51
|
Wang L, Peng Q, Xie Y, Yin N, Xu J, Chen A, Yi J, Shi W, Tang J, Xiang J. Cell-cell contact-driven EphB1 cis- and trans- signalings regulate cancer stem cells enrichment after chemotherapy. Cell Death Dis 2022; 13:980. [PMID: 36402751 PMCID: PMC9675789 DOI: 10.1038/s41419-022-05385-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/21/2022]
Abstract
Reactivation of chemotherapy-induced dormant cancer cells is the main cause of relapse and metastasis. The molecular mechanisms underlying remain to be elucidated. In this study, we introduced a cellular model that mimics the process of cisplatin responsiveness in NSCLC patients. We found that during the process of dormancy and reactivation induced by cisplatin, NSCLC cells underwent sequential EMT-MET with enrichment of cancer stem cells. The ATAC-seq combined with motif analysis revealed that OCT4-SOX2-TCF-NANOG motifs were associated with the enrichment of cancer stem cells induced by chemotherapy. Gene expression profiling suggested a dynamic regulatory mechanism during the process of enrichment of cancer stem cells, where Nanog showed upregulation in the dormant state and SOX2 showed upregulation in the reactivated state. Further, we showed that EphB1 and p-EphB1 showed dynamic expression in the process of cancer cell dormancy and reactivation, where the expression profiles of EphB1 and p-EphB1 showed negatively correlated. In the dormant EMT cells which showed disrupted cell-cell contacts, ligand-independent EphB1 promoted entry of lung cancer cells into dormancy through activating p-p38 and downregulating E-cadherin. On the contrary, in the state of MET, in which cell-cell adhesion was recovered, interactions of EphB1 and ligand EphrinB2 in trans promoted the stemness of cancer cells through upregulating Nanog and Sox2. In conclusion, lung cancer stem cells were enriched during the process of cellular response to chemotherapy. EphB1 cis- and trans- signalings function in the dormant and reactivated state of lung cancer cells respectively. It may provide a therapeutic strategy that target the evolution process of cancer cells induced by chemotherapy.
Collapse
Affiliation(s)
- Lujuan Wang
- grid.216417.70000 0001 0379 7164Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan PR China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan China ,grid.216417.70000 0001 0379 7164NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan China ,grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu Peng
- grid.216417.70000 0001 0379 7164Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan PR China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan China ,grid.216417.70000 0001 0379 7164NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Yaohuan Xie
- grid.216417.70000 0001 0379 7164Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan PR China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan China ,grid.216417.70000 0001 0379 7164NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Na Yin
- grid.216417.70000 0001 0379 7164Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan PR China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan China ,grid.216417.70000 0001 0379 7164NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Jiaqi Xu
- grid.216417.70000 0001 0379 7164Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan PR China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan China ,grid.216417.70000 0001 0379 7164NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Anqi Chen
- grid.216417.70000 0001 0379 7164Department of thoracic surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410013 China ,grid.216417.70000 0001 0379 7164Hunan Key laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital, Central South University, Changsha, 410013 Hunan China
| | - Junqi Yi
- grid.216417.70000 0001 0379 7164Department of thoracic surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410013 China ,grid.216417.70000 0001 0379 7164Hunan Key laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital, Central South University, Changsha, 410013 Hunan China
| | - Wenhua Shi
- grid.216417.70000 0001 0379 7164Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan PR China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan China ,grid.216417.70000 0001 0379 7164NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Jingqun Tang
- grid.216417.70000 0001 0379 7164Department of thoracic surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410013 China ,grid.216417.70000 0001 0379 7164Hunan Key laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital, Central South University, Changsha, 410013 Hunan China
| | - Juanjuan Xiang
- grid.216417.70000 0001 0379 7164Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan PR China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan China ,grid.216417.70000 0001 0379 7164NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan China
| |
Collapse
|
52
|
De Robertis M, Greco MR, Cardone RA, Mazza T, Marzano F, Mehterov N, Kazakova M, Belev N, Tullo A, Pesole G, Sarafian V, Signori E. Upregulation of YKL-40 Promotes Metastatic Phenotype and Correlates with Poor Prognosis and Therapy Response in Patients with Colorectal Cancer. Cells 2022; 11:cells11223568. [PMID: 36428997 PMCID: PMC9688424 DOI: 10.3390/cells11223568] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/28/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
YKL-40 is a heparin- and chitin-binding glycoprotein that belongs to the family of glycosyl hydrolases but lacks enzymatic properties. It affects different (patho)physiological processes, including cancer. In different tumors, YKL-40 gene overexpression has been linked to higher cell proliferation, angiogenesis, and vasculogenic mimicry, migration, and invasion. Because, in colorectal cancer (CRC), the serological YKL-40 level may serve as a risk predictor and prognostic biomarker, we investigated the underlying mechanisms by which it may contribute to tumor progression and the clinical significance of its tissue expression in metastatic CRC. We demonstrated that high-YKL-40-expressing HCT116 and Caco2 cells showed increased motility, invasion, and proliferation. YKL-40 upregulation was associated with EMT signaling activation. In the AOM/DSS mouse model, as well as in tumors and sera from CRC patients, elevated YKL-40 levels correlated with high-grade tumors. In retrospective analyses of six independent cohorts of CRC patients, elevated YKL-40 expression correlated with shorter survival in patients with advanced CRC. Strikingly, high YKL-40 tissue levels showed a predictive value for a better response to cetuximab, even in patients with stage IV CRC and mutant KRAS, and worse sensitivity to oxaliplatin. Taken together, our findings establish that tissue YKL-40 overexpression enhances CRC metastatic potential, highlighting this gene as a novel prognostic candidate, a predictive biomarker for therapy response, and an attractive target for future therapy in CRC.
Collapse
Affiliation(s)
- Mariangela De Robertis
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘A. Moro’, 70125 Bari, Italy
- Correspondence: (M.D.R.); (E.S.); Tel.: +39-06-4993-4232 (E.S.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘A. Moro’, 70125 Bari, Italy
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘A. Moro’, 70125 Bari, Italy
| | - Tommaso Mazza
- Unit of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Flaviana Marzano
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Nikolay Mehterov
- Department of Medical Biology, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Maria Kazakova
- Department of Medical Biology, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Nikolay Belev
- University Hospital Eurohospital, 4000 Plovdiv, Bulgaria
- Department of Propedeutics of Surgical Diseases, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Apollonia Tullo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘A. Moro’, 70125 Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Victoria Sarafian
- Department of Medical Biology, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Emanuela Signori
- Laboratory of Molecular Pathology and Experimental Oncology, Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche, 00133 Rome, Italy
- Correspondence: (M.D.R.); (E.S.); Tel.: +39-06-4993-4232 (E.S.)
| |
Collapse
|
53
|
TRPV1 Is a Potential Tumor Suppressor for Its Negative Association with Tumor Proliferation and Positive Association with Antitumor Immune Responses in Pan-Cancer. JOURNAL OF ONCOLOGY 2022; 2022:6964550. [PMID: 36304985 PMCID: PMC9596243 DOI: 10.1155/2022/6964550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/16/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022]
Abstract
Background Although numerous studies have shown that the expression and activation of TRPV1 have an important role in cancer development, a comprehensive exploration of associations between TRPV1 expression and tumor proliferation, microenvironment, and clinical outcomes in pan-cancer remains insufficient. Methods From The Cancer Genome Atlas (TCGA) program, we downloaded multiomics data of ten cancer cohorts and investigated the correlations between TRPV1 expression and immune signatures' enrichment, stromal content, genomic features, oncogenic signaling, and clinical features in these cancer cohorts and pan-cancer. Results Elevated expression of TRPV1 correlated with better clinical outcomes in pan-cancer and diverse cancer types. In multiple cancer types, TRPV1 expression correlated negatively with the expression of tumor proliferation marker genes (MKI67 and RACGAP1), proliferation scores, cell cycle scores, stemness scores, epithelial-mesenchymal transition scores, oncogenic pathways' enrichment, tumor immunosuppressive signals, intratumor heterogeneity, homologous recombination deficiency, tumor mutation burden, and stromal content. Moreover, TRPV1 expression was downregulated in late-stage versus early-stage tumors. In breast cancer, bladder cancer, and low-grade glioma, TRPV1 expression was more inferior in invasive than in noninvasive subtypes. Pathway analysis showed that the enrichment of cancer-associated pathways correlated inversely with TRPV1 expression levels. Conclusion TRPV1 upregulation correlates with decreased tumor proliferation, tumor driver gene expression, genomic instability, and tumor immunosuppressive signals in various cancers. Our results provide new understanding of the role of TRPV1 in both cancer biology and clinical practice.
Collapse
|
54
|
Munakarmi S, Gurau Y, Shrestha J, Risal P, Park HS, Shin HB, Jeong YJ. Hepatoprotective Effects of a Natural Flavanol 3,3'-Diindolylmethane against CCl 4-Induced Chronic Liver Injury in Mice and TGFβ1-Induced EMT in Mouse Hepatocytes via Activation of Nrf2 Cascade. Int J Mol Sci 2022; 23:ijms231911407. [PMID: 36232707 PMCID: PMC9569868 DOI: 10.3390/ijms231911407] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022] Open
Abstract
Hepatic fibrosis is a form of irregular wound-healing response with acute and chronic injury triggered by the deposition of excessive extracellular matrix. Epithelial-mesenchymal transition (EMT) is a dynamic process that plays a crucial role in the fibrogenic response and pathogenesis of liver fibrosis. In the present study, we postulated a protective role of 3,3'-diindolylmethane (DIM) against TGF-β1 mediated epithelial-mesenchymal transition (EMT) in vitro and carbon tetrachloride (CCl4)-induced liver fibrosis in mice. TGF-β1-induced AML-12 hepatocyte injury was evaluated by monitoring cell morphology, measuring reactive oxygen species (ROS) and mitochondrial membrane potential, and quantifying apoptosis, inflammatory, and EMT-related proteins. Furthermore, CCl4-induced liver fibrosis in mice was evaluated by performing liver function tests, including serum ALT and AST, total bilirubin, and albumin to assess liver injury and by performing H&E and Sirius red staining to determine the degree of liver fibrosis. Immunoblotting was performed to determine the expression levels of inflammation, apoptosis, and Nrf2/HO-1 signaling-related proteins. DIM treatment significantly restored TGF-β1-induced morphological changes, inhibited the expression of mesenchymal markers by activating E-cadherin, decreased mitochondrial membrane potential, reduced ROS intensity, and upregulated levels of Nrf2-responsive antioxidant genes. In the mouse model of CCl4-induced liver fibrosis, DIM remarkably attenuated liver injury and liver fibrosis, as reflected by the reduced ALT and AST parameters with increased serum Alb activity and fewer lesions in H&E staining. It also mitigated the fibrosis area in Sirius red and Masson staining. Taken together, our results suggest a possible molecular mechanism of DIM by suppressing TGF-β1-induced EMT in mouse hepatocytes and CCl4-induced liver fibrosis in mice.
Collapse
Affiliation(s)
- Suvesh Munakarmi
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
| | - Yamuna Gurau
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
| | - Juna Shrestha
- Alka Hospital Private Limited, Jwalakhel, Kathmandu 446010, Nepal
| | - Prabodh Risal
- Department of Biochemistry, School of Medical Sciences, Kathmandu University, Dhulikhel 45200, Nepal
| | - Ho Sung Park
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
- Department of Pathology, Jeonbuk National University Hospital, Jeonju 54907, Korea
| | - Hyun Beak Shin
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
- Department of Surgery, Jeonbuk National University Hospital, Jeonju 54907, Korea
| | - Yeon Jun Jeong
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
- Department of Surgery, Jeonbuk National University Hospital, Jeonju 54907, Korea
- Correspondence:
| |
Collapse
|
55
|
Single-Cell RNA Sequencing Reveals the Role of Epithelial Cell Marker Genes in Predicting the Prognosis of Colorectal Cancer Patients. DISEASE MARKERS 2022; 2022:8347125. [PMID: 35968507 PMCID: PMC9372514 DOI: 10.1155/2022/8347125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/09/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
Single-cell RNA sequencing (scRNA-seq) is increasingly used in studies on gastrointestinal cancers. This study investigated the prognostic value of epithelial cell-associated biomarkers in colorectal cancer (CRC) using scRNA-seq data. We downloaded and analysed scRNA-seq data from four CRC samples from the Gene Expression Omnibus (GEO), and we identified marker genes of malignant epithelial cells (MECs) using CRC transcriptome and clinical data downloaded from The Cancer Genome Atlas (TCGA) and GEO as training and validation cohorts, respectively. In the TCGA training cohort, weighted gene correlation network analysis, univariate Cox proportional hazard model (Cox) analysis, and least absolute shrinkage and selection operator regression analysis were performed on the marker genes of MEC subsets to identify a signature of nine prognostic MEC-related genes (MECRGs) and calculate a risk score based on the signature. CRC patients were divided into high- and low-risk groups according to the median risk score. We found that the MECRG risk score was significantly correlated with the clinical features and overall survival of CRC patients, and that CRC patients in the high-risk group showed a significantly shorter survival time. The univariate and multivariate Cox regression analyses showed that the MECRG risk score can serve as an independent prognostic factor for CRC patients. Gene set enrichment analysis revealed that the MECRG signature genes are involved in fatty acid metabolism, p53 signalling, and other pathways. To increase the clinical application value, we constructed a MECRG nomogram by combining the MECRG risk score with other independent prognostic factors. The validity of the nomogram is based on receiver operating characteristics and calibration curves. The MECRG signature and nomogram models were well validated in the GEO dataset. In conclusion, we established an epithelial cell marker gene-based risk assessment model based on scRNA-seq analysis of CRC samples for predicting the prognosis of CRC patients.
Collapse
|
56
|
Tu Y, Fang P, Zhang L, Sun K. Analysis of the Effect of SNAI Family in Breast Cancer and Immune Cell. Front Cell Dev Biol 2022; 10:906885. [PMID: 35898399 PMCID: PMC9309217 DOI: 10.3389/fcell.2022.906885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
SNAI family members are transcriptional repressors that induce epithelial-mesenchymal transition during biological development. SNAIs both have tumor-promoting and tumor-inhibiting effect. There are key regulatory effects on tumor onset and development, and patient prognosis in infiltrations of immune cell and tumor microenvironmental changes. However, the relationships between SNAIs and immune cell infiltration remain unclear. We comprehensively analyzed the roles of SNAIs in cancer. We used Oncomine and TCGA data to analyze pan-cancer SNAI transcript levels. By analyzing UALCAN data, we found correlations between SNAI transcript levels and breast cancer patient characteristics. Kaplan–Meier plotter analysis revealed that SNAI1 and SNAI2 have a bad prognosis, whereas SNAI3 is the opposite. Analysis using the cBio Cancer Genomics Portal revealed alterations in SNAIs in breast cancer subtypes. Gene Ontology analysis and gene set enrichment analysis were used to analyze differentially expressed genes related to SNAI proteins in breast cancer. We used TIMER to analyze the effects of SNAI transcript levels, mutations, methylation levels, and gene copy number in the infiltration of immune cell. Further, we found the relationships between immune cell infiltration, SNAI expression levels, and patient outcomes. To explore how SNAI proteins affect immune cell, we further studied the correlations between immunomodulator expression, chemokine expression, and SNAI expression. The results showed that SNAI protein levels were correlated with the expression of several immunomodulators and chemokines. Through analysis of PharmacoDB data, we identified antitumor drugs related to SNAI family members and analyzed their IC50 effects on various breast cancer cell lines. In summary, our study revealed that SNAI family members regulate different immune cells infiltrations by gene copy number, mutation, methylation, and expression level. SNAI3 and SNIA1/2 have opposite regulatory effects. They all play a key role in tumor development and immune cell infiltration, and can provide a potential target for drug therapy.
Collapse
Affiliation(s)
- Yifei Tu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Pengfei Fang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Kewang Sun
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
57
|
Histone deacetylase 3 promotes alveolar epithelial-mesenchymal transition and fibroblast migration under hypoxic conditions. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:922-931. [PMID: 35804191 PMCID: PMC9355949 DOI: 10.1038/s12276-022-00796-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 11/12/2022]
Abstract
Epithelial–mesenchymal transition (EMT), a process by which epithelial cells undergo a phenotypic conversion that leads to myofibroblast formation, plays a crucial role in the progression of idiopathic pulmonary fibrosis (IPF). Recently, it was revealed that hypoxia promotes alveolar EMT and that histone deacetylases (HDACs) are abnormally overexpressed in the lung tissues of IPF patients. In this study, we showed that HDAC3 regulated alveolar EMT markers via the AKT pathway during hypoxia and that inhibition of HDAC3 expression by small interfering RNA (siRNA) decreased the migration ability and invasiveness of diseased human lung fibroblasts. Furthermore, we found that HDAC3 enhanced the migratory and invasive properties of fibroblasts by positively affecting the EMT process, which in turn was affected by the increased and decreased levels of microRNA (miR)-224 and Forkhead Box A1 (FOXA1), respectively. Lastly, we found this mechanism to be valid in an in vivo system; HDAC3 siRNA administration inhibited bleomycin-induced pulmonary fibrosis in mice. Thus, it is reasonable to suggest that HDAC3 may accelerate pulmonary fibrosis progression under hypoxic conditions by enhancing EMT in alveolar cells through the regulation of miR-224 and FOXA1. This entire process, we believe, offers a novel therapeutic approach for pulmonary fibrosis. Inhibiting an enzyme that boosts the invasiveness of fibrosis-related cells could prove to be a novel therapeutic strategy for treating idiopathic lung fibrosis. Lung fibrosis progresses via the transition of epithelial cells into myofibroblasts, which are migratory invasive cell types that secrete collagen and deposit excessive extracellular material. Low oxygen conditions (hypoxia) accelerate this transition process. Scientists recently identified a group of histone deacetylases (HDACs) that are significantly overexpressed in the lung tissues of patients with fibrosis. In experiments on mice and human cell lines, Jeong-Woong Park and Se-Hee Kim at Gachon University Gil Medical Center, Incheon, South Korea, and co-workers demonstrated that under hypoxic conditions, HDAC3 increases the cellular transition to myofibroblasts by regulating the expression of a key microRNA and its target gene. Inhibiting HDAC3 suppresses the migration and invasiveness of lung myofibroblasts.
Collapse
|
58
|
Sermaxhaj F, Dedić Plavetić N, Gozalan U, Kulić A, Radmilović Varga L, Popović M, Sović S, Mijatović D, Sermaxhaj B, Sopjani M. The role of interleukin‑7 serum level as biological marker in breast cancer: a cross‑sectional, observational, and analytical study. World J Surg Oncol 2022; 20:225. [PMID: 35794603 PMCID: PMC9258073 DOI: 10.1186/s12957-022-02646-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/28/2022] [Indexed: 11/18/2022] Open
Abstract
Background The important role that the immune system plays in malignant diseases is well known. The action of interleukin-7 (IL-7) as a cytokine has been observed in many cellular processes, both in normal cells of the immune system and in some cancer cells. The aim of this study has been to explore whether there is any elevation of interleukin-7 serum levels in early invasive breast cancer (EIBC) patients in comparison with healthy controls. In addition, the correlation between the IL-7 serum level and the histopathological characteristics of the tumor has been evaluated. Methods This cross-sectional, observational, and analytical study included 213 consecutive patients with EIBC (113 from Croatia and 100 from Kosovo) and 62 healthy participants as the control group (30 from Croatia and 32 from Kosovo). Blood samples have been taken from patients confirmed with breast cancer (BC) by biopsy, prior to surgical intervention and other oncological treatments, as well as from healthy participants. A serum IL-7 level has been measured, using the “Sandwich” ELISA Immunoenzyme test. In addition, after the surgical intervention, histopathological specimen examinations and immunohistochemistry have been performed and analyzed. The differences in the distribution of the numerical variables have been analyzed with the Mann–Whitney U test and Kruskal–Wallis ANOVA test. Correlations have been tested with Pearson coefficients. A P-value < 0.05 has been accepted as statistically significant. Results The serum level of IL-7 in EIBC patients was significantly higher than in control cases (P 0.001). Patients with invasive lobular carcinoma (ILC) seem to have a lower IL-7 serum level compared to other histological subtypes, and the difference has been significant (P = 0.043). There has been no correlation between IL-7 serum level and histopathological characteristics of the tumor, with neither age nor menopausal status of the patients. Conclusions Noting the significant increase in the IL-7 serum level in the EIBC patients as compared to the healthy control group, the use of IL-7 as a potential diagnostic indicator for BC, as well as in the follow-up of the patients after treatment, can be assumed. The lack of correlation with tumor size, lymph node metastasis, and all other histopathological characteristics of the tumor questions its use as a prognostic indicator.
Collapse
|
59
|
Rg3 and Rh2 ginsenosides suppress embryoid body formation by inhibiting the epithelial-mesenchymal transition. Arch Pharm Res 2022; 45:494-505. [PMID: 35759089 DOI: 10.1007/s12272-022-01395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/21/2022] [Indexed: 11/02/2022]
Abstract
Numerous active compounds derived from ginseng exhibit various pharmacological and therapeutic effects in humans. Despite the benefits of ginsenosides, little is known about their influence on embryonic development, especially in human embryonic models. In this study, we evaluated the effect of two ginsenosides (Rg3 and Rh2) on human embryonic development, using embryoid bodies and three-dimensional (3D) aggregates of pluripotent stem cells. We exposed embryoid bodies to varying concentrations of Rg3 and Rh2 (5, 10, and 25 μg/mL), and their embryotoxicity was evaluated by measuring the size of the embryoid body and the expression of epithelial-mesenchymal transition (EMT) markers. The growth rates of embryoid bodies were reduced upon treatment with a high concentration (25 μg/mL) of Rg3 and Rh2. In addition, Rg3 induced E-cadherin expression while inhibiting N-cadherin and vimentin expression, which implies the inhibition of EMT. Such a change in E-cadherin expression was not observed after Rh2 treatment, but the inhibition of N-cadherin and vimentin expression was observed to be consistent with that observed on treatment with Rg3. Taken together, using the human embryoid model, we found that the two active ginsenosides, Rg3 and Rh2, induce aberrant embryoid body formation and ablate normal EMT.
Collapse
|
60
|
Vats S, Galli T. Role of SNAREs in Unconventional Secretion-Focus on the VAMP7-Dependent Secretion. Front Cell Dev Biol 2022; 10:884020. [PMID: 35784483 PMCID: PMC9244844 DOI: 10.3389/fcell.2022.884020] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022] Open
Abstract
Intracellular membrane protein trafficking is crucial for both normal cellular physiology and cell-cell communication. The conventional secretory route follows transport from the Endoplasmic reticulum (ER) to the plasma membrane via the Golgi apparatus. Alternative modes of secretion which can bypass the need for passage through the Golgi apparatus have been collectively termed as Unconventional protein secretion (UPS). UPS can comprise of cargo without a signal peptide or proteins which escape the Golgi in spite of entering the ER. UPS has been classified further depending on the mode of transport. Type I and Type II unconventional secretion are non-vesicular and non-SNARE protein dependent whereas Type III and Type IV dependent on vesicles and on SNARE proteins. In this review, we focus on the Type III UPS which involves the import of cytoplasmic proteins in membrane carriers of autophagosomal/endosomal origin and release in the extracellular space following SNARE-dependent intracellular membrane fusion. We discuss the role of vesicular SNAREs with a strong focus on VAMP7, a vesicular SNARE involved in exosome, lysosome and autophagy mediated secretion. We further extend our discussion to the role of unconventional secretion in health and disease with emphasis on cancer and neurodegeneration.
Collapse
Affiliation(s)
- Somya Vats
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy and Diseased Brain, Université Paris Cité, Paris, France
| | - Thierry Galli
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy and Diseased Brain, Université Paris Cité, Paris, France
- GHU PARIS Psychiatrie & Neurosciences, Paris, France
| |
Collapse
|
61
|
Hu Y, Bai J, Zhou D, Zhang L, Chen X, Chen L, Liu Y, Zhang B, Li H, Yin C. The miR-4732-5p/XPR1 axis suppresses the invasion, metastasis, and epithelial-mesenchymal transition of lung adenocarcinoma via the PI3K/Akt/GSK3β/Snail pathway. Mol Omics 2022; 18:417-429. [PMID: 35388387 DOI: 10.1039/d1mo00245g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2024]
Abstract
The roles of microRNAs (miRNAs) in the occurrence, metastasis, and prognosis of lung adenocarcinoma (LUAD) have been drawing extensive attention from researchers. The aim of this study is to identify the effects of miR-4732-5p on the migration, invasion, and metastasis of LUAD. In this study, we found that the expression of miR-4732-5p was decreased in LUAD based on the data derived from The Cancer Genome Atlas (TCGA) database, tissues, and cell lines. LUAD patients with a low expression of miR-4732-5p exhibited a lower survival rate. Meanwhile, miR-4732-5p could directly target xenotropic and polytropic retrovirus receptor 1 (XPR1), and elevated XPR1 was observed in LUAD mRNA microarrays, Gene Expression Omnibus (GEO), and The Human Protein Atlas (HPA) database. Overexpression of miR-4732-5p significantly inhibits the migration, invasion, and metastasis of LUAD in vitro and in vivo, which can be reversed by overexpression of XPR1. We also found that the PI3K/Akt/GSK3β/Snail pathway induced by EGF induced EMT could be inhibited by miR-4732-5p overexpression and XPR1 knockdown. The migration and invasion of LUAD could be converted by cytoskeletal rearrangements, and the polymerization of EGF induced F-actin in A549 cells could be inhibited by elevated miR-4732-5p. Our results suggest that miR-4732-5p exerts anti-tumor effects on the invasion and metastasis of LUAD by regulating XPR1 in vivo and in vitro, indicating that the miR-4732-5p/XPR1 axis may be a potential target for LUAD therapeutic intervention.
Collapse
Affiliation(s)
- Yaqiong Hu
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong, 261053, China.
| | - Jun Bai
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong, 261053, China.
| | - Dandan Zhou
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong, 261053, China.
| | - Liping Zhang
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong, 261053, China.
| | - Xinlu Chen
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong, 261053, China.
| | - Lin Chen
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong, 261053, China.
| | - Yuqing Liu
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong, 261053, China.
| | - Baogang Zhang
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong, 261053, China.
| | - Hongli Li
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong, 261053, China.
| | - Chonggao Yin
- College of Nursing, Weifang Medical University, Weifang, Shandong, 261053, China.
| |
Collapse
|
62
|
Jung YY, Chinnathambi A, Alahmadi TA, Alharbi SA, Kumar AP, Sethi G, Ahn KS. Fangchinoline targets epithelial-mesenchymal transition process by modulating activation of multiple cell-signaling pathways. J Cell Biochem 2022; 123:1222-1236. [PMID: 35621239 DOI: 10.1002/jcb.30279] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/15/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a key process, which can promote the transition of tumor cells into other organs by weakening the cell-cell junctions. Tumor cell invasion and metastasis arising because of EMT can determine the prognosis of cancer. EMT can be induced by several growth factors including transforming growth factor-β (TGF-β), which can exert their effects by affecting several cell-signaling pathways. Fangchinoline (FCN), a kind of bisbenzylisoquinoline, belongs to the family Menispermaceae. FCN can display substantial antitumor effects against various malignant cell lines but its possible impact on EMT has not been explored. We examined the potential impact of FCN in affecting the activation of EMT in human colon cancer cells. We evaluated the influence of FCN on EMT in colon cancer cells by using Western blot analysis and reverse transcription-polymerase chain reaction assays. The cellular invasion and migration were observed by Boyden chamber and wound healing assays. Thereafter, the effect of the drug on proliferation and invasion was also evaluated by real-time cell analysis. FCN suppressed the levels of TGF-β-induced mesenchymal markers, such as fibronectin, vimentin, MMP-9, MMP-2, N-cadherin, Twist, and Snail. However, FCN markedly enhanced the expression of epithelial markers such as occludin and E-cadherin. These results imply that FCN can potentially inhibit tumor metastasis through abrogating EMT. In addition, FCN downregulated c-Met/PI3K/Akt/mTOR and Wnt/β-catenin cell signaling pathways and mitigated tumor migration as well as invasion. Overall, our study suggests a potential novel role of FCN as an antimetastatic agent against human colon cancer cells.
Collapse
Affiliation(s)
- Young Y Jung
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Tahani A Alahmadi
- Department of Pediatrics, King Khalid University Hospital [Medical City], King Saud University, Riyadh, Saudi Arabia
| | - Sulaiman A Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Alan P Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kwang S Ahn
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
63
|
Allegra A, Casciaro M, Barone P, Musolino C, Gangemi S. Epigenetic Crosstalk between Malignant Plasma Cells and the Tumour Microenvironment in Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14112597. [PMID: 35681577 PMCID: PMC9179362 DOI: 10.3390/cancers14112597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 12/20/2022] Open
Abstract
In multiple myeloma, cells of the bone marrow microenvironment have a relevant responsibility in promoting the growth, survival, and drug resistance of multiple myeloma plasma cells. In addition to the well-recognized role of genetic lesions, microenvironmental cells also present deregulated epigenetic systems. However, the effect of epigenetic changes in reshaping the tumour microenvironment is still not well identified. An assortment of epigenetic regulators, comprising histone methyltransferases, histone acetyltransferases, and lysine demethylases, are altered in bone marrow microenvironmental cells in multiple myeloma subjects participating in disease progression and prognosis. Aberrant epigenetics affect numerous processes correlated with the tumour microenvironment, such as angiogenesis, bone homeostasis, and extracellular matrix remodelling. This review focuses on the interplay between epigenetic alterations of the tumour milieu and neoplastic cells, trying to decipher the crosstalk between these cells. We also evaluate the possibility of intervening specifically in modified signalling or counterbalancing epigenetic mechanisms.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (P.B.); (C.M.)
- Correspondence:
| | - Marco Casciaro
- Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| | - Paola Barone
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (P.B.); (C.M.)
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (P.B.); (C.M.)
| | - Sebastiano Gangemi
- Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| |
Collapse
|
64
|
Tseng PC, Chen CL, Lee KY, Feng PH, Wang YC, Satria RD, Lin CF. Epithelial-to-mesenchymal transition hinders interferon-γ-dependent immunosurveillance in lung cancer cells. Cancer Lett 2022; 539:215712. [PMID: 35490920 DOI: 10.1016/j.canlet.2022.215712] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/23/2022]
Abstract
The epithelial-to-mesenchymal transition (EMT) is involved in cancer metastasis; nevertheless, interferon (IFN)-γ induces anticancer activities by causing cell growth suppression, cytotoxicity, and migration inhibition. Regarding the poor response to exogenously administered IFN-γ as anticancer therapy, it was hypothesized that malignant cells may acquire a means of escaping from IFN-γ immunosurveillance, likely through an EMT-related process. A genomic analysis of human lung cancers revealed a negative link between the EMT and IFN-γ signaling, while compared to human lung adenocarcinoma A549 cells, IFN-γ-hyporesponsive AS2 cells exhibited mesenchymal characteristics. Chemically, physically, and genetically engineered EMT attenuated IFN-γ-induced IFN regulatory factor 1 transactivation. Poststimulation of transforming growth factor-β induced the EMT and also selectively retarded IFN-γ-responsive gene expression as well as IFN-γ-induced signal transducer and activator of transcription 1 activation, major histocompatibility complex I, and CD54 expression, cell migration/invasion inhibition, and direct/indirect cytotoxicity. Without changes in IFN-γ receptors, excessive oxidative activation of Src homology-2 containing phosphatase 2 (SHP2) in cells undergoing the EMT primarily caused cellular hyporesponsiveness to IFN-γ signaling and cytotoxicity, while combining an SHP2 inhibitor or antioxidant sensitized EMT-associated AS2 and mesenchymal A549 cells to IFN-γ-induced priming effects on tumor necrosis factor-related apoptosis-inducing ligand cytotoxicity. In cell line-derived xenograft models, combined treatment with IFN-γ and an SHP2 inhibitor induced enhanced anticancer activities. These results imply that EMT-associated SHP2 activation inhibits IFN-γ signaling, facilitating lung cancer cell escape from IFN-γ immunosurveillance.
Collapse
Affiliation(s)
- Po-Chun Tseng
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Core Laboratory of Immune Monitoring, Office of Research & Development, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chia-Ling Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Kang-Yuan Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, 11031, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, 11031, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yu-Chih Wang
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Rahmat Dani Satria
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Department of Clinical Pathology and Laboratory Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia; Clinical Laboratory Installation, Dr. Sardjito Central General Hospital, Yogyakarta, 55281, Indonesia
| | - Chiou-Feng Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Core Laboratory of Immune Monitoring, Office of Research & Development, Taipei Medical University, Taipei, 11031, Taiwan; International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
65
|
Tang W, Lu Q, Zhu J, Zheng X, Fang N, Ji S, Lu F. Identification of a Prognostic Signature Composed of GPI, IL22RA1, CCT6A and SPOCK1 for Lung Adenocarcinoma Based on Bioinformatic Analysis of lncRNA-Mediated ceRNA Network and Sample Validation. Front Oncol 2022; 12:844691. [PMID: 35433415 PMCID: PMC9012227 DOI: 10.3389/fonc.2022.844691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the most common malignant tumors with high morbidity and mortality in China and worldwide. Long non-coding RNAs (lncRNAs) as the competing endogenous RNA (ceRNA) play an essential role in the occurrence and development of LUAD. However, identifying lncRNA-related biomarkers to improve the accuracy of LUAD prognosis remains to be determined. This study downloaded RNA sequence data from The Cancer Genome Atlas (TCGA) database and identified the differential RNAs by bioinformatics. A total of 214 lncRNA, 198 miRNA and 2989 mRNA were differentially identified between LUAD and adjacent nontumor samples. According to the ceRNA hypothesis, we constructed a lncRNA-miRNA-mRNA network including 95 protein-coding mRNAs, 7 lncRNAs and 15 miRNAs, and found 24 node genes in this network were significantly associated with the overall survival of LUAD patients. Subsequently, through LASSO regression and multivariate Cox regression analyses, a four-gene prognostic signature composed of GPI, IL22RA1, CCT6A and SPOCK1 was developed based on the node genes of the lncRNA-mediated ceRNA network, demonstrating high performance in predicting the survival and chemotherapeutic responses of low- and high-risk LUAD patients. Finally, independent prognostic factors were further analyzed and combined into a well-executed nomogram that showed strong potential for clinical applications. In summary, the data from the current study suggested that the four-gene signature obtained from analysis of lncRNA-mediated ceRNA could serve as a reliable biomarker for LUAD prognosis and evaluation of chemotherapeutic response.
Collapse
Affiliation(s)
- Wenjun Tang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China.,Department of Immunology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Qiaonan Lu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jianling Zhu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China.,Department of Immunology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xiaowei Zheng
- Department of Clinical Laboratory, Puyang Hospital of Traditional Chinese Medicine, Puyang, China
| | - Na Fang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Shaoping Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Feng Lu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China.,Department of Immunology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
66
|
SMAD3 and FTO are involved in miR-5581-3p-mediated inhibition of cell migration and proliferation in bladder cancer. Cell Death Dis 2022; 8:199. [PMID: 35418191 PMCID: PMC9007965 DOI: 10.1038/s41420-022-01010-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 01/17/2023]
Abstract
Previous research evidence suggests that microRNAs (miRNAs) play an indispensable role in onset and progression of bladder cancer (BCa). Here, we explored the functions and mechanisms of miR-5581-3p in BCa. miR-5581-3p, as a tumor suppressor in BCa, was detected at a lower expression level in BCa tissue and cells in contrast with the non-malignant bladder tissue and cells. Over-expression of miR-5581-3p remarkably dampened the migration and proliferation of BCa in vitro and in vivo. SMAD3 and FTO were identified as the direct targets of miR-5581-3p by online databases prediction and mRNA-seq, which were further verified. SMAD3 as a star molecule in modulating EMT progress of BCa had been formulated in former studies. Meanwhile, FTO proved as an N6-methyladenosine (m6A) demethylase in decreasing m6A modification was confirmed to regulate the migration and proliferation in BCa. In addition, we conducted rescue experiments and confirmed overexpressing miR-5581-3p partially rescued the effects of the overexpressing SMAD3 and FTO in BCa cells. In conclusion, our studies exhibit that miR-5581-3p is a novel tumor inhibitor of BCa.
Collapse
|
67
|
Chen YY, Chen SY, Li TJ, Lin TW, Chen CC, Yen GC. 4-Acetylantroquinonol B enhances cell death and inhibits autophagy by downregulating the PI3K/Akt/MDR1 pathway in gemcitabine-resistant pancreatic cancer cells. Oncol Lett 2022; 23:128. [PMID: 35251348 PMCID: PMC8895450 DOI: 10.3892/ol.2022.13248] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
Gemcitabine (GEM) is a typical chemotherapeutic drug used to treat pancreatic cancer, but GEM resistance develops within weeks after chemotherapy. Hence, the development of a new strategy to overcome drug resistance is urgent. 4-Acetylantroquinonol B (4-AAQB), a ubiquinone derived from Taiwanofungus camphoratus, has hepatoprotective, anti-obesity, and antitumor activities. However, the role of 4-AAQB in enhancing GEM sensitivity is unclear. This study aimed to determine the underlying mechanisms by which 4-AAQB enhances cytotoxicity and GEM sensitivity. Cell viability was dramatically reduced by 4-AAQB (2 and 5 µM) treatment in the MiaPaCa-2 and GEM-resistant MiaPaCa-2 (MiaPaCa-2GEMR) human pancreatic cancer cells. 4-AAQB led to cell cycle arrest, upregulated the levels of reactive oxygen species (ROS), promoted apoptosis, and inhibited autophagy, which subsequently enhanced GEM chemosensitivity by suppressing the receptor for advanced glycation end products (RAGE)/high mobility group box 1 (HMGB1)-initiated PI3K/Akt/multidrug resistance protein 1 (MDR1) signaling pathway in both cell lines. Vascular endothelial growth factor A (VEGFA) expression, cell migration, and invasion were also inhibited by the 4-AAQB incubation. Overall, this combination treatment strategy might represent a novel approach for GEM-resistant pancreatic cancer.
Collapse
Affiliation(s)
- Ying-Yin Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
| | - Sheng-Yi Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
| | - Tsung-Ju Li
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 32542, Taiwan, R.O.C
| | - Ting-Wei Lin
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 32542, Taiwan, R.O.C
| | - Chin-Chu Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 32542, Taiwan, R.O.C
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
| |
Collapse
|
68
|
Bhat S, Adiga D, Shukla V, Guruprasad KP, Kabekkodu SP, Satyamoorthy K. Metastatic suppression by DOC2B is mediated by inhibition of epithelial-mesenchymal transition and induction of senescence. Cell Biol Toxicol 2022; 38:237-258. [PMID: 33758996 PMCID: PMC8986756 DOI: 10.1007/s10565-021-09598-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/24/2021] [Indexed: 02/04/2023]
Abstract
Senescence induction and epithelial-mesenchymal transition (EMT) events are the opposite sides of the spectrum of cancer phenotypes. The key molecules involved in these processes may get influenced or altered by genetic and epigenetic changes during tumor progression. Double C2-like domain beta (DOC2B), an intracellular vesicle trafficking protein of the double C2 protein family, plays a critical role in exocytosis, neurotransmitter release, and intracellular vesicle trafficking. DOC2B is repressed by DNA promoter hypermethylation and functions as a tumor growth regulator in cervical cancer. To date, the molecular mechanisms of DOC2B in cervical cancer progression and metastasis is elusive. Herein, the biological functions and molecular mechanisms regulated by DOC2B and its impact on senescence and EMT are described. DOC2B inhibition promotes proliferation, growth, and migration by relieving G0/G1-S arrest, actin remodeling, and anoikis resistance in Cal27 cells. It enhanced tumor growth and liver metastasis in nude mice with the concomitant increase in metastasis-associated CD55 and CD61 expression. Inhibition of EMT and promotion of senescence by DOC2B is a calcium-dependent process and accompanied by calcium-mediated interaction between DOC2B and CDH1. In addition, we have identified several EMT and senescence regulators as targets of DOC2B. We show that DOC2B may act as a metastatic suppressor by inhibiting EMT through induction of senescence via DOC2B-calcium-EMT-senescence axis.
Collapse
Affiliation(s)
- Samatha Bhat
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, India
| | - Kanive Parashiva Guruprasad
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, India.
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, India.
| |
Collapse
|
69
|
Qi F, Tang J, Cai Z, Wang G, Wang Z. Long non-coding RNA CATIP antisense RNA 1 (lncRNA CATIP-AS1) downregulation contributes to the progression and metastasis of thyroid cancer via epithelial-mesenchymal transition (EMT) pathway. Bioengineered 2022; 13:7592-7606. [PMID: 35264071 PMCID: PMC8973971 DOI: 10.1080/21655979.2022.2047400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Thyroid cancer (THCA) is the most common cancer of the endocrine system across the globe. To date, the mechanism of development of THCA remains scarcely known. In this study, we aim to elucidate the long non-coding RNA CATIP antisense RNA 1 (lncRNA CATIP-AS1/CATIP-AS1) role in the pathogenesis of THCA and its regulatory mechanism. The result shows that the CATIP-AS1 was significantly downregulated in THCA tissues and cells and was associated with a poor prognosis of patients diagnosed with THCA. The overexpression of CATIP-AS1 significantly inhibited THCA cell proliferation, migration, and epithelial–mesenchymal transition (EMT) but increased the THCA cell apoptosis. We found that CATIP-AS1 endogenously sponges miR-515-5p and its overexpression could inhibit miR-515-5p regulatory effect. Moreover, the overexpression of miR-515-5p repressed the Smad4 expression level, consequently reversed the inhibiting effect of overexpressed CATIP-AS1 on the proliferation, and migration of THCA cell. It also reversed the increased THCA cell apoptosis and the downregulated-CATIP-AS1-induced cell EMT inhibition. Summarily, we demonstrated that the CATIP-AS1 promotes the progression and metastasis of THCA via EMT pathway partly through regulating the miR-515-5p and Smad4 expression in THCA cell. The CATIP-AS1 could be a promising biomarker for early THCA detection and prognosis and a possible therapeutic target for its treatment.
Collapse
Affiliation(s)
- Fujian Qi
- Department of General Surgery, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ji'Ao Tang
- Department of General Surgery, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhenling Cai
- Department of General Surgery, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Gang Wang
- Department of General Surgery, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhijun Wang
- Department of General Surgery, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
70
|
Mohamadian M, Bahrami A, Moradi Binabaj M, Asgharzadeh F, Ferns GA. Molecular Targets of Curcumin and Its Therapeutic Potential for Ovarian Cancer. Nutr Cancer 2022; 74:2713-2730. [PMID: 35266849 DOI: 10.1080/01635581.2022.2049321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ovarian cancer is the fifth most common gynecological cancer in women globally. Conventional chemotherapy is the first therapeutic approach in the treatment of ovarian cancer, but its success is limited by severe side effects, transient response, and the high prevalence of relapse. Curcumin is a natural product found in the rhizome extract of Curcuma longa and has been extensively used over the last decades for its unique biological and medicinal properties, which include: having antioxidant, analgesic, anti-inflammation, and anti-tumor activities. Curcumin exerts its anticancer properties against ovarian cancer via multiple mechanisms: interfering with cellular interactions necessary for metastasis and recurrence of OC cells, increasing pro-apoptotic proteins as well as inducing or suppressing generation of different molecules such as cytokines, transcription factors, enzymes, protein kinases, and growth factors. Moreover, curcumin down-regulates various signaling pathways such as PI3K/Akt, Wnt/β-catenin, JAK/STAT3, and MEK/ERK1/2 axes, which at least in part have a role in inhibiting further tumor proliferation, growth, and angiogenesis. In this review, we overview the potential of incorporating curcumin into the treatment of ovarian cancer. In particular, we summarize the preclinical evidence supporting its use in combination with current chemotherapeutic regimens as well as new analogues and formulations under investigation.
Collapse
Affiliation(s)
- Malihe Mohamadian
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Afsane Bahrami
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Clinical Research Development Unit of Akbar Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Moradi Binabaj
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Fereshteh Asgharzadeh
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Falmer, Brighton, Sussex, UK
| |
Collapse
|
71
|
Ferrer AI, Einstein E, Morelli SS. Bone Marrow-Derived Cells in Endometrial Cancer Pathogenesis: Insights from Breast Cancer. Cells 2022; 11:cells11040714. [PMID: 35203363 PMCID: PMC8869947 DOI: 10.3390/cells11040714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/08/2022] [Accepted: 02/13/2022] [Indexed: 02/04/2023] Open
Abstract
Endometrial cancer is the most common gynecological cancer, representing 3.5% of all new cancer cases in the United States. Abnormal stem cell-like cells, referred to as cancer stem cells (CSCs), reside in the endometrium and possess the capacity to self-renew and differentiate into cancer progenitors, leading to tumor progression. Herein we review the role of the endometrial microenvironment and sex hormone signaling in sustaining EC progenitors and potentially promoting dormancy, a cellular state characterized by cell cycle quiescence and resistance to conventional treatments. We offer perspective on mechanisms by which bone marrow-derived cells (BMDCs) within the endometrial microenvironment could promote endometrial CSC (eCSC) survival and/or dormancy. Our perspective relies on the well-established example of another sex hormone-driven cancer, breast cancer, in which the BM microenvironment plays a crucial role in acquisition of CSC phenotype and dormancy. Our previous studies demonstrate that BMDCs migrate to the endometrium and express sex hormone (estrogen and progesterone) receptors. Whether the BM is a source of eCSCs is unknown; alternatively, crosstalk between BMDCs and CSCs within the endometrial microenvironment could be an additional mechanism supporting eCSCs and tumorigenesis. Elucidating these mechanisms will provide avenues to develop novel therapeutic interventions for EC.
Collapse
Affiliation(s)
- Alejandra I. Ferrer
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (A.I.F.); (E.E.)
- School of Graduate Studies Newark, Rutgers University, Newark, NJ 07103, USA
| | - Ella Einstein
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (A.I.F.); (E.E.)
| | - Sara S. Morelli
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Correspondence:
| |
Collapse
|
72
|
Han L, Shi H, Ma S, Luo Y, Sun W, Li S, Zhang N, Jiang X, Gao Y, Huang Z, Xie C, Gong Y. Agrin Promotes Non-Small Cell Lung Cancer Progression and Stimulates Regulatory T Cells via Increasing IL-6 Secretion Through PI3K/AKT Pathway. Front Oncol 2022; 11:804418. [PMID: 35111682 PMCID: PMC8801576 DOI: 10.3389/fonc.2021.804418] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/23/2021] [Indexed: 01/04/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) has high mortality rates worldwide. Agrin contributes to immune synapse information and is involved in tumor metastasis. However, its roles in NSCLC and tumor immune microenvironment remain unclear. This study examined the effects and the underlying mechanisms of Agrin in NSCLC and tumor-infiltrated immune cells. Clinical tissue samples were used to confirm the bioinformatic predictions. NSCLC cells were used to investigate the effects of Agrin on cell cycle and proliferation, as well as invasion and migration. Tumor xenograft mouse model was used to confirm the effects of Agrin on NSCLC growth and tumor-infiltrated regulatory T cells (Tregs) in vivo. Agrin levels in NSCLC cells were closely related to tumor progression and metastasis, and its function was enriched in the PI3K/AKT pathway. In vitro assays demonstrated that Agrin knockdown suppressed NSCLC cell proliferation and metastasis, while PI3K/AKT activators reversed the inhibitory effects of Agrin deficiency on NSCLC cell behaviors. Agrin expression was negatively associated with immunotherapy responses in NSCLC patients. Agrin knockdown suppressed Tregs, as well as interleukin (IL)-6 expression and secretion, while PI3K/AKT activators and exogenous IL-6 rescued the inhibitory effects. In the mouse model, Agrin downregulation alleviated NSCLC cell growth and Treg infiltration in vivo. Our results indicated that Agrin promotes tumor cell growth and Treg infiltration via increasing IL-6 expression and secretion through PI3K/AKT pathway in NSCLC. Our studies suggested Agrin as a therapeutically potential target to increase the efficacy of immunotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Linzhi Han
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hongjie Shi
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shijing Ma
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenjie Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuying Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Nannan Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xueping Jiang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanping Gao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhengrong Huang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
73
|
Cadherin switches during epithelial-mesenchymal transition: CDH4/RCAD downregulation reduces bladder cancer progression. Cell Oncol (Dordr) 2022; 45:135-149. [DOI: 10.1007/s13402-021-00657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 11/03/2022] Open
|
74
|
Liu YC, Ma C, Zi Y, He S, Yang H, Zhang M, Gao F. Effects of intrauterine growth restriction during late pregnancy on the cell growth, proliferation, and differentiation in ovine fetal thymuses. Anim Biosci 2022; 35:989-998. [PMID: 35073662 PMCID: PMC9271382 DOI: 10.5713/ab.21.0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 01/12/2022] [Indexed: 11/27/2022] Open
Abstract
Objective This study investigated the effects of intrauterine growth restriction (IUGR) during late pregnancy on the cell growth, proliferation, and differentiation in ovine fetal thymuses. Methods Eighteen time-mated Mongolian ewes with singleton fetuses were allocated to three groups at d 90 of pregnancy: restricted group 1 (RG1, 0.18 MJ ME/body weight [BW]0.75/d, n = 6), restricted group 2 (RG2, 0.33 MJ ME/BW0.75/d, n = 6) and control group (CG, ad libitum, 0.67 MJ ME/BW0.75/d, n = 6). Fetuses were recovered at slaughter on d 140. Results The G0/G1 phase cell number in fetal thymus of the RG1 group was increased but the proliferation index and the expression of proliferating cell nuclear antigen (PCNA) were reduced compared with the CG group (p<0.05). Fetuses in the RG1 group exhibited decreased growth hormone receptor (GHR), insulin-like growth factor 2 receptor (IGF-2R), and their mRNA expressions (p<0.05). For the RG2 fetuses, there were no differences in the proliferation index and PCNA expression (p>0.05), but growth hormone (GH) and the mRNA expression of GHR were lower than those of the CG group (p<0.05). The thymic mRNA expressions of cyclin-dependent protein kinases (CDKs including CDK1, CDK2, and CDK4), CCNE, E2-factors (E2F1, E2F2, and E2F5) were reduced in the RG1 and RG2 groups (p<0.05), and decreased mRNA expressions of E2F4, CCNA, CCNB, and CCND were occurred in the RG1 fetuses (p<0.05). The decreased E-cadherin (E-cad) as a marker for epithelial-mesenchymal transition (EMT) was found in the RG1 and RG2 groups (p< 0.05), but the OB-cadherin which is a marker for activated fibroblasts was increased in fetal thymus of the RG1 group (p<0.05). Conclusion These results indicate that weakened GH/IGF signaling system repressed the cell cycle progression in G0/G1 phase in IUGR fetal thymus, but the switch from reduced E-cad to increased OB-cadherin suggests that transdifferentiation process of EMT associated with fibrogenesis was strengthened. The impaired cell growth, retarded proliferation and modified differentiation were responsible for impaired maturation of IUGR fetal thymus.
Collapse
|
75
|
Zhang G, Li Z, Dong J, Zhou W, Zhang Z, Que Z, Zhu X, Xu Y, Cao N, Zhao A. Acacetin inhibits invasion, migration and TGF-β1-induced EMT of gastric cancer cells through the PI3K/Akt/Snail pathway. BMC Complement Med Ther 2022; 22:10. [PMID: 35000605 PMCID: PMC8744305 DOI: 10.1186/s12906-021-03494-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) is a pivotal cellular phenomenon involved in tumour metastasis and progression. In gastric cancer (GC), EMT is the main reason for recurrence and metastasis in postoperative patients. Acacetin exhibits various biological activities. However, the inhibitory effect of acacetin on EMT in GC is still unknown. Herein, we explored the possible mechanism of acacetin on EMT in GC in vitro and in vivo. METHODS In vitro, MKN45 and MGC803 cells were treated with acacetin, after which cell viability was detected by CCK-8 assays, cell migration and invasion were detected by using Transwell and wound healing assays, and protein expression was analysed by western blots and immunofluorescence staining. In vivo, a peritoneal metastasis model of MKN45 GC cells was used to investigate the effects of acacetin. RESULTS Acacetin inhibited the proliferation, invasion and migration of MKN45 and MGC803 human GC cells by regulating the expression of EMT-related proteins. In TGF-β1-induced EMT models, acacetin reversed the morphological changes from epithelial to mesenchymal cells, and invasion and migration were limited by regulating EMT. In addition, acacetin suppressed the activation of PI3K/Akt signalling and decreased the phosphorylation levels of TGF-β1-treated GC cells. The in vivo experiments demonstrated that acacetin delayed the development of peritoneal metastasis of GC in nude mice. Liver metastasis was restricted by altering the expression of EMT-related proteins. CONCLUSION Our study showed that the invasion, metastasis and TGF-β1-induced EMT of GC are inhibited by acacetin, and the mechanism may involve the suppression of the PI3K/Akt/Snail signalling pathway. Therefore, acacetin is a potential therapeutic reagent for the treatment of GC patients with recurrence and metastasis.
Collapse
Affiliation(s)
- Guangtao Zhang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zhaoyan Li
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Department of Oncology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiahuan Dong
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Weili Zhou
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zhanxia Zhang
- Institute of Traditional Chinese Medicine Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zujun Que
- Institute of Traditional Chinese Medicine Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Oncology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaohong Zhu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yan Xu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Nida Cao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Aiguang Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
76
|
Stergiou IE, Chatzis L, Papanikolaou A, Giannouli S, Tzioufas AG, Voulgarelis M, Kapsogeorgou EK. Akt Signaling Pathway Is Activated in the Minor Salivary Glands of Patients with Primary Sjögren's Syndrome. Int J Mol Sci 2021; 22:ijms222413441. [PMID: 34948236 PMCID: PMC8709495 DOI: 10.3390/ijms222413441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is an autoimmune exocrinopathy of mainly the salivary and lacrimal glands associated with high prevalence of lymphoma. Akt is a phosphoinositide-dependent serine/threonine kinase, controlling numerous pathological processes, including oncogenesis and autoimmunity. Herein, we sought to examine its implication in pSS pathogenesis and related lymphomagenesis. The expression of the entire and activated forms of Akt (partially and fully activated: phosphorylated at threonine-308 (T308) and serine-473 (S473), respectively), and two of its substrates, the proline-rich Akt-substrate of 40 kDa (PRAS40) and FoxO1 transcription factor has been immunohistochemically examined in minor salivary glands (MSG) of pSS patients (n = 29; including 9 with pSS-associated lymphoma) and sicca-complaining controls (sicca-controls; n = 10). The entire and phosphorylated Akt, PRAS40, and FoxO1 molecules were strongly, uniformly expressed in the MSG epithelia and infiltrating mononuclear cells of pSS patients, but not sicca-controls. Morphometric analysis revealed that the staining intensity of the fully activated phospho-Akt-S473 in pSS patients (with or without lymphoma) was significantly higher than sicca-controls. Akt pathway activation was independent from the extent or proximity of infiltrates, as well as other disease features, including lymphoma. Our findings support that the Akt pathway is specifically activated in MSGs of pSS patients, revealing novel therapeutic targets.
Collapse
Affiliation(s)
- Ioanna E. Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (L.C.); (A.G.T.); (M.V.)
| | - Loukas Chatzis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (L.C.); (A.G.T.); (M.V.)
| | | | - Stavroula Giannouli
- Hematology Unit, Second Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Athanasios G. Tzioufas
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (L.C.); (A.G.T.); (M.V.)
| | - Michael Voulgarelis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (L.C.); (A.G.T.); (M.V.)
| | - Efstathia K. Kapsogeorgou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (L.C.); (A.G.T.); (M.V.)
- Correspondence: ; Tel.: +30-210-746-2670
| |
Collapse
|
77
|
Chakraborty S, Carnazza M, Jarboe T, DeSouza N, Li XM, Moscatello A, Geliebter J, Tiwari RK. Disruption of Cell-Cell Communication in Anaplastic Thyroid Cancer as an Immunotherapeutic Opportunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1350:33-66. [PMID: 34888843 DOI: 10.1007/978-3-030-83282-7_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thyroid cancer incidence is increasing at an alarming rate, almost tripling every decade. About 44,280 new cases of thyroid cancer (12,150 in men and 32,130 in women) are estimated to be diagnosed in 2021, with an estimated death toll of around 2200. Although most thyroid tumors are treatable and associated with a favorable outcome, anaplastic thyroid cancer (ATC) is extremely aggressive with a grim prognosis of 6-9 months post-diagnosis. A large contributing factor to this aggressive nature is that ATC is completely refractory to mainstream therapies. Analysis of the tumor microenvironment (TME) associated with ATC can relay insight to the pathological realm that encompasses tumors and aids in cancer progression and proliferation. The TME is defined as a complex niche that surrounds a tumor and involves a plethora of cellular components whose secretions can modulate the environment in order to favor tumor progression. The cellular heterogeneity of the TME contributes to its dynamic function due to the presence of both immune and nonimmune resident, infiltrating, and interacting cell types. Associated immune cells discussed in this chapter include macrophages, dendritic cells (DCs), natural killer (NK) cells, and tumor-infiltrating lymphocytes (TILs). Nonimmune cells also play a role in the establishment and proliferation of the TME, including neuroendocrine (NE) cells, adipocytes, endothelial cells (ECs), mesenchymal stem cells (MSCs), and fibroblasts. The dynamic nature of the TME contributes greatly to cancer progression.Recent work has found ATC tissues to be defined by a T cell-inflamed "hot" tumor immune microenvironment (TIME) as evidenced by presence of CD3+ and CD8+ T cells. These tumor types are amenable to immune checkpoint blockade (ICB) therapy. This therapeutic avenue, as of 2021, has remained unexplored in ATC. New studies should seek to explore the therapeutic feasibility of a combination therapy, through the use of a small molecule inhibitor with ICB in ATC. Screening of in vitro model systems representative of papillary, anaplastic, and follicular thyroid cancer explored the expression of 29 immune checkpoint molecules. There are higher expressions of HVEM, BTLA, and CD160 in ATC cell lines when compared to the other TC subtypes. The expression level of HVEM was more than 30-fold higher in ATC compared to the others, on average. HVEM is a member of tumor necrosis factor (TNF) receptor superfamily, which acts as a bidirectional switch through interaction with BTLA, CD160, and LIGHT, in a cis or trans manner. Given the T cell-inflamed hot TIME in ATC, expression of HVEM on tumor cells was suggestive of a possibility for complex crosstalk of HVEM with inflammatory cytokines. Altogether, there is emerging evidence of a T cell-inflamed TIME in ATC along with the expression of immune checkpoint proteins HVEM, BTLA, and CD160 in ATC. This can open doors for combination therapies using small molecule inhibitors targeting downstream effectors of MAPK pathway and antagonistic antibodies targeting the HVEM/BTLA axis as a potentially viable therapeutic avenue for ATC patients. With this being stated, the development of adaptive resistance to targeted therapies is inevitable; therefore, using a combination therapy that targets the TIME can serve as a preemptive tactic against the characteristic therapeutic resistance that is seen in ATC. The dynamic nature of the TME, including the immune cells, nonimmune cells, and acellular components, can serve as viable targets for combination therapy in ATC. Understanding the complex interactions of these associated cells and the paradigm in which their secretions and components can serve as immunomodulators are critical points of understanding when trying to develop therapeutics specifically tailored for the anaplastic thyroid carcinoma microenvironment.
Collapse
Affiliation(s)
- Sanjukta Chakraborty
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY, USA.,Weill Cornell Medicine, New York, NY, USA
| | - Michelle Carnazza
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY, USA
| | - Tara Jarboe
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY, USA
| | - Nicole DeSouza
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY, USA
| | - Xiu-Min Li
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY, USA
| | | | - Jan Geliebter
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY, USA
| | - Raj K Tiwari
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
78
|
SPTBN2 regulated by miR-424-5p promotes endometrial cancer progression via CLDN4/PI3K/AKT axis. Cell Death Dis 2021; 7:382. [PMID: 34887379 PMCID: PMC8660803 DOI: 10.1038/s41420-021-00776-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022]
Abstract
Endometrioid Endometrial Cancer (EEC) is the main subtype of endometrial cancer. In our study, we demonstrated that SPTBN2 was significantly overexpressed in EEC tissues. Upregulated SPTBN2 expression was positively associated with poor prognosis. In addition, we testified that SPTBN2 knockdown significantly inhibited the proliferation, migration, and invasion of EEC cells. Moreover, we found SPTBN2 could interact with CLDN4 to promote endometrial cancer metastasis via PI3K/AKT pathway. Then we further demonstrated that CLDN4 is upregulated in EEC and promotes EEC metastasis. CLDN4 overexpression could partially reversed the decrease in cell migration and invasion caused by SPTBN2 downregulation. In addition, we confirmed that SPTBN2 was a target of miR-424-5p, which plays a tumor suppressor in endometrial cancer. Rescue experiments showed that inhibition of SPTBN2 could partially reverse the effect of miR-424-5p in EEC. In conclusion, we demonstrated that by acting as a significant target of miR-424-5p, SPTBN2 could interact with CLDN4 to promote endometrial cancer metastasis via PI3K/AKT pathway in EEC. Our study revealed the prognostic and metastatic effects of SPTBN2 in EEC, suggesting that SPTBN2 could serve as a prognostic biomarker and a target for metastasis therapy.
Collapse
|
79
|
The protein 4.1R downregulates VEGFA in M2 macrophages to inhibit colon cancer metastasis. Exp Cell Res 2021; 409:112896. [PMID: 34717920 DOI: 10.1016/j.yexcr.2021.112896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/14/2022]
Abstract
M2 macrophages are crucial components of the tumour microenvironment and have been shown to be closely related to tumour progression. Co-culture with 4.1R-/- M2 macrophages enhances the malignancy of colon cancer (CC), but the mechanism remains unclear. Here, we report that protein 4.1R knockout reduced the phagocytosis of M2 macrophages (M-CSF/IL-4-treated bone marrow cells) and promoted MC38 colon cancer cell proliferation, migration, invasion, tumour formation and epithelial-mesenchymal transition (EMT), which are regulated by M2 macrophages. Further mechanistic dissection revealed that the 4.1R knockout upregulated vascular endothelial growth factor A (VEGFA) secreted by M2 macrophages and promoted colon cancer progression by activating the PI3K/AKT signalling pathway. In summary, our present study identified that 4.1R downregulates VEGFA secretion in M2 macrophages and delays the malignant potential of colon cancer by inhibiting the PI3K/AKT signalling pathway.
Collapse
|
80
|
Wu N, Li Z, Wang J, Geng L, Yue Y, Deng Z, Wang Q, Zhang Q. Low molecular weight fucoidan attenuating pulmonary fibrosis by relieving inflammatory reaction and progression of epithelial-mesenchymal transition. Carbohydr Polym 2021; 273:118567. [PMID: 34560978 DOI: 10.1016/j.carbpol.2021.118567] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/27/2021] [Accepted: 08/14/2021] [Indexed: 12/18/2022]
Abstract
Diffuse alveolar injury and pulmonary fibrosis (PF) are the main causes of death of Covid-19 cases. In this study a low molecular weight fucoidan (LMWF) with unique structural was obtained from Laminaria japonica, and its anti- PF and anti-epithelial-mesenchymal transition (EMT) bioactivity were investigated both in vivo and in vitro. After LWMF treatment the fibrosis and inflammatory factors stimulated by Bleomycin (BLM) were in lung tissue. Immunohistochemical and Western-blot results found the expression of COL2A1, β-catenin, TGF-β, TNF-α and IL-6 were declined in mice lung tissue. Besides, the phosphorylation of PI3K and Akt were inhibited by LMWF. In addition, the progression of EMT induced by TGF-β1 was inhibited by LMWF through down-regulated both TGF-β/Smad and PI3K/AKT signaling pathways. These data indicate that unique LMWF can protect the lung from fibrosis by weakening the process of inflammation and EMT, and it is a promising therapeutic option for the treatment of PF.
Collapse
Affiliation(s)
- Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; Nantong Zhongke Marine Science and Technology Research and Development Center, Nantong, China.
| | - Zhi Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yang Yue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenzhen Deng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qingchi Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
81
|
Jung YY, Baek SH, Narula AS, Namjoshi OA, Blough BE, Ahn KS. Potential function of oxymatrine as a novel suppressor of epithelial-to-mesenchymal transition in lung tumor cells. Life Sci 2021; 284:119893. [PMID: 34454947 DOI: 10.1016/j.lfs.2021.119893] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 01/27/2023]
Abstract
AIMS Tumor cells metastasis as well as proliferation are important factors that can substantially determines the prognosis of cancer. In particular, epithelial-mesenchymal transition (EMT) is key phenomena which can cause tumor cell transition into other organs by promoting the disruption of the cell-cell junctions. Because oxymatrine (OMT) have been reported to attenuate the tumor growth, we investigated whether OMT can down-regulate EMT process in tumor cells. We also focused on transforming growth factor-β (TGF-β)-induced EMT process because EMT process can be significantly induced by this growth factor. MAIN METHODS The cell viability was measured by MTT and real time cell analysis (RTCA) assay. The expression levels of various proteins involved in the regulation of EMT and Akt/mTOR/PI3K signaling pathway were evaluated by Western blot analysis. mRNA levels of several important EMT markers were analyzed by reverse transcription polymerase chain reaction (RT-PCR). The effects of OMT on the cellular invasion and migration were evaluated by RTCA, wound healing assay, and boyden chamber assays. KEY FINDINGS OMT suppressed the expression of both constitutive and TGF-β-induced mesenchymal markers, such as fibronectin, vimentin, MMP-9, MMP-2, N-cadherin, Twist, and Snail, but induced the levels of epithelial markers. Moreover, OMT down-regulated oncogenic PI3K/Akt/mTOR pathways which lead to a significant attenuation of invasive and migratory potential of lung cancer cells. SIGNIFICANCE Overall, our study established a novel anti-metastatic role of OMT against human lung cancer cells.
Collapse
Affiliation(s)
- Young Yun Jung
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | | | - Ojas A Namjoshi
- Center for Drug Discovery, RTI International, Research Triangle Park, Durham, NC 27616, USA
| | - Bruce E Blough
- Center for Drug Discovery, RTI International, Research Triangle Park, Durham, NC 27616, USA
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
82
|
Rocconi RP, Wilhite AM, Schambeau L, Scalici J, Pannell L, Finan MA. A novel proteomic-based screening method for ovarian cancer using cervicovaginal fluids: A window into the abdomen. Gynecol Oncol 2021; 164:181-186. [PMID: 34756750 DOI: 10.1016/j.ygyno.2021.10.083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Our objective is to develop a site-specific proteomic-based screening test for ovarian cancer(OC) using the mucus of the cervix and vagina and evaluate a potential means for home testing. METHODS Cervicovaginal fluid samples were obtained from ovarian cancer and normal control patients for LC-mass spectrometry(MS) proteomic evaluation. Statistical modeling determined the protein panel with the highest penetrance across ovarian cancer samples. A subcohort of patients consented to provide self-collected vaginal samples at home with questionnaire on feasibility. Cohen's kappa methodology was utilized to determine agreement between physician-collected and patient-collected samples. RESULTS A total of 83 consecutive patient samples were collected prospectively (33 ovarian cancer & 50 controls). Thirty patients consented for self-collection. Using LC-MS, 30 peptides demonstrated independent statistical significance for detecting ovarian cancer. Using statistical modeling, the protein panel that determined the best predictor for detecting OC formed a "fingerprint" consisting of 5 proteins: serine proteinase inhibitor A1; periplakin; profilin1; apolipoprotein A1; and thymosin beta4-like protein. These peptides demonstrated a significant increase probability of detecting ovarian cancer with the ROC curve having an AUC of 0.86 (p = 0.00001). Physician-collected and patient-collected specimens demonstrated moderate agreement with kappa average of 0.6 with upper bound of 0.75. CONCLUSIONS Using novel site-specific collection methods, we identified an OC "fingerprint" with adequate sensitivity and specificity to warrant further evaluation in a larger cohort. Agreement of physician-collected and patient-collected samples were encouraging and could improve access to screening with a home self-collection if this screening test is validated in future studies.
Collapse
Affiliation(s)
- Rodney P Rocconi
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, United States of America.
| | - Annelise M Wilhite
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, United States of America
| | - Lindsay Schambeau
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, United States of America
| | - Jennifer Scalici
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, United States of America
| | - Lewis Pannell
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, United States of America
| | - Michael A Finan
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, United States of America
| |
Collapse
|
83
|
CKB inhibits epithelial-mesenchymal transition and prostate cancer progression by sequestering and inhibiting AKT activation. Neoplasia 2021; 23:1147-1165. [PMID: 34706306 PMCID: PMC8551525 DOI: 10.1016/j.neo.2021.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 12/26/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) contributes to tumor invasion, metastasis and drug resistance. AKT activation is key in a number of cellular processes. While many positive regulators for either EMT or AKT activation have been reported, few negative regulators are established. Through kinase cDNA screen, we identified brain-type creatine kinase (CKB or BCK) as a potent suppressor for both. As a ubiquitously expressed kinase in normal tissues, CKB is significantly downregulated in several solid cancer types. Lower CKB expression is significantly associated with worse prognosis. Phenotypically, CKB overexpression suppresses, while its silencing promotes, EMT and cell migration, xenograft tumor growth and metastasis of prostate cancer cells. AKT activation is one of the most prominent signaling events upon CKB silencing in prostate cancer cells, which is in line with prostate cancer TCGA data. EMT enhanced by CKB silencing is abolished by AKT inhibition. Mechanistically, CKB interacts with AKT and sequestrates it from activation by mTOR. We further elucidated that an 84aa fragment at C-terminus of CKB protein interacts with AKT's PH domain. Ectopic expression of the 84aa CKB fragment inhibits AKT activation, EMT and cell proliferation. Interestingly, molecular dynamics simulation on crystal structures of AKT and CKB independently demonstrates that AKT's PH domain and CKB's 84aa fragment establish their major interaction interface. In summary, we have discovered CKB as a negative regulator of EMT and AKT activation, revealing a new mode of their regulation . We have also demonstrated that CKB downregulation is a poor prognosticator, which is sufficient to promote prostate cancer progression.
Collapse
|
84
|
Chen X, Wang W, Li Y, Huo Y, Zhang H, Feng F, Xi W, Zhang T, Gao J, Yang F, Chen S, Yang A, Wang T. MYSM1 inhibits human colorectal cancer tumorigenesis by activating miR-200 family members/CDH1 and blocking PI3K/AKT signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:341. [PMID: 34706761 PMCID: PMC8549173 DOI: 10.1186/s13046-021-02106-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/16/2021] [Indexed: 01/17/2023]
Abstract
Background Histone epigenetic modification disorder is an important predisposing factor for the occurrence and development of many cancers, including colorectal cancer (CRC). The role of MYSM1, a metalloprotease that deubiquitinates monoubiquitinated histone H2A, in colorectal cancer was identified to evaluate its potential clinical application value. Methods MYSM1 expression levels in CRC cell lines and tumor tissues were detected, and their associations with patient survival rate and clinical stage were analyzed using databases and tissue microarrays. Gain- and loss-of-function studies were performed to identify the roles of MYSM1 in CRC cell proliferation, apoptosis, cell cycle progression, epithelial-mesenchymal transition (EMT) and metastasis in vitro and in vivo. ChIP, rescue assays and signal pathway verification were conducted for mechanistic study. Immunohistochemistry (IHC) was used to further assess the relationship of MYSM1 with CRC diagnosis and prognosis. Results MYSM1 was significantly downregulated and was related to the overall survival (OS) of CRC patients. MYSM1 served as a CRC suppressor by inducing apoptosis and inhibiting cell proliferation, EMT, tumorigenic potential and metastasis. Mechanistically, MYSM1 directly bound to the promoter region of miR-200/CDH1, impaired the enrichment of repressive H2AK119ub1 modification and epigenetically enhanced miR-200/CDH1 expression. Testing of paired CRC patient samples confirmed the positive regulatory relationship between MYSM1 and miR-200/CDH1. Furthermore, silencing MYSM1 stimulated PI3K/AKT signaling and promoted EMT in CRC cells. More importantly, a positive association existed between MYSM1 expression and a favorable CRC prognosis. Conclusions MYSM1 plays essential suppressive roles in CRC tumorigenesis and is a potential target for reducing CRC progression and distant metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02106-2.
Collapse
Affiliation(s)
- Xu Chen
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China.,Air Force Health Care Center for Special Services, Hangzhou, Zhejiang, 310007, P.R. China
| | - Wei Wang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China
| | - Yufang Li
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China.,Nuclear Medicine Diagnostic Center, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710032, P.R. China
| | - Yi Huo
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China
| | - Han Zhang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China
| | - Fan Feng
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China
| | - Wenjin Xi
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China
| | - Tianze Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China
| | - Jinjian Gao
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China
| | - Fan Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China
| | - Siyi Chen
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Angang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China.
| | - Tao Wang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China.
| |
Collapse
|
85
|
Xu Y, Hu Y, Xu T, Yan K, Zhang T, Li Q, Chang F, Guo X, Peng J, Li M, Zhao M, Zhen H, Xu L, Zheng D, Li L, Shao G. RNF8-mediated regulation of Akt promotes lung cancer cell survival and resistance to DNA damage. Cell Rep 2021; 37:109854. [PMID: 34686341 DOI: 10.1016/j.celrep.2021.109854] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 08/18/2021] [Accepted: 09/28/2021] [Indexed: 01/21/2023] Open
Abstract
Despite the tremendous success of targeted and conventional therapies for lung cancer, therapeutic resistance is a common and major clinical challenge. RNF8 is a ubiquitin E3 ligase that plays essential roles in the DNA damage response; however, its role in the pathogenesis of lung cancer is unclear. Here, we report that RNF8 is overexpressed in lung cancer and positively correlates with the expression of p-Akt and poor survival of patients with non-small-cell lung cancer. In addition, we identify RNF8 as the E3 ligase for regulating the activation of Akt by K63-linked ubiquitination under physiological and genotoxic conditions, which leads to lung cancer cell proliferation and resistance to chemotherapy. Together, our study suggests that RNF8 could be a very promising target in precision medicine for lung cancer.
Collapse
Affiliation(s)
- Yongjie Xu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yumeng Hu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Tao Xu
- The Affiliated Hospital of Qingdao University, Qingdao 266021, China
| | - Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ting Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qin Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Fen Chang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xueyuan Guo
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jingyu Peng
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Mo Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Min Zhao
- Department of Oncology, Hebei Chest Hospital, Research Center of Hebei Lung Cancer Prevention and Treatment, Shijiazhuang, Hebei 050041, China
| | - Hongying Zhen
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Luzheng Xu
- Medical and Health Analysis Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Duo Zheng
- Department of Cell Biology and Genetics, Shenzhen University School of Medicine, Shenzhen 518055, China
| | - Li Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Genze Shao
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
86
|
Bhat S, Kabekkodu SP, Adiga D, Fernandes R, Shukla V, Bhandari P, Pandey D, Sharan K, Satyamoorthy K. ZNF471 modulates EMT and functions as methylation regulated tumor suppressor with diagnostic and prognostic significance in cervical cancer. Cell Biol Toxicol 2021; 37:731-749. [PMID: 33566221 PMCID: PMC8490246 DOI: 10.1007/s10565-021-09582-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/07/2021] [Indexed: 10/28/2022]
Abstract
Cervical cancer (CC) is a leading cause of cancer-related death among women in developing countries. However, the underlying mechanisms and molecular targets for therapy remain to be fully understood. We investigated the epigenetic regulation, biological functions, and clinical utility of zinc-finger protein 471 (ZNF471) in CC. Analysis of cervical tissues and five independent public datasets of CC showed significant hypermethylation of the ZNF471 gene promoter. In CC cell lines, promoter DNA methylation was inversely correlated with ZNF471 expression. The sensitivity and specificity of the ZNF471 hypermethylation for squamous intraepithelial lesion (SIL) vs tumor and normal vs tumor was above 85% with AUC of 0.937. High methylation and low ZNF471 expression predicted poor overall and recurrence-free survival. We identified -686 to +114 bp as ZNF471 promoter, regulated by methylation using transient transfection and luciferase assays. The promoter CpG site methylation of ZNF471 was significantly different among cancer types and tumor grades. Gal4-based heterologous luciferase reporter gene assays revealed that ZNF471 acts as a transcriptional repressor. The retroviral mediated overexpression of ZNF471 in SiHa and CaSki cells inhibited growth, proliferation, cell migration, invasion; delayed cell cycle progression in vitro by increasing cell doubling time; and reduced tumor growth in vivo in nude mice. ZNF471 overexpression inhibited key members of epithelial-mesenchymal transition (EMT), Wnt, and PI3K-AKT signaling pathways. ZNF471 inhibited EMT by directly targeting vimentin as analyzed by bioinformatic analysis, ChIP-PCR, and western blotting. Thus, ZNF471 CpG specific promoter methylation may determine the prognosis of CC and could function as a potential tumor suppressor by targeting EMT signaling.
Collapse
Affiliation(s)
- Samatha Bhat
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Rayzel Fernandes
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Poonam Bhandari
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Deeksha Pandey
- Department of Obstetrics & Gynaecology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishna Sharan
- Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
87
|
TGF-β/activin signaling promotes CDK7 inhibitor resistance in triple-negative breast cancer cells through upregulation of multidrug transporters. J Biol Chem 2021; 297:101162. [PMID: 34481843 PMCID: PMC8498470 DOI: 10.1016/j.jbc.2021.101162] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 01/10/2023] Open
Abstract
Cyclin-dependent kinase 7 (CDK7) is a master regulatory kinase that drives cell cycle progression and stimulates expression of oncogenes in a myriad of cancers. Inhibitors of CDK7 (CDK7i) are currently in clinical trials; however, as with many cancer therapies, patients will most likely experience recurrent disease due to acquired resistance. Identifying targets underlying CDK7i resistance will facilitate prospective development of new therapies that can circumvent such resistance. Here we utilized triple-negative breast cancer as a model to discern mechanisms of resistance as it has been previously shown to be highly responsive to CDK7 inhibitors. After generating cell lines with acquired resistance, high-throughput RNA sequencing revealed significant upregulation of genes associated with efflux pumps and transforming growth factor-beta (TGF-β) signaling pathways. Genetic silencing or pharmacological inhibition of ABCG2, an efflux pump associated with multidrug resistance, resensitized resistant cells to CDK7i, indicating a reliance on these transporters. Expression of activin A (INHBA), a member of the TGF-β family of ligands, was also induced, whereas its intrinsic inhibitor, follistatin (FST), was repressed. In resistant cells, increased phosphorylation of SMAD3, a downstream mediator, confirmed an increase in activin signaling, and phosphorylated SMAD3 directly bound the ABCG2 promoter regulatory region. Finally, pharmacological inhibition of TGF-β/activin receptors or genetic silencing of SMAD4, a transcriptional partner of SMAD3, reversed the upregulation of ABCG2 in resistant cells and phenocopied ABCG2 inhibition. This study reveals that inhibiting the TGF-β/Activin-ABCG2 pathway is a potential avenue for preventing or overcoming resistance to CDK7 inhibitors.
Collapse
|
88
|
FURUSAWA Y, TAKAHASHI M, SHIMA-SAWA M, HATAI H, MIYOSHI N, YAMATO O, YABUKI A. Immunocytochemical evaluation of epithelial-mesenchymal transition in epithelial tumors of dogs and cats. J Vet Med Sci 2021; 83:1363-1368. [PMID: 34234057 PMCID: PMC8498836 DOI: 10.1292/jvms.21-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/21/2021] [Indexed: 11/22/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) plays a crucial role in metastasis of epithelial tumors; however, it is challenging to detect EMT by cytology. In the present study, EMT was visualized by fluorescence-immunocytochemistry (FICC). Air-dried smears from epithelial tumors of dogs (n=22) and cats (n=9) were stained using mouse monoclonal anti-E-cadherin and rabbit monoclonal anti-vimentin antibodies. Enzymatic immunohistochemistry (IHC) revealed that 51.6% (8/22 in dogs, 8/9 in cats) of the cases showed EMT. In dogs, FICC could detect EMT in 62.5% (5/8) of those cases. In cats, FICC could detect EMT in 100% (8/8) of the cases. In conclusion, the present FICC method could successfully detect EMT using conventional air-dried cytology smear slides.
Collapse
Affiliation(s)
- Yu FURUSAWA
- Kagoshima University Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Masashi TAKAHASHI
- Kagoshima University Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Mariko SHIMA-SAWA
- Laboratory of Veterinary Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Hitoshi HATAI
- Laboratory of Veterinary Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Noriaki MIYOSHI
- Laboratory of Veterinary Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Osamu YAMATO
- Laboratory of Veterinary Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Akira YABUKI
- Kagoshima University Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Laboratory of Veterinary Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
89
|
Liu C, Li M, Dong ZX, Jiang D, Li X, Lin S, Chen D, Zou X, Zhang XD, Luker GD. Heterogeneous microenvironmental stiffness regulates pro-metastatic functions of breast cancer cells. Acta Biomater 2021; 131:326-340. [PMID: 34246802 PMCID: PMC8784164 DOI: 10.1016/j.actbio.2021.07.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022]
Abstract
Besides molecular and phenotypic variations observed in cancer cells, intratumoral heterogeneity also occurs in the tumor microenvironment. Correlative stiffness maps of different intratumor locations in breast tumor biopsies show that stiffness increases from core to periphery. However, how different local ECM stiffness regulates key functions of cancer cells in tumor progression remains unclear. Although increased tissue stiffness is an established driver of breast cancer progression, conclusions from 2D cultures do not correspond with newer data from cancer cells in 3D environments. Many past studies of breast cancer in 3D culture fail to recapitulate the stiffness of a real breast tumor or the various local stiffnesses present in a tumor microenvironment. In this study, we developed a series of collagen/alginate hybrid hydrogels with adjustable stiffness to match the core, middle, and peripheral zones of a breast tumor. We used this hydrogel system to investigate effects of different local stiffness on morphology, proliferation, and migration of breast cancer cells. RNA sequencing of cells in hydrogels with different stiffness revealed changes in multiple cellular processes underlying cancer progression, including angiogenesis and metabolism. We discovered that tumor cells in a soft environment enriched YAP1 and AP1 signaling related genes, whereas tumor cells in a stiff environment became more pro-angiogenic by upregulating fibronectin 1 (FN1) and matrix metalloproteinase 9 (MMP9) expression. This systematic study defines how the range of environmental stiffnesses present in a breast tumor regulates cancer cells, providing new insights into tumorigenesis and disease progression at the tumor-stroma interface. STATEMENT OF SIGNIFICANCE: Applied a well-defined hybrid hydrogel system to mimic the tumor microenvironment with heterogeneous local stiffness. Breast cancer cells tended to proliferate in soft core environment while migrate in stiff peripheral environment. Breast cancer cells shift from glycolysis to OXPHOS and fatty acid metabolism responding to stiff matrix microenvironment. The transcriptomic profile of breast cancer cells altered due to microenvironmental stiffness changes.
Collapse
Affiliation(s)
- Chun Liu
- Orthopedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China.
| | - Miao Li
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Zhao-Xia Dong
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Dong Jiang
- Orthopedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Xiaojing Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Shuibin Lin
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Demeng Chen
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuenong Zou
- Orthopedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Xing-Ding Zhang
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China.
| | - Gary D Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|
90
|
Ye Q, Wang X, Yuan M, Cui S, Chen Y, Hu Z, Liu D, Han C, Li B, Chen D. miR-219-5p targets TBXT and inhibits breast cancer cell EMT and cell migration and invasion. Biosci Rep 2021; 41:BSR20210318. [PMID: 34339487 PMCID: PMC8360836 DOI: 10.1042/bsr20210318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/12/2021] [Accepted: 07/30/2021] [Indexed: 12/30/2022] Open
Abstract
miR-219-5p has been reported to act as either a tumor suppressor or a tumor promoter in different cancers by targeting different genes. In the present study, we demonstrated that miR-219-5p negatively regulated the expression of TBXT, a known epithelial-mesenchymal transition (EMT) inducer, by directly binding to TBXT 3'-untranslated region. As a result of its inhibition on TBXT expression, miR-219-5p suppressed EMT and cell migration and invasion in breast cancer cells. The re-introduction of TBXT in miR-219-5p overexpressing cells decreased the inhibitory effects of miR-219 on EMT and cell migration and invasion. Moreover, miR-219-5p decreased breast cancer stem cell (CSC) marker genes expression and reduced the mammosphere forming capability of cells. Overall, our study highlighted that TBXT is a novel target of miR-219-5p. By suppressing TBXT, miR-219-5p plays an important role in EMT and cell migration and invasion of breast cancer cells.
Collapse
Affiliation(s)
- Qin Ye
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Xing Wang
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Mei Yuan
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Shuaishuai Cui
- School of Life Sciences, Shandong University of Technology, Zibo 225000, China
| | - Yuanyuan Chen
- School of Life Sciences, Shandong University of Technology, Zibo 225000, China
| | - Zhaodi Hu
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Dandan Liu
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Conghui Han
- Department of Urology, Xuzhou Central Hospital, Xuzhou 221009, China
| | - Bibo Li
- Department of Urology, Taizhou Hospital Affiliated to Nanjing University of Chinese Medicine, Taizhou 225300, China
| | - Dahu Chen
- School of Life Sciences, Shandong University of Technology, Zibo 225000, China
| |
Collapse
|
91
|
Gao M, Cui Z, Li S, Li N, Tong L, Wang Y, Song M, Zhou B, Yin Z. Survival Outcome and Clinicopathologicl analysis of Homeobox gene cluster-embedded LncRNAs in Human Cancers: A Systematic Review and Meta-analysis. Expert Rev Mol Diagn 2021; 21:1211-1221. [PMID: 34410213 DOI: 10.1080/14737159.2021.1970536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
OBJECTIVE The ectopic expression of Homeobox (HOX) gene cluster-embedded long non-coding RNAs (LncRNAs) have been involved several carcinogenic development and progressions. This meta-analysis aimed to summarize the LncRNAs to validate the functions and the prognostic values in several kinds of cancer. METHODS The retrospective study was conducted to analyze the association between HOX gene-related LncRNAs and the survival outcomes. Cochran's Q and I2 test were used for calculated heterogeneity, and I2 > 50%, P < 0.05 was conformed to the random effect model. Publication bias was indicated by Begg's and Egger's test. RESULTS Total 15,315 patients extracting from 121 studies focused on assessing the association between LncRNAs and the survival outcomes and 12,110 participants were enrolled to address the clinicopathological features. The results demonstrated that the overexpression of HOX gene cluster-embedded LncRNAs revealed notable association among tumor size (pooled OR = 1.80), lymph node metastasis (LNM) stage (pooled OR = 3.00), tumor node metastasis (TNM) stage (pooled OR = 2.86), histological differentiation (pooled OR = 1.59) and distant metastasis (pooled OR = 2.49). Additionally, the up-regulated LncRNAs predicted a poor prognosis in overall survival (pooled HR = 1.95, 95%CI = 1.86-2.04), and also disclosed worse prognosis among the stratified analysis included HOX clusters, LncRNAs, ethnicity, and tumor classification (pooled HRs >1). CONCLUSION In summary, the findings proved that HOX gene cluster-embedded LncRNAs acted as potential biomarkers for clinical treatment of several tumors and the overexpression might be a candidate hallmark for prognosis outcome.
Collapse
Affiliation(s)
- Min Gao
- Department of Epidemiology, School of Public Health, China Medical University, Liaoning, PR China
| | - Zhigang Cui
- Department of Science and Education, School of Nursing, China Medical University, Liaoning, Pr, China
| | - Sixuan Li
- Department of Epidemiology, School of Public Health, China Medical University, Liaoning, PR China
| | - Na Li
- Department of Epidemiology, School of Public Health, China Medical University, Liaoning, PR China
| | - Lianwei Tong
- Department of Epidemiology, School of Public Health, China Medical University, Liaoning, PR China
| | - Ying Wang
- Department of Epidemiology, School of Public Health, China Medical University, Liaoning, PR China
| | - Mingyang Song
- Department of Epidemiology, School of Public Health, China Medical University, Liaoning, PR China
| | - Baosen Zhou
- Department of Clinical Epidemiology and Evidence-based Medicine, First Affiliated Hospital of China Medical University, Liaoning, Pr China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Liaoning, PR China
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Liaoning, PR China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Liaoning, PR China
| |
Collapse
|
92
|
Chong ZX, Yeap SK, Ho WY. Unraveling the roles of miRNAs in regulating epithelial-to-mesenchymal transition (EMT) in osteosarcoma. Pharmacol Res 2021; 172:105818. [PMID: 34400316 DOI: 10.1016/j.phrs.2021.105818] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/01/2021] [Accepted: 08/12/2021] [Indexed: 12/16/2022]
Abstract
Osteosarcoma is one of the most prevalent primary bone tumors with a high metastatic and recurrence rate with poor prognosis. MiRNAs are short and non-coding RNAs that could regulate various cellular activities and one of them is the epithelial-to-mesenchymal transition (EMT). Osteosarcoma cells that have undergone EMT would lose their cellular polarity and acquire invasive and metastatic characteristics. Our literature search showed that many pre-clinical and clinical studies have reported the roles of miRNAs in modulating the EMT process in osteosarcoma and compared to other cancers like breast cancer, there is a lack of review article which effectively summarizes the various roles of EMT-regulating miRNAs in osteosarcoma. This review, therefore, was aimed to discuss and summarize the EMT-promoting and EMT-suppressing roles of different miRNAs in osteosarcoma. The review would begin with the discussion on the concepts and principles of EMT, followed by the exploration of the diverse roles of EMT-regulating miRNAs in osteosarcoma. Subsequently, the potential use of miRNAs as prognostic biomarkers in osteosarcoma to predict the likelihood of metastases and as therapeutic agents would be discussed.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia.
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
93
|
Zhang A, Aslam H, Sharma N, Warmflash A, Fakhouri WD. Conservation of Epithelial-to-Mesenchymal Transition Process in Neural Crest Cells and Metastatic Cancer. Cells Tissues Organs 2021; 210:151-172. [PMID: 34218225 DOI: 10.1159/000516466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/12/2021] [Indexed: 11/19/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a highly conserved cellular process in several species, from worms to humans. EMT plays a fundamental role in early embryogenesis, wound healing, and cancer metastasis. For neural crest cell (NCC) development, EMT typically results in forming a migratory and potent cell population that generates a wide variety of cell and tissue, including cartilage, bone, connective tissue, endocrine cells, neurons, and glia amongst many others. The degree of conservation between the signaling pathways that regulate EMT during development and metastatic cancer (MC) has not been fully established, despite ample studies. This systematic review and meta-analysis dissects the major signaling pathways involved in EMT of NCC development and MC to unravel the similarities and differences. While the FGF, TGFβ/BMP, SHH, and NOTCH pathways have been rigorously investigated in both systems, the EGF, IGF, HIPPO, Factor Receptor Superfamily, and their intracellular signaling cascades need to be the focus of future NCC studies. In general, meta-analyses of the associated signaling pathways show a significant number of overlapping genes (particularly ligands, transcription regulators, and targeted cadherins) involved in each signaling pathway of both systems without stratification by body segments and cancer type. Lack of stratification makes it difficult to meaningfully evaluate the intracellular downstream effectors of each signaling pathway. Finally, pediatric neuroblastoma and melanoma are NCC-derived malignancies, which emphasize the importance of uncovering the EMT events that convert NCC into treatment-resistant malignant cells.
Collapse
Affiliation(s)
- April Zhang
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Hira Aslam
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Neha Sharma
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Walid D Fakhouri
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
94
|
Zheng Y, Zeng JT, Wang XY, Huang HX, Huang LX, Zeng CQ. Advanced oxidation protein products trigger apoptosis and block epithelial-to-mesenchymal transition in crypt epithelial cells. Exp Ther Med 2021; 22:885. [PMID: 34194563 DOI: 10.3892/etm.2021.10317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/22/2020] [Indexed: 11/06/2022] Open
Abstract
Advanced oxidation protein products (AOPPs) are uremic toxins. The present study aimed to investigate the effects of AOPPs on the epithelial mesenchymal transition (EMT) and apoptosis of rat crypt epithelial cells, and to assess the signaling pathways involved. The oxidized rat serum albumin was obtained by sodium hypochlorite modification as AOPPs, and the rat serum albumin (RSA) without sodium hypochlorite modification was set as the control. Different concentrations of AOPPs or RSA were incubated with rat crypt epithelial cells (IEC-6 cells). After culturing for 48 and 72 h, apoptosis was detected by flow cytometry. IEC-6 cells were divided into three groups: A normal group, an AOPPs group and an RSA group. Three groups of cells were collected following treatment for 2 h, and the phosphorylation levels of Akt and p65 NF-κB were detected by western blotting. After 72 h of treatment, the cells were collected and the apoptotic rate was detected by flow cytometry. The expression of EMT-related proteins was detected by reverse transcription-quantitative polymerase chain reaction and western blotting. The apoptotic rate of IEC-6 cells increased with the concentration of AOPPs, and the apoptotic rate of the AOPPs group was higher than that of the RSA group. The expression of fibronectin, snail, slug and collagen I in the AOPPs group was lower than that in the RSA group, while the expression of E-cadherin was not significantly different between the two groups. In addition, the expression of fibronectin, snail, slug and collagen I genes in the AOPPs-treated group was equal to or lower than that in the normal group. Compared with the normal group, the Akt phosphorylation level was decreased and the p65 phosphorylation level was increased in the AOPPs- or RSA-treated groups. Compared with the AOPPs-treated group, Akt and p65 phosphorylation levels in RSA-treated group were slightly higher. In conclusion, AOPPs trigger apoptosis and inhibit the EMT of rat crypt epithelial cells, which may be associated with the inhibition of Akt phosphorylation and the promotion of p65 phosphorylation.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Jin-Tao Zeng
- Basic Medical College, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Xiang-Yu Wang
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Hai-Xiao Huang
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Liang-Xiang Huang
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Chang-Qing Zeng
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
95
|
Oh BS, Im E, Lee HJ, Sim DY, Park JE, Park WY, Park Y, Koo J, Pak JN, Kim DH, Shim BS, Kim SH. Inhibition of TMPRSS4 mediated epithelial-mesenchymal transition is critically involved in antimetastatic effect of melatonin in colorectal cancers. Phytother Res 2021; 35:4538-4546. [PMID: 34114707 DOI: 10.1002/ptr.7156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/05/2021] [Accepted: 04/30/2021] [Indexed: 01/08/2023]
Abstract
In the current study, the underlying anti-metastatic mechanism of melatonin contained in some edible plants was explored in association with transmembrane protease serine 4 (TMPRSS4) mediated metastasis and epithelial-mesenchymal transition (EMT) signaling in human HCT15 and SW620 colorectal cancer cells. Here, TMPRSS4 was highly expressed in HCT15, but was weakly expressed in SW620 cells. Melatonin exerted weak cytotoxicity, decreased invasion, adhesion, and migration, and attenuated the expression of TMPRSS4, cyclin E, pro-urokinase-type plasminogen activator (pro-uPA), p-signal transducer and activator of transcription 3 (p-STAT3), p-focal adhesion kinase (p-FAK), Snail and increased the expression of E-cadherin, p27, pp38 and p-Jun N-terminal kinases (p-JNK) in HCT15 cells. Conversely, overexpression of TMPRSS4 reduced the ability of melatonin to activate E-cadherin and reduce Snail. Furthermore, even in SW620 cells transfected with TMPRSS4-overexpression plasmid, melatonin effectively suppressed invasion and migration along with decreased expression of Snail, cyclin A, cyclin E, pro-uPA and p-FAK and increased expression of E-cadherin and p27. Overall, these findings provide evidence that melatonin suppresses metastasis in colon cancer cells via inhibition of TMPRSS4 mediated EMT.
Collapse
Affiliation(s)
- Bum Suk Oh
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Eunji Im
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Deok Yong Sim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ji Eon Park
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Woon Yi Park
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Youngsang Park
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jinsuk Koo
- Division of Horticulture & Medicinal Plant, Andong National University, Andong, Republic of Korea
| | - Ji-Na Pak
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Dong Hee Kim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bum Sang Shim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
96
|
Hatipoglu OF, Uctepe E, Opoku G, Wake H, Ikemura K, Ohtsuki T, Inagaki J, Gunduz M, Gunduz E, Watanabe S, Nishinaka T, Takahashi H, Hirohata S. Osteopontin silencing attenuates bleomycin-induced murine pulmonary fibrosis by regulating epithelial-mesenchymal transition. Biomed Pharmacother 2021; 139:111633. [PMID: 34243624 DOI: 10.1016/j.biopha.2021.111633] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/22/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common and most deadly form of interstitial lung disease. Osteopontin (OPN), a matricellular protein with proinflammatory and profibrotic properties, plays a major role in several fibrotic diseases, including IPF; OPN is highly upregulated in patients' lung samples. In this study, we knocked down OPN in a bleomycin (BLM)-induced pulmonary fibrosis (PF) mouse model using small interfering RNA (siRNA) to determine whether the use of OPN siRNA is an effective therapeutic strategy for IPF. We found that fibrosing areas were significantly smaller in specimens from OPN siRNA-treated mice. The number of alveolar macrophages, neutrophils, and lymphocytes in bronchoalveolar lavage fluid was also reduced in OPN siRNA-treated mice. Regarding the expression of epithelial-mesenchymal transition (EMT)-related proteins, the administration of OPN-siRNA to BLM-treated mice upregulated E-cadherin expression and downregulated vimentin expression. Moreover, in vitro, we incubated the human alveolar adenocarcinoma cell line A549 with transforming growth factor (TGF)-β1 and subsequently transfected the cells with OPN siRNA. We found a significant upregulation of Col1A1, fibronectin, and vimentin after TGF-β1 stimulation in A549 cells. In contrast, a downregulation of Col1A1, fibronectin, and vimentin mRNA levels was observed in TGF-β1-stimulated OPN knockdown A549 cells. Therefore, the downregulation of OPN effectively reduced pulmonary fibrotic and EMT changes both in vitro and in vivo. Altogether, our results indicate that OPN siRNA exerts a protective effect on BLM-induced PF in mice. Our results provide a basis for the development of novel targeted therapeutic strategies for IPF.
Collapse
Affiliation(s)
| | - Eyyup Uctepe
- Acıbadem Labmed Ankara Tissue Typing Laboratory, Turkey
| | - Gabriel Opoku
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Japan
| | - Hidenori Wake
- Department of Pharmacology, Faculty of Medicine, Kindai University, Japan
| | - Kentaro Ikemura
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Japan
| | - Takashi Ohtsuki
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Japan
| | - Junko Inagaki
- Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Mehmet Gunduz
- Department of Otolaryngology, Moriya Keiyu Hospital, Japan
| | - Esra Gunduz
- Department of Otolaryngology, Moriya Keiyu Hospital, Japan
| | - Shogo Watanabe
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Japan
| | - Takashi Nishinaka
- Department of Pharmacology, Faculty of Medicine, Kindai University, Japan
| | - Hideo Takahashi
- Department of Pharmacology, Faculty of Medicine, Kindai University, Japan
| | - Satoshi Hirohata
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Japan.
| |
Collapse
|
97
|
Choi JY, Lee YS, Shim DM, Lee YK, Seo SW. GNAQ knockdown promotes bone metastasis through epithelial-mesenchymal transition in lung cancer cells. Bone Joint Res 2021; 10:310-320. [PMID: 33993733 PMCID: PMC8160028 DOI: 10.1302/2046-3758.105.bjr-2020-0262.r3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIMS Bone metastasis ultimately occurs due to a complex multistep process, during which the interactions between cancer cells and bone microenvironment play important roles. Prior to colonization of the bone, cancer cells must succeed through a series of steps that will allow them to gain migratory and invasive properties; epithelial-to-mesenchymal transition (EMT) is known to be integral here. The aim of this study was to determine the effects of G protein subunit alpha Q (GNAQ) on the mechanisms underlying bone metastasis through EMT pathway. METHODS A total of 80 tissue samples from patients who were surgically treated during January 2012 to December 2014 were used in the present study. Comparative gene analysis revealed that the GNAQ was more frequently altered in metastatic bone lesions than in primary tumour sites in lung cancer patients. We investigated the effects of GNAQ on cell proliferation, migration, EMT, and stem cell transformation using lung cancer cells with GNAQ-knockdown. A xenograft mouse model tested the effect of GNAQ using micro-CT analyses and histological analyses. RESULTS GNAQ-knockdown showed down-regulation of tumour growth through mitogen-activated protein kinase (MAPK) signalling in lung cancer cells, but not increased apoptosis. We found that GNAQ-knockdown induced EMT and promoted invasiveness. GNAQ-knockdown cells injected into the bone marrow of murine tibia induced tumour growth and bone-to-lung metastasis, whereas it did not in control mice. Moreover, the knockdown of GNAQ enhanced cancer stem cell-like properties in lung cancer cells, which resulted in the development of resistance to chemotherapy. CONCLUSION The present study reveals that the GNAQ-knockdown induced cancer stem cell-like properties. Cite this article: Bone Joint Res 2021;10(5):310-320.
Collapse
Affiliation(s)
- Ji-Yoon Choi
- Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea
| | - Yun Sun Lee
- Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea
| | - Da Mi Shim
- Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea
| | - Young Keun Lee
- Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea
| | - Sung Wook Seo
- Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea
| |
Collapse
|
98
|
Cen W, Li J, Tong C, Zhang W, Zhao Y, Lu B, Yu J. Intrahepatic Cholangiocarcinoma Cells Promote Epithelial-mesenchymal Transition of Hepatocellular Carcinoma Cells by Secreting LAMC2. J Cancer 2021; 12:3448-3457. [PMID: 33995623 PMCID: PMC8120174 DOI: 10.7150/jca.55627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma and intrahepatic cholangiocarcinoma cells are common primary hepatic tumor cells in the liver. Combined hepatocellular cholangiocarcinoma (CHC) contains both hepatocellular carcinoma cells and intrahepatic cholangiocarcinoma cells in one tumor lesion and these tumors show poor prognosis. Here we examined the potential interaction between hepatocellular carcinoma cells and intrahepatic cholangiocarcinoma cells using cell culture studies. The results showed that culture supernatant from intrahepatic cholangiocarcinoma cells induced endothelial-mesenchymal transition and facilitated the migration and invasion of hepatocellular carcinoma cells, although it did not accelerate the proliferation of hepatocellular carcinoma cells. Furthermore, culture supernatant from intrahepatic cholangiocarcinoma cells increased the chemoresistance of hepatocellular carcinoma cells. Laminin subunit gamma 2 (LAMC2) was detected in the culture supernatant of intrahepatic cholangiocarcinoma cells but not in that of hepatocellular carcinoma cells. Using established LAMC2 knockout intrahepatic cholangiocarcinoma cells, our results demonstrated that intrahepatic cholangiocarcinoma cells promoted the epithelial-mesenchymal transition of hepatocellular carcinoma cells through secreting LAMC2. Our results have revealed a novel mechanism of interaction between intrahepatic cholangiocarcinoma cells and hepatocellular carcinoma cells, which may provide new insight into developing effective treatments for CHC.
Collapse
Affiliation(s)
- Wenda Cen
- Shaoxing University School of Medicine, Shaoxing, China
| | - Jiandong Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shaoxing University, Shaoxing, China.,Department of Hepatobiliary Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Chenhao Tong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shaoxing University, Shaoxing, China.,Department of Hepatobiliary Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Weiguang Zhang
- Department of Molecular Medicine and Clinical Laboratory, Shaoxing Second Hospital, Shaoxing, China
| | - Yunfeng Zhao
- Department of Pharmacology, Toxicology & Neurosciences, LSU Health Sciences Center, Shreveport, LA, USA
| | - Baochun Lu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shaoxing University, Shaoxing, China.,Department of Hepatobiliary Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Jianhua Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shaoxing University, Shaoxing, China.,Department of Hepatobiliary Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| |
Collapse
|
99
|
Sun J, Chen L, Dong M. MiR-338-5p Inhibits EGF-Induced EMT in Pancreatic Cancer Cells by Targeting EGFR/ERK Signaling. Front Oncol 2021; 11:616481. [PMID: 33937024 PMCID: PMC8082406 DOI: 10.3389/fonc.2021.616481] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
The epidermal growth factor (EGF) pathway plays critical roles during cancer cell epithelial-mesenchymal transition (EMT) process and metastasis. Epidermal growth factor receptor (EGFR), as one of the important receptors of EGF, undergoes autophosphorylation with the stimulation of EGF and activates MAPK/ERK, PI3K/Akt/mTOR, and other pathways. Here, we identified EGFR was a target of miR-338-5p. Upon EGF treatment, overexpression of miR-338-5p not only downregulated EGFR expression and inhibited MAPK/ERK signaling, but also inhibited EMT and metastasis process of pancreatic cancer (PC) cells. In the clinical pathological analysis, miR-338-5p was significantly down-regulated in 44 pairs PC tissues and its expression was negatively associated with lymph node metastasis and AJCC stage. Furthermore, Overexpression of EGFR partially reversed the protective effect of miR-338-5p overexpression on EGF-mediated migration and invasion in PC cells. Taken together, miR-338-5p controls EGF-mediated EMT and metastasis in PC cells by targeting EGFR/ERK pathways. Here, we hope to provide new insights into the molecular mechanisms of pancreatic cancer, and may help facilitating development of EGFR-based therapies for human cancer.
Collapse
Affiliation(s)
- Jian Sun
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, China
| | - Lin Chen
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, China
| | - Ming Dong
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, China
| |
Collapse
|
100
|
Derakhshani A, Rostami Z, Safarpour H, Shadbad MA, Nourbakhsh NS, Argentiero A, Taefehshokr S, Tabrizi NJ, Kooshkaki O, Astamal RV, Singh PK, Taefehshokr N, Alizadeh N, Silvestris N, Baradaran B. From Oncogenic Signaling Pathways to Single-Cell Sequencing of Immune Cells: Changing the Landscape of Cancer Immunotherapy. Molecules 2021; 26:2278. [PMID: 33920054 PMCID: PMC8071039 DOI: 10.3390/molecules26082278] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
Over the past decade, there have been remarkable advances in understanding the signaling pathways involved in cancer development. It is well-established that cancer is caused by the dysregulation of cellular pathways involved in proliferation, cell cycle, apoptosis, cell metabolism, migration, cell polarity, and differentiation. Besides, growing evidence indicates that extracellular matrix signaling, cell surface proteoglycans, and angiogenesis can contribute to cancer development. Given the genetic instability and vast intra-tumoral heterogeneity revealed by the single-cell sequencing of tumoral cells, the current approaches cannot eliminate the mutating cancer cells. Besides, the polyclonal expansion of tumor-infiltrated lymphocytes in response to tumoral neoantigens cannot elicit anti-tumoral immune responses due to the immunosuppressive tumor microenvironment. Nevertheless, the data from the single-cell sequencing of immune cells can provide valuable insights regarding the expression of inhibitory immune checkpoints/related signaling factors in immune cells, which can be used to select immune checkpoint inhibitors and adjust their dosage. Indeed, the integration of the data obtained from the single-cell sequencing of immune cells with immune checkpoint inhibitors can increase the response rate of immune checkpoint inhibitors, decrease the immune-related adverse events, and facilitate tumoral cell elimination. This study aims to review key pathways involved in tumor development and shed light on single-cell sequencing. It also intends to address the shortcomings of immune checkpoint inhibitors, i.e., their varied response rates among cancer patients and increased risk of autoimmunity development, via applying the data from the single-cell sequencing of immune cells.
Collapse
Affiliation(s)
- Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (A.D.); (M.A.S.); (S.T.); (N.J.T.); (R.V.A.); (N.A.)
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
| | - Zeinab Rostami
- Student Research Committee, Birjand University of Medical Sciences, Birjand 97178-53577, Iran; (Z.R.); (O.K.)
| | - Hossein Safarpour
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand 97178-53577, Iran;
| | - Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (A.D.); (M.A.S.); (S.T.); (N.J.T.); (R.V.A.); (N.A.)
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 51666-14766, Iran
| | | | | | - Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (A.D.); (M.A.S.); (S.T.); (N.J.T.); (R.V.A.); (N.A.)
| | - Neda Jalili Tabrizi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (A.D.); (M.A.S.); (S.T.); (N.J.T.); (R.V.A.); (N.A.)
| | - Omid Kooshkaki
- Student Research Committee, Birjand University of Medical Sciences, Birjand 97178-53577, Iran; (Z.R.); (O.K.)
| | - Reza Vaezi Astamal
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (A.D.); (M.A.S.); (S.T.); (N.J.T.); (R.V.A.); (N.A.)
| | - Pankaj Kumar Singh
- Principal Research Technologist, Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL 32224, USA;
| | - Nima Taefehshokr
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada;
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (A.D.); (M.A.S.); (S.T.); (N.J.T.); (R.V.A.); (N.A.)
| | - Nicola Silvestris
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (A.D.); (M.A.S.); (S.T.); (N.J.T.); (R.V.A.); (N.A.)
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 51666-14766, Iran
| |
Collapse
|