51
|
Oraphruek P, Chusak C, Ngamukote S, Sawaswong V, Chanchaem P, Payungporn S, Suantawee T, Adisakwattana S. Effect of a Multispecies Synbiotic Supplementation on Body Composition, Antioxidant Status, and Gut Microbiomes in Overweight and Obese Subjects: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2023; 15:nu15081863. [PMID: 37111082 PMCID: PMC10141052 DOI: 10.3390/nu15081863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Studies investigating the effect of multispecies synbiotic supplementation in obesity management are limited. The current study was performed to evaluate the effects of multispecies probiotics mixed with fructooligosaccharides on body composition, antioxidant status, and gut microbiome composition in overweight and obese individuals. We employed a randomized, double-blind, placebo-controlled trial design, in which 63 individuals aged 18-45 years were assigned to receive either a synbiotic supplement or placebo for 12 weeks. The synbiotic group consumed a daily dose of 37 × 109 colony-forming units (CFU) of a unique blend of seven different probiotics, along with 2 g of fructooligosaccharides, while the placebo group consumed 2 g of maltodextrin daily. Assessments were performed at baseline, week 6, and the end of the study. The results of the study indicated that synbiotic supplementation resulted in a significant reduction in waist circumference and body fat percentage compared to the baseline measurements, as observed at 12 weeks. At the end of the study, there were no significant differences observed in body weight, BMI, waist circumference, or percentage of body fat between the synbiotic group and the placebo group. An analysis of plasma antioxidant capacity revealed that synbiotic supplementation caused a significant increase in Trolox equivalent antioxidant capacity (TEAC) and a concomitant decrease in malondialdehyde (MDA) in the test group when compared to the placebo. For the gut microbiota analysis, synbiotic supplementation significantly decreased Firmicutes abundance and the Firmicutes/Bacteroidetes (F/B) ratio at week 12 as compared to the placebo group. Nevertheless, the synbiotic group did not exhibit any substantial alterations in other biochemical blood parameters compared to the placebo group. These findings suggest that multispecies synbiotic supplementation could be a beneficial strategy to improve body composition, antioxidant status, and gut microbiome composition in overweight and obese subjects.
Collapse
Affiliation(s)
- Piyarat Oraphruek
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Charoonsri Chusak
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sathaporn Ngamukote
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Vorthon Sawaswong
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prangwalai Chanchaem
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunchai Payungporn
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanyawan Suantawee
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sirichai Adisakwattana
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
52
|
Kowalczuk A, Marycz K, Kornicka J, Groborz S, Meissner J, Mularczyk M. Tetrahydrocannabivarin (THCV) Protects Adipose-Derived Mesenchymal Stem Cells (ASC) against Endoplasmic Reticulum Stress Development and Reduces Inflammation during Adipogenesis. Int J Mol Sci 2023; 24:ijms24087120. [PMID: 37108282 PMCID: PMC10138341 DOI: 10.3390/ijms24087120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The endoplasmic reticulum (ER) fulfills essential duties in cell physiology, and impairment of this organelle's functions is associated with a wide number of metabolic diseases. When ER stress is generated in the adipose tissue, it is observed that the metabolism and energy homeostasis of the adipocytes are altered, leading to obesity-associated metabolic disorders such as type 2 diabetes (T2D). In the present work, we aimed to evaluate the protective effects of Δ9-tetrahydrocannabivarin (THCV, a cannabinoid compound isolated from Cannabis sativa L.) against ER stress in adipose-derived mesenchymal stem cells. Our results show that pre-treatment with THCV prevents the subcellular alteration of cell components such as nuclei, F-actin, or mitochondria distribution, and restores cell migration, cell proliferation and colony-forming capacity upon ER stress. In addition, THCV partially reverts the effects that ER stress induces regarding the activation of apoptosis and the altered anti- and pro-inflammatory cytokine profile. This indicates the protective characteristics of this cannabinoid compound in the adipose tissue. Most importantly, our data demonstrate that THCV decreases the expression of genes involved in the unfolded protein response (UPR) pathway, which were upregulated upon induction of ER stress. Altogether, our study shows that the cannabinoid THCV is a promising compound that counters the harmful effects triggered by ER stress in the adipose tissue. This work paves the way for the development of new therapeutic means based on THCV and its regenerative properties to create a favorable environment for the development of healthy mature adipocyte tissue and to reduce the incidence and clinical outcome of metabolic diseases such as diabetes.
Collapse
Affiliation(s)
- Anna Kowalczuk
- National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland
| | - Krzysztof Marycz
- International Institute of Translational Medicine, Jesionowa 11, 55-114 Malin, Poland
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland
| | - Justyna Kornicka
- Faculty of Electronics, Photonics and Microsystems, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland
| | - Sylwia Groborz
- International Institute of Translational Medicine, Jesionowa 11, 55-114 Malin, Poland
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland
| | - Justyna Meissner
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland
| | - Malwina Mularczyk
- International Institute of Translational Medicine, Jesionowa 11, 55-114 Malin, Poland
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland
| |
Collapse
|
53
|
Park NW, Lee ES, Ha KB, Jo SH, Kim HM, Kwon MH, Chung CH. Umbelliferone Ameliorates Hepatic Steatosis and Lipid-Induced ER Stress in High-Fat Diet-Induced Obese Mice. Yonsei Med J 2023; 64:243-250. [PMID: 36996895 PMCID: PMC10067795 DOI: 10.3349/ymj.2022.0354] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 04/01/2023] Open
Abstract
PURPOSE Among the characteristics of non-alcoholic fatty liver disease (NAFLD), hepatic steatosis is due to excessive fat accumulation and causes liver damage and lipotoxicity, which are associated with insulin resistance, endoplasmic reticulum (ER) stress, and apoptosis. Umbelliferone (UMB) has various powerful pharmacological properties, such as antioxidant, anti-hyperglycemic, anti-viral, and anti-inflammatory effects. However, the mechanism of action in hepatic steatosis and lipid-induced ER stress is still unclear. Thus, the efficacy of UMB in hepatic steatosis and palmitate (PA)-induced hepatocellular lipotoxicity was evaluated in the present study. MATERIALS AND METHODS Male C57BL/6J mice (n=40) were divided into four groups: regular diet (RD), UMB-supplemented RD, high-fat diet (HFD), and UMB-supplemented HFD. All mice were fed orally for 12 weeks. In addition, the effects of UMB on lipotoxicity were investigated in AML12 cells treated with PA (250 µM) for 24 h; Western blot analysis was used to evaluate the changes in ER stress and apoptotic-associated proteins. RESULTS Administration with UMB in HFD-fed mice reduced lipid accumulation and hepatic triglyceride (TG) as well as serum insulin and glucose levels. In AML12 cells, UMB treatment reduced lipid accumulation as indicated by decreases in the levels of lipogenesis markers, such as SREBP1, FAS, PPAR-γ, and ADRP. Furthermore, UMB reduced both oxidative stress and ER stress-related cellular apoptosis. CONCLUSION UMB supplementation ameliorated hepatic steatosis and improved insulin resistance by inhibiting lipid accumulation and regulating ER stress. These findings strongly suggest that UMB may be a potential therapeutic compound against NAFLD.
Collapse
Affiliation(s)
- Na Won Park
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Eun Soo Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Kyung Bong Ha
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Su Ho Jo
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
| | | | - Mi-Hye Kwon
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Korea
| | - Choon Hee Chung
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea.
| |
Collapse
|
54
|
Zheng J, Lee J, Byun J, Yu D, Ha JH. Partial replacement of high-fat diet with n-3 PUFAs enhanced beef tallow attenuates dyslipidemia and endoplasmic reticulum stress in tunicamycin-injected rats. Front Nutr 2023; 10:1155436. [PMID: 37006935 PMCID: PMC10060633 DOI: 10.3389/fnut.2023.1155436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction Metabolic syndrome (MetS) is considered as a complex, intertwined multiple risk factors that directly increase the risk of various metabolic diseases, especially cardiovascular atherosclerotic diseases and diabetes mellitus type 2. While lifestyle changes, including dietary intervention are effective in mitigating or preventing MetS, there are no specific therapies against MetS. Typical western diets comprise of high saturated fatty acid, cholesterol, and simple sugar; consequently their consumption may increase the potential pathological developmental risk of MetS. Partial replacement of dietary fatty acids with polyunsaturated fatty acids (PUFAs) is widely recommended measure to manage MetS-related disorders. Methods In the present study, we used rat model to investigate the role of n-3 PUFA enriched beef tallows (BT) on MetS and tunicamycin (TM)-induced endoplasmic reticulum (ER) stress, by partially replacing dietary fat (lard) with equal amounts of two different BTs; regular BT or n-3 PUFA-enriched BT. The experimental rats were randomly assigned to three different dietary groups (n = 16 per group): (1) high-fat and high-cholesterol diet (HFCD); (2) HFCD partially replaced with regular BT (HFCD + BT1); (3) HFCD partially replaced with n-3 enhanced BT (w/w) (HFCD + BT2). After 10 weeks of dietary intervention, each experimental rodent was intraperitoneally injected with either phosphate-buffered saline or 1 mg/kg body weight of TM. Results HFCD + BT2 showed improved dyslipidemia before TM injection, and increased serum high-density lipoprotein cholesterol (HDL-C) levels after TM injection. BT replacement groups had significantly reduced hepatic triglyceride (TG) levels, and decreased total cholesterol (TC) and TG levels in epididymal adipose tissue (EAT). Furthermore, BT replacement remarkably attenuated TM-induced unfolded protein responses (UPRs) in liver, showing reduced ER stress, with BT2 being more effective in the EAT. Discussion Therefore, our findings suggest that partially replacing dietary fats with n-3 PUFA to lower the ratio of n-6/n-3 PUFAs is beneficial in preventing pathological features of MetS by alleviating HFCD- and/or TM-induced dyslipidemia and ER stress.
Collapse
Affiliation(s)
- Jiaxiang Zheng
- Department of Food Science and Nutrition, Dankook University, Cheonan, Republic of Korea
| | - Jisu Lee
- Department of Food Science and Nutrition, Dankook University, Cheonan, Republic of Korea
| | - Jaemin Byun
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Daeung Yu
- Department of Food and Nutrition, Changwon National University, Changwon, Republic of Korea
- Interdisciplinary Program in Senior Human-Ecology, Major in Food and Nutrition, Changwon National University, Changwon, Republic of Korea
| | - Jung-Heun Ha
- Department of Food Science and Nutrition, Dankook University, Cheonan, Republic of Korea
- Research Center for Industrialization of Natural Neutralization, Dankook University, Yongin, Republic of Korea
| |
Collapse
|
55
|
Pratelli G, Di Liberto D, Carlisi D, Emanuele S, Giuliano M, Notaro A, De Blasio A, Calvaruso G, D’Anneo A, Lauricella M. Hypertrophy and ER Stress Induced by Palmitate Are Counteracted by Mango Peel and Seed Extracts in 3T3-L1 Adipocytes. Int J Mol Sci 2023; 24:ijms24065419. [PMID: 36982490 PMCID: PMC10048994 DOI: 10.3390/ijms24065419] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
A diet rich in saturated fatty acids (FAs) has been correlated with metabolic dysfunction and ROS increase in the adipose tissue of obese subjects. Thus, reducing hypertrophy and oxidative stress in adipose tissue can represent a strategy to counteract obesity and obesity-related diseases. In this context, the present study showed how the peel and seed extracts of mango (Mangifera indica L.) reduced lipotoxicity induced by high doses of sodium palmitate (PA) in differentiated 3T3-L1 adipocytes. Mango peel (MPE) and mango seed (MSE) extracts significantly lowered PA-induced fat accumulation by reducing lipid droplet (LDs) and triacylglycerol (TAGs) content in adipocytes. We showed that MPE and MSE activated hormone-sensitive lipase, the key enzyme of TAG degradation. In addition, mango extracts down-regulated the adipogenic transcription factor PPARγ as well as activated AMPK with the consequent inhibition of acetyl-CoA-carboxylase (ACC). Notably, PA increased endoplasmic reticulum (ER) stress markers GRP78, PERK and CHOP, as well as enhanced the reactive oxygen species (ROS) content in adipocytes. These effects were accompanied by a reduction in cell viability and the induction of apoptosis. Interestingly, MPE and MSE counteracted PA-induced lipotoxicity by reducing ER stress markers and ROS production. In addition, MPE and MSE increased the level of the anti-oxidant transcription factor Nrf2 and its targets MnSOD and HO-1. Collectively, these results suggest that the intake of mango extract-enriched foods in association with a correct lifestyle could exert beneficial effects to counteract obesity.
Collapse
Affiliation(s)
- Giovanni Pratelli
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Diana Di Liberto
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Daniela Carlisi
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Sonia Emanuele
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Michela Giuliano
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Antonietta Notaro
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Anna De Blasio
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Giuseppe Calvaruso
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Antonella D’Anneo
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Marianna Lauricella
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Correspondence: ; Tel.: +39-09123865854
| |
Collapse
|
56
|
Binayi F, Moslemi M, Khodagholi F, Hedayati M, Zardooz H. Long-term high-fat diet disrupts lipid metabolism and causes inflammation in adult male rats: possible intervention of endoplasmic reticulum stress. Arch Physiol Biochem 2023; 129:204-212. [PMID: 32907408 DOI: 10.1080/13813455.2020.1808997] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study investigated the effect of long-term high-fat diet (HFD) on plasma lipid profile and probability of inflammation in adult rats. After weaning, male offspring were divided into six groups based on diet type and medication. After 20 weeks of dietary intake, 4-PBA (endoplasmic reticulum (ER) stress inhibitor) was injected for three days. Then, blood samples were taken to measure plasma concentrations of low-density lipoprotein (LDL), triglyceride (TG), high-density lipoprotein (HDL), cholesterol, leptin and interleukin 1-β (IL 1-β). The HFD increased body weight and food intake and intra-abdominal fat and thymus weights, which were associated with elevated plasma leptin level. Moreover, HFD increased plasma concentrations of TG, LDL, cholesterol and IL 1-β and decreased HDL level. Injection of 4-PBA reversed the plasma parameters changes caused by HFD. It seems that long-term HFD feeding through inducing the ER stress, disrupted the lipid metabolism and resulted in inflammation.
Collapse
Affiliation(s)
- Fateme Binayi
- Department of Physiology, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Moslemi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homeira Zardooz
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
57
|
Zhang J, Li S, Luo X, Zhang C. Emerging role of hypothalamus in the metabolic regulation in the offspring of maternal obesity. Front Nutr 2023; 10:1094616. [PMID: 36819678 PMCID: PMC9928869 DOI: 10.3389/fnut.2023.1094616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Maternal obesity has a significant impact on the metabolism of offspring both in childhood and adulthood. The metabolic regulation of offspring is influenced by the intrauterine metabolic programming induced by maternal obesity. Nevertheless, the precise mechanisms remain unclear. The hypothalamus is the primary target of metabolic programming and the principal regulatory center of energy metabolism. Accumulating evidence has indicated the crucial role of hypothalamic regulation in the metabolism of offspring exposed to maternal obesity. This article reviews the development of hypothalamus, the role of the hypothalamic regulations in energy homeostasis, possible mechanisms underlying the developmental programming of energy metabolism in offspring, and the potential therapeutic approaches for preventing metabolic diseases later in life. Lastly, we discuss the challenges and future directions of hypothalamic regulation in the metabolism of children born to obese mothers.
Collapse
|
58
|
Freitas IN, da Silva Jr JA, de Oliveira KM, Lourençoni Alves B, Dos Reis Araújo T, Camporez JP, Carneiro EM, Davel AP. Insights by which TUDCA is a potential therapy against adiposity. Front Endocrinol (Lausanne) 2023; 14:1090039. [PMID: 36896173 PMCID: PMC9989466 DOI: 10.3389/fendo.2023.1090039] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
Adipose tissue is an organ with metabolic and endocrine activity. White, brown and ectopic adipose tissues have different structure, location, and function. Adipose tissue regulates energy homeostasis, providing energy in nutrient-deficient conditions and storing it in high-supply conditions. To attend to the high demand for energy storage during obesity, the adipose tissue undergoes morphological, functional and molecular changes. Endoplasmic reticulum (ER) stress has been evidenced as a molecular hallmark of metabolic disorders. In this sense, the ER stress inhibitor tauroursodeoxycholic acid (TUDCA), a bile acid conjugated to taurine with chemical chaperone activity, has emerged as a therapeutic strategy to minimize adipose tissue dysfunction and metabolic alterations associated with obesity. In this review, we highlight the effects of TUDCA and receptors TGR5 and FXR on adipose tissue in the setting of obesity. TUDCA has been demonstrated to limit metabolic disturbs associated to obesity by inhibiting ER stress, inflammation, and apoptosis in adipocytes. The beneficial effect of TUDCA on perivascular adipose tissue (PVAT) function and adiponectin release may be related to cardiovascular protection in obesity, although more studies are needed to clarify the mechanisms. Therefore, TUDCA has emerged as a potential therapeutic strategy for obesity and comorbidities.
Collapse
Affiliation(s)
- Israelle Netto Freitas
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, Brazil
| | | | | | | | | | - João Paulo Camporez
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Everardo Magalhães Carneiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, Brazil
| | - Ana Paula Davel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, Brazil
- *Correspondence: Ana Paula Davel,
| |
Collapse
|
59
|
Ajoolabady A, Lebeaupin C, Wu NN, Kaufman RJ, Ren J. ER stress and inflammation crosstalk in obesity. Med Res Rev 2023; 43:5-30. [PMID: 35975736 DOI: 10.1002/med.21921] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/07/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023]
Abstract
The endoplasmic reticulum (ER) governs the proper folding of polypeptides and proteins through various chaperones and enzymes residing within the ER organelle. Perturbation in the ER folding process ensues when overwhelmed protein folding exceeds the ER handling capacity, leading to the accumulation of misfolded/unfolded proteins in the ER lumen-a state being referred to as ER stress. In turn, ER stress induces a gamut of signaling cascades, termed as the "unfolded protein response" (UPR) that reinstates the ER homeostasis through a panel of gene expression modulation. This type of UPR is usually deemed "adaptive UPR." However, persistent or unresolved ER stress hyperactivates UPR response, which ultimately, triggers cell death and inflammatory pathways, termed as "maladaptive/terminal UPR." A plethora of evidence indicates that crosstalks between ER stress (maladaptive UPR) and inflammation precipitate obesity pathogenesis. In this regard, the acquisition of the mechanisms linking ER stress to inflammation in obesity might unveil potential remedies to tackle this pathological condition. Herein, we aim to elucidate key mechanisms of ER stress-induced inflammation in the context of obesity and summarize potential therapeutic strategies in the management of obesity through maneuvering ER stress and ER stress-associated inflammation.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Cardiology and Shanghai Institute for Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cynthia Lebeaupin
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Ne N Wu
- Department of Cardiology and Shanghai Institute for Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jun Ren
- Department of Cardiology and Shanghai Institute for Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
60
|
Epstein-Barr virus-induced gene 3 commits human mesenchymal stem cells to differentiate into chondrocytes via endoplasmic reticulum stress sensor. PLoS One 2022; 17:e0279584. [PMID: 36548354 PMCID: PMC9778607 DOI: 10.1371/journal.pone.0279584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cells (MSC) can differentiate into chondrocytes. Epstein-Barr virus-induced gene 3 (EBI3) is differentially expressed during chondrogenic differentiation and can be produced by MSC. EBI3 is also a subunit of interleukin (IL)-27 and IL-35, and it accumulates in the endoplasmic reticulum (ER) when its partners, such as IL-27 p28 and IL-35 p35, are insufficient. ER stress induced by protein accumulation is responsible for chondrogenic differentiation. However, the role of EBI3 and its relevance to the ER stress in chondrogenic differentiation of MSC have never been addressed. Here, we demonstrate that EBI3 protein is expressed in the early stage of chondrogenic differentiation of MSC. Additionally, knockdown, overexpression, or induction of EBI3 through IL-1β inhibits chondrogenesis. We show that EBI3 localizes and accumulates in the ER of MSC after overexpression or induction by IL-1β and TNF-α, whereas ER stress inhibitor 4-phenylbutyric acid decreases its accumulation in MSC. Moreover, EBI3 modulates ER stress sensor inositol-requiring enzyme 1 α (IRE1α) after induced by IL-1β, and MSC-like cells coexpress EBI3 and IRE1α in rheumatoid arthritis (RA) synovial tissue. Altogether, these data demonstrate that intracellular EBI3 commits to chondrogenic differentiation by regulating ER stress sensor IRE1α.
Collapse
|
61
|
Park TJ, Park SY, Cho W, Oh H, Lee HJ, Abd El-Aty AM, Bayram C, Jeong JH, Jung TW. Developmental endothelial locus-1 attenuates palmitate-induced apoptosis in tenocytes through the AMPK/autophagy-mediated suppression of inflammation and endoplasmic reticulum stress. Bone Joint Res 2022; 11:854-861. [PMID: 36458454 PMCID: PMC9792873 DOI: 10.1302/2046-3758.1112.bjr-2022-0077.r2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIMS Myokine developmental endothelial locus-1 (DEL-1) has been documented to alleviate inflammation and endoplasmic reticulum (ER) stress in various cell types. However, the effects of DEL-1 on inflammation, ER stress, and apoptosis in tenocytes remain unclear. METHODS Human primary tenocytes were cultured in palmitate (400 μM) and palmitate plus DEL-1 (0 to 2 μg/ml) conditions for 24 hours. The expression levels of ER stress markers and cleaved caspase 3, as well as phosphorylated 5' adenosine monophosphate-activated protein kinase (AMPK) and autophagy markers, were assessed by Western blotting. Autophagosome formation was measured by staining with monodansylcadaverine, and apoptosis was determined by cell viability assay and caspase 3 activity assay. RESULTS We found that treatment with DEL-1 suppressed palmitate-induced inflammation, ER stress, and apoptosis in human primary tenocytes. DEL-1 treatment augmented LC3 conversion and p62 degradation as well as AMPK phosphorylation. Moreover, small interfering RNA for AMPK or 3-methyladenine (3-MA), an autophagy inhibitor, abolished the suppressive effects of DEL-1 on inflammation, ER stress, and apoptosis in tenocytes. Similar to DEL-1, 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an activator of AMPK, also attenuated palmitate-induced inflammation, ER stress, and apoptosis in tenocytes, which 3-MA reversed. CONCLUSION These results revealed that DEL-1 suppresses inflammation and ER stress, thereby attenuating tenocyte apoptosis through AMPK/autophagy-mediated signalling. Thus, regular exercise or administration of DEL-1 may directly contribute to improving tendinitis exacerbated by obesity and insulin resistance.Cite this article: Bone Joint Res 2022;11(12):854-861.
Collapse
Affiliation(s)
- Tae Jun Park
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Seung Yeon Park
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, South Korea,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, South Korea
| | - Wonjun Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Heeseung Oh
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Hyun Jung Lee
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, South Korea,Department of Anatomy and Cell Biology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, South Korea
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt,Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Cemil Bayram
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, South Korea,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, South Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, South Korea, Tae Woo Jung. E-mail:
| |
Collapse
|
62
|
Martins FF, Marinho TS, Cardoso LEM, Barbosa-da-Silva S, Souza-Mello V, Aguila MB, Mandarim-de-Lacerda CA. Semaglutide (GLP-1 receptor agonist) stimulates browning on subcutaneous fat adipocytes and mitigates inflammation and endoplasmic reticulum stress in visceral fat adipocytes of obese mice. Cell Biochem Funct 2022; 40:903-913. [PMID: 36169111 DOI: 10.1002/cbf.3751] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/24/2022] [Accepted: 09/13/2022] [Indexed: 12/15/2022]
Abstract
Semaglutide (GLP-1 agonist) was approved for treating obesity. Although the effects on weight loss and metabolism are known, the responses of adipocytes to semaglutide are yet limited. C57BL/6 male mice (n = 20/group) were fed a control diet (C) or a high-fat (HF) diet for 16 weeks and then separated into four groups (n = 10/group) for an additional four weeks: C, C diet and semaglutide, HF, and HF diet and semaglutide. Epididymal white adipose tissue (eWAT) and subcutaneous white adipose tissue (sWAT) fat pads were studied with biochemistry, immunohistochemistry/fluorescence, stereology, and reverse transcription-quantitative polymerase chain reaction. In obese mice, semaglutide reduced the fat pad masses (eWAT, -55%; sWAT, -40%), plasmatic cytokines, and proinflammatory gene expressions: tumor necrosis factor-alpha (-60%); interleukin (IL)-6 (-55%); IL-1 beta (-40%); monocyte chemoattractant protein-1 (-90%); and leptin (-80%). Semaglutide also lessened endoplasmic reticulum (ER) stress genes of activating transcription factor-4 (-85%), CCAAT enhancer-binding protein homologous protein (-55%), and growth arrest and DNA damage-inducible gene 45 (-45%). The obese mice's adipocyte hypertrophy and macrophage infiltration were equally reduced by semaglutide. Semaglutide enhanced multiloculation and uncoupled protein 1 (UCP1) labeling in obese mice: peroxisome proliferator-activated receptor-alpha (+560%) and gamma (+150%), fibronectin type III domain-containing protein 5 (+215%), peroxisome proliferator-activated receptor-alpha coactivator (+110%), nuclear respiratory factor 1 (+260%), and mitochondrial transcription factor A (+120%). Semaglutide also increased thermogenetic gene expressions for the browning phenotype maintenance: beta-3 adrenergic receptor (+520%), PR domain containing 16 (+90%), and Ucp1 (+110%). In conclusion, semaglutide showed significant beneficial effects beyond weight loss, directly on fat pads and adipocytes of obese mice, remarkably anti-inflammatory, and reduced adipocyte size and ER stress. Besides, semaglutide activated adipocyte browning, improving UCP1, mitochondrial biogenesis, and thermogenic marker expressions help weight loss.
Collapse
Affiliation(s)
- Fabiane F Martins
- Biomedical Center, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thatiany S Marinho
- Biomedical Center, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz E M Cardoso
- Biomedical Center, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sandra Barbosa-da-Silva
- Biomedical Center, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Biomedical Center, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia B Aguila
- Biomedical Center, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Mandarim-de-Lacerda
- Biomedical Center, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
63
|
Di Berardino C, Peserico A, Capacchietti G, Zappacosta A, Bernabò N, Russo V, Mauro A, El Khatib M, Gonnella F, Konstantinidou F, Stuppia L, Gatta V, Barboni B. High-Fat Diet and Female Fertility across Lifespan: A Comparative Lesson from Mammal Models. Nutrients 2022; 14:nu14204341. [PMID: 36297035 PMCID: PMC9610022 DOI: 10.3390/nu14204341] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/18/2022] Open
Abstract
Female reproduction focuses mainly on achieving fully grown follicles and competent oocytes to be successfully fertilized, as well as on nourishing the developing offspring once pregnancy occurs. Current evidence demonstrates that obesity and/or high-fat diet regimes can perturbate these processes, leading to female infertility and transgenerational disorders. Since the mechanisms and reproductive processes involved are not yet fully clarified, the present review is designed as a systematic and comparative survey of the available literature. The available data demonstrate the adverse influences of obesity on diverse reproductive processes, such as folliculogenesis, oogenesis, and embryo development/implant. The negative reproductive impact may be attributed to a direct action on reproductive somatic and germinal compartments and/or to an indirect influence mediated by the endocrine, metabolic, and immune axis control systems. Overall, the present review highlights the fragmentation of the current information limiting the comprehension of the reproductive impact of a high-fat diet. Based on the incidence and prevalence of obesity in the Western countries, this topic becomes a research challenge to increase self-awareness of dietary reproductive risk to propose solid and rigorous preventive dietary regimes, as well as to develop targeted pharmacological interventions.
Collapse
Affiliation(s)
- Chiara Di Berardino
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Alessia Peserico
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Correspondence:
| | - Giulia Capacchietti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Alex Zappacosta
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, A. Buzzati-Traverso Campus, via E. Ramarini 32, Monterotondo Scalo, 00015 Rome, Italy
| | - Valentina Russo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Annunziata Mauro
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Mohammad El Khatib
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Francesca Gonnella
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Fani Konstantinidou
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Liborio Stuppia
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
64
|
Interplay between fat cells and immune cells in bone: Impact on malignant progression and therapeutic response. Pharmacol Ther 2022; 238:108274. [DOI: 10.1016/j.pharmthera.2022.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022]
|
65
|
Corona-Sanchez EG, Martínez-García EA, Lujano-Benítez AV, Pizano-Martinez O, Guerra-Durán IA, Chavarria-Avila E, Aguilar-Vazquez A, Martín-Márquez BT, Arellano-Arteaga KJ, Armendariz-Borunda J, Perez-Vazquez F, García-De la Torre I, Llamas-García A, Palacios-Zárate BL, Toriz-González G, Vazquez-Del Mercado M. Autoantibodies in the pathogenesis of idiopathic inflammatory myopathies: Does the endoplasmic reticulum stress response have a role? Front Immunol 2022; 13:940122. [PMID: 36189221 PMCID: PMC9520918 DOI: 10.3389/fimmu.2022.940122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/24/2022] [Indexed: 12/20/2022] Open
Abstract
Idiopathic inflammatory myopathies (IIMs) are a group of rare, acquired autoimmune diseases characterized by profound muscle weakness and immune cell invasion into non-necrotic muscle. They are related to the presence of antibodies known as myositis-specific antibodies and myositis-associated antibodies, which are associated with various IIM phenotypes and the clinical prognosis. The possibility of the participation of other pathological mechanisms involved in the inflammatory response in IIM has been proposed. Such mechanisms include the overexpression of major histocompatibility complex class I in myofibers, which correlates with the activation of stress responses of the endoplasmic reticulum (ER). Taking into account the importance of the ER for the maintenance of homeostasis of the musculoskeletal system in the regulation of proteins, there is probably a relationship between immunological and non-immunological processes and autoimmunity, and an example of this might be IIM. We propose that ER stress and its relief mechanisms could be related to inflammatory mechanisms triggering a humoral response in IIM, suggesting that ER stress might be related to the triggering of IIMs and their auto-antibodies’ production.
Collapse
Affiliation(s)
- Esther Guadalupe Corona-Sanchez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Universidad de Guadalajara-Cuerpo Académico (UDG-CA)-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Erika Aurora Martínez-García
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Universidad de Guadalajara-Cuerpo Académico (UDG-CA)-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Andrea Verónica Lujano-Benítez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Doctorado en Ciencias Biomedicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Oscar Pizano-Martinez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Universidad de Guadalajara-Cuerpo Académico (UDG-CA)-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Morfología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ivette Alejandra Guerra-Durán
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Efrain Chavarria-Avila
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Disciplinas Filosófico Metodológicas e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Andrea Aguilar-Vazquez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Doctorado en Ciencias Biomedicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Beatriz Teresita Martín-Márquez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Universidad de Guadalajara-Cuerpo Académico (UDG-CA)-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Kevin Javier Arellano-Arteaga
- Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Especialidad de Medicina Interna, Padrón Nacional de Posgrados de Calidad (PNPC) Consejo Nacional de Ciencia y Tecnología (CONACyT), Guadalajara, Mexico
| | - Juan Armendariz-Borunda
- Instituto de Biología Molecular en Medicina, Universidad de Guadalajara, Centro Universitario de Ciencias de la Salud, Guadalajara, Mexico
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Zapopan, Mexico
| | - Felipe Perez-Vazquez
- Departamento de Disciplinas Filosófico Metodológicas e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ignacio García-De la Torre
- Departamento de Inmunología y Reumatología, Hospital General de Occidente y Universidad de Guadalajara, Guadalajara, Mexico
| | - Arcelia Llamas-García
- Hospital Civil de Guadalajara “Dr. Juan I. Menchaca, ” Especialidad de Reumatología, Padrón Nacional de Posgrados de Calidad (PNPC) Consejo Nacional de Ciencia y Tecnología (CONACyT), Guadalajara, Mexico
| | - Brenda Lucía Palacios-Zárate
- Hospital Civil de Guadalajara “Dr. Juan I. Menchaca, ” Especialidad de Reumatología, Padrón Nacional de Posgrados de Calidad (PNPC) Consejo Nacional de Ciencia y Tecnología (CONACyT), Guadalajara, Mexico
| | - Guillermo Toriz-González
- Instituto Transdisciplinar de Investigación y Servicios (ITRANS), Universidad de Guadalajara, Zapopan, Mexico
| | - Monica Vazquez-Del Mercado
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Universidad de Guadalajara-Cuerpo Académico (UDG-CA)-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Hospital Civil de Guadalajara “Dr. Juan I. Menchaca, ” Especialidad de Reumatología, Padrón Nacional de Posgrados de Calidad (PNPC) Consejo Nacional de Ciencia y Tecnología (CONACyT), Guadalajara, Mexico
- *Correspondence: Monica Vazquez-Del Mercado,
| |
Collapse
|
66
|
He Y, Zhang Y, Zhang J, Hu X. The Key Molecular Mechanisms of Sini Decoction Plus Ginseng Soup to Rescue Acute Liver Failure: Regulating PPARα to Reduce Hepatocyte Necroptosis? J Inflamm Res 2022; 15:4763-4784. [PMID: 36032938 PMCID: PMC9417306 DOI: 10.2147/jir.s373903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/09/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose This study aimed to investigate the improvement effect of Sini Decoction plus Ginseng Soup (SNRS) on the LPS/D-GalN-induced acute liver failure (ALF) mouse model and the molecular mechanism of the SNRS effect. Methods To study the protective effect of SNRS on ALF mice, the ICR mice were firstly divided into 4 groups: Control group (vehicle-treated), Model group (LPS/D-GalN), SNRS group (LPS/D-GalN+SNRS), and Silymarin group (LPS/D-GalN+Silymarin), the therapeutic drug was administered by gavage 48h, 24h before, and 10 min after LPS/D-GalN injection. On this basis, the peroxisome proliferator-activated receptor (PPAR) α agonist (WY14643) and inhibitor (GW6471) were added to verify whether the therapeutic mechanism of SNRS is related to its promoting effect on PPARα. The animals are grouped as follows: Control group (vehicle-treated), Model group (LPS/D-GalN+DMSO), SNRS group (LPS/D-GalN+SNRS+DMSO), Inhibitor group (LPS/D-GalN+GW6471), Agonist group (LPS/D-GalN+WY14643), and Inhibitor+SNRS group (LPS/D-GalN+GW6471+SNRS). Results The protective effect of SNRS on the ALF model is mainly reflected in the reduction of serum alanine aminotransaminase (ALT) and aspartate aminotransaminase (AST) as well as the ameliorated pathology of the liver tissue. The survival rate of ALF mice treated with SNRS was significantly increased. Further mechanism studies showed that SNRS significantly promoted the protein expression of PPARα and decreased the expression of necroptosis proteins (RIP3, MLKL, p-MLKL) in ALF mice. Reduced necroptosis resulted in decreased HMGB1 release, which in turn inhibited the activation of TLR4-JNK and NLRP3 inflammasome signaling pathways and the expression of NF-κB protein induced by LPS/D-GalN. The expression of CPT1A, a key enzyme involved in fatty acid β-oxidation, was found to be significantly up-regulated in the SNRS treated group, accompanied by an increased adenosine-triphosphate (ATP) level, which may be the relevant mechanism by which SNRS reduces necroptosis. Conclusion The potential therapeutic effect of SNRS on ALF may be through promoting the expression of PPARα and increasing the level of ATP in liver tissue, thereby inhibiting necroptosis of hepatocytes, reducing hepatocyte damage, and improving liver function.
Collapse
Affiliation(s)
- Ying He
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, People's Republic of China.,Department of College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yang Zhang
- Department of Infectious Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Junli Zhang
- Department of College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Xiaoyu Hu
- Department of Infectious Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| |
Collapse
|
67
|
Budi YP, Li YH, Huang C, Wang ME, Lin YC, Jong DS, Chiu CH, Jiang YF. The role of autophagy in high-fat diet-induced insulin resistance of adipose tissues in mice. PeerJ 2022; 10:e13867. [PMID: 35990905 PMCID: PMC9387522 DOI: 10.7717/peerj.13867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/19/2022] [Indexed: 01/18/2023] Open
Abstract
Aims Studies have observed changes in autophagic flux in the adipose tissue of type 2 diabetes patients with obesity. However, the role of autophagy in obesity-induced insulin resistance is unclear. We propose to confirm the effect of a high-fat diet (HFD) on autophagy and insulin signaling transduction from adipose tissue to clarify whether altered autophagy-mediated HFD induces insulin resistance, and to elucidate the possible mechanisms in autophagy-regulated adipose insulin sensitivity. Methods Eight-week-old male C57BL/6 mice were fed with HFD to confirm the effect of HFD on autophagy and insulin signaling transduction from adipose tissue. Differentiated 3T3-L1 adipocytes were treated with 1.2 mM fatty acids (FAs) and 50 nM Bafilomycin A1 to determine the autophagic flux. 2.5 mg/kg body weight dose of Chloroquine (CQ) in PBS was locally injected into mouse epididymal adipose (10 and 24 h) and 40 µM of CQ to 3T3-L1 adipocytes for 24 h to evaluate the role of autophagy in insulin signaling transduction. Results The HFD treatment resulted in a significant increase in SQSTM1/p62, Rubicon expression, and C/EBP homologous protein (CHOP) expression, yet the insulin capability to induce Akt (Ser473) and GSK3β (Ser9) phosphorylation were reduced. PHLPP1 and PTEN remain unchanged after CQ injection. In differentiated 3T3-L1 adipocytes treated with CQ, although the amount of phospho-Akt stimulated by insulin in the CQ-treated group was significantly lower, CHOP expressions and cleaved caspase-3 were increased and bafilomycin A1 induced less accumulation of LC3-II protein. Conclusion Long-term high-fat diet promotes insulin resistance, late-stage autophagy inhibition, ER stress, and apoptosis in adipose tissue. Autophagy suppression may not affect insulin signaling transduction via phosphatase expression but indirectly causes insulin resistance through ER stress or apoptosis.
Collapse
Affiliation(s)
- Yovita Permata Budi
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, Taiwan,School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Hsuan Li
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chien Huang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Mu-En Wang
- Department of Pathology, Duke University, North Carolina, Durham, United States of America
| | - Yi-Chun Lin
- Department of Animal Science, National Chung Hsing University, Taichung, Taichung, Taiwan
| | - De-Shien Jong
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chih-Hsien Chiu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yi-Fan Jiang
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, Taiwan,School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
68
|
Transmissible Endoplasmic Reticulum Stress Mediated by Extracellular Vesicles from Adipocyte Promoting the Senescence of Adipose-Derived Mesenchymal Stem Cells in Hypertrophic Obesity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7175027. [PMID: 36035215 PMCID: PMC9410860 DOI: 10.1155/2022/7175027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/05/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022]
Abstract
Hypertrophic obesity, characterized by an excessive expansion of subcutaneous adipocytes, causes chronic inflammation and insulin resistance. It is the primary feature of obesity in middle-aged and elderly individuals. In the adipose microenvironment, a high level of endoplasmic reticulum (ER) stress and changes in the extracellular vesicle (EV) composition of adipocytes may cause the senescence and restrained differentiation of progenitor cells of adipose, including adipose-derived mesenchymal stem cells (ASCs). In this study, a hypertrophic obesity mouse model was established, and the effects of adipocytes on the ER stress and senescence of ASCs were observed in a coculture of control ASCs and hypertrophic obesity mouse adipocytes or their derived EVs. The adipocytes of hypertrophic obesity mice were treated with GW4869 or an iron chelation agent to observe the effects of EVs secreted by adipocytes and their iron contents on the ER stress and senescence of ASCs. Results showed higher ER stress level and senescence phenotypes in the ASCs from the hypertrophic obesity mice than in those from the control mice. The ER stress, senescence phenotypes, and ferritin level of ASCs can be aggravated by the coculture of ASCs with adipocytes or EVs released by them from the hypertrophic obesity mice. GW4869 or iron chelator treatment improved the ER stress and senescence of the ASCs cocultured with EVs released by the adipocytes of the hypertrophic obesity mice. Our findings suggest that EV-mediated transmissible ER stress is responsible for the senescence of ASCs in hypertrophic obesity mice.
Collapse
|
69
|
Fonteneau G, Redding A, Hoag-Lee H, Sim ES, Heinrich S, Gaida MM, Grabocka E. Stress Granules Determine the Development of Obesity-Associated Pancreatic Cancer. Cancer Discov 2022; 12:1984-2005. [PMID: 35674408 PMCID: PMC9357213 DOI: 10.1158/2159-8290.cd-21-1672] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/25/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023]
Abstract
Obesity is a global epidemic and a major predisposing factor for cancer. Increasing evidence shows that obesity-associated stress is a key driver of cancer risk and progression. Previous work has identified the phase-separation organelles, stress granules (SG), as mutant KRAS-dependent mediators of stress adaptation. However, the dependence of tumorigenesis on these organelles is unknown. Here, we establish a causal link between SGs and pancreatic ductal adenocarcinoma (PDAC). Importantly, we uncover that dependence on SGs is drastically heightened in obesity-associated PDAC. Furthermore, we identify a previously unknown regulator and component of SGs, namely, the serine/arginine protein kinase 2 (SRPK2), as a specific determinant of SG formation in obesity-associated PDAC. We show that SRPK2-mediated SG formation in obesity-associated PDAC is driven by hyperactivation of the IGF1/PI3K/mTOR/S6K1 pathway and that S6K1 inhibition selectively attenuates SGs and impairs obesity-associated PDAC development. SIGNIFICANCE : We show that stress adaptation via the phase-separation organelles SGs mediates PDAC development. Moreover, preexisting stress conditions such as obesity are a driving force behind tumor SG dependence, and enhanced SG levels are key determinants and a chemopreventive target for obesity-associated PDAC. This article is highlighted in the In This Issue feature, p. 1825.
Collapse
Affiliation(s)
- Guillaume Fonteneau
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Alexandra Redding
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Hannah Hoag-Lee
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Edward S. Sim
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Current Address: University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stefan Heinrich
- Department of Surgery, University Medical Center Mainz, JGU-Mainz, 55131 Mainz, Germany
| | - Matthias M. Gaida
- Institute of Pathology, University Medical Center Mainz, JGU-Mainz, 55131 Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, JGU-Mainz, 55131 Mainz, Germany
- Joint Unit Immunopathology, Institute of Pathology, University Medical Center, JGU-Mainz and TRON, Translational Oncology at the University Medical Center, JGU-Mainz, 55131 Mainz, Germany
| | - Elda Grabocka
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| |
Collapse
|
70
|
Preferential effect of Montelukast on Dapagliflozin: Modulation of IRS-1/AKT/GLUT4 and ER stress response elements improves insulin sensitivity in soleus muscle of a type-2 diabetic rat model. Life Sci 2022; 307:120865. [DOI: 10.1016/j.lfs.2022.120865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 01/12/2023]
|
71
|
Resolvin D3 improves the impairment of insulin signaling in skeletal muscle and nonalcoholic fatty liver disease through AMPK/autophagy-associated attenuation of ER stress. Biochem Pharmacol 2022; 203:115203. [DOI: 10.1016/j.bcp.2022.115203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022]
|
72
|
Tan Y, Zhang X, Zhou Y, Miao L, Xu B, Khan H, Wang Y, Yu H, Cheang WS. Panax notoginseng extract and total saponin suppress diet-induced obesity and endoplasmic reticulum stress in epididymal white adipose tissue in mice. Chin Med 2022; 17:75. [PMID: 35718787 PMCID: PMC9208151 DOI: 10.1186/s13020-022-00629-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/02/2022] [Indexed: 11/10/2022] Open
Abstract
Background Investigation on protective effects of Panax notoginseng against obesity and its related mechanisms is incomplete. Present study aimed to investigate the potential anti-obesity effect of the total saponins (PNS) and ethanolic extract of P. notoginseng (PNE). Methods Six-week-old male C57BL/6J mice received 45% kcal fat diet for 12 weeks to induce obesity. Oral administration of PNS and PNE at 20 mg/kg/day was applied for the last 4 weeks in the obese mice. Lipid profile was determined by ELISA. Histological examination was performed in liver and fat tissues. Protein levels were measured by Western blot. Results PNS and PNE did not cause weight loss. PNE but not PNS decreased the mass of epididymal and retroperitoneal white adipose tissue, accompanied by a reduction in adipocyte hypertrophy. PNS and PNE improved lipid profile by reducing the concentrations of triglyceride, total cholesterol and low-density lipoprotein cholesterol in plasma or liver samples. PNS and PNE also relieved fatty liver in obese mice. PNS and PNE inhibited expression and phosphorylation of endoplasmic reticulum (ER) stress-responsive proteins in hypertrophic adipose tissue. Conclusions PNS and PNE can regulate ER stress-mediated apoptosis and inflammation to alleviate obesity.
Collapse
Affiliation(s)
- Yi Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Xutao Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Yan Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Lingchao Miao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Guangdong, 519087, Zhuhai, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| |
Collapse
|
73
|
Narenmandula, Hongmei, Ding X, Li K, Hashentuya, Yang D, Wendurige, Yang R, Yang D, Tana, Wang H, Eerdunduleng, Tegexibaiyin, Wang C, Bao X, Menggenduxi. The Traditional Mongolian Medicine Qiqirigan-8 Effects on Lipid Metabolism and Inflammation in Obesity: Pharmacodynamic Evaluation and Relevant Metabolites. Front Pharmacol 2022; 13:863532. [PMID: 35784695 PMCID: PMC9240606 DOI: 10.3389/fphar.2022.863532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Traditional Mongolian Medicine Qiqirigan-8 (MMQ-8) is a Chinese botanical drug with effective pharmacological properties in obesity. However, the pharmacological mechanism of MMQ-8 remains unclear. This study aimed to determine the active metabolites of MMQ-8 and its therapeutic effects on lipid metabolism and inflammation. Methods: The active metabolites of MMQ-8 were identified by ultrahigh-performance liquid chromatograph Q extractive mass spectrometry (UHPLC-QE-MS) assay and network analysis. An obesity rat model induced by high-fat diet was used in the study. Serum levels of lipids and inflammatory factors were detected using biochemical analysis and enzyme-linked immunosorbent assay (ELISA). Pathological analysis of liver tissues and arteries was conducted with hematoxylin and eosin (H&E) staining and immunohistochemistry. Protein expression of the tumor necrosis factor (TNF) signaling pathway was investigated by Western-blot. Simultaneously, bone marrow cells were used for RNA sequencing and relevant results were validated by cell culture and quantitative real-time polymerase chain reaction (RT-qPCR). Results: We identified 69 active metabolites and 551 target genes of MMQ-8. Of these, there are 65 active metabolites and 225 target genes closely related to obesity and inflammation. In vivo, we observed that MMQ-8 had general decreasing effects on body weight, white adipose tissue weight, and serum lipids. MMQ-8 treatment notably decreased the liver function markers and hepatic steatosis, and significantly decreased inflammation. In serum, it notably decreased TNF-α, interleukin (IL)-6, and inducible nitric oxide synthase (INOS), while elevating IL-10 levels. MMQ-8 treatment also significantly inhibited proteins phosphorylation of nuclear factor-kappa B inhibitor alpha (IκBα), mitogen-activated protein kinase (p38), extracellular regulated kinase 1/2(ERK1/2), and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and decreased vascular endothelium damage and macrophage infiltration and polarization to M1. These findings coincide with the RNA-sequencing data of bone marrow cells and results of in vitro experiments. Conclusion: We determined the pharmacological actions and relevant metabolites of MMQ-8 in obesity for the first time. Our study revealed MMQ-8 can optimize lipid metabolism and reduce chronic inflammation in obesity. However, more in-depth research is needed, for example, to understand the principle of compound compatibility and the inhibition effects on hepatic steatosis, T cell differentiation, and inflammatory signal transduction.
Collapse
|
74
|
Horikawa T, Hiramoto K, Tanaka S, Ooi K. Skin dryness induced in the KK-Ay/TaJcl type 2 diabetes mouse model deteriorates following dapagliflozin administration. Biol Pharm Bull 2022; 45:934-939. [PMID: 35584962 DOI: 10.1248/bpb.b22-00241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Various diabetic drugs have been developed as the number of patients with type 2 diabetes has increased. Sodium-glucose cotransporter (SGLT)-2 inhibitors have been developed as novel therapeutic agents. However, SGLT-2 inhibitors cause skin dryness. The mechanism through which SGLT-2 inhibitors cause skin dryness is unknown. The purpose of this study was to investigate the mechanism through which dapagliflozin, a SGLT-2 inhibitor, induces skin dryness. Specific pathogen-free KK-Ay/TaJcl (type 2 diabetes model) mice were orally administered with SGLT-2 inhibitor (dapagliflozin) daily for 4 weeks at a dose of 1 mg/kg/day. Skin dryness induced in KK-Ay/TaJcl mice became severe after dapagliflozin administration. Dapagliflozin treatment decreased collagen type I and hyaluronic acid levels in mice; additionally, it affected the TGF-β/hyaluronan synthase pathway, further reducing hyaluronic acid levels. The results indicate that the reduction in hyaluronic acid levels plays an important role in the occurrence of dry skin in diabetes.
Collapse
Affiliation(s)
- Tsuneki Horikawa
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Keiichi Hiramoto
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Shota Tanaka
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Kazuya Ooi
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science
| |
Collapse
|
75
|
Gansemer ER, Rutkowski DT. Pathways Linking Nicotinamide Adenine Dinucleotide Phosphate Production to Endoplasmic Reticulum Protein Oxidation and Stress. Front Mol Biosci 2022; 9:858142. [PMID: 35601828 PMCID: PMC9114485 DOI: 10.3389/fmolb.2022.858142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum (ER) lumen is highly oxidizing compared to other subcellular compartments, and maintaining the appropriate levels of oxidizing and reducing equivalents is essential to ER function. Both protein oxidation itself and other essential ER processes, such as the degradation of misfolded proteins and the sequestration of cellular calcium, are tuned to the ER redox state. Simultaneously, nutrients are oxidized in the cytosol and mitochondria to power ATP generation, reductive biosynthesis, and defense against reactive oxygen species. These parallel needs for protein oxidation in the ER and nutrient oxidation in the cytosol and mitochondria raise the possibility that the two processes compete for electron acceptors, even though they occur in separate cellular compartments. A key molecule central to both processes is NADPH, which is produced by reduction of NADP+ during nutrient catabolism and which in turn drives the reduction of components such as glutathione and thioredoxin that influence the redox potential in the ER lumen. For this reason, NADPH might serve as a mediator linking metabolic activity to ER homeostasis and stress, and represent a novel form of mitochondria-to-ER communication. In this review, we discuss oxidative protein folding in the ER, NADPH generation by the major pathways that mediate it, and ER-localized systems that can link the two processes to connect ER function to metabolic activity.
Collapse
Affiliation(s)
- Erica R. Gansemer
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - D. Thomas Rutkowski
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
76
|
Cheng D, Yang S, Zhao X, Wang G. The Role of Glucagon-Like Peptide-1 Receptor Agonists (GLP-1 RA) in Diabetes-Related Neurodegenerative Diseases. Drug Des Devel Ther 2022; 16:665-684. [PMID: 35340338 PMCID: PMC8943601 DOI: 10.2147/dddt.s348055] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/18/2022] [Indexed: 12/17/2022] Open
Abstract
Recent clinical guidelines have emphasized the importance of screening for cognitive impairment in older adults with diabetes, however, there is still a lack of understanding about the drug therapy. Glucagon-like peptide 1 receptor agonists (GLP-1 RAs) are widely used in the treatment of type 2 diabetes and potential applications may include the treatment of obesity as well as the adjunctive treatment of type 1 diabetes mellitus in combination with insulin. Growing evidence suggests that GLP-1 RA has the potential to treat neurodegenerative diseases, particularly in diabetes-related Alzheimer’s disease (AD) and Parkinson’s disease (PD). Here, we review the molecular mechanisms of the neuroprotective effects of GLP-1 RA in diabetes-related degenerative diseases, including AD and PD, and their potential effects.
Collapse
Affiliation(s)
- Dihe Cheng
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Shuo Yang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Xue Zhao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| |
Collapse
|
77
|
Miyahara H, Hasegawa K, Yashiro M, Ohara T, Fujisawa M, Yoshimura T, Matsukawa A, Tsukahara H. Thioredoxin interacting protein protects mice from fasting induced liver steatosis by activating ER stress and its downstream signaling pathways. Sci Rep 2022; 12:4819. [PMID: 35314758 PMCID: PMC8938456 DOI: 10.1038/s41598-022-08791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Under normal conditions, fasting results in decreased protein disulfide isomerase (PDI) activity and accumulation of unfolded proteins, leading to the subsequent activation of the unfolded protein response (UPR)/autophagy signaling pathway to eliminate damaged mitochondria. Fasting also induces upregulation of thioredoxin-interacting protein (TXNIP) expression and mice deficient of this protein (TXNIP-KO mice) was shown to develop severe hypoglycemia, hyperlipidemia and liver steatosis (LS). In the present study, we aimed to determine the role of TXNIP in fasting-induced LS by using male TXNIP-KO mice that developed LS without severe hypoglycemia. In TXNIP-KO mice, fasting induced severe microvesicular LS. Examinations by transmission electron microscopy revealed mitochondria with smaller size and deformities and the presence of few autophagosomes. The expression of β-oxidation-associated genes remained at the same level and the level of LC3-II was low. PDI activity level stayed at the original level and the levels of p-IRE1 and X-box binding protein 1 spliced form (sXBP1) were lower. Interestingly, treatment of TXNIP-KO mice with bacitracin, a PDI inhibitor, restored the level of LC3-II after fasting. These results suggest that TXNIP regulates PDI activity and subsequent activation of the UPR/autophagy pathway and plays a protective role in fasting-induced LS.
Collapse
Affiliation(s)
- Hiroyuki Miyahara
- Department of Pediatrics, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan. .,Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Kosei Hasegawa
- Department of Pediatrics, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Masato Yashiro
- Department of Pediatrics, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Toshiaki Ohara
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masayoshi Fujisawa
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirokazu Tsukahara
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
78
|
Kowalczuk A, Bourebaba N, Panchuk J, Marycz K, Bourebaba L. Calystegines Improve the Metabolic Activity of Human Adipose Derived Stromal Stem Cells (ASCs) under Hyperglycaemic Condition through the Reduction of Oxidative/ER Stress, Inflammation, and the Promotion of the AKT/PI3K/mTOR Pathway. Biomolecules 2022; 12:460. [PMID: 35327652 PMCID: PMC8946193 DOI: 10.3390/biom12030460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Hyperglycaemia and its resulting glucotoxicity are among the most prominent hallmarks of diabetes mellitus (DM) development. Persistent hyperglycaemia further leads to oxidative stress via mitochondrial dysfunction and subsequent ER stress onset, while associated hyperlipidaemia triggers the adipose tissue to secrete pro-inflammatory cytokines. In this study, the effect of calystegines has been investigated in an experimental model of hyperglycaemia induced on human ASCs cells. Different cellular pathways including apoptosis, oxidative and ER stress, inflammation as well as Pi3K/AKT/mTOR metabolic-associated axis have been evaluated by means on RT-qPCR, western blot, and flow cytometry techniques. Treatment of HuASCs cells with calystegines strongly promoted the hyperglycaemic cells survival and significantly diminished oxidative stress, mitochondrial dynamics failure and ER stress, while improving the endogenous cellular antioxidant defenses. Interestingly, nortropane alkaloids efficiently prevented the hyperglycaemia-mediated inflammatory response, as evidenced by the regulation of the pro- and anti-inflammatory response in HuASCs cells. Finally, we evidenced that calystegines may exert their protective effect on HuASCs cells metabolic functions through the restoration of the defective PI3K/AKT/mTOR pathway. Overall, the present investigation demonstrated that calystegines possess important abilities to protect HuASCs against hyperglycaemia-induced cellular dysfunction, and it evidenced that the observed effects are associated to the promotion of PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
| | - Nabila Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (N.B.); (J.P.); (K.M.)
| | - Juliia Panchuk
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (N.B.); (J.P.); (K.M.)
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (N.B.); (J.P.); (K.M.)
- International Institute of Translational Medicine, 55-114 Wisznia Mała, Poland
| | - Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (N.B.); (J.P.); (K.M.)
- International Institute of Translational Medicine, 55-114 Wisznia Mała, Poland
| |
Collapse
|
79
|
Yeon Park S, Cho W, Abd El-Aty A, Hacimuftuoglu A, Hoon Jeong J, Woo Jung T. Valdecoxib attenuates lipid-induced hepatic steatosis through autophagy-mediated suppression of endoplasmic reticulum stress. Biochem Pharmacol 2022; 199:115022. [DOI: 10.1016/j.bcp.2022.115022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/09/2023]
|
80
|
Rami AZA, Hamid AA, Anuar NNM, Aminuddin A, Ugusman A. Exploring the Relationship of Perivascular Adipose Tissue Inflammation and the Development of Vascular Pathologies. Mediators Inflamm 2022; 2022:2734321. [PMID: 35177953 PMCID: PMC8846975 DOI: 10.1155/2022/2734321] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 12/18/2022] Open
Abstract
Initially thought to only provide mechanical support for the underlying blood vessels, perivascular adipose tissue (PVAT) has now emerged as a regulator of vascular function. A healthy PVAT exerts anticontractile and anti-inflammatory actions on the underlying vasculature via the release of adipocytokines such as adiponectin, nitric oxide, and omentin. However, dysfunctional PVAT produces more proinflammatory adipocytokines such as leptin, resistin, interleukin- (IL-) 6, IL-1β, and tumor necrosis factor-alpha, thus inducing an inflammatory response that contributes to the pathogenesis of vascular diseases. In this review, current knowledge on the role of PVAT inflammation in the development of vascular pathologies such as atherosclerosis and hypertension was discussed.
Collapse
Affiliation(s)
- Afifah Zahirah Abd Rami
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Nur Najmi Mohamad Anuar
- Center for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abd Aziz, 50300 Kuala Lumpur, Malaysia
| | - Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
81
|
Oh H, Cho W, Abd El-Aty AM, Jeong JH, Jung TW. Resolvin D3 Improves the Impairment of Insulin Signaling in Skeletal Muscle and Nonalcoholic Fatty Liver Disease Through AMPK/Autophagy-Associated Attenuation of ER Stress. SSRN ELECTRONIC JOURNAL 2022. [DOI: 10.2139/ssrn.4149178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
82
|
Abstract
Two decades of research have established that Nuclear Factor-κB (NF-κB) signaling plays a critical role in reprogramming the fat cell transcriptome towards inflammation in response to overnutrition and metabolic stress. Several groups have suggested that inhibition of NF-κB signaling could have metabolic benefits for obesity-associated adipose tissue inflammation. However, two significant problems arise with this approach. The first is how to deliver general NF-κB inhibitors into adipocytes without allowing these compounds to disrupt normal functioning in cells of the immune system. The second issue is that general inhibition of canonical NF-κB signaling in adipocytes will likely lead to a massive increase in adipocyte apoptosis under conditions of metabolic stress, leading full circle into a secondary inflammation (However, this problem may not be true for non-canonical NF-κB signaling.). This review will focus on the research that has examined canonical and non-canonical NF-κB signaling in adipocytes, focusing on genetic studies that examine loss-of-function of NF-κB specifically in fat cells. Although the development of general inhibitors of canonical NF-κB signaling seems unlikely to succeed in alleviating adipose tissue inflammation in humans, the door remains open for more targeted therapeutics. In principle, these would include compounds that interrogate NF-κB DNA binding, protein-protein interactions, or post-translational modifications that partition NF-κB activity towards some genes and away from others in adipocytes. I also discuss the possibility for inhibitors of non-canonical NF-κB signaling to realize success in mitigating fat cell dysfunction in obesity. To plant the seeds for such approaches, much biochemical “digging” in adipocytes remains; this includes identifying—in an unbiased manner–NF-κB direct and indirect targets, genomic DNA binding sites for all five NF-κB subunits, NF-κB protein-protein interactions, and post-translational modifications of NF-κB in fat cells.
Collapse
|
83
|
Pan B, Liu X, Shi J, Chen Y, Xu Z, Shi D, Ruan G, Wang F, Huang Y, Xu C. A Meta-Analysis of Microbial Therapy Against Metabolic Syndrome: Evidence From Randomized Controlled Trials. Front Nutr 2021; 8:775216. [PMID: 34977119 PMCID: PMC8714845 DOI: 10.3389/fnut.2021.775216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
Background and aims: Metabolic syndrome (MetS), accompanied with significant intestinal dysbiosis, causes a great public health burden to human society. Here, we carried out a meta-analysis to qualify randomized controlled trials (RCTs) and to systematically evaluate the effect of microbial therapy on MetS. Methods and results: Forty-two RCTs were eligible for this meta-analysis after searching the PubMed, Cochrane, and Embase databases. Pooled estimates demonstrated that treatment with microbial therapy significantly reduced the waist circumference (WC) (SMD = -0.26, 95% CI -0.49, -0.03), fasting blood glucose (FBG) (SMD = -0.35, 95% CI -0.52, -0.18), total cholesterol (TC) (SMD = -0.36, 95% CI -0.55, -0.17), low-density lipoprotein cholesterol (LDL-C) (SMD = -0.42, 95% CI -0.61, -0.22), and triacylglycerol (TG)(SMD = -0.38, 95% CI -0.55, -0.20), but increased the high-density lipoprotein cholesterol (HDL-C) (SMD = 0.28, 95% CI.03, 0.52). Sensitivity analysis indicated that after eliminating one study utilizing Bifidobacteriumlactis, results became statistically significant in diastolic blood pressure (DBP) (SMD = -0.24, 95% CI -0.41, -0.07) and in Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) (SMD = -0.28, 95% CI -0.54, -0.03), while the body mass index (BMI) showed significant difference after eliminating one study utilizing oat bran (SMD = -0.16, 95% CI -0.31, -0.01). There was still no significant effect in systolic blood pressure (SBP) and in hemoglobin A1c (HbA1c%). Conclusion: In patients with MetS, the conditioning with microbial therapy notably improves FBG, TC, TG, HDL-C, LDL-C, WC, BMI (except for the study using oat bran), HOMA-IR, and DBP (except for the Study using Bifidobacteriumlactis), however, with no effect in SBP and in HbA1c%.
Collapse
Affiliation(s)
- Binhui Pan
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiujie Liu
- Institute of Ischemia/Reperfusion Injury, Wenzhou Medical University, Wenzhou, China
| | - Jiangmin Shi
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yaoxuan Chen
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhihua Xu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dibang Shi
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gaoyi Ruan
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangyan Wang
- Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, China
| | - Yingpeng Huang
- Department of Gastrointestinal Oncology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Changlong Xu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
84
|
Faghfouri AH, Khajebishak Y, Payahoo L, Faghfuri E, Alivand M. PPAR-gamma agonists: Potential modulators of autophagy in obesity. Eur J Pharmacol 2021; 912:174562. [PMID: 34655597 DOI: 10.1016/j.ejphar.2021.174562] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/21/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
Autophagy pathways are involved in the pathogenesis of some obesity related health problems. As obesity is a nutrient sufficiency condition, autophagy process can be altered in obesity through AMP activated protein kinase (AMPK) inhibition. Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) as the main modulator of adipogenesis process can be effective in the regulation of obesity related phenotypes. As well, it has been revealed that PPAR-gamma and its agonists can regulate autophagy in different normal or cancer cells. However, their effects on autophagy modulation in obesity have been investigated in the limited number of studies. In the current comprehensive mechanistic review, we aimed to investigate the possible mechanisms of action of PPAR-gamma on the process of autophagy in obesity through narrating the effects of PPAR-gamma on autophagy in the non-obesity conditions. Moreover, mode of action of PPAR-gamma agonists on autophagy related implications comprehensively reviewed in the various studies. Understanding the different effects of PPAR-gamma agonists on autophagy in obesity can help to develop a new approach to management of obesity.
Collapse
Affiliation(s)
- Amir Hossein Faghfouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Community Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yaser Khajebishak
- Department of Nutrition, Maragheh University of Medical Sciences, Maragheh, I.R., Iran
| | - Laleh Payahoo
- Department of Nutrition, Maragheh University of Medical Sciences, Maragheh, I.R., Iran
| | - Elnaz Faghfuri
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mohammadreza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
85
|
Gallo M, Adinolfi V, Barucca V, Prinzi N, Renzelli V, Barrea L, Di Giacinto P, Ruggeri RM, Sesti F, Arvat E, Baldelli R, Arvat E, Colao A, Isidori A, Lenzi A, Baldell R, Albertelli M, Attala D, Bianchi A, Di Sarno A, Feola T, Mazziotti G, Nervo A, Pozza C, Puliani G, Razzore P, Ramponi S, Ricciardi S, Rizza L, Rota F, Sbardella E, Zatelli MC. Expected and paradoxical effects of obesity on cancer treatment response. Rev Endocr Metab Disord 2021; 22:681-702. [PMID: 33025385 DOI: 10.1007/s11154-020-09597-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/25/2020] [Indexed: 12/12/2022]
Abstract
Obesity, whose prevalence is pandemic and continuing to increase, is a major preventable and modifiable risk factor for diabetes and cardiovascular diseases, as well as for cancer. Furthermore, epidemiological studies have shown that obesity is a negative independent prognostic factor for several oncological outcomes, including overall and cancer-specific survival, for several site-specific cancers as well as for all cancers combined. Yet, a recently growing body of evidence suggests that sometimes overweight and obesity may associate with better outcomes, and that immunotherapy may show improved response among obese patients compared with patients with a normal weight. The so-called 'obesity paradox' has been reported in several advanced cancer as well as in other diseases, albeit the mechanisms behind this unexpected relationship are still not clear. Aim of this review is to explore the expected as well as the paradoxical relationship between obesity and cancer prognosis, with a particular emphasis on the effects of cancer therapies in obese people.
Collapse
Affiliation(s)
- Marco Gallo
- Oncological Endocrinology Unit, Department of Medical Sciences, University of Turin, AOU Città della Salute e della Scienza di Torino, Via Genova, 3, 10126, Turin, Italy.
| | - Valerio Adinolfi
- Endocrinology and Diabetology Unit, ASL Verbano Cusio Ossola, Domodossola, Italy
| | - Viola Barucca
- Oncology Unit, Department of Oncology and Medical Specialities, AO San Camillo-Forlanini, Rome, Italy
| | - Natalie Prinzi
- ENETS Center of Excellence, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori Milano, Milan, Italy
| | - Valerio Renzelli
- Department of Experimental Medicine, AO S. Andrea, Sapienza University of Rome, Rome, Italy
| | - Luigi Barrea
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University Medical School of Naples, Naples, Italy
| | - Paola Di Giacinto
- Endocrinology Unit, Department of Oncology and Medical Specialities, AO San Camillo-Forlanini, Rome, Italy
| | - Rosaria Maddalena Ruggeri
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Messina, AOU Policlinico G. Martino, Messina, Italy
| | - Franz Sesti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Emanuela Arvat
- Oncological Endocrinology Unit, Department of Medical Sciences, University of Turin, AOU Città della Salute e della Scienza di Torino, Via Genova, 3, 10126, Turin, Italy
| | - Roberto Baldelli
- Endocrinology Unit, Department of Oncology and Medical Specialities, AO San Camillo-Forlanini, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
da Silva JA, Figueiredo LS, Chaves JO, Oliveira KM, Carneiro EM, Abreu PA, Ribeiro RA. Effects of tauroursodeoxycholic acid on glucose homeostasis: Potential binding of this bile acid with the insulin receptor. Life Sci 2021; 285:120020. [PMID: 34624320 DOI: 10.1016/j.lfs.2021.120020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/20/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022]
Abstract
AIMS The bile acid (BA), tauroursodeoxycholic acid (TUDCA) regulates glucose homeostasis; however, it is not clear whether its effects on insulin signaling are due to its direct interaction with the insulin receptor (IR) or through activation of the G-coupled BA receptor, TGR5. We, herein, investigated whether the actions of TUDCA on glucose homeostasis occur via IR or TGR5 activation. MAIN METHODS Glucose homeostasis was evaluated in high-fat diet (HFD)-obese or control (CTL) mice, after 30 days or one intraperitoneal (ip) injection of 300 mg/kg TUDCA, respectively. Molecular docking was performed to investigate the potential binding of TUDCA on the IR and TGR5. KEY FINDINGS After 30 days of TUDCA treatment, HFD mice exhibited improvements in glucose tolerance and insulin sensitivity, which were abolished when these rodents received the IR antagonist, S961. Molecular docking experiments showed that TUDCA demonstrates high binding affinity for TGR5 and IR and strongly interacts with the insulin binding sites 1 and 2 of the IR. Consistent with this potential agonist activity of TUDCA on IR, CTL mice displayed increased hepatic phosphorylation of AKT after an ip injection of TUDCA. This effect was not associated with altered glycemia in CTL mice and was dependent on IR activation, as S961 prevented hepatic AKT activation by TUDCA. Furthermore, TUDCA activated the hepatic protein kinase A (PKA) and cAMP response element-binding protein (CREB) pathway in CTL mice, even after the administration of S961. SIGNIFICANCE We provide novel evidence that TUDCA may be an agonist of the IR, in turn activating AKT and contributing, at least in part, to its beneficial effects upon glucose homeostasis.
Collapse
Affiliation(s)
- Joel A da Silva
- Programa de Pós-Graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Campus UFRJ-Macaé, Macaé, RJ, Brazil
| | - Letícia S Figueiredo
- Programa de Pós-Graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Campus UFRJ-Macaé, Macaé, RJ, Brazil
| | - Janaína O Chaves
- Programa de Pós-Graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Campus UFRJ-Macaé, Macaé, RJ, Brazil
| | - Kênia M Oliveira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Everardo M Carneiro
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Paula A Abreu
- Programa de Pós-Graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Campus UFRJ-Macaé, Macaé, RJ, Brazil; Instituto de Biodiversidade e Sustentabilidade, Universidade Federal do Rio de Janeiro, Macaé, RJ, Brazil
| | - Rosane A Ribeiro
- Programa de Pós-Graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Campus UFRJ-Macaé, Macaé, RJ, Brazil; Departamento de Biologia Geral, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil.
| |
Collapse
|
87
|
SREBP1c silencing reduces endoplasmic reticulum stress and related apoptosis in oleic acid induced lipid accumulation. MARMARA MEDICAL JOURNAL 2021. [DOI: 10.5472/marumj.1009096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
88
|
The Ameliorative Effects of Saikosaponin in Thioacetamide-Induced Liver Injury and Non-Alcoholic Fatty Liver Disease in Mice. Int J Mol Sci 2021; 22:ijms222111383. [PMID: 34768813 PMCID: PMC8583725 DOI: 10.3390/ijms222111383] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Liver disorders are a major health concern. Saikosaponin-d (SSd) is an effective active ingredient extracted from Bupleurum falcatum, a traditional Chinese medicinal plant, with anti-inflammatory and antioxidant properties. However, its hepatoprotective properties and underlying mechanisms are unknown. We investigated the effects and underlying mechanisms of SSd treatment for thioacetamide (TAA)-induced liver injury and high-fat-diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) in male C57BL/6 mice. The SSd group showed significantly higher food intake, body weight, and hepatic antioxidative enzymes (catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD)) and lower hepatic cyclooxygenase-2 (COX-2), serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and fibroblast growth factor-21 (FGF21) compared with controls, as well as reduced expression of inflammation-related genes (nuclear factor kappa B (NF-κB) and inducible nitric oxide synthase (iNOS)) messenger RNA (mRNA). In NAFLD mice, SSd reduced serum ALT, AST, triglycerides, fatty acid–binding protein 4 (FABP4) and sterol regulatory element–binding protein 1 (SREBP1) mRNA, and endoplasmic reticulum (ER)-stress-related proteins (phosphorylated eukaryotic initiation factor 2α subunit (p-eIF2α), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP). SSd has a hepatoprotective effect in liver injury by suppressing inflammatory responses and acting as an antioxidant.
Collapse
|
89
|
Wang X, Ding S. The biological and pharmacological connections between diabetes and various types of cancer. Pathol Res Pract 2021; 227:153641. [PMID: 34619575 DOI: 10.1016/j.prp.2021.153641] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022]
Abstract
Diabetes and cancer incidence have risen tremendously over the years. Additionally, both cancer and diabetes share numerous risks, such as overweight, inactive lifestyles, older age, and smoking. Numerous methods have been suggested to connect obesity and diabetes to cancer advancements, such as increasing insulin/ Insulin-like growth factor I (IGF-1) signaling, lipid and glucose uptake and metabolism, shifts in the cytokine, chemokine, and adipokine profile also variations in the adipose tissue immediately adjacent to cancer spots. Diabetes has been found to have a complicated cancer-causing mechanism involving excessive reactive oxygen species (ROS) production, loss of critical macromolecules, chronic inflammation, and delayed repair, all of which contribute to carcinogenesis. Diabetes-associated epithelial-to-mesenchymal transition and endothelial-to-mesenchymal transition lead to the formation of cancer-associated fibroblasts in tumors by enabling tumor cells to extravasate via the endothelium and epithelium. This study aims to describe the correlation between diabetes and cancer, as well as summarize the molecular connections and shared pathways such as sex hormones, hyperglycemia, inflammation, insulin axis, metabolic symbiosis, and endoplasmic reticulum (ER) stress that exist between them.
Collapse
Affiliation(s)
- Xuechang Wang
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK.
| | - Suming Ding
- Department of Ophthalmology, Jiujiang Maternal and Child Health Hospital, Jiujiang 332000, China
| |
Collapse
|
90
|
Genome Profiling of H3k4me3 Histone Modification in Human Adipose Tissue during Obesity and Insulin Resistance. Biomedicines 2021; 9:biomedicines9101363. [PMID: 34680480 PMCID: PMC8533428 DOI: 10.3390/biomedicines9101363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 01/01/2023] Open
Abstract
Background: Adipose tissue (AT) dysfunction is involved in obesity-related comorbidities. Epigenetic alterations have been recently associated with AT deterioration in obesity conditions. In this work, we profiled the H3K4me3 histone mark in human AT, with special emphasis on the changes in the pattern of histone modification in obesity and insulin resistance (IR). Visceral AT (VAT) was collected and subjected to chromatin immunoprecipitation (ChIP) using anti-H3K4me3 antibody and then sequenced to obtain the H3K4me3 genome profile. Results: We found that most of the H3K4me3 enriched regions were located in gene promoters of pathways related to AT biology and function. H3K4me3 enrichment at gene promoters was strongly related to higher mRNA levels. Differentially expressed genes in AT of patients classified as non-obese, obese with low IR, and obese with high IR could be regulated by differentially enriched H3K4me3; these genes encoded for pathways that could in part explain AT functioning during obesity and insulin resistance (e.g., extracellular matrix organization, PPARG signaling or inflammation). Conclusions: In conclusion, we emphasize the importance of the epigenetic mark H3K4me3 in VAT dysfunction in obesity and IR. The understanding of such mechanisms could give rise to the development of new epigenetic-based pharmacological strategies to ameliorate obesity-related comorbidities.
Collapse
|
91
|
Connolly KD, Rees DA, James PE. Role of adipocyte-derived extracellular vesicles in vascular inflammation. Free Radic Biol Med 2021; 172:58-64. [PMID: 34052345 DOI: 10.1016/j.freeradbiomed.2021.04.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) are nanometre-sized vesicles released from most cells, including adipocytes. Relatively little is known about adipocyte-derived EVs (ADEVs) in comparison to other EV subtypes, though interest in ADEVs as potential paracrine and endocrine communicators of adipose tissue in obesity is building. Current evidence indicates that ADEVs contribute to the development of adipose tissue dysfunction; a key feature of obese adipose tissue that it is associated with obesity-related comorbidities including cardiovascular disease (CVD). This review summarises our current knowledge of ADEVs in the development of adipose tissue dysfunction and the potential of ADEVs to disrupt redox signalling and exert vascular effects that may exacerbate CVD in obesity.
Collapse
Affiliation(s)
- Katherine D Connolly
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, CF5 2YB, United Kingdom
| | - D Aled Rees
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
| | - Philip E James
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, CF5 2YB, United Kingdom.
| |
Collapse
|
92
|
Galli M, Hameed A, Żbikowski A, Zabielski P. Aquaporins in insulin resistance and diabetes: More than channels! Redox Biol 2021; 44:102027. [PMID: 34090243 PMCID: PMC8182305 DOI: 10.1016/j.redox.2021.102027] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/09/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Aquaporins (AQPs) are part of the family of the integral membrane proteins. Their function is dedicated to the transport of water, glycerol, ammonia, urea, H2O2, and other small molecules across the biological membranes. Although for many years they were scarcely considered, AQPs have a relevant role in the development of many diseases. Recent discoveries suggest, that AQPs may play an important role in the process of fat accumulation and regulation of oxidative stress, two crucial aspects of insulin resistance and type-2 diabetes (T2D). Insulin resistance (IR) and T2D are multi-faceted systemic diseases with multiple connections to obesity and other comorbidities such as hypertension, dyslipidemia and metabolic syndrome. Both IR and T2D transcends different tissues and organs, creating the maze of mutual relationships between adipose fat depots, skeletal muscle, liver and other insulin-sensitive organs. AQPs with their heterogenous properties, distinctive tissue distribution and documented involvement in both the lipid metabolism and regulation of the oxidative stress appear to be feasible candidates in the search for the explanation to this third-millennium plague. A lot of research has been assigned to adipose tissue AQP7 and liver tissue AQP9, clarifying their relationship and coordinated work in the induction of hepatic insulin resistance. Novel research points also to other aquaporins, such as AQP11 which may be associated with the induction of insulin resistance and T2D through its involvement in hydrogen peroxide transport. In this review we collected recent discoveries in the field of AQP's involvement in the insulin resistance and T2D. Novel paths which connect AQPs with metabolic disorders can give new fuel to the research on obesity, insulin resistance and T2D - one of the most worrying problems of the modern society.
Collapse
Affiliation(s)
- Mauro Galli
- Department of Medical Biology, Medical University of Bialystok, 15-089, Bialystok, Poland.
| | - Ahsan Hameed
- Clinical Research Center, Medical University of Bialystok, 15-089, Bialystok, Poland.
| | - Arkadiusz Żbikowski
- Department of Medical Biology, Medical University of Bialystok, 15-089, Bialystok, Poland.
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, 15-089, Bialystok, Poland.
| |
Collapse
|
93
|
Compared study of fucoidan from sea cucumber (Holothuria tubulosa) with different molecular weight on ameliorating β cell apoptosis. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
94
|
Karunakaran U, Elumalai S, Moon JS, Won KC. CD36 Signal Transduction in Metabolic Diseases: Novel Insights and Therapeutic Targeting. Cells 2021; 10:cells10071833. [PMID: 34360006 PMCID: PMC8305429 DOI: 10.3390/cells10071833] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/14/2021] [Accepted: 07/17/2021] [Indexed: 12/24/2022] Open
Abstract
The cluster of differentiation 36 (CD36) is a scavenger receptor present on various types of cells and has multiple biological functions that may be important in inflammation and in the pathogenesis of metabolic diseases, including diabetes. Here, we consider recent insights into how the CD36 response becomes deregulated under metabolic conditions, as well as the therapeutic benefits of CD36 inhibition, which may provide clues for developing strategies aimed at the treatment or prevention of diabetes associated with metabolic diseases. To facilitate this process further, it is important to pinpoint regulatory mechanisms that are relevant under physiological and pathological conditions. In particular, understanding the mechanisms involved in dictating specific CD36 downstream cellular outcomes will aid in the discovery of potent compounds that target specific CD36 downstream signaling cascades.
Collapse
Affiliation(s)
- Udayakumar Karunakaran
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea; (U.K.); (S.E.)
| | - Suma Elumalai
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea; (U.K.); (S.E.)
| | - Jun-Sung Moon
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea; (U.K.); (S.E.)
- Yeungnam University College of Medicine, Daegu 42415, Korea
- Correspondence: (J.-S.M.); (K.-C.W.); Tel.: +82-53-620-3825 (J.-S.M.); +82-53-620-3846 (K.-C.W.)
| | - Kyu-Chang Won
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea; (U.K.); (S.E.)
- Yeungnam University College of Medicine, Daegu 42415, Korea
- Correspondence: (J.-S.M.); (K.-C.W.); Tel.: +82-53-620-3825 (J.-S.M.); +82-53-620-3846 (K.-C.W.)
| |
Collapse
|
95
|
Martínez Leo EE, Peñafiel AM, Hernández Escalante VM, Cabrera Araujo ZM. Ultra-processed diet, systemic oxidative stress, and breach of immunologic tolerance. Nutrition 2021; 91-92:111419. [PMID: 34399404 DOI: 10.1016/j.nut.2021.111419] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/24/2021] [Accepted: 07/13/2021] [Indexed: 12/28/2022]
Abstract
In recent years, consumption of ultra-processed food around the world has been increasing. The nutritional profile of an ultra-processed diet is associated with the development of cellular alterations that lead to oxidative stress. The chronic prooxidative state leads to an environment that influences the proliferation, apoptosis, and signaling pathways of immune cells. Likewise, the decrease in the transcription factor NRF2, owing to exacerbated production of reactive oxygen species, leads to changes in immune function and response to infections. This review aims to analyze the connection between an ultra-processed diet, systemic oxidative stress, and immune tolerance, as a contribution to the scientific evidence on the impact of oxidative stress on health and the possible risk of infections-an important consideration in the association of eating pattern and the immune response.
Collapse
Affiliation(s)
- Edwin E Martínez Leo
- Research Department, University Latino, Merida, Mexico; School of Medicine, Autonomous University of Yucatan, Merida, Mexico.
| | | | | | | |
Collapse
|
96
|
Chen J, Yang Y, Yang Y, Dai Z, Kim IH, Wu G, Wu Z. Dietary Supplementation with Glycine Enhances Intestinal Mucosal Integrity and Ameliorates Inflammation in C57BL/6J Mice with High-Fat Diet-Induced Obesity. J Nutr 2021; 151:1769-1778. [PMID: 33830211 DOI: 10.1093/jn/nxab058] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/23/2020] [Accepted: 02/17/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Obesity, a major public health problem worldwide, is associated with dysfunction of the intestinal barrier. Glycine (Gly) has been reported to enhance the expression of tight-junction proteins in porcine enterocytes. It is unknown whether Gly can improve intestinal barrier integrity in obese mice. OBJECTIVES This study tested the hypothesis that Gly enhances the intestinal epithelial barrier by regulating endoplasmic reticulum (ER) stress-related signaling and mitigating inflammation in high-fat diet (HFD)-induced obese mice. METHODS Five-week-old male C57BL/6J mice were fed a normal-fat diet (ND; fat = 10% energy) or an HFD (fat = 60% energy) and received drinking water supplemented with 2% Gly or 2.37% l-alanine (Ala; isonitrogenous control) daily for 12 wk. Body weight gain and tissue weights, glucose tolerance and the activation of immune cells, as well as the abundances of tight-junction proteins, ER stress proteins, and apoptosis-related proteins in the jejunum and colon were determined. In addition, the body weights of naïve ND and HFD groups (nND and nHFD, respectively) were also recorded for comparison. Differences were analyzed statistically by ANOVA followed by the Duncan multiple-comparison test using SAS software. RESULTS Compared with ND-Ala, HFD-feeding resulted in enhanced macrophage (CD11b+ and F4/80+) infiltration and immune cell activation by 1.9- to 5.4-fold (P < 0.05), as well as the upregulation of ER stress sensor proteins (including phospho-inositol-requiring enzyme 1α and binding immunoglobulin protein) by 2.5- to 4.5-fold, the induction of apoptotic proteins by 1.5- to 3.2-fold, and decreased abundances of tight-junction proteins by 35%-65% (P < 0.05) in the intestine. These HFD-induced abnormalities were significantly ameliorated by Gly supplementation in the HFD-Gly group (P < 0.05). Importantly, Gly supplementation also significantly enhanced glucose tolerance (P < 0.05) by 1.5-fold without affecting the fat accumulation of HFD-induced obese mice. CONCLUSIONS Gly supplementation enhanced the intestinal barrier and ameliorated inflammation and insulin resistance in HFD-fed mice. These effects of Gly were associated with reduced ER stress-related apoptosis in the intestine of obese mice.
Collapse
Affiliation(s)
- Jingqing Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Yuchen Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - In Ho Kim
- Department of Animal Resource & Science, Dankook University, Cheonan, Republic of Korea
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Zhenlong Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| |
Collapse
|
97
|
Mechanisms linking endoplasmic reticulum (ER) stress and microRNAs to adipose tissue dysfunction in obesity. Crit Rev Biochem Mol Biol 2021; 56:455-481. [PMID: 34182855 DOI: 10.1080/10409238.2021.1925219] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over accumulation of lipids in adipose tissue disrupts metabolic homeostasis by affecting cellular processes. Endoplasmic reticulum (ER) stress is one such process affected by obesity. Biochemical and physiological alterations in adipose tissue due to obesity interfere with adipose ER functions causing ER stress. This is in line with increased irregularities in other cellular processes such as inflammation and autophagy, affecting overall metabolic integrity within adipocytes. Additionally, microRNAs (miRNAs), which can post-transcriptionally regulate genes, are differentially modulated in obesity. A better understanding and identification of such miRNAs could be used as novel therapeutic targets to fight against diseases. In this review, we discuss ways in which ER stress participates as a common molecular process in the pathogenesis of obesity-associated metabolic disorders. Moreover, our review discusses detailed underlying mechanisms through which ER stress and miRNAs contribute to metabolic alteration in adipose tissue in obesity. Hence, identifying mechanistic involvement of miRNAs-ER stress cross-talk in regulating adipose function during obesity could be used as a potential therapeutic approach to combat chronic diseases, including obesity.
Collapse
|
98
|
Hecht JT, Veerisetty AC, Wu J, Coustry F, Hossain MG, Chiu F, Gannon FH, Posey KL. Primary Osteoarthritis Early Joint Degeneration Induced by Endoplasmic Reticulum Stress Is Mitigated by Resveratrol. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1624-1637. [PMID: 34116024 DOI: 10.1016/j.ajpath.2021.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 01/11/2023]
Abstract
Increasing numbers of people are living with osteoarthritis (OA) due to aging and obesity, creating an urgent need for effective treatment and preventions. Two top risk factors for OA, age and obesity, are associated with endoplasmic reticulum (ER) stress. The I-ERS mouse, an ER stress-driven model of primary OA, was developed to study the role of ER stress in primary OA susceptibility. The I-ERS mouse has the unique ability to induce ER stress in healthy adult articular chondrocytes and cartilage, driving joint degeneration that mimics early primary OA. In this study, ER stress-induced damage occurred gradually and stimulated joint degeneration with OA characteristics including increased matrix metalloproteinase activity, inflammation, senescence, chondrocyte death, decreased proteoglycans, autophagy block, and gait dysfunction. Consistent with human OA, intense exercise hastened and increased the level of ER stress-induced joint damage. Notably, loss of a critical ER stress response protein (CHOP) largely ameliorated ER stress-stimulated OA outcomes including preserving proteoglycan content, reducing inflammation, and relieving autophagy block. Resveratrol diminished ER stress-induced joint degeneration by decreasing CHOP, TNFα, IL-1β, MMP-13, pS6, number of TUNEL-positive chondrocytes, and senescence marker p16 INK4a. The finding, that a dietary supplement can prevent ER stressed-induced joint degeneration in mice, provides a preclinical foundation to potentially develop a prevention strategy for those at high risk to develop OA.
Collapse
Affiliation(s)
- Jacqueline T Hecht
- Department of Pediatrics, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas; McGovern Medical School, School of Dentistry, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas
| | - Alka C Veerisetty
- Department of Pediatrics, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas
| | - Juliana Wu
- Department of Pediatrics, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas; Department of BioSciences, Rice University, Houston, Texas
| | - Francoise Coustry
- Department of Pediatrics, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas
| | - Mohammad G Hossain
- Department of Pediatrics, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas
| | - Frankie Chiu
- Department of Pediatrics, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas
| | - Francis H Gannon
- Departments of Pathology & Immunology and Orthopedic Surgery, Baylor College of Medicine, Houston, Texas
| | - Karen L Posey
- Department of Pediatrics, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas.
| |
Collapse
|
99
|
Role of the Endocannabinoid System in the Adipose Tissue with Focus on Energy Metabolism. Cells 2021; 10:cells10061279. [PMID: 34064024 PMCID: PMC8224009 DOI: 10.3390/cells10061279] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system is involved in a wide range of processes including the control of energy acquisition and expenditure. Endocannabinoids and their receptors are present in the central nervous system but also in peripheral tissues, notably the adipose tissues. The endocannabinoid system interacts with two main hormones regulating appetite, namely leptin and ghrelin. The inhibitory effect of the cannabinoid receptor 1 (CB1) antagonist rimonabant on fat mass suggested that the endocannabinoid system can also have a peripheral action in addition to its effect on appetite reduction. Thus, several investigations have focused on the peripheral role of the endocannabinoid system in the regulation of metabolism. The white adipose tissue stores energy as triglycerides while the brown adipose tissue helps to dissipate energy as heat. The endocannabinoid system regulates several functions of the adipose tissues to favor energy accumulation. In this review we will describe the presence of the endocannabinoid system in the adipose tissue. We will survey the role of the endocannabinoid system in the regulation of white and brown adipose tissue metabolism and how the eCB system participates in obesity and metabolic diseases.
Collapse
|
100
|
Demeulemeester F, de Punder K, van Heijningen M, van Doesburg F. Obesity as a Risk Factor for Severe COVID-19 and Complications: A Review. Cells 2021; 10:933. [PMID: 33920604 PMCID: PMC8073853 DOI: 10.3390/cells10040933] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Emerging data suggest that obesity is a major risk factor for the progression of major complications such as acute respiratory distress syndrome (ARDS), cytokine storm and coagulopathy in COVID-19. Understanding the mechanisms underlying the link between obesity and disease severity as a result of SARS-CoV-2 infection is crucial for the development of new therapeutic interventions and preventive measures in this high-risk group. We propose that multiple features of obesity contribute to the prevalence of severe COVID-19 and complications. First, viral entry can be facilitated by the upregulation of viral entry receptors, like angiotensin-converting enzyme 2 (ACE2), among others. Second, obesity-induced chronic inflammation and disruptions of insulin and leptin signaling can result in impaired viral clearance and a disproportionate or hyper-inflammatory response, which together with elevated ferritin levels can be a direct cause for ARDS and cytokine storm. Third, the negative consequences of obesity on blood coagulation can contribute to the progression of thrombus formation and hemorrhage. In this review we first summarize clinical findings on the relationship between obesity and COVID-19 disease severity and then further discuss potential mechanisms that could explain the risk for major complications in patients suffering from obesity.
Collapse
|