cisplatin and the underlying molecular events. Ovarian cancer cell lines resistant to cisplatin were treated with DAPT, cisplatin or combination for cell viability MTT, flow cytometric cell cycle, ELISA apoptosis and colony formation assays. qRT-PCR and western blotting were used to detect gene expressions. We found that pretreatment of ovarian cancer cisplatin-resistant cell lines with DAPT for 24 h and then with cisplatin for 72 h showed a synergistic antitumor activity in these cell lines, while cisplatin treatment and then addition of DAPT just showed an additive or antagonistic effects on these cisplatin-resistant ovarian cancer cells. Moreover, pretreatment of ovarian cancer cell lines with DAPT and then with cisplatin also inhibited tumor cell colony formation capacity, arrested tumor cells at G2 phase of the cell cycle and induced apoptosis. The cell cycle and apoptosis-related genes, such as cyclin B1, Bcl-2 and caspase-3, were also modulated by the treatment. Pretreatment of ovarian cancer cell lines with DAPT and then with cisplatin downregulated Notch1 and Hes1 expression dose- and time-dependently. The current data demonstrate that DAPT pretreatment was able to sensitize cisplatin-resistant human ovarian cancer cells to cisplatin by downregulation of Notch signaling.
Collapse
Affiliation(s)
- Mingyi Wang
- Department of Obstetrics and Gynecology, General Hospital of the People's Liberation Army, Chengdu Military Region, P.R. China
| | - Xiangdong Ma
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Jian Wang
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Lin Wang
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Yu Wang
- Department of Obstetrics and Gynecology, General Hospital of the People's Liberation Army, Chengdu Military Region, P.R. China
| |
Collapse
|
66
|
PAX3-FOXO1 induces up-regulation of Noxa sensitizing alveolar rhabdomyosarcoma cells to apoptosis. Neoplasia 2014; 15:738-48. [PMID: 23814486 DOI: 10.1593/neo.121888] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 04/05/2013] [Accepted: 04/11/2013] [Indexed: 02/08/2023] Open
Abstract
Alveolar rhabdomyosarcoma (ARMS) has a much poorer prognosis than the more common embryonal subtype. Most ARMS tumors characteristically possess a specific genomic translocation between the genes of PAX3/7 and FOXO1 (FKHR), which forms fusion proteins possessing the DNA binding domains of PAX3/7 and the more transcriptionally potent transactivation domain of FOXO1. We have shown that the proapoptotic BH3-only family member Noxa is upregulated by the PAX3-FOXO1 fusion transcription factor in a p53-independent manner. The increased expression of Noxa renders PAX3-FOXO1-expressing cells more susceptible to apoptosis induced by a γ-secretase inhibitor (GSI1, Z-LLNle-CHO), the proteasome inhibitor bortezomib, and BH3 mimetic ABT-737. Apoptosis in response to bortezomib can be overcome by shRNA knockdown of Noxa. In vivo treatment with bortezomib reduced the growth of tumors derived from a PAX3-FOXO1-expressing primary myoblast tumor model and RH41 xenografts. We therefore demonstrate that PAX3-FOXO1 up-regulation of Noxa represents an unanticipated aspect of ARMS tumor biology that creates a therapeutic window to allow induction of apoptosis in ARMS cells.
Collapse
|
67
|
Abstract
During the last decade a considerable amount of data have been accumulated regarding the role of intracellular signaling pathways in the pathogenesis of human diseases. One of these, Notch signaling, well known for its significance in cellular development and tissue morphogenesis, has been increasingly recognized as a crucial participant in the pathogenetic mechanisms underlying certain skeletal disorders. A better understanding of the biology and regulation of this multifaceted pathway is considered an important step towards clarification of the pathogenesis of various skeletal diseases and the development of novel targets for therapeutic purposes.
Collapse
Affiliation(s)
- Maria P Yavropoulou
- Division of Endocrinology and Metabolism, Laboratory of Molecular Endocrinology, 1st Department of Medicine, ΑHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - John G Yovos
- Division of Endocrinology and Metabolism, Laboratory of Molecular Endocrinology, 1st Department of Medicine, ΑHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
68
|
Lung cancer. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
69
|
Neradugomma NK, Subramaniam D, Tawfik OW, Goffin V, Kumar TR, Jensen RA, Anant S. Prolactin signaling enhances colon cancer stemness by modulating Notch signaling in a Jak2-STAT3/ERK manner. Carcinogenesis 2013; 35:795-806. [PMID: 24265293 DOI: 10.1093/carcin/bgt379] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Prolactin (PRL) is a secretory cytokine produced by various tissues. Binding to the cognate PRL receptor (PRLR), it activates intracellular signaling via janus kinase (JAK), extracellular signal-regulated kinase (ERK) and signal transducer and activator of transcription (STAT) proteins. PRL regulates diverse activities under normal and abnormal conditions, including malignancies. Previous clinical data suggest serum PRL levels are elevated in colorectal cancer (CRC) patients. In this study, we first determined the expression of PRL and PRLR in colon cancer tissue and cell lines. Higher levels of PRLR expression were observed in the cancer cells and cell lines compared with normal colonic epithelial cells. Incubation of colon cancer cells with PRL-induced JAK2, STAT3 and ERK1/2 phosphorylation and increased expression of Jagged 1, which is a Notch-1 receptor ligand. Notch signaling regulates CRC stem cell population. We observed increased accumulation of the cleaved/active form of Notch-1 receptor (Notch intracellular domain) and increased expression of Notch responsive genes HEY1, HES1 and stem cell marker genes DCLK1, LGR5, ALDH1 and CD44. Finally, inhibiting PRL induced JAK2-STAT3 and JAK2-ERK1/2 using AG490 and PD98059, respectively, leads to complete abrogation of Notch signaling, suggesting a role for this pathway in regulating CRC stem cells. Together, our results demonstrate that cytokine signaling induced by PRL is active in colorectal cancers and may provide a novel target for therapeutic intervention.
Collapse
|
70
|
Bonini SA, Ferrari-Toninelli G, Montinaro M, Memo M. Notch signalling in adult neurons: a potential target for microtubule stabilization. Ther Adv Neurol Disord 2013; 6:375-85. [PMID: 24228073 DOI: 10.1177/1756285613490051] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cytoskeletal dysfunction has been proposed during the last decade as one of the main mechanisms involved in the aetiology of several neurodegenerative diseases. Microtubules are basic elements of the cytoskeleton and the dysregulation of microtubule stability has been demonstrated to be causative for axonal transport impairment, synaptic contact degeneration, impaired neuronal function leading finally to neuronal loss. Several pathways are implicated in the microtubule assembly/disassembly process. Emerging evidence is focusing on Notch as a microtubule dynamics regulator. We demonstrated that activation of Notch signalling results in increased microtubule stability and changes in axonal morphology and branching. By contrast, Notch inhibition leads to an increase in cytoskeleton plasticity with intense neurite remodelling. Until now, several microtubule-binding compounds have been tested and the results have provided proof of concept that microtubule-binding agents or compounds with the ability to stabilize microtubules may have therapeutic potential for the treatment of Alzheimer's disease and other neurodegenerative diseases. In this review, based on its key role in cytoskeletal dynamics modulation, we propose Notch as a new potential target for microtubule stabilization.
Collapse
Affiliation(s)
- Sara Anna Bonini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | | | | |
Collapse
|
71
|
Furukawa S, Kawasaki Y, Miyamoto M, Hiyoshi M, Kitayama J, Akiyama T. The miR-1-NOTCH3-Asef pathway is important for colorectal tumor cell migration. PLoS One 2013; 8:e80609. [PMID: 24244701 PMCID: PMC3823710 DOI: 10.1371/journal.pone.0080609] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/15/2013] [Indexed: 01/11/2023] Open
Abstract
The tumor suppressor adenomatous polyposis coli (APC) is mutated in sporadic and familial colorectal tumors. APC stimulates the activity of the Cdc42- and Rac1-specific guanine nucleotide exchange factor Asef and promotes the migration and invasion of colorectal tumor cells. Furthermore, Asef is overexpressed in colorectal tumors and is required for colorectal tumorigenesis. It is also known that NOTCH signaling plays critical roles in colorectal tumorigenesis and fate determination of intestinal progenitor cells. Here we show that NOTCH3 up-regulates Asef expression by activating the Asef promoter in colorectal tumor cells. Moreover, we demonstrate that microRNA-1 (miR-1) is down-regulated in colorectal tumors and that miR-1 has the potential to suppress NOTCH3 expression through direct binding to its 3’-UTR region. These results suggest that the miR-1-NOTCH3-Asef pathway is important for colorectal tumor cell migration and may be a promising molecular target for the treatment of colorectal tumors.
Collapse
Affiliation(s)
- Shiori Furukawa
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
72
|
Abstract
AbstractCurrent therapies against metastatic tumors are still ineffective. Cancer stem cells — a small subset of cells inside the tumor that possesses a self-renewal capacity — might be responsible for the recurrence of the tumor after anti-cancer therapies. Their immortality and unique drug resistance impede their eradication during therapy. The ‘stemness’ of these cells is controlled by microRNAs. These molecules possess the ability to downregulate gene expression by binding to the target mRNA. It turns out that microRNAs control the expression of approximately 60% of the genes in human cells. MicroRNA aberrant expression can lead to cancer development and progression. Therefore, recent research has focused on unraveling the role of microRNA in maintaining a stem-like phenotype in malignant tumors and cancer stem cells. This review summarizes our current knowledge about microRNAs that control the self-renewal capacity of cancer stem cells and indicates the importance of profound research aimed at developing efficient miRNA-targeted therapies.
Collapse
|
73
|
Shi YC, Zhao H, Yin C, Zeng X, Zhang Q, Xu WP, Wei J, Chen F, Xie WF. C/EBPα inhibits hepatocellular carcinoma by reducing Notch3/Hes1/p27 cascades. Dig Liver Dis 2013; 45:844-51. [PMID: 23816696 DOI: 10.1016/j.dld.2013.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 02/19/2013] [Accepted: 03/05/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS CCAAT/enhancer binding protein α is one of the key transcription factors of the hepatocyte nuclear factors family, which plays a critical role in liver cell proliferation and differentiation. However, the role of CCAAT/enhancer binding protein α in hepatocarcinogenesis remains to be defined. METHODS A recombinant adenovirus carrying the C/EBPα gene was constructed to determine its effect on hepatocarcinogenesis in vitro and in vivo. RESULTS We demonstrated that overexpression of CCAAT/enhancer binding protein α inhibited the tumourigenicity of Huh7 cells, re-established the expression of certain liver-specific genes and induced G0/G1 arrest. Overexpression of CCAAT/enhancer binding protein α significantly suppressed the proliferation of primary hepatocarcinogenesis cells and tumour associated fibroblasts in vitro. Additionally, intratumoural injection of adenovirus carrying the C/EBPα reduced the growth of subcutaneous hepatocarcinogenesis xenografts in nude mice. Systemic administration of adenovirus carrying the C/EBPα resulted in the eradication of orthotopic liver hepatocarcinogenesis nodules in nude mice. Further, up-regulation of CCAAT/enhancer binding protein α reduced the expression of Notch3, thereby suppressing Hes1 transactivation activity and leading to decreased p27 expression. Overexpression of Hes1 partially abolished the anti-proliferation effect of CCAAT/enhancer binding protein α on Huh7 cells. CONCLUSION These results suggested that the effect of CCAAT/enhancer binding protein α on hepatocarcinogenesis is partially through by reducing Notch3/Hes1/p27 cascades and CCAAT/enhancer binding protein α may possess a novel therapeutic potential for human hepatocarcinogenesis.
Collapse
Affiliation(s)
- Yi-Chao Shi
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Takebe N, Nguyen D, Yang SX. Targeting notch signaling pathway in cancer: clinical development advances and challenges. Pharmacol Ther 2013; 141:140-9. [PMID: 24076266 DOI: 10.1016/j.pharmthera.2013.09.005] [Citation(s) in RCA: 324] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 09/05/2013] [Indexed: 12/15/2022]
Abstract
Notch signaling plays an important role in development and cell fate determination, and it is deregulated in human hematologic malignancies and solid tumors. This review includes a brief introduction of the relevant pathophysiology of Notch signaling pathway and primarily focuses on the clinical development of promising agents that either obstruct Notch receptor cleavages such as γ-secretase inhibitors (GSIs) or interfere with the Notch ligand-receptor interaction by monoclonal antibodies (mAbs). Antitumor activity by GSIs and mAbs administered as single agent in early phases of clinical trials has been observed in advanced or metastatic thyroid cancer, non-small cell lung cancer, intracranial tumors, sarcoma or desmoid tumors, colorectal cancer with neuroendocrine features, melanoma and ovarian cancer. A number of mechanism-based adverse events particularly gastrointestinal toxicities emerged and mitigation strategies are developed after testing multiple GSIs and Notch targeting mAbs. We also discuss pharmacodynamic biomarkers in conjunction with methods of assessment of the molecular target inhibition validation. Biomarkers of efficacy or benefit may be of importance for a successful development of this class of drugs.
Collapse
Affiliation(s)
- Naoko Takebe
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, United States.
| | - Dat Nguyen
- National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Sherry X Yang
- National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, United States.
| |
Collapse
|
75
|
Abstract
The numerous processes involved in the etiology of breast cancer such as cell survival, metabolism, proliferation, differentiation, and angiogenesis are currently being elucidated. However, underlying mechanisms that drive breast cancer progression and drug resistance are still poorly understood. As we discuss here in detail, the Notch signaling pathway is an important regulatory component of normal breast development, cell fate of normal breast stem cells, and proliferation and survival of breast cancer initiating cells. Notch exerts a wide range of critical effects through a canonical pathway where it is expressed as a type I membrane precursor heterodimer followed by at least two subsequent cleavages induced by ligand engagement to ultimately release an intracellular form to function as a transcriptional activator. Notch and its ligands are overexpressed in breast cancer, and one method of effectively blocking Notch activity is preventing its cleavage at the cell surface with γ-secretase inhibitors. In the context of Notch signaling, the application of clinically relevant anti-Notch drugs in treatment regimens may contribute to novel therapeutic interventions and promote more effective clinical response in women with breast cancer.
Collapse
Affiliation(s)
- Roma Olsauskas-Kuprys
- The Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, IL, USA
| | | | | |
Collapse
|
76
|
Yu SD, Liu FY, Wang QR. Notch inhibitor: a promising carcinoma radiosensitizer. Asian Pac J Cancer Prev 2013; 13:5345-51. [PMID: 23317182 DOI: 10.7314/apjcp.2012.13.11.5345] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Radiotherapy is an important part of modern cancer management for many malignancies, and enhancing the radiosensitivity of tumor cells is critical for effective cancer therapies. The Notch signaling pathway plays a key role in regulation of numerous fundamental cellular processes. Further, there is accumulating evidence that dysregulated Notch activity is involved in the genesis of many human cancers. As such, Notch inhibitors are attractive therapeutic agents, although as for other anticancer agents, they exhibit significant and potential side effects. Thus, Notch inhibitors may be best used in combination with other agents or therapy. Herein, we describe evidence supporting the use of Notch inhibitors as novel and potent radiosensitizers in cancer therapy.
Collapse
Affiliation(s)
- Shu-Dong Yu
- Department of Otolaryngology, Qianfoshan Hospital Affiliated to Shandong University, Shandong, China.
| | | | | |
Collapse
|
77
|
The cancer stem cell hypothesis applied to oral carcinoma. Oral Oncol 2013; 49:738-46. [PMID: 23642758 DOI: 10.1016/j.oraloncology.2013.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/09/2013] [Accepted: 04/09/2013] [Indexed: 12/14/2022]
Abstract
It has been proposed that the development of tumors is based exclusively on the activity of cancer stem cells (CSCs) leading to a new model of carcinogenesis, the CSC hypothesis, in opposition to the conventional model of clonal evolution. The new model may help to explain the high mortality of oral cancer, unchanged over the past decades, the low response to treatment and the tendency of oral squamous cell carcinoma (OSCC) patients to develop multiple tumors. However, a more profound understanding of the molecular pathways involved in maintaining the stem cell (SC) state and of their alterations is required to elucidate the mechanisms underlying the development of tumors and metastatic spread, but research into SC biopathology is hampered by the lack of specific markers for identifying SCs and CSCs in tissues and for establishing topographic relationships with their lineage. We review current knowledge on stem cells in relation to oral cancer, including their possible origins, focusing on the CSC hypothesis of oral tumorigenesis and attempts being made to identify oral stem cells.
Collapse
|
78
|
Signaling cross-talk in the resistance to HER family receptor targeted therapy. Oncogene 2013; 33:1073-81. [PMID: 23542173 DOI: 10.1038/onc.2013.74] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 02/12/2013] [Accepted: 02/12/2013] [Indexed: 12/11/2022]
Abstract
Epidermal growth factor receptor (EGFR) and human EGFR 2 (HER2) have an important role in the initiation and progression of various types of cancer. Inhibitors targeting these receptor tyrosine kinases are some of the most successful targeted anticancer drugs widely used for cancer treatment; however, cancer cells have mechanisms of intrinsic and acquired drug resistance that pose as major obstacles in drug efficacy. Extensive studies from both clinical and laboratory research have identified several molecular mechanisms underlying resistance. Among them is the role of signaling cross-talk between the EGFR/HER2 and other signaling pathways. In this review, we focus particularly on this signaling cross-talk at the receptor, mediator and effector levels, and further discuss alternative approaches to overcome resistance. In addition to well-recognized signaling cross-talk involved in the resistance, we also introduce the cross-talk between EGFR/HER2-mediated pathways and pathways triggered by other types of receptors, including those of the Notch, Wnt and TNFR/IKK/NF-κB pathways, and discuss the potential role of targeting this cross-talk to sensitize cells to EGFR/HER2 inhibitors.
Collapse
|
79
|
Dill MT, Tornillo L, Fritzius T, Terracciano L, Semela D, Bettler B, Heim MH, Tchorz JS. Constitutive Notch2 signaling induces hepatic tumors in mice. Hepatology 2013; 57:1607-19. [PMID: 23175466 DOI: 10.1002/hep.26165] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 10/24/2012] [Indexed: 12/21/2022]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCC) are the most common liver tumors and a leading cause for cancer-related death in men. Notch2 regulates cellular differentiation in the developing and adult liver. Although aberrant Notch signaling is implicated in various cancers, it is still unclear whether Notch2 regulates proliferation and differentiation in liver carcinogenesis and thereby contributes to HCC and CCC formation. Here, we investigated the oncogenic potential of constitutive Notch2 signaling in the liver. We show that liver-specific expression of the intracellular domain of Notch2 (N2ICD) in mice is sufficient to induce HCC formation and biliary hyperplasia. Specifically, constitutive N2ICD signaling in the liver leads to up-regulation of pro-proliferative genes and proliferation of hepatocytes and biliary epithelial cells (BECs). Using the diethylnitrosamine (DEN) HCC carcinogenesis model, we further show that constitutive Notch2 signaling accelerates DEN-induced HCC formation. DEN-induced HCCs with constitutive Notch2 signaling (DEN(N2ICD) HCCs) exhibit a marked increase in size, proliferation, and expression of pro-proliferative genes when compared with HCCs from DEN-induced control mice (DEN(ctrl) HCCs). Moreover, DEN(N2ICD) HCCs exhibit increased Sox9 messenger RNA (mRNA) levels and reduced Albumin and Alpha-fetoprotein mRNA levels, indicating that they are less differentiated than DEN(ctrl) HCCs. Additionally, DEN(N2ICD) mice develop large hepatic cysts, dysplasia of the biliary epithelium, and eventually CCC. CCC formation in patients and DEN(N2ICD) mice is accompanied by re-expression of hepatocyte nuclear factor 4α(HNF4α), possibly indicating dedifferentiation of BECs. CONCLUSION Our data establish an oncogenic role for constitutive Notch2 signaling in liver cancer development.
Collapse
Affiliation(s)
- Michael T Dill
- Department of Biomedicine, Hepatology Laboratory, University of Basel, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Wu J, Ji Z, Liu H, Liu Y, Han D, Shi C, Shi C, Wang C, Yang G, Chen X, Shen C, Li H, Bi Y, Zhang D, Zhao S. Arsenic trioxide depletes cancer stem-like cells and inhibits repopulation of neurosphere derived from glioblastoma by downregulation of Notch pathway. Toxicol Lett 2013; 220:61-9. [PMID: 23542114 DOI: 10.1016/j.toxlet.2013.03.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/12/2013] [Accepted: 03/20/2013] [Indexed: 12/31/2022]
Abstract
Notch signaling has been demonstrated to have a central role in cancer stem-like cells (CSLCs) in glioblastoma multiforme (GBM). We have recently demonstrated the inhibitory effect of arsenic trioxide (ATO) on CSLCs in glioblastoma cell lines. In this study we used neurosphere recovery assay that measured neurosphere formation at three time points to assess the capacity of the culture to repopulate after ATO treatment. Our results provided strong evidence that ATO depleted CSLCs in GBM, and inhibited neurosphere recovery and secondary neurosphere formation. ATO inhibited the phosphorylation and activation of AKT and STAT3 through Notch signaling blockade. These data show that the ATO is a promising new approach to decrease glioblastoma proliferation and recurrence by downregulation of Notch pathway.
Collapse
Affiliation(s)
- Jianing Wu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Zhang Y, Lam O, Nguyen MTT, Ng G, Pear WS, Ai W, Wang IJ, Kao WWY, Liu CY. Mastermind-like transcriptional co-activator-mediated Notch signaling is indispensable for maintaining conjunctival epithelial identity. Development 2013; 140:594-605. [PMID: 23293291 DOI: 10.1242/dev.082842] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Conjunctival goblet cells primarily synthesize mucins to lubricate the ocular surface, which is essential for normal vision. Notch signaling has been known to associate with goblet cell differentiation in intestinal and respiratory tracts, but its function in ocular surface has yet to be fully characterized. Herein, we demonstrate that conditional inhibition of canonical Notch signaling by expressing dominant negative mastermind-like 1 (dnMaml1) in ocular surface epithelia resulted in complete suppression of goblet cell differentiation during and subsequent to development. When compared with the ocular surface of wild-type mice (OS(Wt)), expression of dnMaml1 at the ocular surface (OS(dnMaml1)) caused conjunctival epithelial hyperplasia, aberrant desquamation, failure of Mucin 5ac (Muc5ac) synthesis, subconjunctival inflammation and epidermal metaplasia in cornea. In addition, conditional deletion of Notch1 from the ocular surface epithelia partially recapitulated OS(dnMaml1) phenotypes. We have demonstrated that N1-ICD (Notch1 intracellular domain) transactivated the mouse Krüppel-like factor 4 (Klf) promoter and that Klf4 directly bound to and significantly potentiated the Muc5ac promoter. By contrast, OS(dnMaml1) dampened Klf4 and Klf5 expression, and diminished Muc5ac synthesis. Collectively, these findings indicated that Maml-mediated Notch signaling plays a pivotal role in the initiation and maintenance of goblet cell differentiation for normal ocular surface morphogenesis and homeostasis through regulation of Klf4 and Klf5.
Collapse
Affiliation(s)
- Yujin Zhang
- Edith J. Crawley Vision Research Center/Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Kang S, Xie J, Miao J, Li R, Liao W, Luo R. A knockdown of Maml1 that results in melanoma cell senescence promotes an innate and adaptive immune response. Cancer Immunol Immunother 2013; 62:183-90. [PMID: 22864395 PMCID: PMC11029605 DOI: 10.1007/s00262-012-1318-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 07/06/2012] [Indexed: 01/05/2023]
Abstract
Maml1 is emerging as a coactivator of many signaling pathways, including the Notch and Wnt pathways. Targeting Maml1 in melanoma cells efficiently knocks down the downstream transcriptional repressors Hey1 and Hes1, resulting in melanoma cell senescence, cellular differentiation, and increased melanin production. Significantly, higher IFNβ and chemokine gene transcripts have been observed, together with increased STAT1 and decreased STAT3 and NF-κB signaling activities. Although decreased cell proliferation contributes to slower tumor growth in vivo, the depletion of NK and CD8(+) T cells in an shMaml1-B16 tumor carrier mouse leads to more rapid tumor growth than that observed in control shC002-B16 tumors. This result demonstrates that the knockdown of Maml1 transcription and function contributes to increased immune surveillance. The knockdown of Maml1 transcription in the human melanoma cell line M537 also results in senescence, IFNβ upregulation, increased chemokine gene expression, and greater NK and CD8(+) T cell migration in a transwell system. This study demonstrated that targeting Maml1-induced tumor cell senescence and differentiation may alter the tumor microenvironment and cytokine and chemokine profiles and may also promote innate and adaptive immune cell infiltration and function.
Collapse
Affiliation(s)
- Shijun Kang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | | | | | | | | | | |
Collapse
|
83
|
Ferrari P, Nicolini A. Breast cancer stem cells: new therapeutic approaches. BREAST CANCER MANAGEMENT 2012. [DOI: 10.2217/bmt.12.43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
SUMMARY Breast cancer stem cells are defined as a small subset of cells within a cancer that constitutes a reservoir of self-sustaining cells; they are low-dividing, have a reduced ability to undergo apoptosis and a higher ability of DNA repair, making them more resistant to conventional radiation and chemotherapy. The recent better understanding of the mechanisms of resistance to therapy related to stem cells has opened new scenarios and perspectives for therapeutic approaches. Some drugs active against breast cancer stem cells have been used in cancer therapy for years, other approaches are currently under clinical trials and many drugs are still in a preclinical phase. Only controlled clinical trials will answer the question whether or not these new therapeutical approaches alone or combined with the ongoing treatments significantly improve the outcome of breast cancer patients.
Collapse
Affiliation(s)
- Paola Ferrari
- Unit of Oncology 1, Department of Oncology, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | - Andrea Nicolini
- Unit of Oncology 2, Department of Oncology, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| |
Collapse
|
84
|
Movahedan A, Majdi M, Afsharkhamseh N, Sagha HM, Saadat NS, Shalileh K, Milani BY, Ying H, Djalilian AR. Notch inhibition during corneal epithelial wound healing promotes migration. Invest Ophthalmol Vis Sci 2012; 53:7476-83. [PMID: 23049092 DOI: 10.1167/iovs.12-10735] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine the role of Notch signaling in corneal epithelial migration and wound healing. METHODS Immunolocalization of Notch1 was performed during epithelial wound healing in vivo in mouse corneal epithelial debridement wounds and in vitro in primary human corneal epithelial cells following a linear scratch wound. The effects of Notch inhibition, using the γ-secretase inhibitor N-(N-[3,5-difluorophenacetyl]-l-alanyl)-S-phenylglycine t-butyl ester (DAPT) or following stable transfection with Notch1-short hairpin RNA (shRNA), was evaluated in a scratch assay and transwell migration assay. Likewise, in vitro adhesion, proliferation and the actin cytoskeleton was examined. The DAPT effect was also evaluated in vivo in a mouse model of corneal epithelial wound healing. RESULTS The expression of Notch1 was reduced at the leading edge of a healing corneal epithelium both in vivo and in vitro. Notch inhibition using DAPT and using Notch1-shRNA both enhanced in vitro migration in scratch and transwell migration assays. Consistent with this increased migratory behavior, Notch inhibited cells demonstrated decreased cell-matrix adhesion and enhanced lamellipodia formation. Notch inhibition by DAPT was also found to accelerate corneal epithelial wound closure in an in vivo murine model without affecting proliferation. CONCLUSIONS The results highlight the role of Notch in regulating corneal epithelial migration and wound healing. In particular, Notch signaling appears to decrease in the early stages of wound healing which contributes to cytoskeletal changes with subsequent augmentation of migratory behavior.
Collapse
Affiliation(s)
- Asadolah Movahedan
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Prabhu VV, Allen JE, Hong B, Zhang S, Cheng H, El-Deiry WS. Therapeutic targeting of the p53 pathway in cancer stem cells. Expert Opin Ther Targets 2012; 16:1161-74. [PMID: 22998602 DOI: 10.1517/14728222.2012.726985] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Cancer stem cells (CSCs) are a high profile drug target for cancer therapeutics due to their indispensable role in cancer progression, maintenance and therapeutic resistance. Restoring wild-type (WT) p53 function is an attractive new therapeutic approach for the treatment of cancer due to the well-described powerful tumor suppressor function of p53. As emerging evidence intimately links p53 and stem cell biology, this approach also provides an opportunity to target CSCs. AREAS COVERED This review covers the therapeutic approaches to restore the function of WT p53, cancer and normal stem cell biology in relation to p53 and the downstream effects of p53 on CSCs. EXPERT OPINION The restoration of WT p53 function by targeting p53 directly, its interacting proteins or its family members holds promise as a new class of cancer therapies. This review examines the impact that such therapies may have on normal and CSCs based on the current evidence linking p53 signaling with these populations.
Collapse
Affiliation(s)
- Varun V Prabhu
- Penn State Hershey Cancer Institute, Penn State College of Medicine, Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medicine (Hematology/Oncology), 500 University Drive, Room T4423, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
86
|
Notch-mediated induction of N-cadherin and α9-integrin confers higher invasive phenotype on rhabdomyosarcoma cells. Br J Cancer 2012; 107:1374-83. [PMID: 22976797 PMCID: PMC3494428 DOI: 10.1038/bjc.2012.411] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Rhabdomyosarcoma (RMS) is the commonest type of soft-tissue sarcoma in children. Patients with metastatic RMS continue to have very poor prognosis. Recently, several works have demonstrated a connection between Notch pathway activation and the regulation of cell motility and invasiveness. However, the molecular mechanisms of this possible relationship remain unclear. Methods: The Notch pathway was manipulated pharmacologically and genetically. The mRNA changes were analysed by quantitative PCR and protein variations by western blot and immunofluorescence. Finally, the capabilities of RMS cells to adhere, heal a wound and invade were assessed in the presence of neuronal cadherin (N-cadherin)- and α9-integrin-blocking antibodies. Results: Cells treated with γ-secretase inhibitor showed lower adhesion capability and downregulation of N-cadherin and α9-integrin. Genetic manipulation of the Notch pathway led to concomitant variations in N-cadherin and α9-integrin. Treatment with anti-N-cadherin-blocking antibody rendered marked inhibition of cell adhesion and motility, while anti-α9-integrin-blocking antibody exerted a remarkable effect on cell adhesion and invasiveness. Conclusion: Neuronal cadherin and α9-integrin are postulated as leading actors in the association between the Notch pathway and promotion of cell adhesion, motility and invasion, pointing to these proteins and the Notch pathway itself as interesting putative targets for new molecular therapies against metastases in RMS.
Collapse
|
87
|
Nagao H, Setoguchi T, Kitamoto S, Ishidou Y, Nagano S, Yokouchi M, Abematsu M, Kawabata N, Maeda S, Yonezawa S, Komiya S. RBPJ is a novel target for rhabdomyosarcoma therapy. PLoS One 2012; 7:e39268. [PMID: 22792167 PMCID: PMC3392254 DOI: 10.1371/journal.pone.0039268] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/22/2012] [Indexed: 01/20/2023] Open
Abstract
The Notch pathway regulates a broad spectrum of cell fate decisions and differentiation processes during fetal and postnatal development. In addition, the Notch pathway plays an important role in controlling tumorigenesis. However, the role of RBPJ, a transcription factor in the Notch pathway, in the development of tumors is largely unknown. In this study, we focused on the role of RBPJ in the pathogenesis of rhabdomyosarcoma (RMS). Our data showed that Notch pathway genes were upregulated and activated in human RMS cell lines and patient samples. Inhibition of the Notch pathway by a γ-secretase inhibitor (GSI) decreased the in vitro proliferation of RMS cells. Knockdown of RBPJ expression by RNAi inhibited the anchorage-independent growth of RMS cells and the growth of xenografts in vivo. Additionally, overexpression of RBPJ promoted the anchorage-independent growth of RMS cells. Further, we revealed that RBPJ regulated the cell cycle in RMS xenograft tumors and decreased proliferation. Our findings suggest that RBPJ regulates the RMS growth, and that the inhibition of RBPJ may be an effective therapeutic approach for patients with RMS.
Collapse
Affiliation(s)
- Hiroko Nagao
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- The Near-Future Locomotor Organ Medicine Creation Course (Kusunoki Kai), Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takao Setoguchi
- The Near-Future Locomotor Organ Medicine Creation Course (Kusunoki Kai), Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- * E-mail:
| | - Sho Kitamoto
- Department of Human Pathology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yasuhiro Ishidou
- Department of Medical Joint Materials, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Satoshi Nagano
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masahiro Yokouchi
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masahiko Abematsu
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- The Near-Future Locomotor Organ Medicine Creation Course (Kusunoki Kai), Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Naoya Kawabata
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shingo Maeda
- Department of Medical Joint Materials, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Suguru Yonezawa
- Department of Human Pathology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Setsuro Komiya
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
88
|
Dumont AG, Yang Y, Reynoso D, Katz D, Trent JC, Hughes DP. Anti-tumor effects of the Notch pathway in gastrointestinal stromal tumors. Carcinogenesis 2012; 33:1674-83. [PMID: 22764137 DOI: 10.1093/carcin/bgs221] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are driven by gain-of-function mutations of KIT or PDGFRa. The introduction of imatinib has significantly extended survival for patients. However, most patients develop resistances. Notch signaling is a conserved developmental pathway known to play a critical role in the development of several cancers, functioning as a tumor promoter or a tumor suppressor. Given that the normal progenitor cell for GIST, the interstitial cell of Cajal, has characteristics similar to those of cells of neuroendocrine origin, we hypothesized that Notch pathway impacts the biology of GIST cells. In this study, we retrovirally and pharmacologically manipulated the Notch pathway in human GIST cells. We also performed a retrospective analysis of a cohort on 15 primary tumors to determine the role of Hes1, a major target gene of Notch, as a prognostic marker for GIST. Constitutively, active intracellular domain of Notch1 (ICN1) expression potently induced growth arrest and downregulated KIT expression in vitro. Additionally, treatment with the histone deacetylase inhibitor suberoylanilide hydroxamic acid caused dose-dependent upregulation of Notch1 expression and a parallel decrease in viability in these cells. Retroviral silencing of downstream targets of Notch (dominant-negative Hes1) and pharmacological inhibition of Notch activation (γ-secretase inhibition) partially rescued GIST cells from suberoylanilide hydroxamic acid treatment. GIST patients with high Hes1 mRNA levels have a significantly longer relapse-free survival. These results identify a novel anti-tumor effect of Notch1 and cross talk between the Notch and KIT pathways. Thus, activation of this pathway by treatment with histone deacetylase inhibitors is an appealing potential therapeutic strategy for GISTs. Précis: This study is the first report of the tumor suppressor effects of Notch pathway in gastrointestinal stromal tumors via a negative feedback with the oncogene KIT and may lead the development of new therapeutic strategies for GISTs patients.
Collapse
Affiliation(s)
- Amaury G Dumont
- Department of Sarcoma Medical Oncology, University of Texas-MD Anderson Cancer Center Houston, TX, USA
| | | | | | | | | | | |
Collapse
|
89
|
Zhou L, Wang DS, Li QJ, Sun W, Zhang Y, Dou KF. Downregulation of the Notch signaling pathway inhibits hepatocellular carcinoma cell invasion by inactivation of matrix metalloproteinase-2 and -9 and vascular endothelial growth factor. Oncol Rep 2012; 28:874-82. [PMID: 22736202 DOI: 10.3892/or.2012.1880] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/25/2012] [Indexed: 12/26/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies. The main cause of death in HCC patients is tumor progression with invasion and metastasis. However, the underlying mechanisms of HCC invasion and metastasis are still not fully understood. Some studies show that the Notch signaling pathway may participate in tumor invasion and metastasis. However, the mechanisms by which the Notch signaling pathway mediates tumor cell invasion, especially in hepatocellular carcinoma, are not yet known. In the current study, we investigated the anti-invasion effect of the downregulation of the Notch signaling pathway by DAPT in HCC cells. The Notch signaling pathway inhibitor could suppress invasion of HCC cells via the extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling pathways, resulting in the downregulation of matrix metalloproteinase-2 and -9 (MMP-2 and -9) and vascular endothelial growth factor (VEGF). These observations suggested that inhibition of the Notch signaling pathway by DAPT would be useful for devising novel preventive and therapeutic strategies targeting invasion of HCC.
Collapse
Affiliation(s)
- Liang Zhou
- Department of General Surgery, The 155 Central Hospital of PLA, Kaifeng, He'nan 471000, PR China
| | | | | | | | | | | |
Collapse
|
90
|
Ma D, Dong X, Zang S, Ma R, Zhao P, Guo D, Dai J, Chen F, Ye J, Ji C. Aberrant expression and clinical correlation of Notch signaling molecules in breast cancer of Chinese population. Asia Pac J Clin Oncol 2012; 7:385-91. [PMID: 22151989 DOI: 10.1111/j.1743-7563.2011.01433.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AIMS Notch signaling molecules play crucial roles in cell proliferation and apoptosis, yet their function in breast cancer remains unclear. METHODS Samples and clinical data from 62 breast cancer patients were collected. After total RNA isolation, reverse transcription polymerase chain reaction was applied to analyze the expression of Notch receptors (Notch1, Notch3 and Notch4) and ligands (DLL4 and JAG1), and their clinical association. Immunohistochemical analysis was used to detect the intracellular domain of Notch1 (Notch1-IC) expression. RESULTS Notch1 was the dominant receptor while DLL4 was the dominant ligand. The Notch molecules expression pattern for infiltrating ductal carcinoma (IDC) was similar to that for infiltrating lobular carcinoma (ILC) except for JAG1, while Notch1 standard coefficients in ILC were statistically higher than that in IDC. Immunohistochemical results showed that Notch1-IC protein expression paralleled the mRNA level. Breast cancer patients' clinical parameters suggested that Notch1 expression was higher in stage II disease and lower in more advanced stages. The Notch3 positive rate was higher in patients with lower levels of Notch1, and the Notch3 positive rate was lower in patients with higher levels of Notch1. No apparent correlation of Notch molecules with estrogen receptor (ER), progesterone receptor (PR) was found. Though high Notch1 and Notch3 RNA levels tended to correlate with c-erbB2 expression, no statistical significance was found. CONCLUSION Notch molecules are useful biomarkers in breast cancer especially for Notch1 and DLL4, and Notch1 is expressed differently in different stages of human breast cancer.
Collapse
Affiliation(s)
- Daoxin Ma
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Developmental pathways in breast cancer and breast tumor-initiating cells: Therapeutic implications. Cancer Lett 2012; 317:115-26. [DOI: 10.1016/j.canlet.2011.11.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 11/20/2011] [Indexed: 12/13/2022]
|
92
|
Notch, wnt, and hedgehog pathways in rhabdomyosarcoma: from single pathways to an integrated network. Sarcoma 2012; 2012:695603. [PMID: 22550422 PMCID: PMC3329671 DOI: 10.1155/2012/695603] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/23/2011] [Accepted: 01/03/2012] [Indexed: 01/15/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common type of soft tissue sarcoma in children. Regarding histopathological criteria, RMS can be divided into 2 main subtypes: embryonal and alveolar. These subtypes differ considerably in their clinical phenotype and molecular features. Abnormal regulation or mutation of signalling pathways that regulate normal embryonic development such as Notch, Hedgehog, and Wnt is a recurrent feature in tumorigenesis. Herein, the general features of each of the three pathways, their implication in cancer and particularly in RMS are reviewed. Finally, the cross-talking among these three pathways and the possibility of better understanding of the horizontal communication among them, leading to the development of more potent therapeutic approaches, are discussed.
Collapse
|
93
|
Abstract
Stem cells of normal mammalian tissues are defined as nonspecialized cells that have two critical properties: (a) the ability to renew themselves through cell division and (b) the potency to differentiate into other cell types. Therefore, they play a crucial role in development and in tissue homeostasis during adult life. Being long-lived, they can be the targets of environmental carcinogens leading to the accumulation of consecutive genetic changes. Hence, the genome of stem cells must be exceptionally well protected, and several protective mechanisms have evolved to ensure the genetic integrity of the stem cell compartment in any given tissue. Ionizing radiation exposure can disrupt tissue homeostasis both through the induction of cell killing/depletion of radiosensitive stem cells, leading to loss of tissue functionality and by genotoxic damage, increasing overall risk of cancer. We will review the current knowledge about radiation effects in adult stem cells of specific normal tissues, including skin, breast, and brain, examine parallels, as well as differences with cancer stem cells, and discuss the relevance of stem cell effects to radiation risk and radiotherapy.
Collapse
Affiliation(s)
- Kevin M Prise
- Centre for Cancer Research & Cell Biology, Queen's University Belfast, Belfast, United Kingdom.
| | | |
Collapse
|
94
|
Manfè V, Biskup E, Rosbjerg A, Kamstrup M, Skov AG, Lerche CM, Lauenborg BT, Odum N, Gniadecki R. miR-122 regulates p53/Akt signalling and the chemotherapy-induced apoptosis in cutaneous T-cell lymphoma. PLoS One 2012; 7:e29541. [PMID: 22235305 PMCID: PMC3250447 DOI: 10.1371/journal.pone.0029541] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 11/30/2011] [Indexed: 11/25/2022] Open
Abstract
Advanced cutaneous T-cell lymphoma (CTCL) is resistant to chemotherapy and presents a major area of medical need. In view of the known role of microRNAs (miRNAs) in the regulation of cellular signalling, we aimed to identify the functionally important miRNA species, which regulate apoptosis in CTCL. Using a recently established model in which apoptosis of CTCL cell lines is induced by Notch-1 inhibition by γ-secretase inhibitors (GSIs), we found that miR-122 was significantly increased in the apoptotic cells. miR-122 up-regulation was not specific for GSI-1 but was also seen during apoptosis induced by chemotherapies including doxorubicin and proteasome blockers (bortezomib, MG132). miR-122 was not expressed in quiescent T-cells, but was detectable in CTCL: in lesional skin in mycosis fungoides and in Sézary cells purified from peripheral blood. In situ hybridization results showed that miR-122 was expressed in the malignant T-cell infiltrate and increased in the advanced stage mycosis fungoides. Surprisingly, miR-122 overexpression decreased the sensitivity to the chemotherapy-induced apoptosis via a signaling circuit involving the activation of Akt and inhibition of p53. We have also shown that induction of miR-122 occurred via p53 and that p53 post-transcriptionally up-regulated miR-122. miR-122 is thus an amplifier of the antiapoptotic Akt/p53 circuit and it is conceivable that a pharmacological intervention in this pathway may provide basis for novel therapies for CTCL.
Collapse
Affiliation(s)
- Valentina Manfè
- Department of Dermatology, Bispebjerg Hospital, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Miao Z, Miao Y, Lin Y, Lu X. Overexpression of the Notch3 receptor in non-functioning pituitary tumours. J Clin Neurosci 2012; 19:107-10. [DOI: 10.1016/j.jocn.2011.07.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/04/2011] [Accepted: 07/06/2011] [Indexed: 01/14/2023]
|
96
|
Reedijk M. Notch Signaling and Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 727:241-57. [DOI: 10.1007/978-1-4614-0899-4_18] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
97
|
Abstract
Lung cancer is a heterogeneous disease clinically, biologically, histologically, and molecularly. Understanding the molecular causes of this heterogeneity, which might reflect changes occurring in different classes of epithelial cells or different molecular changes occurring in the same target lung epithelial cells, is the focus of current research. Identifying the genes and pathways involved, determining how they relate to the biological behavior of lung cancer, and their utility as diagnostic and therapeutic targets are important basic and translational research issues. This article reviews current information on the key molecular steps in lung cancer pathogenesis, their timing, and clinical implications.
Collapse
Affiliation(s)
- Jill E Larsen
- Hamon Center for Therapeutic Oncology Research, Simmons Cancer Center, 6000 Harry Hines Boulevard, University of Texas Southwestern Medical Center, Dallas, TX 75390-8593, USA
| | | |
Collapse
|
98
|
Speiser J, Foreman K, Drinka E, Godellas C, Perez C, Salhadar A, Erşahin Ç, Rajan P. Notch-1 and Notch-4 biomarker expression in triple-negative breast cancer. Int J Surg Pathol 2011; 20:139-45. [PMID: 22084425 DOI: 10.1177/1066896911427035] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) demonstrates lack of expression of hormone receptors and human epidermal growth factor receptor. However, there is no targeted therapy for TNBC. The authors analyzed 29 TNBC cases for Notch-1 and Notch-4 biomarker expression and subcellular location, Ki67 proliferation rate, and relevant clinical/survival data. Results demonstrated an unfavorable Ki67 rate in 90% of cases, Notch-1 expression in tumor and endothelial cells in 100% of cases, and Notch-4 expression in tumor cells in 73% of cases and endothelial cells in 100% of cases. Additionally, subcellular localization of Notch-1 and Notch-4 was predominantly nuclear and cytoplasmic. In conclusion, (a) the majority of TNBCs are high-grade infiltrating ductal carcinomas with high Ki67 proliferation rate and (b) both Notch-1 and Notch-4 receptors are overexpressed in tumor and vascular endothelial cells with subcellular localization different from that of hormone-positive breast cancer. Targeting Notch signaling with gamma secretase inhibitors should to be explored to further improve the survival rate of TNBC patients.
Collapse
Affiliation(s)
- Jodi Speiser
- Department of Pathology, Loyola University Medical Center, Maywood, IL 60153, USA.
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Sharma A, Paranjape AN, Rangarajan A, Dighe RR. A monoclonal antibody against human Notch1 ligand-binding domain depletes subpopulation of putative breast cancer stem-like cells. Mol Cancer Ther 2011; 11:77-86. [PMID: 22075160 DOI: 10.1158/1535-7163.mct-11-0508] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Overexpression of Notch receptors and ligands has been associated with various cancers and developmental disorders, making Notch a potential therapeutic target. Here, we report characterization of Notch1 monoclonal antibodies (mAb) with therapeutic potential. The mAbs generated against epidermal growth factor (EGF) repeats 11 to 15 inhibited binding of Jagged1 and Delta-like4 and consequently, signaling in a dose-dependent manner, the antibodies against EGF repeats 11 to 12 being more effective than those against repeats 13 to 15. These data emphasize the role of EGF repeats 11 to 12 in ligand binding. One of the mAbs, 602.101, which specifically recognizes Notch1, inhibited ligand-dependent expression of downstream target genes of Notch such as HES-1, HES-5, and HEY-L in the breast cancer cell line MDA-MB-231. The mAb also decreased cell proliferation and induced apoptotic cell death. Furthermore, exposure to this antibody reduced CD44(Hi)/CD24(Low) subpopulation in MDA-MB-231 cells, suggesting a decrease in the cancer stem-like cell subpopulation. This was confirmed by showing that exposure to the antibody decreased the primary, secondary, and tertiary mammosphere formation efficiency of the cells. Interestingly, effect of the antibody on the putative stem-like cells appeared to be irreversible, because the mammosphere-forming efficiency could not be salvaged even after antibody removal during the secondary sphere formation. The antibody also modulated expression of genes associated with stemness and epithelial-mesenchymal transition. Thus, targeting individual Notch receptors by specific mAbs is a potential therapeutic strategy to reduce the potential breast cancer stem-like cell subpopulation.
Collapse
Affiliation(s)
- Ankur Sharma
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science, Bangalore, India
| | | | | | | |
Collapse
|
100
|
Cummins TD, Mendenhall MD, Lowry MN, Korte EA, Barati MT, Khundmiri SJ, Salyer SA, Klein JB, Powell DW. Elongin C is a mediator of Notch4 activity in human renal tubule cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1748-57. [PMID: 22001063 DOI: 10.1016/j.bbapap.2011.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/12/2011] [Accepted: 09/23/2011] [Indexed: 10/17/2022]
Abstract
Notch proteins (Notch 1-4) are a family of trans-membrane cell surface receptors that are converted into transcriptional regulators when activated by interactions with cell surface ligands on adjacent cells. Ligand-binding stimulates proteolytic cleavage of the trans-membrane domain, releasing an active intracellular domain (ICD) that translocates to the nucleus and impacts transcription. In transit, the ICD may interact with regulatory proteins that modulate the expression and transcriptional activity. We have found that Notch4(ICD) expression is enhanced in the tubule cells of fibrotic kidneys from diabetic mice and humans and identified Notch4(ICD) interacting proteins that could be pertinent to normal and pathological functions. Using proteomic techniques, several components of the Elongin C complex were identified as candidate Notch4(ICD) interactors. Elongin C complexes can function as ubiquitin ligases capable of regulating proteasomal degradation of specific protein substrates. Our studies indicate that ectopic Elongin C expression stimulates Notch4(ICD) degradation and inhibits its transcriptional activity in human kidney tubule HK11 cells. Blocking Elongin C mediated degradation by MG132 indicates the potential for ubiquitin-mediated Elongin C regulation of Notch4(ICD). Functional interaction of Notch4(ICD) and Elongin C provides novel insight into regulation of Notch signaling in epithelial cell biology and disease.
Collapse
Affiliation(s)
- Timothy D Cummins
- Departments of Biochemistry and Molecular Biology, University of Kentucky, KY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|