51
|
Yamamoto K, Momonoki YS. Identification and molecular characterization of propionylcholinesterase, a novel pseudocholinesterase in rice. PLANT SIGNALING & BEHAVIOR 2021; 16:1961062. [PMID: 34334124 PMCID: PMC8525928 DOI: 10.1080/15592324.2021.1961062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Cholinesterase is consisting of acetylcholinesterase (AChE) and pseudocholinesterase in vertebrates and invertebrates. AChE gene has been identified in several plant species, while pseudocholinesterase gene has not yet been found in any plant species. In this study, we report that the AChE gene paralog encodes propionylcholinesterase (PChE), a pseudocholinesterase in rice. PChE was found to be located adjacent to AChE (Os07g0586200) on rice chromosome 7 and designated as Os07g0586100. Phylogenetic tree analysis showed a close relationship between rice AChE and PChE. PChE-overexpressing rice had higher hydrolytic activity toward propionylthiocholine than acetylthiocholine and showed extremely low activity against butyrylthiocholine. Therefore, the PChE gene product was characterized as a propionylcholinesterase, a pseudocholinesterase. The rice PChE displayed lower sensitivity to the cholinesterase inhibitor, neostigmine bromide, than electric eel, maize, and rice AChEs. The recombinant PChE functions as a 171 kDa homotetramer. PChE was expressed during the later developmental stage, and it was found be localized in the extracellular spaces of the rice leaf tissue. These results suggest that the rice plant possesses PChE, which functions in the extracellular spaces at a later developmental stage. To the best of our knowledge, this study provides the first direct evidence and molecular characterization of PChE in plants.
Collapse
Affiliation(s)
- Kosuke Yamamoto
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| | | |
Collapse
|
52
|
Identification of Possible Salivary Metabolic Biomarkers and Altered Metabolic Pathways in South American Patients Diagnosed with Oral Squamous Cell Carcinoma. Metabolites 2021; 11:metabo11100650. [PMID: 34677365 PMCID: PMC8537096 DOI: 10.3390/metabo11100650] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) represents 90% of oral malignant neoplasms. The search for specific biomarkers for OSCC is a very active field of research contributing to establishing early diagnostic methods and unraveling underlying pathogenic mechanisms. In this work we investigated the salivary metabolites and the metabolic pathways of OSCC aiming find possible biomarkers. Salivary metabolites samples from 27 OSCC patients and 41 control individuals were compared through a gas chromatography coupled to a mass spectrometer (GC-MS) technique. Our results allowed identification of pathways of the malate-aspartate shuttle, the beta-alanine metabolism, and the Warburg effect. The possible salivary biomarkers were identified using the area under receiver-operating curve (AUC) criterion. Twenty-four metabolites were identified with AUC > 0.8. Using the threshold of AUC = 0.9 we find malic acid, maltose, protocatechuic acid, lactose, 2-ketoadipic, and catechol metabolites expressed. We notice that this is the first report of salivary metabolome in South American oral cancer patients, to the best of our knowledge. Our findings regarding these metabolic changes are important in discovering salivary biomarkers of OSCC patients. However, additional work needs to be performed considering larger populations to validate our results.
Collapse
|
53
|
Salivary Metabolomics for Diagnosis and Monitoring Diseases: Challenges and Possibilities. Metabolites 2021; 11:metabo11090587. [PMID: 34564402 PMCID: PMC8469343 DOI: 10.3390/metabo11090587] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/21/2022] Open
Abstract
Saliva is a useful biological fluid and a valuable source of biological information. Saliva contains many of the same components that can be found in blood or serum, but the components of interest tend to be at a lower concentration in saliva, and their analysis demands more sensitive techniques. Metabolomics is starting to emerge as a viable method for assessing the salivary metabolites which are generated by the biochemical processes in elucidating the pathways underlying different oral and systemic diseases. In oral diseases, salivary metabolomics has concentrated on periodontitis and oral cancer. Salivary metabolites of systemic diseases have been investigated mostly in the early diagnosis of different cancer, but also neurodegenerative diseases. This mini-review article aims to highlight the challenges and possibilities of salivary metabolomics from a clinical viewpoint. Furthermore, applications of the salivary metabolic profile in diagnosis and prognosis, monitoring the treatment success, and planning of personalized treatment of oral and systemic diseases are discussed.
Collapse
|
54
|
Nabi MM, Mamun MA, Islam A, Hasan MM, Waliullah ASM, Tamannaa Z, Sato T, Kahyo T, Setou M. Mass spectrometry in the lipid study of cancer. Expert Rev Proteomics 2021; 18:201-219. [PMID: 33793353 DOI: 10.1080/14789450.2021.1912602] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Cancer is a heterogeneous disease that exploits various metabolic pathways to meet the demand for increased energy and structural components. Lipids are biomolecules that play essential roles as high energy sources, mediators, and structural components of biological membranes. Accumulating evidence has established that altered lipid metabolism is a hallmark of cancer.Areas covered: Mass spectrometry (MS) is a label-free analytical tool that can simultaneously identify and quantify hundreds of analytes. To date, comprehensive lipid studies exclusively rely on this technique. Here, we reviewed the use of MS in the study of lipids in various cancers and discuss its instrumental limitations and challenges.Expert opinion: MS and MS imaging have significantly contributed to revealing altered lipid metabolism in a variety of cancers. Currently, a single MS approach cannot profile the entire lipidome because of its lack of sensitivity and specificity for all lipid classes. For the metabolic pathway investigation, lipid study requires the integration of MS with other molecular approaches. Future developments regarding the high spatial resolution, mass resolution, and sensitivity of MS instruments are warranted.
Collapse
Affiliation(s)
- Md Mahamodun Nabi
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Ganakbari, Savar, Dhaka, Bangladesh
| | - Md Al Mamun
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Ariful Islam
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Md Mahmudul Hasan
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - A S M Waliullah
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Zinat Tamannaa
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Tomohito Sato
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Tomoaki Kahyo
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Mitsutoshi Setou
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
55
|
Yin G, Huang J, Guo W, Huang Z. Metabolomics of Oral/Head and Neck Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1280:277-290. [PMID: 33791989 DOI: 10.1007/978-3-030-51652-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Oral/head and neck cancer is the sixth most common human malignancies in the world. Despite the treatment advances in surgery, chemotherapy, and radiotherapy, the patient survival has not been significantly improved in the past several decades. As a new methodological approach, metabolomics may help reveal the metabolic reprogramming mechanisms underlying head and neck cancer cell proliferation, invasion, and metastasis and may be used to identify metabolite biomarkers for clinical applications of the disease. In this chapter, we briefly review recent metabolomic applications in head and neck cancer.
Collapse
Affiliation(s)
- Gaofei Yin
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Junwei Huang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Wei Guo
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Zhigang Huang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China.
| |
Collapse
|
56
|
Tian P, Bastiaanssen TFS, Song L, Jiang B, Zhang X, Zhao J, Zhang H, Chen W, Cryan JF, Wang G. Unraveling the Microbial Mechanisms Underlying the Psychobiotic Potential of a Bifidobacterium breve Strain. Mol Nutr Food Res 2021; 65:e2000704. [PMID: 33594816 DOI: 10.1002/mnfr.202000704] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/20/2020] [Indexed: 12/17/2022]
Abstract
SCOPE The antidepressant-like effect of psychobiotics has been observed in both pre-clinical and clinical studies, but the molecular mechanisms of action are largely unclear. To address this, the psychobiotic strain Bifidobacterium breve CCFM1025 is investigated for its genomic features, metabolic features, and gut microbial and metabolic modulation effect. METHODS AND RESULTS Unlike B. breve FHLJDQ3M5, CCFM1025 significantly decreases the chronically stressed mice's depressive-like behaviors and neurological abnormalities. CCFM1025 has more genes encoding glycoside hydrolases (GHs) when comparing to FHLJDQ3M5's genome, which means CCFM1025 has a superior carbohydrate utilization capacity and living adaptivity in the gut. CCFM1025 also produces higher levels of neuromodulatory metabolites, including hypoxanthine, tryptophan, and nicotinate. The administration of CCFM1025 reshapes the gut microbiome of chronically stressed mice. It results in higher cecal xanthine, tryptophan, short-chain fatty acid levels, and enhances fatty acid and tryptophan biosynthesis capability in the gut-brain interaction (identified by in silico analyses) than FHLJDQ3M5-treated mice. CONCLUSIONS Genomic and metabolic features involving GHs and neuromodulatory metabolites may determine the antidepressant-like effect of B. breve CCFM1025. Psychobiotics' characterization in this manner may provide guidelines for developing novel psychopharmacological agents in the future.
Collapse
Affiliation(s)
- Peijun Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Thomaz F S Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Linhong Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Laboratory for Optoelectronics, National Center for Magnetic Resonance (Wuhan), Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Laboratory for Optoelectronics, National Center for Magnetic Resonance (Wuhan), Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Laboratory for Optoelectronics, National Center for Magnetic Resonance (Wuhan), Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Yangzhou Institute of Food Biotechnology, Jiangnan University, Yangzhou, Jiangsu, China
- National Engineering Center of Functional Food, Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Center of Functional Food, Jiangnan University, Wuxi, Jiangsu, China
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China
- Yangzhou Institute of Food Biotechnology, Jiangnan University, Yangzhou, Jiangsu, China
| |
Collapse
|
57
|
Zhu L, Zhang L, Tang Y, Zhang F, Wan C, Xu L, Guo P. MicroRNA-363-3p inhibits tumor cell proliferation and invasion in oral squamous cell carcinoma cell lines by targeting SSFA2. Exp Ther Med 2021; 21:549. [PMID: 33850521 DOI: 10.3892/etm.2021.9981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 06/10/2020] [Indexed: 01/28/2023] Open
Abstract
The aim of the present study was to evaluate the expression levels of microRNA (miR)-363-3p and its underlying physiological function in oral squamous cell carcinoma (OSCC). miR-363-3p expression levels were measured in OSCC cell lines using reverse transcription-quantitative PCR. The role of miR-363-3p in OSCC cells was examined using gain-of-function assays in vitro. Cell proliferation was assessed using Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine assays and flow cytometry. Cell migration and invasion were evaluated in wound-healing and Transwell Matrigel assays. In addition, bioinformatics analysis predicted binding sites of miR-363-3p on sperm-specific antigen 2 (SSFA2). Luciferase reporter and RNA pull-down assays were conducted to test whether miR-363-3p interacted with SSFA2. miR-363-3p expression was downregulated in OSCC cell lines compared with that in the normal epithelial cell line (NHOK). Additionally, miR-363-3p overexpression suppressed OSCC cell proliferation, migration and invasion in vitro. SSFA2 was verified as a direct target of miR-363-3p, and SSFA2 overexpression partially counteracted the inhibitory effects of miR-363-3p on cell proliferation, migration and invasion in OSCC cell lines. Thus, miR-363-3p may serve as a tumor suppressor via targeting SSFA2 and may represent a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Liangming Zhu
- Department of Stomatology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Lei Zhang
- Jiangcheng Dental Clinic, Wuhu, Anhui 241000, P.R. China
| | - Ying Tang
- Department of Endocrinology, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, Anhui 241000, P.R. China
| | - Fang Zhang
- Department of Stomatology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Chao Wan
- Department of Stomatology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Liang Xu
- Department of Stomatology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Ping Guo
- Department of Stomatology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| |
Collapse
|
58
|
Systematic evaluation of sample preparation strategy for GC-MS-based plasma metabolomics and its application in osteoarthritis. Anal Biochem 2021; 621:114153. [PMID: 33684344 DOI: 10.1016/j.ab.2021.114153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/09/2021] [Accepted: 02/24/2021] [Indexed: 12/20/2022]
Abstract
Sample preparation plays a crucial part in plasma metabolomics. In order to obtain an optimal sample extraction method for gas chromatography mass spectrometry (GC-MS)-based plasma metabolomics, five different extraction strategies including protein precipitation, liquid-liquid extraction and solid-phase extraction were evaluated systematically for both plasma untargeted- and targeted-metabolomics. The comprehensive evaluation revealed that the all-in-one sample preparation method, MeOH-MTBE-H2O (1:5:1.5, v/v/v), was the optimal extraction method for both untargeted- and targeted-metabolomics. Next, the optimal sample preparation protocol was applied in plasma metabolomics of osteoarthritis (OA). A panel containing cholesterol, lactic acid, stearic acid, alpha-tocopherol and oxalic acid was selected as candidate biomarker to distinguish OA patients from healthy controls (HC) based on the support vector machine (SVM) classification model. The discriminating capability of the candidate biomarker panel was further validated successfully with logistic regression and principal components analysis (PCA) analysis. Therefore, the panel could potentially act as diagnostic biomarker for osteoarthritis.
Collapse
|
59
|
Si Z, Li A, Yan Y, Zhang X, Yang H. Interaction of Metastable Zone Width and Induction Time Based on Nucleation Potential. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zehao Si
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ang Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - YiZhen Yan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiangyang Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Huaiyu Yang
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, U.K
| |
Collapse
|
60
|
Abstract
Introduction: Saliva is an ideal biofluid that can be collected in a noninvasive manner, enabling safe and frequent screening of various diseases. Recent studies have revealed that salivary metabolomics analysis has the potential to detect both oral and systemic cancers. Area covered: We reviewed the technical aspects, as well as applications, of salivary metabolomics for cancer detection. The topics include the effects of preconditioning and the method of sample collection, sample storage, processing, measurement, data analysis, and validation of the results. We also examined the rational relationship between salivary biomarkers and tumors distant from the oral cavity. A strategy to establish standard operating protocols for obtaining reproducible quantification data is also discussed Expert opinion: Salivary metabolomics reflects oral and systematic health status, which potently enables cancer detection. The sensitivity and specificity of each marker and their combinations have been well evaluated, but a validation study is required. Further, the standard operating protocol for each procedure should be established to obtain reproducible data before clinical usage.
Collapse
Affiliation(s)
- Masahiro Sugimoto
- Research and Development Centre for Minimally Invasive Therapies, Medical Research Institute, Tokyo Medical University , Tokyo, Japan.,Institute for Advanced Biosciences, Keio University , Yamagata, Japan
| |
Collapse
|
61
|
Non-invasive bioassay of Cytokeratin Fragment 21.1 (Cyfra 21.1) protein in human saliva samples using immunoreaction method: An efficient platform for early-stage diagnosis of oral cancer based on biomedicine. Biomed Pharmacother 2020; 131:110671. [DOI: 10.1016/j.biopha.2020.110671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/28/2022] Open
|
62
|
Vitório JG, Duarte-Andrade FF, Dos Santos Fontes Pereira T, Fonseca FP, Amorim LSD, Martins-Chaves RR, Gomes CC, Canuto GAB, Gomez RS. Metabolic landscape of oral squamous cell carcinoma. Metabolomics 2020; 16:105. [PMID: 33000429 DOI: 10.1007/s11306-020-01727-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/20/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Head and neck cancers are the seventh most common type of cancer worldwide, with almost half of the cases affecting the oral cavity. Oral squamous cell carcinoma (OSCC) is the most common form of oral cancer, showing poor prognosis and high mortality. OSCC molecular pathogenesis is complex, resulting from a wide range of events that involve the interplay between genetic mutations and altered levels of transcripts, proteins, and metabolites. Metabolomics is a recently developed sub-area of omics sciences focused on the comprehensive analysis of small molecules involved in several biological pathways by high throughput technologies. AIM OF REVIEW This review summarizes and evaluates studies focused on the metabolomics analysis of OSCC and oral premalignant disorders to better interpret the complex process of oral carcinogenesis. Additionally, the metabolic biomarkers signatures identified so far are also included. Moreover, we discuss the limitations of these studies and make suggestions for future investigations. KEY SCIENTIFIC CONCEPTS Although many questions about the metabolic features of OSCC have already been answered in metabolomic studies, further validation and optimization are still required to translate these findings into clinical applications.
Collapse
Affiliation(s)
- Jéssica Gardone Vitório
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, Belo Horizonte, Minas Gerais, 6627, 31270-901, Brazil
| | - Filipe Fideles Duarte-Andrade
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, Belo Horizonte, Minas Gerais, 6627, 31270-901, Brazil
| | - Thaís Dos Santos Fontes Pereira
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, Belo Horizonte, Minas Gerais, 6627, 31270-901, Brazil
| | - Felipe Paiva Fonseca
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, Belo Horizonte, Minas Gerais, 6627, 31270-901, Brazil
| | - Larissa Stefhanne Damasceno Amorim
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, Belo Horizonte, Minas Gerais, 6627, 31270-901, Brazil
| | - Roberta Rayra Martins-Chaves
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, Belo Horizonte, Minas Gerais, 6627, 31270-901, Brazil
| | - Carolina Cavaliéri Gomes
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Gisele André Baptista Canuto
- Department of Analytical Chemistry, Institute of Chemistry, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, Belo Horizonte, Minas Gerais, 6627, 31270-901, Brazil.
| |
Collapse
|
63
|
Schulte F, King OD, Paster BJ, Moscicki AB, Yao TJ, Van Dyke RB, Shiboski C, Ryder M, Seage G, Hardt M. Salivary metabolite levels in perinatally HIV-infected youth with periodontal disease. Metabolomics 2020; 16:98. [PMID: 32915320 PMCID: PMC7784422 DOI: 10.1007/s11306-020-01719-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 08/28/2020] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Salivary metabolite profiles are altered in adults with HIV compared to their uninfected counterparts. Less is known about youth with HIV and how oral disorders that commonly accompany HIV infection impact salivary metabolite levels. OBJECTIVE As part of the Adolescent Master Protocol multi-site cohort study of the Pediatric HIV/AIDS Cohort Study (PHACS) network we compared the salivary metabolome of youth with perinatally-acquired HIV (PHIV) and youth HIV-exposed, but uninfected (PHEU) and determined whether metabolites differ in PHIV versus PHEU. METHODS We used three complementary targeted and discovery-based liquid chromatography-tandem mass spectrometry (LC-MS/MS) workflows to characterize salivary metabolite levels in 20 PHIV and 20 PHEU youth with and without moderate periodontitis. We examined main effects associated with PHIV and periodontal disease, and the interaction between them. RESULTS We did not identify differences in salivary metabolite profiles that remained significant under stringent control for both multiple between-group comparisons and multiple metabolites. Levels of cadaverine, a known periodontitis-associated metabolite, were more abundant in individuals with periodontal disease with the difference being more pronounced in PHEU than PHIV. In the discovery-based dataset, we identified a total of 564 endogenous peptides in the metabolite extracts, showing that proteolytic processing and amino acid metabolism are important to consider in the context of HIV infection. CONCLUSION The salivary metabolite profiles of PHIV and PHEU youth were overall very similar. Individuals with periodontitis particularly among the PHEU youth had higher levels of cadaverine, suggesting that HIV infection, or its treatment, may influence the metabolism of oral bacteria.
Collapse
Affiliation(s)
- Fabian Schulte
- Forsyth Center for Salivary Diagnostics, Department of Applied Oral Sciences, The Forsyth Institute, 245 First Street, Cambridge, MA, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Oliver D King
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Bruce J Paster
- Forsyth Center for Salivary Diagnostics, Department of Applied Oral Sciences, The Forsyth Institute, 245 First Street, Cambridge, MA, USA
| | - Anna-Barbara Moscicki
- Department of Pediatrics, Division of Adolescent and Young Adult Medicine, University of California, Los Angeles, CA, USA
| | - Tzy-Jyun Yao
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Caroline Shiboski
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - Mark Ryder
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - George Seage
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Markus Hardt
- Forsyth Center for Salivary Diagnostics, Department of Applied Oral Sciences, The Forsyth Institute, 245 First Street, Cambridge, MA, USA.
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA.
| | | |
Collapse
|
64
|
Pereira JAM, Porto-Figueira P, Taware R, Sukul P, Rapole S, Câmara JS. Unravelling the Potential of Salivary Volatile Metabolites in Oral Diseases. A Review. Molecules 2020; 25:E3098. [PMID: 32646009 PMCID: PMC7412334 DOI: 10.3390/molecules25133098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/24/2022] Open
Abstract
Fostered by the advances in the instrumental and analytical fields, in recent years the analysis of volatile organic compounds (VOCs) has emerged as a new frontier in medical diagnostics. VOCs analysis is a non-invasive, rapid and inexpensive strategy with promising potential in clinical diagnostic procedures. Since cellular metabolism is altered by diseases, the resulting metabolic effects on VOCs may serve as biomarkers for any given pathophysiologic condition. Human VOCs are released from biomatrices such as saliva, urine, skin emanations and exhaled breath and are derived from many metabolic pathways. In this review, the potential of VOCs present in saliva will be explored as a monitoring tool for several oral diseases, including gingivitis and periodontal disease, dental caries, and oral cancer. Moreover, the analytical state-of-the-art for salivary volatomics, e.g., the most common extraction techniques along with the current challenges and future perspectives will be addressed unequivocally.
Collapse
Affiliation(s)
- Jorge A. M. Pereira
- CQM–Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal;
| | - Priscilla Porto-Figueira
- CQM–Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal;
| | - Ravindra Taware
- Proteomics Lab, National Centre for Cell Science (NCCS), Ganeshkhind Road, SPPU Campus, Pune 411007, India; (R.T.); (S.R.)
| | - Pritam Sukul
- Department of Anaesthesiology and Intensive Care Medicine, Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Rostock University Medical Centre, 18057 Rostock, Germany;
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science (NCCS), Ganeshkhind Road, SPPU Campus, Pune 411007, India; (R.T.); (S.R.)
| | - José S. Câmara
- CQM–Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal;
- Faculdade de Ciências Exatas e da Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
65
|
Zhou J, Wang L, Yuan R, Yu X, Chen Z, Yang F, Sun G, Dong Q. Signatures of Mucosal Microbiome in Oral Squamous Cell Carcinoma Identified Using a Random Forest Model. Cancer Manag Res 2020; 12:5353-5363. [PMID: 32753953 PMCID: PMC7342497 DOI: 10.2147/cmar.s251021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/12/2020] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE The aim of this study was to explore the signatures of oral microbiome associated with OSCC using a random forest (RF) model. PATIENTS AND METHODS A total of 24 patients with OSCC were enrolled in the study. The oral microbiome was assessed in cancerous lesions and matched paracancerous tissues from each patient using 16S rRNA gene sequencing. Signatures of mucosal microbiome in OSCC were identified using a RF model. RESULTS Significant differences were found between OSCC lesions and matched paracancerous tissues with respect to the microbial profile and composition. Linear discriminant analysis effect size analyses (LEfSe) identified 15 bacteria genera associated with cancerous lesions. Fusobacterium, Treponema, Streptococcus, Peptostreptococcus, Carnobacterium, Tannerella, Parvimonas and Filifactor were enriched. A classifier based on RF model identified a microbial signature comprising 12 bacteria, which was capable of distinguishing cancerous lesions and paracancerous tissues (AUC = 0.82). The network of the oral microbiome in cancerous lesions appeared to be simplified and fragmented. Functional analyses of oral microbiome showed altered functions in amino acid metabolism and increased capacity of glucose utilization in OSCC. CONCLUSION The identified microbial signatures may potentially be used as a biomarker for predicting OSCC or for clinical assessment of oral cancer risk.
Collapse
Affiliation(s)
- Jianhua Zhou
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao University, Qingdao266071, Shandong, People’s Republic of China
| | - Lili Wang
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao266071, Shandong, People’s Republic of China
| | - Rongtao Yuan
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao University, Qingdao266071, Shandong, People’s Republic of China
| | - Xinjuan Yu
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao266071, Shandong, People’s Republic of China
| | - Zhenggang Chen
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao University, Qingdao266071, Shandong, People’s Republic of China
| | - Fang Yang
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao University, Qingdao266071, Shandong, People’s Republic of China
| | - Guirong Sun
- Clinical Laboratory, The Affiliated Hospital, Qingdao University, Qingdao266011, Shandong, People’s Republic of China
| | - Quanjiang Dong
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao266071, Shandong, People’s Republic of China
| |
Collapse
|
66
|
Oral squamous cell carcinoma diagnosed from saliva metabolic profiling. Proc Natl Acad Sci U S A 2020; 117:16167-16173. [PMID: 32601197 DOI: 10.1073/pnas.2001395117] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Saliva is a noninvasive biofluid that can contain metabolite signatures of oral squamous cell carcinoma (OSCC). Conductive polymer spray ionization mass spectrometry (CPSI-MS) is employed to record a wide range of metabolite species within a few seconds, making this technique appealing as a point-of-care method for the early detection of OSCC. Saliva samples from 373 volunteers, 124 who are healthy, 124 who have premalignant lesions, and 125 who are OSCC patients, were collected for discovering and validating dysregulated metabolites and determining altered metabolic pathways. Metabolite markers were reconfirmed at the primary tissue level by desorption electrospray ionization MS imaging (DESI-MSI), demonstrating the reliability of diagnoses based on saliva metabolomics. With the aid of machine learning (ML), OSCC and premalignant lesions can be distinguished from the normal physical condition in real time with an accuracy of 86.7%, on a person by person basis. These results suggest that the combination of CPSI-MS and ML is a feasible tool for accurate, automated diagnosis of OSCC in clinical practice.
Collapse
|
67
|
Abstract
Oral cancer, a universal malady, has become a stumbling block over the years due to its significant morbidity and mortality rates. The greater morbidity associated with this deadly disease is attributed to delay in its diagnosis / its presentation in advanced stage. Being multifactorial, Oral squamous cell carcinoma (OSCC) is the outcome of genetic and epigenetic instability. However, in many instances, oral cancer is preceded by precursor lesions named as oral potentially malignant disorders (OPMDs), the early detection of which makes it beneficial for patients with the possible increase in the productive longevity. Many diagnostic tools / aids have been explored with the aim of early detection of oral precancer and cancer. The basic chair-side procedures or relatively advanced aids come with a set of limitations along with subjectivity as one of the setbacks. The advent and exploitation of molecular techniques in the field of health diagnostics, is demanding the molecular typing of the OPMDs and also of oral cancer. The saga of various diagnostic aids for OSCC has witnessed the so-called latest trends such as lab-on-chip, microfluidics, nano diagnostics, liquid biopsy, omics technology and synthetic biology in early detection of oral precancer and cancer. Oral cancer being multifactorial in origin with the chief participation of altered genetics and epigenetics would demand high-end diagnostics for designing personalized therapy. Hence, the present paper highlights the role of various advanced diagnostic aids including 'omics' technology and synthetic biology in oral precancer and cancer.
Collapse
Affiliation(s)
| | - Roopa S Rao
- Department of Oral Pathology & Microbiology, M. S. Ramaiah Dental College, Bengaluru, Karnataka, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery & Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Hytham N Fageeh
- Department of Preventive Dental Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Anwar Alhazmi
- Department of Preventive Dental Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Kamran Habib Awan
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, Utah 84095, United States.
| |
Collapse
|
68
|
Abstract
Metabolomics has been identified as a means of functionally assessing the net biological activity of a particular microbial community. Considering the oral microbiome, such an approach remains largely underused. While the current knowledge of the oral microbiome is constantly expanding, there are several deficits in knowledge particularly relating to their interactions with their host. This work uses nuclear magnetic resonance spectroscopy to investigate metabolic differences between oral microbial metabolism of endogenous (i.e., salivary protein) and exogenous (i.e., dietary carbohydrates) substrates. It also investigated whether microbial generation of different metabolites may be associated with host taste perception. This work found that in the absence of exogenous substrate, oral bacteria readily catabolize salivary protein and generate metabolic profiles similar to those seen in vivo. Important metabolites such as acetate, butyrate, and propionate are generated at relatively high concentrations. Higher concentrations of metabolites were generated by tongue biofilm compared to planktonic salivary bacteria. Thus, as has been postulated, metabolite production in proximity to taste receptors could reach relatively high concentrations. In the presence of 0.25 M exogenous sucrose, increased catabolism was observed with increased concentrations of a range of metabolites relating to glycolysis (lactate, pyruvate, succinate). Additional pyruvate-derived molecules such as acetoin and alanine were also increased. Furthermore, there was evidence that individual taste sensitivity to sucrose was related to differences in the metabolic fate of sucrose in the mouth. High-sensitivity perceivers appeared more inclined toward continual citric acid cycle activity postsucrose, whereas low-sensitivity perceivers had a more efficient conversion of pyruvate to lactate. This work collectively indicates that the oral microbiome exists in a complex balance with the host, with fluctuating metabolic activity depending on nutrient availability. There is preliminary evidence of an association between host behavior (sweet taste perception) and oral catabolism of sugar.
Collapse
Affiliation(s)
- A Gardner
- Salivary Research, Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
- Department of Restorative Dentistry, Dental Hospital and School, University of Dundee, Dundee, UK
| | - P W So
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - G H Carpenter
- Salivary Research, Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
69
|
Cohen ER, Reis IM, Gomez-Fernandez C, Smith D, Pereira L, Freiser ME, Marotta G, Thomas GR, Sargi ZB, Franzmann EJ. CD44 and associated markers in oral rinses and tissues from oral and oropharyngeal cancer patients. Oral Oncol 2020; 106:104720. [PMID: 32325304 DOI: 10.1016/j.oraloncology.2020.104720] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/04/2020] [Accepted: 04/11/2020] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Oral and oropharyngeal squamous cell carcinoma (OOPSCC) is a debilitating disease. Salivary rinses contain soluble tumor markers including CD44 (solCD44) and total protein (TP) that may aid detection and prognosis of these aggressive tumors. Here we aim to examine the relationship between these salivary biomarkers and tissue markers p16 and CD44 and determine whether these markers can predict progression-free survival (PFS) and overall survival (OS). MATERIALS AND METHODS Prospective study to update biomarkers using oral rinses and tissues from OOPSC patients enrolled between 2007 and 2012 at an academic tertiary referral center. 64 cases from a 300-subject case-control study with archived tissue for immunohistochemistry were included. RESULTS 82.8% were male, 84.4% were ever smokers, 70.3% had disease stage T3-T4, and 57.8% presented with nodal disease. Nineteen patients (25%) were p16 positive. The group with strong tissue CD44 expression in membrane and cytoplasm had higher levels of solCD44 (mean 10.73 ng/ml) than other groups (5.47 ng/ml) (p = 0.033). TP levels were significantly reduced in oral rinses from subjects with p16 universal gross tumor tissue staining (mean 0.80 vs. 1.08 mg/ml; p = 0.039). On multivariate analysis, universal CD44 gross tissue staining and TP levels ≥ 1 mg/ml demonstrated poorer PFS, with the latter also affecting OS. Poorer survival was associated with soluble CD44 ≥ 5.33 ng/ml and TP ≥ 1 mg/ml. CONCLUSIONS Direct associations were found between high solCD44 levels and strong membrane and cytoplasmic CD44 expression, and between high TP levels and peripheral/mixed p16 gross staining. Poorer PFS and OS are significantly associated with higher levels of solCD44 and protein in oral rinses.
Collapse
Affiliation(s)
- Erin R Cohen
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Isildinha M Reis
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Carmen Gomez-Fernandez
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Drew Smith
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lutecia Pereira
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Monika E Freiser
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Gia Marotta
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Giovana R Thomas
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Zoukaa B Sargi
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Elizabeth J Franzmann
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
70
|
Assad DX, Mascarenhas ECP, de Lima CL, de Toledo IP, Chardin H, Combes A, Acevedo AC, Guerra ENS. Salivary metabolites to detect patients with cancer: a systematic review. Int J Clin Oncol 2020; 25:1016-1036. [PMID: 32221803 DOI: 10.1007/s10147-020-01660-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022]
Abstract
Novel adjunctive screening aids are needed to reduce the morbidity and mortality related to cancer, and every effort should be made for early diagnosis. This systematic review aimed to evaluate salivary metabolites and their diagnostic value in patients with cancer.The systematic review was performed in two phases and included studies that focused on the diagnostic value of salivary metabolites in humans with solid malignant neoplasms. Five electronic databases were searched, and the risk of bias in individual studies was evaluated using the revised Quality Assessment of Diagnostic Accuracy Studies criteria (QUADAS-2). All procedures were performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.Of the 1151 studies retrieved, 25 were included; 13 studies used targeted and 12 untargeted metabolomics approaches. Most studies included patients with breast and oral cancer. Except for one, all studies had case-control designs, and none fulfilled all quality assessments. Overall, 140 salivary metabolites were described. The most frequently reported metabolites were alanine, valine, and leucine. Among the 11 studies that reported diagnostic test accuracy (DTA) values, proline, threonine, and histidine in combination and monoacylglycerol alone demonstrated the highest DTA for breast cancer. Combined choline, betaine, pipecolinic acid, and L-carnitine showed better discriminatory performance for early oral cancer.This systematic review highlights the current evidence on salivary metabolites that may be used as a future strategy to diagnose cancer. Further studies including larger sample sizes with confirmation of the results by untargeted analysis are warranted.
Collapse
Affiliation(s)
- Daniele Xavier Assad
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.,Medical Oncology Department, Hospital Sírio-Libanês, SGAS 613 Conj. E Bl. B, Brasília, DF, 70200-730, Brazil
| | - Elisa Cançado Porto Mascarenhas
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.,Medical Oncology Department, Cettro-Centro de Câncer de Brasília, SMH/N Quadra 02, 12° Andar, Brasilia, DF, 70710-904, Brazil
| | - Caroline Lourenço de Lima
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
| | - Isabela Porto de Toledo
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
| | - Hélène Chardin
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), ESPCI Paris, UMR CBI 8231, PSL Research University, 10 Rue Vauquelin, Paris, 75005, France.,Faculté de Chirurgie Dentaire, Université de Paris, 1 rue M. Arnoux, 92120, Montrouge, France
| | - Audrey Combes
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), ESPCI Paris, UMR CBI 8231, PSL Research University, 10 Rue Vauquelin, Paris, 75005, France
| | - Ana Carolina Acevedo
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
| | - Eliete Neves Silva Guerra
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
71
|
Adeoye J, Brennan PA, Thomson P. “Search less, verify more”—Reviewing salivary biomarkers in oral cancer detection. J Oral Pathol Med 2020; 49:711-719. [DOI: 10.1111/jop.13003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/03/2020] [Indexed: 12/19/2022]
Affiliation(s)
- John Adeoye
- Oral & Maxillofacial Surgery Faculty of Dentistry The University of Hong Kong Hong Kong SAR China
| | | | - Peter Thomson
- Oral & Maxillofacial Surgery Faculty of Dentistry The University of Hong Kong Hong Kong SAR China
| |
Collapse
|
72
|
Goh YM, Antonowicz SS, Boshier P, Hanna GB. Metabolic Biomarkers of Squamous Cell Carcinoma of the Aerodigestive Tract: A Systematic Review and Quality Assessment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2930347. [PMID: 32685090 PMCID: PMC7330643 DOI: 10.1155/2020/2930347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/22/2019] [Accepted: 01/21/2020] [Indexed: 12/18/2022]
Abstract
Introduction. Aerodigestive squamous cell carcinomas (ASCC) constitute a major source of global cancer deaths. Patients typically present with advanced, incurable disease, so new means of detecting early disease are a research priority. Metabolite quantitation is amenable to point-of-care analysis and can be performed in ASCC surrogates such as breath and saliva. The purpose of this systematic review is to summarise progress of ASCC metabolomic studies, with an emphasis on the critical appraisal of methodological quality and reporting. METHOD A systematic online literature search was performed to identify studies reporting metabolic biomarkers of ASCC. This review was conducted in accordance with the recommendations of the Cochrane Library and MOOSE guidelines. RESULTS Thirty studies comprising 2117 patients were included in the review. All publications represented phase-I biomarker discovery studies, and none validated their findings in an independent cohort. There was heterogeneity in study design and methodological and reporting quality. Sensitivities and specificities were higher in oesophageal and head and neck squamous cell carcinomas compared to those in lung squamous cell carcinoma. The metabolic phenotypes of these cancers were similar, as was the kinetics of metabolite groups when comparing blood, tissue, and breath/saliva concentrations. Deregulation of amino acid metabolism was the most frequently reported theme. CONCLUSION Metabolite analysis has shown promising diagnostic performance, especially for oesophageal and head and neck ASCC subtypes, which are phenotypically similar. However, shortcomings in study design have led to inconsistencies between studies. To support future studies and ultimately clinical adoption, these limitations are discussed.
Collapse
Affiliation(s)
- Yan Mei Goh
- Department of Surgery & Cancer, Imperial College London, London W2 1NY, UK
| | | | - Piers Boshier
- Department of Surgery & Cancer, Imperial College London, London W2 1NY, UK
| | - George B. Hanna
- Department of Surgery & Cancer, Imperial College London, London W2 1NY, UK
| |
Collapse
|
73
|
Gardner A, Carpenter G, So PW. Salivary Metabolomics: From Diagnostic Biomarker Discovery to Investigating Biological Function. Metabolites 2020; 10:E47. [PMID: 31991929 PMCID: PMC7073850 DOI: 10.3390/metabo10020047] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolomic profiling of biofluids, e.g., urine, plasma, has generated vast and ever-increasing amounts of knowledge over the last few decades. Paradoxically, metabolomic analysis of saliva, the most readily-available human biofluid, has lagged. This review explores the history of saliva-based metabolomics and summarizes current knowledge of salivary metabolomics. Current applications of salivary metabolomics have largely focused on diagnostic biomarker discovery and the diagnostic value of the current literature base is explored. There is also a small, albeit promising, literature base concerning the use of salivary metabolomics in monitoring athletic performance. Functional roles of salivary metabolites remain largely unexplored. Areas of emerging knowledge include the role of oral host-microbiome interactions in shaping the salivary metabolite profile and the potential roles of salivary metabolites in oral physiology, e.g., in taste perception. Discussion of future research directions describes the need to begin acquiring a greater knowledge of the function of salivary metabolites, a current research direction in the field of the gut metabolome. The role of saliva as an easily obtainable, information-rich fluid that could complement other gastrointestinal fluids in the exploration of the gut metabolome is emphasized.
Collapse
Affiliation(s)
- Alexander Gardner
- Salivary Research, Centre for Host–Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (A.G.); (G.C.)
- Department of Restorative Dentistry, Dental Hospital and School, University of Dundee, Dundee DD1 4HR, UK
| | - Guy Carpenter
- Salivary Research, Centre for Host–Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (A.G.); (G.C.)
| | - Po-Wah So
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RT, UK
| |
Collapse
|
74
|
Analytical Strategies in Lipidomics for Discovery of Functional Biomarkers from Human Saliva. DISEASE MARKERS 2019; 2019:6741518. [PMID: 31885741 PMCID: PMC6914909 DOI: 10.1155/2019/6741518] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/29/2019] [Accepted: 11/13/2019] [Indexed: 01/24/2023]
Abstract
Human saliva is increasingly being used and validated as a biofluid for diagnosing, monitoring systemic disease status, and predicting disease progression. The discovery of biomarkers in saliva biofluid offers unique opportunities to bypass the invasive procedure of blood sampling by using oral fluids to evaluate the health condition of a patient. Saliva biofluid is clinically relevant since its components can be found in plasma. As salivary lipids are among the most essential cellular components of human saliva, there is great potential for their use as biomarkers. Lipid composition in cells and tissues change in response to physiological changes and normal tissues have a different lipid composition than tissues affected by diseases. Lipid imbalance is closely associated with a number of human lifestyle-related diseases, such as atherosclerosis, diabetes, metabolic syndromes, systemic cancers, neurodegenerative diseases, and infectious diseases. Thus, identification of lipidomic biomarkers or key lipids in different diseases can be used to diagnose diseases and disease state and evaluate response to treatments. However, further research is needed to determine if saliva can be used as a surrogate to serum lipid profiles, given that highly sensitive methods with low limits of detection are needed to discover salivary biomarkers in order to develop reliable diagnostic and disease monitoring salivary tests. Lipidomic methods have greatly advanced in recent years with a constant advance in mass spectrometry (MS) and development of MS detectors with high accuracy and high resolution that are able to determine the elemental composition of many lipids.
Collapse
|
75
|
Untargeted headspace gas chromatography – Ion mobility spectrometry analysis for detection of adulterated honey. Talanta 2019; 205:120123. [DOI: 10.1016/j.talanta.2019.120123] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 11/24/2022]
|
76
|
Recent trends of saliva omics biomarkers for the diagnosis and treatment of oral cancer. J Oral Biosci 2019; 61:84-94. [DOI: 10.1016/j.job.2019.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/04/2019] [Accepted: 03/08/2019] [Indexed: 12/18/2022]
|
77
|
Ciocan-Cartita CA, Jurj A, Buse M, Gulei D, Braicu C, Raduly L, Cojocneanu R, Pruteanu LL, Iuga CA, Coza O, Berindan-Neagoe I. The Relevance of Mass Spectrometry Analysis for Personalized Medicine through Its Successful Application in Cancer "Omics". Int J Mol Sci 2019; 20:ijms20102576. [PMID: 31130665 PMCID: PMC6567119 DOI: 10.3390/ijms20102576] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 01/06/2023] Open
Abstract
Mass spectrometry (MS) is an essential analytical technology on which the emerging omics domains; such as genomics; transcriptomics; proteomics and metabolomics; are based. This quantifiable technique allows for the identification of thousands of proteins from cell culture; bodily fluids or tissue using either global or targeted strategies; or detection of biologically active metabolites in ultra amounts. The routine performance of MS technology in the oncological field provides a better understanding of human diseases in terms of pathophysiology; prevention; diagnosis and treatment; as well as development of new biomarkers; drugs targets and therapies. In this review; we argue that the recent; successful advances in MS technologies towards cancer omics studies provides a strong rationale for its implementation in biomedicine as a whole.
Collapse
Affiliation(s)
- Cristina Alexandra Ciocan-Cartita
- MEDFUTURE -Research Center for Advanced Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania.
| | - Ancuța Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy.
| | - Mihail Buse
- MEDFUTURE -Research Center for Advanced Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania.
| | - Diana Gulei
- MEDFUTURE -Research Center for Advanced Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy.
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy.
| | - Roxana Cojocneanu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy.
| | - Lavinia Lorena Pruteanu
- MEDFUTURE -Research Center for Advanced Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania.
| | - Cristina Adela Iuga
- MEDFUTURE -Research Center for Advanced Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania.
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca.
| | - Ovidiu Coza
- Department of Oncology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania.
- Department of Radiotherapy with High Energies and Brachytherapy, Oncology Institute "Prof. Dr. Ion Chiricuta", 34-36 Republicii Street, 400015 Cluj-Napoca.
| | - Ioana Berindan-Neagoe
- MEDFUTURE -Research Center for Advanced Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania.
- Research Center for Functional Genomics, Biomedicine and Translational Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy.
- Department of Functional Genomics and Experimental Pathology, Ion Chiricuțǎ Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca.
| |
Collapse
|
78
|
Dalla Pozza E, Dando I, Pacchiana R, Liboi E, Scupoli MT, Donadelli M, Palmieri M. Regulation of succinate dehydrogenase and role of succinate in cancer. Semin Cell Dev Biol 2019; 98:4-14. [PMID: 31039394 DOI: 10.1016/j.semcdb.2019.04.013] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/08/2023]
Abstract
Succinate dehydrogenase (SDH) has been classically considered a mitochondrial enzyme with the unique property to participate in both the citric acid cycle and the electron transport chain. However, in recent years, several studies have highlighted the role of the SDH substrate, i.e. succinate, in biological processes other than metabolism, tumorigenesis being the most remarkable. For this reason, SDH has now been defined a tumor suppressor and succinate an oncometabolite. In this review, we discuss recent findings regarding alterations in SDH activity leading to succinate accumulation, which include SDH mutations, regulation of mRNA expression, post-translational modifications and endogenous SDH inhibitors. Further, we report an extensive examination of the role of succinate in cancer development through the induction of epigenetic and metabolic alterations and the effects on epithelial to mesenchymal transition, cell migration and invasion, and angiogenesis. Finally, we have focused on succinate and SDH as diagnostic markers for cancers having altered SDH expression/activity.
Collapse
Affiliation(s)
- Elisa Dalla Pozza
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Ilaria Dando
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Elio Liboi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Maria Teresa Scupoli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy; Research Center LURM (Interdepartmental Laboratory of Medical Research), University of Verona, Verona, Italy.
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.
| | - Marta Palmieri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| |
Collapse
|
79
|
Sridharan G, Ramani P, Patankar S, Vijayaraghavan R. Evaluation of salivary metabolomics in oral leukoplakia and oral squamous cell carcinoma. J Oral Pathol Med 2019; 48:299-306. [PMID: 30714209 DOI: 10.1111/jop.12835] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/11/2018] [Accepted: 01/25/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Metabolomics is the study of metabolome which describes the full repertoire of small molecules, and the analysis of salivary metabolomics may help in identifying tumor-specific biomarkers for early diagnosis and prediction of tumor progression. The aim of the study was to evaluate the clinical utility of salivary metabolites in oral leukoplakia and oral squamous cell carcinoma. METHODS Salivary metabolomic profile of patients diagnosed with oral leukoplakia (n = 21) and oral squamous cell carcinoma (n = 22) was compared with apparently normal controls (n = 18) using Q-TOF-liquid chromatography-mass spectrometry. MassHunter profile software and Metlin database were used for metabolite identification. ANOVA to identify the regulation of metabolites between the three groups, t test (P < 0.05) to signify the changes between two groups, and chi-square test (P < 0.05) to indicate the presence or absence of metabolites in the study participants of the three groups were performed. RESULTS Significant upregulation of 1-methylhistidine, inositol 1,3,4-triphosphate, d-glycerate-2-phosphate, 4-nitroquinoline-1-oxide, 2-oxoarginine, norcocaine nitroxide, sphinganine-1-phosphate, and pseudouridine in oral leukoplakia and OSCC was noted. Downregulated compounds in the diseased groups included l-homocysteic acid, ubiquinone, neuraminic acid, and estradiol valerate. CONCLUSION A range of salivary metabolites were significantly altered in oral leukoplakia and oral squamous cell carcinoma. Further, it is necessary to evaluate the clinical utility of the individual metabolites in preventing malignant transformation of oral leukoplakia and to improve prognosis of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Gokul Sridharan
- Department of Oral Pathology and Microbiology, YMT Dental College and Hospital, Navi Mumbai, India
| | - Pratibha Ramani
- Department of Oral and Maxillofacial Pathology and Microbiology, Saveetha Dental College and Hospital, Chennai, India
| | - Sangeeta Patankar
- Department of Oral Pathology and Microbiology, YMT Dental College and Hospital, Navi Mumbai, India
| | | |
Collapse
|
80
|
Contreras MDM, Arroyo-Manzanares N, Arce C, Arce L. HS-GC-IMS and chemometric data treatment for food authenticity assessment: Olive oil mapping and classification through two different devices as an example. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.11.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
81
|
Abstract
BACKGROUND Oral cancer is one of the most frequently occurring cancers. Metabolic reprogramming is an important hallmark of cancer. Metabolomics characterizes all the small molecules in a biological sample, and a complete set of small molecules in such sample is referred as metabolome. Nuclear magnetic resonance spectroscopy and mass spectrometry are two widely used techniques in metabolomics studies. Increasing evidence demonstrates that metabolomics techniques can be used to explore the metabolic signatures in oral cancer. Elucidation of metabolic alterations in oral cancer is also important for the understanding of its pathological mechanisms. AIM OF REVIEW In this paper, we summarize the latest progress of metabolomics study in oral cancer and provide the suggestions for the future studies. KEY SCIENTIFIC CONCEPTS OF REVIEW The metabolomics studies in saliva, serum, and tumor tissues revealed the existence of metabolic signatures in bio-fluids and tissues of oral cancer, and several tumor-specific metabolites identified in individual study could discriminate oral cancer from healthy controls or precancerous lesions, which are potential biomarkers for the screening or early diagnosis of oral cancer. Metabolomics study of oral cancers in the future should aim to establish a routine procedure with high sensitivity, profile intracellular metabolites to find out the metabolic characteristics of tumor cells, and investigate the mechanism behind metabolomic alterations and the metabolic response of cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Xun Chen
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People's Republic of China
| | - Dongsheng Yu
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan West Road, Guangzhou, 510055, People's Republic of China.
| |
Collapse
|
82
|
Zaimenko I, Jaeger C, Brenner H, Chang-Claude J, Hoffmeister M, Grötzinger C, Detjen K, Burock S, Schmitt CA, Stein U, Lisec J. Non-invasive metastasis prognosis from plasma metabolites in stage II colorectal cancer patients: The DACHS study. Int J Cancer 2019; 145:221-231. [PMID: 30560999 DOI: 10.1002/ijc.32076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/03/2018] [Indexed: 12/16/2022]
Abstract
Metastasis is the main cause of death from colorectal cancer (CRC). About 20% of stage II CRC patients develop metastasis during the course of disease. We performed metabolic profiling of plasma samples from non-metastasized and metachronously metastasized stage II CRC patients to assess the potential of plasma metabolites to serve as biomarkers for stratification of stage II CRC patients according to metastasis risk. We compared the metabolic profiles of plasma samples prospectively obtained prior to metastasis formation from non-metastasized vs. metachronously metastasized stage II CRC patients of the German population-based case-control multicenter DACHS study retrospectively. Plasma samples were analyzed from stage II CRC patients for whom follow-up data including the information on metachronous metastasis were available. To identify metabolites distinguishing non-metastasized from metachronously metastasized stage II CRC patients robust supervised classifications using decision trees and support vector machines were performed and verified by 10-fold cross-validation, by nested cross-validation and by traditional validation using training and test sets. We found that metabolic profiles distinguish non-metastasized from metachronously metastasized stage II CRC patients. Classification models from decision trees and support vector machines with 10-fold cross-validation gave average accuracy of 0.75 (sensitivity 0.79, specificity 0.7) and 0.82 (sensitivity 0.85, specificity 0.77), respectively, correctly predicting metachronous metastasis in stage II CRC patients. Taken together, plasma metabolic profiles distinguished non-metastasized and metachronously metastasized stage II CRC patients. The classification models consisting of few metabolites stratify non-invasively stage II CRC patients according to their risk for metachronous metastasis.
Collapse
Affiliation(s)
- Inna Zaimenko
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Carsten Jaeger
- Berlin Institute of Health, Berlin, Germany.,Medical Department, Division of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, Molekulares Krebsforschungszentrum (MKFZ), Berlin, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carsten Grötzinger
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Katharina Detjen
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Susen Burock
- Charité Comprehensive Cancer Center, Berlin, Germany
| | - Clemens A Schmitt
- Medical Department, Division of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, Molekulares Krebsforschungszentrum (MKFZ), Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Lisec
- Medical Department, Division of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, Molekulares Krebsforschungszentrum (MKFZ), Berlin, Germany.,Division of Analytical Chemistry, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| |
Collapse
|
83
|
A rapid separation and characterization of mucins from mouse submandibular glands by supported molecular matrix electrophoresis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:76-81. [DOI: 10.1016/j.bbapap.2018.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/04/2018] [Accepted: 05/08/2018] [Indexed: 01/26/2023]
|
84
|
Liu YY, Yang ZX, Ma LM, Wen XQ, Ji HL, Li K. 1H-NMR spectroscopy identifies potential biomarkers in serum metabolomic signatures for early stage esophageal squamous cell carcinoma. PeerJ 2019; 7:e8151. [PMID: 31803539 PMCID: PMC6886491 DOI: 10.7717/peerj.8151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 11/04/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent types of upper gastrointestinal malignancies. Here, we used 1H nuclear magnetic resonance spectroscopy (1H-NMR) to identify potential serum biomarkers in patients with early stage ESCC. METHODS Sixty-five serum samples from early stage ESCC patients (n = 25) and healthy controls (n = 40) were analysed using 1H-NMR spectroscopy. We distinguished between different metabolites through principal component analysis, partial least squares-discriminant analysis, and orthogonal partial least squares-discriminant analysis (OPLS-DA) using SIMCA-P+ version 14.0 software. Receiver operating characteristic (ROC) analysis was conducted to verify potential biomarkers. RESULTS Using OPLS-DA, 31 altered serum metabolites were successfully identified between the groups. Based on the area under the ROC curve (AUROC), and the biomarker panel with AUROC of 0.969, six serum metabolites (α-glucose, choline, glutamine, glutamate, valine, and dihydrothymine) were selected as potential biomarkers for early stage ESCC. Dihydrothymine particularly was selected as a new feasible biomarker associated with tumor occurrence. CONCLUSIONS 1H-NMR spectroscopy may be a useful tumour detection approach in identifying useful metabolic ESCC biomarkers for early diagnosis and in the exploration of the molecular pathogenesis of ESCC.
Collapse
Affiliation(s)
- Yan-Yan Liu
- Department of Ultrasound, Shenzhen Bao’an Maternity & Child Healthcare Hospital, Shenzhen, Guangdong, China
| | - Zhong-Xian Yang
- Department of Medical Imaging Center, the 2nd Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Li-Min Ma
- Department of Cardiothoracic Surgery, the 2nd Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Xu-Qing Wen
- Department of Cardiothoracic Surgery, the 2nd Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Huan-Lin Ji
- Department of Public Health, Shantou University Medical College, Shantou, Guangdong, China
| | - Ke Li
- Department of Public Health, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
85
|
Kang Y, Wang X, Zhang Y, Sun Y. Periostin serves an important role in the pathogenesis of oral squamous cell carcinoma. Oncol Lett 2018; 17:1292-1298. [PMID: 30655897 DOI: 10.3892/ol.2018.9660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 07/31/2018] [Indexed: 12/14/2022] Open
Abstract
The mechanism underlying OSCC tumorigenesis remains unclear. Periostin is considered to be a prominent oncogene in various solid tumors, although its precise role in OSCC progression remains unknown. In the present study, periostin expression was examined in surgical specimens of OSCC cases, and the results were analyzed for possible correlations with clinical characteristics. In addition, the proliferation and invasiveness of OSCC cells were evaluated following transfection with a Periostin small interfering RNA or an overexpression plasmid. The results revealed that periostin levels were significantly higher in patients with OSCC as compared with those in the controls (P<0.05). In addition, periostin levels in patients with OSCC were significantly associated with permeation classification. Furthermore, periostin expression was observed to promote the proliferation and invasiveness of OSCC cells. The present results suggest that periostin is significantly involved in the pathogenesis of OSCC.
Collapse
Affiliation(s)
- Yuanyuan Kang
- Department of Emergency and Oral Medicine, School of Stomatology, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xue Wang
- Department of Orthodontics, Stomatological Hospital of Shenyang, Shenyang, Liaoning 110002, P.R. China
| | - Ying Zhang
- Department of Emergency and Oral Medicine, School of Stomatology, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yan Sun
- Department of Emergency and Oral Medicine, School of Stomatology, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
86
|
Siddiqui AJ, Sherazi STH, Ahmed S, Iqbal Choudhary M, Musharraf SG. A comparative profiling of oral cancer patients and high risk niswar users using FT-IR and chemometric analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 203:177-184. [PMID: 29864641 DOI: 10.1016/j.saa.2018.05.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/22/2018] [Accepted: 05/27/2018] [Indexed: 06/08/2023]
Abstract
Oral cancer is one of the major cancer types, which has increased sustainably in Southeast Asian countries due to the extensive use of a variety of tobacco and betel nut products. The current study is focused on developing an easy, efficient and cost-effective method for plasma profiling of oral cancer patients and tobacco users in order to have a progressive picture towards oral cancer. For this purpose, the profiling of 147 plasma samples including 67 oral cancer patients' samples, 60 "niswar" (a dipping tobacco product) user samples, and 20 healthy controls using attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), and chemometric analysis was carried out. Fingerprint region (500-1500 cm-1) of all three groups showed interesting variations in peaks pattern. From these observations, height ratios of two bands H1646/H1550 and H1080/H1024 with p value of 2.01 × 10-6 and 8.39 × 10-7, respectively, showed a pattern between healthy to oral cancer and "niswar" user samples. Chemometric analysis of the data showed a clean separation among the groups. PLS-DA and OPLS-DA models provided 87.7% and 89.5% classification rate, respectively. Area under the curve (AUC) for healthy control, oral cancer and "niswar" users were found to be 0.97, 0.95 and 0.92%, respectively. The results of the present study indicate that FT-IR spectroscopy, in conjunction with chemometric data, can be effectively used for the preliminary differentiation of plasma samples of oral cancer patients, "niswar" users and control samples of healthy persons.
Collapse
Affiliation(s)
- Amna Jabbar Siddiqui
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | | | - Shakil Ahmed
- Industrial Analytical Centre (IAC), H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - M Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Syed Ghulam Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
87
|
Franzmann EJ, Donovan MJ. Effective early detection of oral cancer using a simple and inexpensive point of care device in oral rinses. Expert Rev Mol Diagn 2018; 18:837-844. [PMID: 30221559 DOI: 10.1080/14737159.2018.1523008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Head and neck cancer remains a challenging disease that is increasing in incidence with the majority of patients diagnosed at an advanced stage where 5-year survival is approximately 50%. Current approaches including oral-brush biopsies, fluorescence-based technologies, and salivary molecular profiling have demonstrated some success; however, cost, ease of use, and accuracy remain limiting factors. Areas covered: This is a profile of a novel, easy to use oral rinse point-of-care (POC) test to aid in the diagnosis of oral and oropharyngeal cancer. Background science related to the challenge of oral and oropharyngeal cancer and natural history of diagnostic aids for this disease are provided. Results of studies performed for validation of a POC and laboratory test are also discussed. Expert commentary: The POC test has been validated through a case : control clinical study and a prospective European trial, using version 1.0 (v1.0), which have demonstrated consistent performance including a > 90% negative predictive value, with a sensitivity of 80%. The assay was designed to identify malignant lesions in the oral cavity and oropharynx by improving upon standard clinical assessment.
Collapse
Affiliation(s)
- Elizabeth J Franzmann
- a Department of Otolaryngology , Miller School of Medicine, University of Miami , Miami , FL , USA
| | - Michael J Donovan
- b Department of Pathology , Icahn School of Medicine at Mount Sinai , New York , NY , USA
| |
Collapse
|
88
|
Lohavanichbutr P, Zhang Y, Wang P, Gu H, Nagana Gowda GA, Djukovic D, Buas MF, Raftery D, Chen C. Salivary metabolite profiling distinguishes patients with oral cavity squamous cell carcinoma from normal controls. PLoS One 2018; 13:e0204249. [PMID: 30235319 PMCID: PMC6147497 DOI: 10.1371/journal.pone.0204249] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/22/2018] [Indexed: 12/17/2022] Open
Abstract
Oral cavity squamous cell carcinoma (OCC) and oropharyngeal squamous cell carcinoma (OPC) are among the most common cancers worldwide and are associated with high mortality and morbidity. The purpose of this study is to identify potential biomarkers to distinguish OCC/OPC from normal controls and to distinguish OCC patients with and without nodal metastasis. We tested saliva samples from 101 OCC, 58 OPC, and 35 normal controls using four analytical platforms (NMR, targeted aqueous by LC-MS/MS, global aqueous and global lipidomics by LC-Q-TOF). Samples from OCC and normal controls were divided into discovery and validation sets. Using linear regression adjusting for age, sex, race and experimental batches, we found the levels of two metabolites (glycine and proline) to be significantly different between OCC and controls (FDR < 0.1 for both discovery and validation sets) but did not find any appreciable differences in metabolite levels between OPC and controls or between OCC with and without nodal metastasis. Four metabolites, including glycine, proline, citrulline, and ornithine were associated with early stage OCC in both discovery and validation sets. Further study is warranted to confirm these results in the development of salivary metabolites as diagnostic markers.
Collapse
Affiliation(s)
- Pawadee Lohavanichbutr
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Yuzheng Zhang
- Program in Biostatistics and Biomathematics, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Pei Wang
- Program in Biostatistics and Biomathematics, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Haiwei Gu
- Center for Metabolic and Vascular Biology, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America
- Northwest Metabolomics Research Center, Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
| | - G. A. Nagana Gowda
- Northwest Metabolomics Research Center, Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
| | - Danijel Djukovic
- Northwest Metabolomics Research Center, Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
| | - Matthew F. Buas
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States of America
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
- Translational Research Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Chu Chen
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, United States of America
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
89
|
Kirwan JA, Brennan L, Broadhurst D, Fiehn O, Cascante M, Dunn WB, Schmidt MA, Velagapudi V. Preanalytical Processing and Biobanking Procedures of Biological Samples for Metabolomics Research: A White Paper, Community Perspective (for "Precision Medicine and Pharmacometabolomics Task Group"-The Metabolomics Society Initiative). Clin Chem 2018; 64:1158-1182. [PMID: 29921725 DOI: 10.1373/clinchem.2018.287045] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/01/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND The metabolome of any given biological system contains a diverse range of low molecular weight molecules (metabolites), whose abundances can be affected by the timing and method of sample collection, storage, and handling. Thus, it is necessary to consider the requirements for preanalytical processes and biobanking in metabolomics research. Poor practice can create bias and have deleterious effects on the robustness and reproducibility of acquired data. CONTENT This review presents both current practice and latest evidence on preanalytical processes and biobanking of samples intended for metabolomics measurement of common biofluids and tissues. It highlights areas requiring more validation and research and provides some evidence-based guidelines on best practices. SUMMARY Although many researchers and biobanking personnel are familiar with the necessity of standardizing sample collection procedures at the axiomatic level (e.g., fasting status, time of day, "time to freezer," sample volume), other less obvious factors can also negatively affect the validity of a study, such as vial size, material and batch, centrifuge speeds, storage temperature, time and conditions, and even environmental changes in the collection room. Any biobank or research study should establish and follow a well-defined and validated protocol for the collection of samples for metabolomics research. This protocol should be fully documented in any resulting study and should involve all stakeholders in its design. The use of samples that have been collected using standardized and validated protocols is a prerequisite to enable robust biological interpretation unhindered by unnecessary preanalytical factors that may complicate data analysis and interpretation.
Collapse
Affiliation(s)
- Jennifer A Kirwan
- Berlin Institute of Health, Berlin, Germany; .,Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Lorraine Brennan
- UCD School of Agriculture and Food Science, Institute of Food and Health, UCD, Dublin, Ireland
| | | | - Oliver Fiehn
- NIH West Coast Metabolomics Center, UC Davis, Davis, CA
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine and IBUB, Universitat de Barcelona, Barcelona and Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBER-EHD), Madrid, Spain
| | - Warwick B Dunn
- School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Birmingham, UK
| | - Michael A Schmidt
- Advanced Pattern Analysis and Countermeasures Group, Research Innovation Center, Colorado State University, Fort Collins, CO.,Sovaris Aerospace, LLC, Boulder, CO
| | - Vidya Velagapudi
- Metabolomics Unit, Institute for Molecular Medicine FIMM, HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
90
|
Castagnola M, Scarano E, Passali GC, Messana I, Cabras T, Iavarone F, Di Cintio G, Fiorita A, De Corso E, Paludetti G. Salivary biomarkers and proteomics: future diagnostic and clinical utilities. ACTA OTORHINOLARYNGOLOGICA ITALICA 2018; 37:94-101. [PMID: 28516971 PMCID: PMC5463528 DOI: 10.14639/0392-100x-1598] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/12/2016] [Indexed: 12/16/2022]
Abstract
Saliva testing is a non-invasive and inexpensive test that can serve as a source of information useful for diagnosis of disease. As we enter the era of genomic technologies and -omic research, collection of saliva has increased. Recent proteomic platforms have analysed the human salivary proteome and characterised about 3000 differentially expressed proteins and peptides: in saliva, more than 90% of proteins in weight are derived from the secretion of three couples of "major" glands; all the other components are derived from minor glands, gingival crevicular fluid, mucosal exudates and oral microflora. The most common aim of proteomic analysis is to discriminate between physiological and pathological conditions. A proteomic protocol to analyze the whole saliva proteome is not currently available. It is possible distinguish two type of proteomic platforms: top-down proteomics investigates intact naturally-occurring structure of a protein under examination; bottom-up proteomics analyses peptide fragments after pre-digestion (typically with trypsin). Because of this heterogeneity, many different biomarkers may be proposed for the same pathology. The salivary proteome has been characterised in several diseases: oral squamous cell carcinoma and oral leukoplakia, chronic graft-versus-host disease Sjögren's syndrome and other autoimmune disorders such as SAPHO, schizophrenia and bipolar disorder, and genetic diseases like Down's Syndrome and Wilson disease. The results of research reported herein suggest that in the near future human saliva will be a relevant diagnostic fluid for clinical diagnosis and prognosis.
Collapse
Affiliation(s)
- M Castagnola
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Istituto di Chimica del Riconoscimento Molecolare C.N.R. Rome, Italy
| | - E Scarano
- Department of Head and Neck Surgery, "A. Gemelli" Hospital Foundation, Catholic University, Rome, Italy
| | - G C Passali
- Department of Head and Neck Surgery, "A. Gemelli" Hospital Foundation, Catholic University, Rome, Italy
| | - I Messana
- Life and Enviromental Sciences Department, University of Cagliari, and Istituto di Chimica del Riconoscimento Molecolare C.N.R. Rome, Italy
| | - T Cabras
- Life and Enviromental Sciences Department, University of Cagliari, Italy
| | - F Iavarone
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | - G Di Cintio
- Department of Head and Neck Surgery, "A. Gemelli" Hospital Foundation, Catholic University, Rome, Italy
| | - A Fiorita
- Department of Head and Neck Surgery, "A. Gemelli" Hospital Foundation, Catholic University, Rome, Italy
| | - E De Corso
- Department of Head and Neck Surgery, "A. Gemelli" Hospital Foundation, Catholic University, Rome, Italy
| | - G Paludetti
- Department of Head and Neck Surgery, "A. Gemelli" Hospital Foundation, Catholic University, Rome, Italy
| |
Collapse
|
91
|
Xiong Z, Wang Y, Lang L, Ma S, Zhao L, Xiao W, Wang Y. Tissue metabolomic profiling to reveal the therapeutic mechanism of reduning injection on LPS-induced acute lung injury rats. RSC Adv 2018; 8:10023-10031. [PMID: 35540831 PMCID: PMC9078858 DOI: 10.1039/c7ra13123b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/02/2018] [Indexed: 11/21/2022] Open
Abstract
Acute lung injury (ALI) is a severe respiratory disease. To date, no medical interventions have been proven effective in improving the outcome. Reduning injection (RDN) showed a potential effect in the therapy of ALI. However, seldom does research concern the holistic pharmacological mechanisms of RDN on ALI. A metabolomic strategy, based on two consecutive extractions of the lung tissue, has been developed to investigate therapeutic mechanisms of RDN on ALI model rat. The extraction procedure was an aqueous extraction with methanol-water followed by organic extraction with dichloromethane-methanol. According to the lipophilicity of extracts, aqueous extracts were analyzed on the T3 column and organic extracts on the C18 column. Partial least-squares discriminant analysis was utilized to identify differences in metabolic profiles of rats. A total of 14 potential biomarkers in lung tissue were identified, which mainly related to phospholipid metabolism, sphingolipid metabolism, nucleotide metabolism and energy metabolism. The combined analytical method provides complementary metabolomics information for exploring the action mechanism of RDN against ALI. And the obtained results indicate metabolomics is a promising tool for understanding the holism and synergism of traditional Chinese medicine.
Collapse
Affiliation(s)
- Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University 103 Wenhua Road Shenyang 110016 China +86-24-23986289 +86-24-23986290
| | - Yanmin Wang
- School of Pharmacy, Shenyang Pharmaceutical University 103 Wenhua Road Shenyang 110016 China +86-24-23986289 +86-24-23986290
| | - Lang Lang
- School of Pharmacy, Shenyang Pharmaceutical University 103 Wenhua Road Shenyang 110016 China +86-24-23986289 +86-24-23986290
| | - Shuping Ma
- School of Pharmacy, Shenyang Pharmaceutical University 103 Wenhua Road Shenyang 110016 China +86-24-23986289 +86-24-23986290
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University 103 Wenhua Road Shenyang 110016 China +86-24-23986289 +86-24-23986290
| | - Wei Xiao
- National Key Laboratory of Pharmaceutical New Technology for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd 58 Haichang South Road, Xinpu District Lianyungang 222001 China
| | - Yanjuan Wang
- School of Pharmacy, Shenyang Pharmaceutical University 103 Wenhua Road Shenyang 110016 China +86-24-23986289 +86-24-23986290
| |
Collapse
|
92
|
Kaur J, Jacobs R, Huang Y, Salvo N, Politis C. Salivary biomarkers for oral cancer and pre-cancer screening: a review. Clin Oral Investig 2018; 22:633-640. [PMID: 29344805 DOI: 10.1007/s00784-018-2337-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 01/07/2018] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The objective of the study was to conduct a systematic review of the literature assessing potential salivary biomarkers of oral cancer and pre-cancer and discuss emerging issues and challenges in relation to oral cancer and pre-cancer diagnostics. MATERIALS AND METHODS Search for articles involved the Medline, PubMed, and EMBASE. Specific terms were used from January 1995 to March 2017 by three experts. RESULTS This search collected 270 articles, of which 105 articles such as reviews, case reports, news, letter to editor, etc. in first round and 117 articles such as publications in other languages than English, non-human studies, etc. were excluded. The remaining 48 articles considered analyzing whole saliva as well as specific gland saliva. Thirty-one studies considered oral stimuli such as eating, drinking, and oral hygiene practices for varied periods of time prior to sample collection. The time of collection of saliva was morning in most studies, but the exact time of collection was not mentioned. Three studies showed to have evaluated the whole saliva without centrifugation. Two-dimensional gel electrophoresis and tandem mass spectrometry were the most commonly used methods. Most of the potential salivary biomarkers of oral cancer are salivary proteins. CONCLUSION Combination approach of salivary biomarkers could be used as screening tool to improve early detection and diagnostic precision of oral pre-cancer and cancer. CLINICAL RELEVANCE The current findings are of importance for clinicians and researchers to mitigate the challenges in salivary-based diagnosis of oral cancer and to evaluate reliable, specific, and sensitive salivary biomarkers for oral pre-cancer and cancer diagnosis.
Collapse
Affiliation(s)
- J Kaur
- OMFS IMPATH research group, Department Imaging & Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium.
| | - R Jacobs
- OMFS IMPATH research group, Department Imaging & Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Y Huang
- OMFS IMPATH research group, Department Imaging & Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium.,State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - N Salvo
- OMFS IMPATH research group, Department Imaging & Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| | - C Politis
- OMFS IMPATH research group, Department Imaging & Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
93
|
Lei M, Yao H, Dong Y, Wang M, Wang Z, Cheng X. Development and validation of an LC-MS/MS method for simultaneous quantification of voriconazole and its main metabolite voriconazole N-oxide in human plasma and its clinical application. J LIQ CHROMATOGR R T 2017. [DOI: 10.1080/10826076.2017.1402187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Meng Lei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hongping Yao
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Maoyi Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoliang Cheng
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
94
|
Wan Y, Vagenas D, Salazar C, Kenny L, Perry C, Calvopiña D, Punyadeera C. Salivary miRNA panel to detect HPV-positive and HPV-negative head and neck cancer patients. Oncotarget 2017; 8:99990-100001. [PMID: 29245955 PMCID: PMC5725146 DOI: 10.18632/oncotarget.21725] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 07/26/2017] [Indexed: 01/20/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) are a heterogeneous group of tumours that originate predominantly from the oral cavity, pharynx and larynx. Our aim was to determine whether salivary miRNA expression levels can diagnose these cancer subtypes. Saliva samples were collected from healthy controls (n=113, smoker and non-smokers), HPV-positive (n=54) and HPV-negative (n=47) HNSCC patients. The miRNA expression levels in saliva was quantified using qPCR. The potential of salivary miRNAs to discriminate these groups of patients was evaluated using multiple logistic regression with ROC analysis and a 10-fold cross-validation analysis. Salivary miRNA-9, -127, -134, -191, -222 and -455 were shown to discriminate a control group from a HPV-negative HNSCC patient group with a sensitivity of 60% and a specificity of 94%; whilst salivary miRNA-9,-134, -196b, -210, and -455 were the most parsimonious subset discriminating a control group from a HPV-positive HNSCC group, with a sensitivity of 65% and a specificity of 95%. Furthermore, miRNA-9, -134, -196b, -210 and -455 as a panel, was the most parsimonious subset to discriminate HPV-positive HNSCC patients from HPV-negative HNSCC patients. In addition, the expression levels of miRNA-9, -127, -196a, -196b, -210, -222 and -455 were significantly increased in the saliva collected from early stage HNSCC patients compared to controls. A future multi-centre confirmatory study is warranted to test the diagnostic performance of these salivary miRNA prior to clinical implementation.
Collapse
Affiliation(s)
- Yunxia Wan
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Brisbane, Australia
| | - Dimitrios Vagenas
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Brisbane, Woolloongabba, Queensland, Australia
| | - Carolina Salazar
- The School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia
- The University of Queensland Diamantina Institute, The University of Queensland, The Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Liz Kenny
- The School of Medicine, University of Queensland, Queensland, Australia
- Royal Brisbane and Women’s Hospital, Brisbane, Central Integrated Regional Cancer Service, Queensland Health, Woolloongabba, Queensland, Australia
| | - Chris Perry
- Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
| | - Diego Calvopiña
- The School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia
- The University of Queensland Diamantina Institute, The University of Queensland, The Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Chamindie Punyadeera
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Brisbane, Australia
| |
Collapse
|
95
|
Is Lipidomic the Answer to the Search of a Biomarker for Organ Preservation Protocol in Head and Neck Squamous Cell Carcinoma? Pathol Oncol Res 2017; 24:931-935. [PMID: 29130149 DOI: 10.1007/s12253-017-0336-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022]
Abstract
In the last decade organ preservation protocols based on chemoradiotherapy (CRT) has been showing the possibility of preserving function without jeopardizing survival for locally advanced head and neck squamous cell carcinoma (HNSCC). Still, only a percentage of the patients will benefit from this approach and, to date, no biomarkers are known to correctly predict these patients. More recently, modern mass spectrometry method has been used to determine metabolic profiles, and lipidomics, in particular, emerged as a new field of study in oncology and other diseases. This study aimed to analyze the lipid profile on saliva from patients undergoing to a prospective, single center, open-label, non-randomized phase II trial for organ preservation on HNSCC. The lipid analysis was performed using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS). Multivariate statistical analyses based on principal component analysis and orthogonal partial least square-discriminant analysis were applied to MALDI-TOF-MS data to visualize differences between the lipid profiles and identify potential biomarkers. The results assisted on distinguishing complete responders from non-responders to the treatment protocol. In conclusion, we demonstrated that a group of lipids is differentially abundant in saliva from HNSCC patients submitted to an organ preservation protocol, being able to differentiate responders from non-responders. These results suggest the potential use of lipid biomarkers to identify patients who may benefit from this treatment. Also, we showed that saliva testing might be routinely used in clinical practice, for being a non-invasive alternative to blood testing, besides inexpensive and easy to obtain.
Collapse
|
96
|
Phytosphingosine exhibits an anti-epithelial-mesenchymal transition function by the inhibition of EGFR signaling in human breast cancer cells. Oncotarget 2017; 8:77794-77808. [PMID: 29100426 PMCID: PMC5649924 DOI: 10.18632/oncotarget.20783] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/04/2017] [Indexed: 01/26/2023] Open
Abstract
The lack of effective anti-metastatic drugs for the eradication of breast cancer stem cells within tumors, which are often resistant to chemotherapy and radiotherapy, creates a major obstacle during metastatic breast cancer therapy. Although D-ribo-phytosphingosine (PHS) is well known to activate protein kinase (MAPK)-mediated apoptosis, its possible role towards the metastasis signaling mechanisms underlying the epithelial-mesenchymal transition (EMT) remains largely unknown. In this report, we investigate the anti-metastatic potential of the natural sphingolipid PHS for the targeting of breast cancer cells as well as breast stem-like cells in vitro. We showed that PHS led to suppression of migratory potential, spheroid formation, CD44high/CD24low subpopulation as well as stem cell- and EMT-associated protein expression in basal type highly malignant breast cancer cell lines. In addition, PHS-based inhibition of EMT was attributable to the downregulation of the EGFR/JAK1/STAT3 signaling axis, as validated by immunoprecipitation assays and breast tumorigenesis mice models. This study demonstrate that PHS can target metastatic tumors with dual specificity (EMT and cancer stem-like cells) and therefore may be serve as a promising candidate for breast cancer treatments.
Collapse
|
97
|
Guerrero-Preston R, White JR, Godoy-Vitorino F, Rodríguez-Hilario A, Navarro K, González H, Michailidi C, Jedlicka A, Canapp S, Bondy J, Dziedzic A, Mora-Lagos B, Rivera-Alvarez G, Ili-Gangas C, Brebi-Mieville P, Westra W, Koch W, Kang H, Marchionni L, Kim Y, Sidransky D. High-resolution microbiome profiling uncovers Fusobacterium nucleatum, Lactobacillus gasseri/johnsonii, and Lactobacillus vaginalis associated to oral and oropharyngeal cancer in saliva from HPV positive and HPV negative patients treated with surgery and chemo-radiation. Oncotarget 2017; 8:110931-110948. [PMID: 29340028 PMCID: PMC5762296 DOI: 10.18632/oncotarget.20677] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/12/2017] [Indexed: 12/19/2022] Open
Abstract
Microbiome studies show altered microbiota in head and neck squamous cell carcinoma (HNSCC), both in terms of taxonomic composition and metabolic capacity. These studies utilized a traditional bioinformatics methodology, which allows for accurate taxonomic assignment down to the genus level, but cannot accurately resolve species level membership. We applied Resphera Insight, a high-resolution methodology for 16S rRNA taxonomic assignment that is able to provide species-level context in its assignments of 16S rRNA next generation sequencing (NGS) data. Resphera Insight applied to saliva samples from HNSCC patients and healthy controls led to the discovery that a subset of HNSCC saliva samples is significantly enriched with commensal species from the vaginal flora, including Lactobacillus gasseri/johnsonii (710x higher in saliva) and Lactobacillus vaginalis (52x higher in saliva). These species were not observed in normal saliva from Johns Hopkins patients, nor in 16S rRNA NGS saliva samples from the Human Microbiome Project (HMP). Interestingly, both species were only observed in saliva from Human Papilloma Virus (HPV) positive and HPV negative oropharyngeal cancer patients. We confirmed the representation of both species in HMP data obtained from mid-vagina (n=128) and vaginal introitus (n=121) samples. Resphera Insight also led to the discovery that Fusobacterium nucleatum, an oral cavity flora commensal bacterium linked to colon cancer, is enriched (600x higher) in saliva from a subset of HNSCC patients with advanced tumors stages. Together, these high-resolution analyses on 583 samples suggest a possible role for bacterial species in the therapeutic outcome of HPV positive and HPV negative HNSCC patients.
Collapse
Affiliation(s)
- Rafael Guerrero-Preston
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA.,Department of Obstetrics and Gynecology, University of Puerto Rico, School of Medicine, San Juan, Puerto Rico
| | - James Robert White
- Department of Computational Biology Resphera Biosciences, Baltimore, MD, USA
| | - Filipa Godoy-Vitorino
- Natural Sciences Department, Microbial Ecology and Genomics Lab, Inter American University of Puerto Rico, Metropolitan Campus, San Juan, Puerto Rico
| | - Arnold Rodríguez-Hilario
- Natural Sciences Department, Microbial Ecology and Genomics Lab, Inter American University of Puerto Rico, Metropolitan Campus, San Juan, Puerto Rico
| | - Kelvin Navarro
- Natural Sciences Department, Microbial Ecology and Genomics Lab, Inter American University of Puerto Rico, Metropolitan Campus, San Juan, Puerto Rico
| | - Herminio González
- Natural Sciences Department, Microbial Ecology and Genomics Lab, Inter American University of Puerto Rico, Metropolitan Campus, San Juan, Puerto Rico
| | - Christina Michailidi
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Anne Jedlicka
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, School of Public Health, Baltimore, Maryland, USA
| | - Sierra Canapp
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Jessica Bondy
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Amanda Dziedzic
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, School of Public Health, Baltimore, Maryland, USA
| | - Barbara Mora-Lagos
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA.,Laboratory of Molecular Pathology, Department of Pathological Anatomy, School of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Gustavo Rivera-Alvarez
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA.,Department of Obstetrics and Gynecology, University of Puerto Rico, School of Medicine, San Juan, Puerto Rico
| | - Carmen Ili-Gangas
- Laboratory of Molecular Pathology, Department of Pathological Anatomy, School of Medicine, Universidad de La Frontera, Temuco, Chile.,Center of Excellence in Translational Medicine - Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Priscilla Brebi-Mieville
- Laboratory of Molecular Pathology, Department of Pathological Anatomy, School of Medicine, Universidad de La Frontera, Temuco, Chile.,Center of Excellence in Translational Medicine - Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - William Westra
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Wayne Koch
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Hyunseok Kang
- Department of Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Luigi Marchionni
- Department of Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Young Kim
- Department of Otolaryngology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David Sidransky
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
98
|
Okuma N, Saita M, Hoshi N, Soga T, Tomita M, Sugimoto M, Kimoto K. Effect of masticatory stimulation on the quantity and quality of saliva and the salivary metabolomic profile. PLoS One 2017; 12:e0183109. [PMID: 28813487 PMCID: PMC5557591 DOI: 10.1371/journal.pone.0183109] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/28/2017] [Indexed: 11/18/2022] Open
Abstract
Background This study characterized the changes in quality and quantity of saliva, and changes in the salivary metabolomic profile, to understand the effects of masticatory stimulation. Methods Stimulated and unstimulated saliva samples were collected from 55 subjects and salivary hydrophilic metabolites were comprehensively quantified using capillary electrophoresis-time-of-flight mass spectrometry. Results In total, 137 metabolites were identified and quantified. The concentrations of 44 metabolites in stimulated saliva were significantly higher than those in unstimulated saliva. Pathway analysis identified the upregulation of the urea cycle and synthesis and degradation pathways of glycine, serine, cysteine and threonine in stimulated saliva. A principal component analysis revealed that the effect of masticatory stimulation on salivary metabolomic profiles was less dependent on sample population sex, age, and smoking. The concentrations of only 1 metabolite in unstimulated saliva, and of 3 metabolites stimulated saliva, showed significant correlation with salivary secretion volume, indicating that the salivary metabolomic profile and salivary secretion volume were independent factors. Conclusions Masticatory stimulation affected not only salivary secretion volume, but also metabolite concentration patterns. A low correlation between the secretion volume and these patterns supports the conclusion that the salivary metabolomic profile may be a new indicator to characterize masticatory stimulation.
Collapse
Affiliation(s)
- Nobuyuki Okuma
- Department of Oral Interdisciplinary Medicine, Graduate School of Dentistry, Kanagawa Dental University, Kanagawa, Japan
| | - Makiko Saita
- Department of Oral Interdisciplinary Medicine, Graduate School of Dentistry, Kanagawa Dental University, Kanagawa, Japan
- * E-mail:
| | - Noriyuki Hoshi
- Department of Oral Interdisciplinary Medicine, Graduate School of Dentistry, Kanagawa Dental University, Kanagawa, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
- Division of Environmental Pathology, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, Kanagawa, Japan
- Health Promotion and Preemptive Medicine, Research and Development Center for Minimally Invasive Therapies, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Katsuhiko Kimoto
- Department of Oral Interdisciplinary Medicine, Graduate School of Dentistry, Kanagawa Dental University, Kanagawa, Japan
| |
Collapse
|
99
|
MicroRNA-143 suppresses oral squamous cell carcinoma cell growth, invasion and glucose metabolism through targeting hexokinase 2. Biosci Rep 2017; 37:BSR20160404. [PMID: 28174335 PMCID: PMC5463264 DOI: 10.1042/bsr20160404] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/16/2016] [Accepted: 02/07/2017] [Indexed: 11/17/2022] Open
Abstract
miRNAs are non-coding RNAs that have functions to regulate gene expression and play essential roles in a variety of biological processes of cancers. In the present study, we report miR-143 acts as a tumor suppressor in human oral squamous cell carcinoma (OSCC). The expressions of miR-143 are down-regulated in both OSCC cell lines and patient samples compared with normal adjacent tissues. We found overexpression of miR-143 in oral cancer cell lines suppresses cell migration, cellular glucose metabolism and proliferation. Moreover, overexpression of miR-143 promoted apoptosis and significantly caused cell cycle arrest at G1 stage. The colony formation of oral cancer cells was also suppressed by miR-143 We identified hexokinase 2 (HK2) as a direct target of miR-143 in oral cancer cells. Our data show that miR-143 complementary pairs to the 3'-UTR of HK2 in oral cancer cells, leading to the inhibition of glycolysis in vitro and in vivo Moreover, knockdown of HK2 by siRNA in oral cancer cells inhibited glucose metabolism, proliferation and migration. Recovery of glucose metabolism by overexpression of HK2 in miR-143 overexpressing cells restores the cell migration and proliferation, suggesting that the miR-143-mediated cancer suppression is through the direct inhibition of HK2. In summary, the present studies highlight miR-143 as a tumor suppressor in OSCC by the suppression of cell migration, glucose metabolism and proliferation through directly targeting HK2, rendering miR-143 a therapeutic strategy for the treatment of clinical OSCC patients.
Collapse
|
100
|
Kamarajan P, Rajendiran TM, Kinchen J, Bermúdez M, Danciu T, Kapila YL. Head and Neck Squamous Cell Carcinoma Metabolism Draws on Glutaminolysis, and Stemness Is Specifically Regulated by Glutaminolysis via Aldehyde Dehydrogenase. J Proteome Res 2017; 16:1315-1326. [PMID: 28168879 PMCID: PMC5417077 DOI: 10.1021/acs.jproteome.6b00936] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cancer cells use alternate energetic pathways; however, cancer stem cell (CSC) metabolic energetic pathways are unknown. The purpose of this study was to define the metabolic characteristics of head and neck cancer at different points of its pathogenesis with a focus on its CSC compartment. UPLC-MS/MS-profiling and GC-MS-validation studies of human head and neck cancer tissue, saliva, and plasma were used in conjunction with in vitro and in vivo models to carry out this investigation. We identified metabolite biomarker panels that distinguish head and neck cancer from healthy controls, and confirmed involvement of glutamate and glutaminolysis. Glutaminase, which catalyzes glutamate formation from glutamine, and aldehyde dehydrogenase (ALDH), a stemness marker, were highly expressed in primary and metastatic head and neck cancer tissues, tumorspheres, and CSC versus controls. Exogenous glutamine induced stemness via glutaminase, whereas inhibiting glutaminase suppressed stemness in vitro and tumorigenesis in vivo. Head and neck CSC (CD44hi/ALDHhi) exhibited higher glutaminase, glutamate, and sphere levels than CD44lo/ALDHlo cells. Glutaminase drove transcriptional and translational ALDH expression, and glutamine directed even CD44lo/ALDHlo cells toward stemness. Glutaminolysis regulates tumorigenesis and CSC metabolism via ALDH. These findings indicate that glutamate is an important marker of cancer metabolism whose regulation via glutaminase works in concert with ALDH to mediate cancer stemness. Future analyses of glutaminolytic-ALDH driven mechanisms underlying tumorigenic transitions may help in the development of targeted therapies for head and neck cancer and its CSC compartment.
Collapse
Affiliation(s)
- Pachiyappan Kamarajan
- Department of Orofacial Sciences, UCSF School of Dentistry, University of California, San Francisco, California 94110, United States
| | - Thekkelnaycke M. Rajendiran
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Michigan Regional Comprehensive Metabolomics Resource Core and Department of Internal Medicine, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jason Kinchen
- Metabolon, Inc., Durham, North Carolina 27713, United States
| | - Mercedes Bermúdez
- FES Zaragoza, National Autonomous University of Mexico, Mexico City, 09320, Mexico
| | - Theodora Danciu
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yvonne L. Kapila
- Department of Orofacial Sciences, UCSF School of Dentistry, University of California, San Francisco, California 94110, United States
| |
Collapse
|