51
|
Cheng C, Liu F, Tian N, Mensah RA, Sun X, Liu J, Wu J, Wang B, Li D, Lai Z. Identification and characterization of early Fusarium wilt responsive mRNAs and long non-coding RNAs in banana root using high-throughput sequencing. Sci Rep 2021; 11:16363. [PMID: 34381122 PMCID: PMC8358008 DOI: 10.1038/s41598-021-95832-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/29/2021] [Indexed: 12/03/2022] Open
Abstract
Fusarium wilt disease, caused by Fusarium oxysporum f.sp. cubense (Foc), has been recognized as the most devastating disease to banana. The regulatory role of long non-coding RNAs (lncRNAs) in plant defense has been verified in many plant species. However, the understanding of their role during early FocTR4 (Foc tropical race 4) infection stage is very limited. In this study, lncRNA sequencing was used to reveal banana root transcriptome profile changes during early FocTR4 infection stages. Quantitative real time PCR (qRT-PCR) was performed to confirm the expression of eight differentially expressed (DE) lncRNAs (DELs) and their predicted target genes (DETs), and three DE genes (DEGs). Totally, 12,109 lncRNAs, 36,519 mRNAs and 2642 novel genes were obtained, of which 1398 (including 78 DELs, 1220 DE known genes and 100 DE novel genes) were identified as FocTR4 responsive DE transcripts. Gene function analysis revealed that most DEGs were involved in biosynthesis of secondary metabolites, plant–pathogen interaction, plant hormone signal transduction, phenylalanine metabolism, phenylpropanoid biosynthesis, alpha-linolenic acid metabolism and so on. Coincidently, many DETs have been identified as DEGs in previous transcriptome studies. Moreover, many DETs were found to be involved in ribosome, oxidative phosphorylation, lipoic acid metabolism, ubiquitin mediated proteolysis, N-glycan biosynthesis, protein processing in endoplasmic reticulum and DNA damage response pathways. QRT-PCR result showed the expression patterns of the selected transcripts were mostly consistent with our lncRNA sequencing data. Our present study showed the regulatory role of lncRNAs on known biotic and abiotic stress responsive genes and some new-found FocTR4 responsive genes, which can provide new insights into FocTR4-induced changes in the banana root transcriptome during the early pathogen infection stage.
Collapse
Affiliation(s)
- Chunzhen Cheng
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China.
| | - Fan Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Na Tian
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Raphael Anue Mensah
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xueli Sun
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiapeng Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Junwei Wu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bin Wang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dan Li
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
52
|
Wang L, Wu S, Jin J, Li R. Identification of herbivore-elicited long non-coding RNAs in rice. PLANT SIGNALING & BEHAVIOR 2021; 16:1916702. [PMID: 33896377 PMCID: PMC8205062 DOI: 10.1080/15592324.2021.1916702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 05/26/2023]
Abstract
Long non-coding RNAs (lncRNAs) in plants are emerging as new players in biotic stress responses. Pathogen-associated lncRNAs have been broadly identified and functionally characterized in multiple species. However, herbivore-responsive lncRNAs in plants are poorly investigated. Our recent study revealed that lncRNAs also play roles in plant defense against herbivores in wild tobacco. Here, we identified armyworm (AW)-elicited lncRNAs in monocot rice by employing a similar approach. A total of 238 lncRNAs were found to be differentially expressed (DE) in AW-treated plants relative to control plants. The cis effect of these DE lncRNAs was predicted. Interestingly, one DE lncRNA was identified from the antisense transcripts of the jasmonate ZIM-domain gene JAZ10.
Collapse
Affiliation(s)
- Lanlan Wang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Siwen Wu
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jingjing Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Ran Li
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
53
|
Nath VS, Mishra AK, Awasthi P, Shrestha A, Matoušek J, Jakse J, Kocábek T, Khan A. Identification and characterization of long non-coding RNA and their response against citrus bark cracking viroid infection in Humulus lupulus. Genomics 2021; 113:2350-2364. [PMID: 34051324 DOI: 10.1016/j.ygeno.2021.05.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/22/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a highly heterogeneous class of non-protein-encoding transcripts that play an essential regulatory role in diverse biological processes, including stress responses. The severe stunting disease caused by Citrus bark cracking viroid (CBCVd) poses a major threat to the production of Humulus lupulus (hop) plants. In this study, we systematically investigate the characteristics of the lncRNAs in hop and their role in CBCVd-infection using RNA-sequencing data. Following a stringent filtration criterion, a total of 3598 putative lncRNAs were identified with a high degree of certainty, of which 19% (684) of the lncRNAs were significantly differentially expressed (DE) in CBCVd-infected hop, which were predicted to be mainly involved in plant-pathogen interactions, kinase cascades, secondary metabolism and phytohormone signal transduction. Besides, several lncRNAs and CBCVd-responsive lncRNAs were identified as the precursor of microRNAs and predicted as endogenous target mimics (eTMs) for hop microRNAs involved in CBCVd-infection.
Collapse
Affiliation(s)
- Vishnu Sukumari Nath
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Ajay Kumar Mishra
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic.
| | - Praveen Awasthi
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Ankita Shrestha
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Jaroslav Matoušek
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Jernej Jakse
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Tomáš Kocábek
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Ahamed Khan
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic
| |
Collapse
|
54
|
Song L, Fang Y, Chen L, Wang J, Chen X. Role of non-coding RNAs in plant immunity. PLANT COMMUNICATIONS 2021; 2:100180. [PMID: 34027394 PMCID: PMC8132121 DOI: 10.1016/j.xplc.2021.100180] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 05/06/2023]
Abstract
Crops are exposed to attacks by various pathogens that cause substantial yield losses and severely threaten food security. To cope with pathogenic infection, crops have elaborated strategies to enhance resistance against pathogens. In addition to the role of protein-coding genes as key regulators in plant immunity, accumulating evidence has demonstrated the importance of non-coding RNAs (ncRNAs) in the plant immune response. Here, we summarize the roles and molecular mechanisms of endogenous ncRNAs, especially microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), in plant immunity. We discuss the coordination between miRNAs and small interfering RNAs (siRNAs), between lncRNAs and miRNAs or siRNAs, and between circRNAs and miRNAs in the regulation of plant immune responses. We also address the role of cross-kingdom mobile small RNAs in plant-pathogen interactions. These insights improve our understanding of the mechanisms by which ncRNAs regulate plant immunity and can promote the development of better approaches for breeding disease-resistant crops.
Collapse
Affiliation(s)
- Li Song
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Yu Fang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Lin Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
- Corresponding author
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
- Corresponding author
| |
Collapse
|
55
|
Kang Q, Meng J, Shi W, Luan Y. Ensemble Deep Learning Based on Multi-level Information Enhancement and Greedy Fuzzy Decision for Plant miRNA-lncRNA Interaction Prediction. Interdiscip Sci 2021; 13:603-614. [PMID: 33900552 DOI: 10.1007/s12539-021-00434-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/01/2021] [Accepted: 04/16/2021] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are both non-coding RNAs (ncRNAs) and their interactions play important roles in biological processes. Computational methods, such as machine learning and various bioinformatics tools, can predict potential miRNA-lncRNA interactions, which is significant for studying their mechanisms and biological functions. A growing number of RNA interaction predictors for animal have been reported, but they are unreliable for plant due to the differences of ncRNAs in animal and plant. It is urgent to build a reliable plant predictor, especially for cross-species. This paper proposes an ensemble deep learning model based on multi-level information enhancement and greedy fuzzy decision (PmliPEMG) for plant miRNA-lncRNA interaction prediction. The fusion complex features, multi-scale convolutional long short-term memory networks, and attention mechanism are adopted to enhance the sample information at the feature, scale, and model levels, respectively. An ensemble deep learning model is built based on a novel method (greedy fuzzy decision) which greatly improves the efficiency. The multi-level information enhancement and greedy fuzzy decision are verified to have the positive effects on prediction performance. PmliPEMG can be applied to the cross-species prediction. It shows better performance and stronger generalization ability than state-of-the-art predictors and may provide valuable references for related research.
Collapse
Affiliation(s)
- Qiang Kang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China.
| | - Wenhao Shi
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
| |
Collapse
|
56
|
Meng X, Li A, Yu B, Li S. Interplay between miRNAs and lncRNAs: Mode of action and biological roles in plant development and stress adaptation. Comput Struct Biotechnol J 2021; 19:2567-2574. [PMID: 34025943 PMCID: PMC8114054 DOI: 10.1016/j.csbj.2021.04.062] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/24/2021] [Accepted: 04/24/2021] [Indexed: 11/28/2022] Open
Abstract
Plants employ sophisticated mechanisms to control developmental processes and to cope with environmental changes at transcriptional and post-transcriptional levels. MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs), two classes of endogenous noncoding RNAs, are key regulators of gene expression in plants. Recent studies have identified the interplay between miRNAs and lncRNAs as a novel regulatory layer of gene expression in plants. On one hand, miRNAs target lncRNAs for the production of phased small interfering RNAs (phasiRNAs). On the other hand, lncRNAs serve as origin of miRNAs or regulate the accumulation or activity of miRNAs at transcription and post-transcriptional levels. Theses lncRNA-miRNA interplays are crucial for plant development, physiology and responses to biotic and abiotic stresses. In this review, we summarize recent advances in the biological roles, interaction mechanisms and computational predication methods of the interplay between miRNAs and lncRNAs in plants.
Collapse
Affiliation(s)
- Xiangxiang Meng
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Aixia Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bin Yu
- School of Biological Sciences & Center for Plant Science Innovation University of Nebraska-Lincoln, Lincoln, Nebraska 68588–0666, USA
| | - Shengjun Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
57
|
Teixeira RM, Ferreira MA, Raimundo GAS, Fontes EPB. Geminiviral Triggers and Suppressors of Plant Antiviral Immunity. Microorganisms 2021; 9:microorganisms9040775. [PMID: 33917649 PMCID: PMC8067988 DOI: 10.3390/microorganisms9040775] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022] Open
Abstract
Geminiviruses are circular single-stranded DNA plant viruses encapsidated into geminate virion particles, which infect many crops and vegetables and, hence, represent significant agricultural constraints worldwide. To maintain their broad-range host spectrum and establish productive infection, the geminiviruses must circumvent a potent plant antiviral immune system, which consists of a multilayered perception system represented by RNA interference sensors and effectors, pattern recognition receptors (PRR), and resistance (R) proteins. This recognition system leads to the activation of conserved defense responses that protect plants against different co-existing viral and nonviral pathogens in nature. Furthermore, a specific antiviral cell surface receptor signaling is activated at the onset of geminivirus infection to suppress global translation. This review highlighted these layers of virus perception and host defenses and the mechanisms developed by geminiviruses to overcome the plant antiviral immunity mechanisms.
Collapse
|
58
|
Ma B, Zhang A, Zhao Q, Li Z, Lamboro A, He H, Li Y, Jiao S, Guan S, Liu S, Yao D, Zhang J. Genome-wide identification and analysis of long non-coding RNAs involved in fatty acid biosynthesis in young soybean pods. Sci Rep 2021; 11:7603. [PMID: 33828134 PMCID: PMC8027399 DOI: 10.1038/s41598-021-87048-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are non-coding RNAs of more than 200 nucleotides. To date, the roles of lncRNAs in soybean fatty acid synthesis have not been fully studied. Here, the low-linolenic acid mutant 'MT72' and the wild-type control 'JN18' were used as materials. The lncRNAs in young pods at 30 and 40 days (d) after flowering were systematically identified and analyzed using transcriptome sequencing technology combined with bioinformatics tools. A total of 39,324 lncRNAs and 561 differentially expressed lncRNAs were identified. A lncRNAs-miRNAs-protein-coding genes (mRNAs) network was constructed, and 46 lncRNAs, 46 miRNAs and 137 mRNAs were found to be correlated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of 12 targeted mRNAs in the competing endogenous RNA network showed that these lncRNAs may be involved in the biological processes of fatty acid transport, lipid synthesis and cell division. Finally, the expression levels of differentially expressed lncRNAs, miRNAs and mRNAs were verified using qRT-PCR. The expression patterns of most genes were consistent with the sequencing results. In conclusion, new information was provided for the study of fatty acid synthesis by lncRNAs in young soybean pods.
Collapse
Affiliation(s)
- Bohan Ma
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Aijing Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Qiuzhu Zhao
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Zeyuan Li
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Abraham Lamboro
- College of Agronomy, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Haobo He
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Yue Li
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Suqi Jiao
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Shuyan Guan
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Siyan Liu
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Dan Yao
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China.
| | - Jun Zhang
- College of Agronomy, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| |
Collapse
|
59
|
Host-virus interactions mediated by long non-coding RNAs. Virus Res 2021; 298:198402. [PMID: 33771610 DOI: 10.1016/j.virusres.2021.198402] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/21/2022]
Abstract
Viruses are obligate pathogens that cause a wide range of diseases across all kingdoms of life. They have a colossal impact on the economy and healthcare infrastructure world-wide. Plants and animals have developed sophisticated molecular mechanisms to defend themselves against viruses and viruses in turn hijack host mechanisms to ensure their survival inside their hosts. Long non-coding (lnc) RNAs have emerged as important macromolecules that regulate plant-virus and animal-virus interactions. Both pro-viral and anti-viral lncRNAs have been reported and they show immense potential to be used as markers and in therapeutics. The current review is focussed on the recent developments that have been made in viral interactions of animals and plants.
Collapse
|
60
|
Zheng W, Hu H, Lu Q, Jin P, Cai L, Hu C, Yang J, Dai L, Chen J. Genome-Wide Identification and Characterization of Long Noncoding RNAs Involved in Chinese Wheat Mosaic Virus Infection of Nicotiana benthamiana. BIOLOGY 2021; 10:biology10030232. [PMID: 33802832 PMCID: PMC8002735 DOI: 10.3390/biology10030232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 12/30/2022]
Abstract
Simple Summary Recent studies have shown that a large number of long noncoding RNAs (lncRNAs) can regulate various biological processes in animals and plants. However, the roles of long non-coding RNAs (lncRNAs) in the interaction between plants and viruses is unclear, particularly for the Chinese wheat mosaic virus (CWMV) interaction. In this study, we used a deep RNA sequencing strategy to profile lncRNAs involved in the response to CWMV infection in Nicotiana benthamiana and analyzed differentially expressed lncRNAs that responded to CWMV infection, using a bioinformatics method. We identified 1175 new lncRNAs in N. benthamiana infected with CWMV, with 65 lncRNAs showing differential expression. These lncRNAs were mainly enriched in plant hormone signal transduction and other pathways according to GO and KEGG pathway enrichment analyses. In addition, differential expression of XLOC_006393 after CWMV infection may be the precursor of NbmiR168c, which can respond to CWMV infection by modulating the expression of its target gene NbAGO1. We believe that our study makes a significant contribution to the literature because these results provide a valuable resource for studying lncRNAs involved in CWMV infection and improving the understanding of the molecular mechanism of CWMV infection. Abstract Recent studies have shown that a large number of long noncoding RNAs (lncRNAs) can regulate various biological processes in animals and plants. Although lncRNAs have been identified in many plants, they have not been reported in the model plant Nicotiana benthamiana. Particularly, the role of lncRNAs in plant virus infection remains unknown. In this study, we identified lncRNAs in N. benthamiana response to Chinese wheat mosaic virus (CWMV) infection by RNA sequencing. A total of 1175 lncRNAs, including 65 differentially expressed lncRNAs, were identified during CWMV infection. We then analyzed the functions of some of these differentially expressed lncRNAs. Interestingly, one differentially expressed lncRNA, XLOC_006393, was found to participate in CWMV infection as a precursor to microRNAs in N. benthamiana. These results suggest that lncRNAs play an important role in the regulatory network of N. benthamiana in response to CWMV infection.
Collapse
Affiliation(s)
- Weiran Zheng
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (H.H.); (Q.L.); (P.J.); (L.C.); (C.H.)
| | - Haichao Hu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (H.H.); (Q.L.); (P.J.); (L.C.); (C.H.)
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China;
| | - Qisen Lu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (H.H.); (Q.L.); (P.J.); (L.C.); (C.H.)
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China;
| | - Peng Jin
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (H.H.); (Q.L.); (P.J.); (L.C.); (C.H.)
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China;
| | - Linna Cai
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (H.H.); (Q.L.); (P.J.); (L.C.); (C.H.)
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China;
| | - Cailin Hu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (H.H.); (Q.L.); (P.J.); (L.C.); (C.H.)
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China;
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China;
| | - Liangying Dai
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (H.H.); (Q.L.); (P.J.); (L.C.); (C.H.)
- Correspondence: (L.D.); (J.C.)
| | - Jianping Chen
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (H.H.); (Q.L.); (P.J.); (L.C.); (C.H.)
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China;
- Correspondence: (L.D.); (J.C.)
| |
Collapse
|
61
|
Song X, Hu J, Wu T, Yang Q, Feng X, Lin H, Feng S, Cui C, Yu Y, Zhou R, Gong K, Yu T, Pei Q, Li N. Comparative analysis of long noncoding RNAs in angiosperms and characterization of long noncoding RNAs in response to heat stress in Chinese cabbage. HORTICULTURE RESEARCH 2021; 8:48. [PMID: 33642591 PMCID: PMC7917108 DOI: 10.1038/s41438-021-00484-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/30/2020] [Accepted: 12/13/2020] [Indexed: 05/08/2023]
Abstract
Long noncoding RNAs (lncRNAs) are widely present in different species and play critical roles in response to abiotic stresses. However, the functions of lncRNAs in Chinese cabbage under heat stress remain unknown. Here, we first conducted a global comparative analysis of 247,242 lncRNAs among 37 species. The results indicated that lncRNAs were poorly conserved among different species, and only 960 lncRNAs were homologous to 524 miRNA precursors. We then carried out lncRNA sequencing for a genome-wide analysis of lncRNAs and their target genes in Chinese cabbage at different stages of heat treatment. In total, 18,253 lncRNAs were identified, of which 1229 differentially expressed (DE) lncRNAs were characterized as being heat-responsive. The ceRNA network revealed that 38 lncRNAs, 16 miRNAs, and 167 mRNAs were involved in the heat response in Chinese cabbage. Combined analysis of the cis- and trans-regulated genes indicated that the targets of DE lncRNAs were significantly enriched in the "protein processing in endoplasmic reticulum" and "plant hormone signal transduction" pathways. Furthermore, the majority of HSP and PYL genes involved in these two pathways exhibited similar expression patterns and responded to heat stress rapidly. Based on the networks of DE lncRNA-mRNAs, 29 and 22 lncRNAs were found to interact with HSP and PYL genes, respectively. Finally, the expression of several critical lncRNAs and their targets was verified by qRT-PCR. Overall, we conducted a comparative analysis of lncRNAs among 37 species and performed a comprehensive analysis of lncRNAs in Chinese cabbage. Our findings expand the knowledge of lncRNAs involved in the heat stress response in Chinese cabbage, and the identified lncRNAs provide an abundance of resources for future comparative and functional studies.
Collapse
Affiliation(s)
- Xiaoming Song
- College of Life Sciences/Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China.
- Food Science and Technology Department, University of Nebraska-Lincoln, Lincoln, NE, USA.
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.
| | - Jingjing Hu
- College of Life Sciences/Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China
| | - Tong Wu
- College of Life Sciences/Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China
| | - Qihang Yang
- College of Life Sciences/Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xuehuan Feng
- Food Science and Technology Department, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Hao Lin
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuyan Feng
- College of Life Sciences/Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China
| | - Chunlin Cui
- College of Life Sciences/Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China
| | - Ying Yu
- College of Life Sciences/Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China
| | - Rong Zhou
- Department of Food Science, Aarhus University, Aarhus, Denmark
| | - Ke Gong
- College of Life Sciences/Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China
| | - Tong Yu
- College of Life Sciences/Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China
| | - Qiaoying Pei
- College of Life Sciences/Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China
| | - Nan Li
- College of Life Sciences/Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China.
| |
Collapse
|
62
|
Li R, Jin J, Xu J, Wang L, Li J, Lou Y, Baldwin IT. Long non-coding RNAs associate with jasmonate-mediated plant defence against herbivores. PLANT, CELL & ENVIRONMENT 2021; 44:982-994. [PMID: 33190219 DOI: 10.1111/pce.13952] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
Long non-coding RNA (lncRNA) are important regulators of many biological processes in plants, including defence against pathogens; whether lncRNAs mediate defence against herbivore attack is yet to be explored. With wild tobacco, Nicotiana attenuata, and its well-characterized interactions with herbivores, we identified a total of 1,290 significantly up- or down-regulated lncRNAs in response to a precise herbivore elicitation treatment. Of these, long intergenic non-coding RNAs (lincRNAs) were the most abundant. Based on their expression patterns, these up-regulated lincRNAs were classified as early (<1 hr) or late (>3 hr) responders. The early responding lincRNAs had accumulation patterns that tracked the herbivore-elicited burst of bioactive jasmonates (JAs) and the expression of regulator genes in JA signalling which regulate plant defences against herbivores. Silencing two of these early responders in N. attenuata (JAL1 and JAL3) significantly attenuated the accumulation of JAs, JA-mediated defensives and the plant's resistance to M. sexta attack, suggesting roles in regulating JA-mediated plant defence. By lincRNA sequencing of JA-deficient lines, many late responder lincRNAs were found to be transcriptionally regulated by JA signalling. This study uncovers a new role of lncRNAs in JA-mediated herbivore resistance.
Collapse
Affiliation(s)
- Ran Li
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jingjing Jin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Jie Xu
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Lanlan Wang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Institute of Virology and Biotechnology, Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jiancai Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yonggen Lou
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
63
|
Fonouni-Farde C, Ariel F, Crespi M. Plant Long Noncoding RNAs: New Players in the Field of Post-Transcriptional Regulations. Noncoding RNA 2021; 7:12. [PMID: 33671131 PMCID: PMC8005961 DOI: 10.3390/ncrna7010012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 02/08/2023] Open
Abstract
The first reference to the "C-value paradox" reported an apparent imbalance between organismal genome size and morphological complexity. Since then, next-generation sequencing has revolutionized genomic research and revealed that eukaryotic transcriptomes contain a large fraction of non-protein-coding components. Eukaryotic genomes are pervasively transcribed and noncoding regions give rise to a plethora of noncoding RNAs with undeniable biological functions. Among them, long noncoding RNAs (lncRNAs) seem to represent a new layer of gene expression regulation, participating in a wide range of molecular mechanisms at the transcriptional and post-transcriptional levels. In addition to their role in epigenetic regulation, plant lncRNAs have been associated with the degradation of complementary RNAs, the regulation of alternative splicing, protein sub-cellular localization, the promotion of translation and protein post-translational modifications. In this review, we report and integrate numerous and complex mechanisms through which long noncoding transcripts regulate post-transcriptional gene expression in plants.
Collapse
Affiliation(s)
- Camille Fonouni-Farde
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Bat 630, 91192 Gif sur Yvette, France;
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Bat 630, 91192 Gif sur Yvette, France
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000 Santa Fe, Argentina;
| | - Martin Crespi
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Bat 630, 91192 Gif sur Yvette, France;
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Bat 630, 91192 Gif sur Yvette, France
| |
Collapse
|
64
|
Zhou C, Zhu J, Qian N, Guo J, Yan C. Bacillus subtilis SL18r Induces Tomato Resistance Against Botrytis cinerea, Involving Activation of Long Non-coding RNA, MSTRG18363, to Decoy miR1918. FRONTIERS IN PLANT SCIENCE 2021; 11:634819. [PMID: 33613592 PMCID: PMC7887324 DOI: 10.3389/fpls.2020.634819] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Mounting evidence has indicated that beneficial rhizobacteria can suppress foliar pathogen invasion via elicitation of induced systemic resistance (ISR). However, it remains elusive whether long non-coding RNAs (lncRNAs) are involved in the mediation of the rhizobacteria-primed ISR processes in plants. Herein, we demonstrated the ability of the rhizobacterial strain Bacillus subtilis SL18r to trigger ISR in tomato plants against the foliar pathogen Botrytis cinerea. Comparative transcriptome analysis was conducted to screen differentially expressed lncRNAs (DELs) between the non-inoculated and SL18r-inoculated plants. Among these DELs, four variants of MSTRG18363 possessed conserved binding sites for miR1918, which negatively regulates immune systems in tomato plants. The expression of MSTRG18363 in tomato leaves was significantly induced by SL18r inoculation. The transcription of MSTRG18363 was negatively correlated with the expression of miR1918, but displayed a positive correlation with the transcription of the RING-H2 finger gene SlATL20 (a target gene of miR1918). Moreover, MSTRG18363-overexpressing plants exhibited the enhanced disease resistance, reduction of miR1918 transcripts, and marked increases of SlATL20 expression. However, the SL18r-induced disease resistance was largely impaired in the MSTRG18363-silenced plants. VIGS-mediated SlATL20 silencing also greatly weakened the SL18r-induced disease resistance. Collectively, our results suggested that induction of MSTRG18363 expression in tomato plants by SL18r was conducive to promoting the decoy of miR1918 and regulating the expression of SlATL20, thereby provoking the ISR responses against foliar pathogen infection.
Collapse
Affiliation(s)
- Cheng Zhou
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
| | - Jingjing Zhu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
| | - Nana Qian
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
| | - Jiansheng Guo
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Congsheng Yan
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
65
|
Zhou X, Cui J, Meng J, Luan Y. Interactions and links among the noncoding RNAs in plants under stresses. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:3235-3248. [PMID: 33025081 DOI: 10.1007/s00122-020-03690-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/16/2020] [Indexed: 05/11/2023]
Abstract
The complex interplay among sRNAs, lncRNAs and circRNAs has been implicated in plants under biotic and abiotic stresses. Here, we review current advances in our understanding of ncRNA interactions and links, which have considerable potential for improving the agronomic traits and the environmental adaptability of plants. Plants can respond to biotic or abiotic stresses. To cope with various conditions, numerous intricate molecular regulatory mechanisms have evolved in plants. Noncoding RNAs (ncRNAs) can be divided into small noncoding RNAs (sRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs). Emerging evidence has demonstrated that interplay among the ncRNAs acts as a novel layer in the regulatory mechanisms, which has attracted substantial interest. Links between sRNAs can affect plant immune responses and development in synergistic or antagonistic manners. Additionally, multiple interactions between lncRNAs and sRNAs are involved in crop breeding, disease resistance and high tolerance to environmental stresses. Here, we summarize current knowledge of the interactions and links among the ncRNAs in plant responses to stresses and the methods for identifying ncRNA interactions. Furthermore, challenges and prospects for further progress in elucidating ncRNA interactions and links are highlighted.
Collapse
Affiliation(s)
- Xiaoxu Zhou
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Jun Cui
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
66
|
Summanwar A, Basu U, Kav NNV, Rahman H. Identification of lncRNAs in response to infection by Plasmodiophora brassicae in Brassica napus and development of lncRNA-based SSR markers. Genome 2020; 64:547-566. [PMID: 33170735 DOI: 10.1139/gen-2020-0062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Clubroot resistance in spring canola has been introgressed from different Brassica sources; however, molecular mechanism underlying this resistance, especially the involvement of long non-coding RNAs (lncRNAs), is yet to be understood. We identified 464 differentially expressed (DE) lncRNAs from the roots of clubroot-resistant canola, carrying resistance on chromosome BnaA03, and susceptible canola lines challenged with Plasmodiophora brassicae pathotype 3. Pathway enrichment analysis showed that most of the target genes regulated by these DE lncRNAs belonged to plant-pathogen interaction and hormone signaling, as well as primary and secondary metabolic pathways. Comparative analysis of these lncRNAs with 530 previously reported DE lncRNAs, identified using resistance located on BnaA08, detected 12 lncRNAs that showed a similar trend of upregulation in both types of resistant lines; these lncRNAs probably play a fundamental role in clubroot resistance. We identified SSR markers within 196 DE lncRNAs. Genotyping of two DH populations carrying resistance on BnaA03 identified a marker capable of detecting the resistance in 98% of the DH lines. To our knowledge, this is the first report of the identification of SSRs within lncRNAs responsive to P. brassicae infection, demonstrating the potential use of lncRNAs in the breeding of Brassica crops.
Collapse
Affiliation(s)
- Aarohi Summanwar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Urmila Basu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Nat N V Kav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Habibur Rahman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| |
Collapse
|
67
|
Kang Q, Meng J, Cui J, Luan Y, Chen M. PmliPred: a method based on hybrid model and fuzzy decision for plant miRNA-lncRNA interaction prediction. Bioinformatics 2020; 36:2986-2992. [PMID: 32087005 DOI: 10.1093/bioinformatics/btaa074] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/18/2019] [Accepted: 01/27/2020] [Indexed: 12/28/2022] Open
Abstract
MOTIVATION The studies have indicated that not only microRNAs (miRNAs) or long non-coding RNAs (lncRNAs) play important roles in biological activities, but also their interactions affect the biological process. A growing number of studies focus on the miRNA-lncRNA interactions, while few of them are proposed for plant. The prediction of interactions is significant for understanding the mechanism of interaction between miRNA and lncRNA in plant. RESULTS This article proposes a new method for fulfilling plant miRNA-lncRNA interaction prediction (PmliPred). The deep learning model and shallow machine learning model are trained using raw sequence and manually extracted features, respectively. Then they are hybridized based on fuzzy decision for prediction. PmliPred shows better performance and generalization ability compared with the existing methods. Several new miRNA-lncRNA interactions in Solanum lycopersicum are successfully identified using quantitative real time-polymerase chain reaction from the candidates predicted by PmliPred, which further verifies its effectiveness. AVAILABILITY AND IMPLEMENTATION The source code of PmliPred is freely available at http://bis.zju.edu.cn/PmliPred/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Qiang Kang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jun Cui
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Ming Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
68
|
Shrestha N, Bujarski JJ. Long Noncoding RNAs in Plant Viroids and Viruses: A Review. Pathogens 2020; 9:E765. [PMID: 32961969 PMCID: PMC7559573 DOI: 10.3390/pathogens9090765] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Infectious long-noncoding (lnc) RNAs related to plants can be of both viral and non-viral origin. Viroids are infectious plant lncRNAs that are not related to viruses and carry the circular, single-stranded, non-coding RNAs that replicate with host enzymatic activities via a rolling circle mechanism. Viroids interact with host processes in complex ways, emerging as one of the most productive tools for studying the functions of lncRNAs. Defective (D) RNAs, another category of lnc RNAs, are found in a variety of plant RNA viruses, most of which are noncoding. These are derived from and are replicated by the helper virus. D RNA-virus interactions evolve into mutually beneficial combinations, enhancing virus fitness via competitive advantages of moderated symptoms. Yet the satellite RNAs are single-stranded and include either large linear protein-coding ss RNAs, small linear ss RNAs, or small circular ss RNAs (virusoids). The satellite RNAs lack sequence homology to the helper virus, but unlike viroids need a helper virus to replicate and encapsidate. They can attenuate symptoms via RNA silencing and enhancement of host defense, but some can be lethal as RNA silencing suppressor antagonists. Moreover, selected viruses produce lncRNAs by incomplete degradation of genomic RNAs. They do not replicate but may impact viral infection, gene regulation, and cellular functions. Finally, the host plant lncRNAs can also contribute during plant-virus interactions, inducing plant defense and the regulation of gene expression, often in conjunction with micro and/or circRNAs.
Collapse
Affiliation(s)
- Nipin Shrestha
- Department of Biological Sciences and Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL 60115, USA
| | - Józef J. Bujarski
- Department of Biological Sciences and Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL 60115, USA
| |
Collapse
|
69
|
Jiang N, Cui J, Hou X, Yang G, Xiao Y, Han L, Meng J, Luan Y. Sl-lncRNA15492 interacts with Sl-miR482a and affects Solanum lycopersicum immunity against Phytophthora infestans. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1561-1574. [PMID: 32432801 DOI: 10.1111/tpj.14847] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 05/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) are involved in the resistance of plants to infection by pathogens via interactions with microRNAs (miRNAs). Long non-coding RNAs are cleaved by miRNAs to produce phased small interfering RNAs (phasiRNAs), which, as competing endogenous RNAs (ceRNAs), function as decoys for mature miRNAs, thus inhibiting their expression, and contain pre-miRNA sequences to produce mature miRNAs. However, whether lncRNAs and miRNAs mediate other molecular mechanisms during plant resistance to pathogens is unknown. In this study, as a positive regulator, Sl-lncRNA15492 from tomato (Solanum lycopersicum Zaofen No. 2) plants affected tomato resistance to Phytophthora infestans. Gain- and loss-of-function experiments and RNA ligase-mediated 5'-amplification of cDNA ends (RLM-5' RACE) also revealed that Sl-miR482a was negatively involved in tomato resistance by targeting Sl-NBS-LRR genes and that silencing of Sl-NBS-LRR1 decreased tomato resistance. Sl-lncRNA15492 inhibited the expression of mature Sl-miR482a, whose precursor was located within the antisense sequence of Sl-lncRNA15492. Further degradome analysis and additional RLM-5' RACE experiments verified that mature Sl-miR482a could also cleave Sl-lncRNA15492. These results provide a mechanism by which lncRNAs might inhibit precursor miRNA expression through antisense strands of lncRNAs, and demonstrate that Sl-lncRNA15492 and Sl-miR482a mutually inhibit the maintenance of Sl-NBS-LRR1 homeostasis during tomato resistance to P. infestans.
Collapse
Affiliation(s)
- Ning Jiang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Jun Cui
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Xinxin Hou
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Guanglei Yang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Yu Xiao
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Lu Han
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
70
|
Summanwar A, Basu U, Rahman H, Kav NNV. Non-coding RNAs as emerging targets for crop improvement. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110521. [PMID: 32563460 DOI: 10.1016/j.plantsci.2020.110521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 05/23/2023]
Abstract
Food security is affected by climate change, population growth, as well as abiotic and biotic stresses. Conventional and molecular marker assisted breeding and genetic engineering techniques have been employed extensively for improving resistance to biotic stress in crop plants. Advances in next-generation sequencing technologies have permitted the exploration and identification of parts of the genome that extend beyond the regions with protein coding potential. These non-coding regions of the genome are transcribed to generate many types of non-coding RNAs (ncRNAs). These ncRNAs are involved in the regulation of growth, development, and response to stresses at transcriptional and translational levels. ncRNAs, including long ncRNAs (lncRNAs), small RNAs and circular RNAs have been recognized as important regulators of gene expression in plants and have been suggested to play important roles in plant immunity and adaptation to abiotic and biotic stresses. In this article, we have reviewed the current state of knowledge with respect to lncRNAs and their mechanism(s) of action as well as their regulatory functions, specifically within the context of biotic stresses. Additionally, we have provided insights into how our increased knowledge about lncRNAs may be used to improve crop tolerance to these devastating biotic stresses.
Collapse
Affiliation(s)
- Aarohi Summanwar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada
| | - Urmila Basu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada
| | - Habibur Rahman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada.
| | - Nat N V Kav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
71
|
Tian H, Guo F, Zhang Z, Ding H, Meng J, Li X, Peng Z, Wan S. Discovery, identification, and functional characterization of long noncoding RNAs in Arachis hypogaea L. BMC PLANT BIOLOGY 2020; 20:308. [PMID: 32615935 PMCID: PMC7330965 DOI: 10.1186/s12870-020-02510-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/22/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs), which are typically > 200 nt in length, are involved in numerous biological processes. Studies on lncRNAs in the cultivated peanut (Arachis hypogaea L.) largely remain unknown. RESULTS A genome-wide scan of the peanut (Arachis hypogaea L.) transcriptome identified 1442 lncRNAs, which were encoded by loci distributed over every chromosome. Long intergenic noncoding RNAs accounted for 85.58% of these lncRNAs. Additionally, 189 lncRNAs were differentially abundant in the root, leaf, or seed. Generally, lncRNAs showed lower expression levels, tighter tissue-specific expression, and less splicing than mRNAs. Approximately 44.17% of the lncRNAs with an exon/intron structure were alternatively spliced; this rate was slightly lower than the splicing rate of mRNA. Transcription at the start site event was the alternative splicing (AS) event with the highest frequency (28.05%) in peanut lncRNAs, whereas the occurrence rate (30.19%) of intron retention event was the highest in mRNAs. AS changed the target gene profiles of lncRNAs and increased the diversity and flexibility of lncRNAs, which may be important for lncRNAs to execute their functions. Additionally, a substantial number of the peanut AS isoforms generated from protein-encoding genes appeared to be noncoding because they were truncated transcripts; such isoforms can be legitimately regarded as a class of lncRNAs. The predicted target genes of the lncRNAs were involved in a wide range of biological processes. Furthermore, expression pattern of several selected lncRNAs and their target genes were examined under salt stress, results showed that all of them could respond to salt stress in different manners. CONCLUSIONS This study provided a resource of candidate lncRNAs and expression patterns across tissues, and whether these lncRNAs are functional will be further investigated in our subsequent experiments.
Collapse
Affiliation(s)
- Haiying Tian
- College of Life Science, Shandong University, Jinan, 250014 China
| | - Feng Guo
- Bio-Tech Research Center, Shandong Academy of Agricultural Science/Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan, 250014 China
| | - Zhimeng Zhang
- Peanut Research Institute of Shandong, Qingdao, 266100 China
| | - Hong Ding
- Peanut Research Institute of Shandong, Qingdao, 266100 China
| | - Jingjing Meng
- Bio-Tech Research Center, Shandong Academy of Agricultural Science/Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan, 250014 China
| | - Xinguo Li
- College of Life Science, Shandong University, Jinan, 250014 China
- Bio-Tech Research Center, Shandong Academy of Agricultural Science/Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan, 250014 China
| | - Zhenying Peng
- College of Life Science, Shandong University, Jinan, 250014 China
- Bio-Tech Research Center, Shandong Academy of Agricultural Science/Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan, 250014 China
| | - Shubo Wan
- College of Life Science, Shandong University, Jinan, 250014 China
- Shandong Academy of Agricultural Science, Jinan, 250014 China
| |
Collapse
|
72
|
Ma L, Mu J, Grierson D, Wang Y, Gao L, Zhao X, Zhu B, Luo Y, Shi K, Wang Q, Zuo J. Noncoding RNAs: functional regulatory factors in tomato fruit ripening. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1753-1762. [PMID: 32211918 DOI: 10.1007/s00122-020-03582-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
Tomato has emerged as the model system for investigations into the regulation of fleshy-fruit ripening and senescence, and the ripening process involving the coordinated regulation at the gene/chromatin/epigenetic, transcriptional, post-transcriptional and protein levels. Noncoding RNAs play important roles in fruit ripening as important transcriptional and post-transcriptional regulatory factors. In this review, we systematically summarize the recent advances in the regulation of tomato fruit ripening involved in ethylene biosynthesis and signal transduction, fruit pigment accumulation, fruit flavor and aroma, fruit texture by noncoding RNAs and their coordinate regulatory network model were set up and also suggest future directions for the functional regulations of noncoding RNAs on tomato fruit ripening.
Collapse
Affiliation(s)
- Lili Ma
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Jianlou Mu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Donald Grierson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Yunxiang Wang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China
| | - Lipu Gao
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xiaoyan Zhao
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Benzhong Zhu
- Laboratory of Postharvest Molecular Biology of Fruits and Vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yunbo Luo
- Laboratory of Postharvest Molecular Biology of Fruits and Vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China.
| | - Qing Wang
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Jinhua Zuo
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
73
|
Xue L, Sun M, Wu Z, Yu L, Yu Q, Tang Y, Jiang F. LncRNA regulates tomato fruit cracking by coordinating gene expression via a hormone-redox-cell wall network. BMC PLANT BIOLOGY 2020; 20:162. [PMID: 32293294 PMCID: PMC7161180 DOI: 10.1186/s12870-020-02373-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/31/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND Fruit cracking occurs easily under unsuitable environmental conditions and is one of the main types of damage that occurs in fruit production. It is widely accepted that plants have developed defence mechanisms and regulatory networks that respond to abiotic stress, which involves perceiving, integrating and responding to stress signals by modulating the expression of related genes. Fruit cracking is also a physiological disease caused by abiotic stress. It has been reported that a single or several genes may regulate fruit cracking. However, almost none of these reports have involved cracking regulatory networks. RESULTS Here, RNA expression in 0 h, 8 h and 30 h saturated irrigation-treated fruits from two contrasting tomato genotypes, 'LA1698' (cracking-resistant, CR) and 'LA2683' (cracking-susceptible, CS), was analysed by mRNA and lncRNA sequencing. The GO pathways of the differentially expressed mRNAs were mainly enriched in the 'hormone metabolic process', 'cell wall organization', 'oxidoreductase activity' and 'catalytic activity' categories. According to the gene expression analysis, significantly differentially expressed genes included Solyc02g080530.3 (Peroxide, POD), Solyc01g008710.3 (Mannan endo-1,4-beta-mannosidase, MAN), Solyc08g077910.3 (Expanded, EXP), Solyc09g075330.3 (Pectinesterase, PE), Solyc07g055990.3 (Xyloglucan endotransglucosylase-hydrolase 7, XTH7), Solyc12g011030.2 (Xyloglucan endotransglucosylase-hydrolase 9, XTH9), Solyc10g080210.2 (Polygalacturonase-2, PG2), Solyc08g081010.2 (Gamma-glutamylcysteine synthetase, gamma-GCS), Solyc09g008720.2 (Ethylene receptor, ER), Solyc11g042560.2 (Ethylene-responsive transcription factor 4, ERF4) etc. In addition, the lncRNAs (XLOC_16662 and XLOC_033910, etc) regulated the expression of their neighbouring genes, and genes related to tomato cracking were selected to construct a lncRNA-mRNA network influencing tomato cracking. CONCLUSIONS This study provides insight into the responsive network for water-induced cracking in tomato fruit. Specifically, lncRNAs regulate the hormone-redox-cell wall network, including plant hormone (auxin, ethylene) and ROS (H2O2) signal transduction and many cell wall-related mRNAs (EXP, PG, XTH), as well as some lncRNAs (XLOC_16662 and XLOC_033910, etc.).
Collapse
Affiliation(s)
- Lingzi Xue
- College of Horticulture, Nanjing Agricultural University, Weigang NO 1, Nanjing, 210095 Xuanwu District China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, 210095 China
| | - Mintao Sun
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun South St, Beijing, 10081 Haidian District China
| | - Zhen Wu
- College of Horticulture, Nanjing Agricultural University, Weigang NO 1, Nanjing, 210095 Xuanwu District China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, 210095 China
| | - Lu Yu
- College of Horticulture, Nanjing Agricultural University, Weigang NO 1, Nanjing, 210095 Xuanwu District China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, 210095 China
| | - Qinghui Yu
- Institute of Vegetables, Xinjiang Academy of Agricultural Sciences, Nanchang Road 403, Urumchi, 830091 Shayibake District China
| | - Yaping Tang
- Institute of Vegetables, Xinjiang Academy of Agricultural Sciences, Nanchang Road 403, Urumchi, 830091 Shayibake District China
| | - Fangling Jiang
- College of Horticulture, Nanjing Agricultural University, Weigang NO 1, Nanjing, 210095 Xuanwu District China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, 210095 China
| |
Collapse
|
74
|
The Emerging Role of Long Non-Coding RNAs in Plant Defense Against Fungal Stress. Int J Mol Sci 2020; 21:ijms21082659. [PMID: 32290420 PMCID: PMC7215362 DOI: 10.3390/ijms21082659] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/31/2022] Open
Abstract
Growing interest and recent evidence have identified long non-coding RNA (lncRNA) as the potential regulatory elements for eukaryotes. LncRNAs can activate various transcriptional and post-transcriptional events that impact cellular functions though multiple regulatory functions. Recently, a large number of lncRNAs have also been identified in higher plants, and an understanding of their functional role in plant resistance to infection is just emerging. Here, we focus on their identification in crop plant, and discuss their potential regulatory functions and lncRNA-miRNA-mRNA network in plant pathogen stress responses, referring to possible examples in a model plant. The knowledge gained from a deeper understanding of this colossal special group of plant lncRNAs will help in the biotechnological improvement of crops.
Collapse
|
75
|
Non-coding RNAs having strong positive interaction with mRNAs reveal their regulatory nature during flowering in a wild relative of pigeonpea (Cajanus scarabaeoides). Mol Biol Rep 2020; 47:3305-3317. [PMID: 32248382 DOI: 10.1007/s11033-020-05400-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/25/2020] [Indexed: 12/19/2022]
Abstract
In higher plants, flower development is a result of crosstalk between many factors like photoperiod, vernalization, hormone concentration, epigenetic modification etc. and is also regulated by non-coding RNAs (ncRNAs). In the present study, we are reporting the involvement of long non-coding RNAs (lncRNAs) and miRNAs during the process of flower development in Cajanus scarabaeoides, an important wild relative of pigeonpea. The transcriptome of floral and leaf tissues revealed a total of 1672 lncRNAs and 57 miRNAs being expressed during flower development. Prediction analysis of identified lncRNAs showed that 1593 lncRNAs were targeting 3420 mRNAs and among these, 98 were transcription factors (TFs) belonging to 48 groups. All the identified 57 miRNAs were novel, suggesting their genera specificity. Prediction of the secondary structure of lncRNAs and miRNAs followed by interaction analysis revealed that 199 lncRNAs could interact with 47 miRNAs where miRNAs were acting in the root of interaction. Gene Ontology of the ncRNAs and their targets showed the potential role of lncRNAs and miRNAs in the flower development of C. scarabaeoides. Among the identified interactions, 17 lncRNAs were endogenous target mimics (eTMs) for miRNAs that target flowering-related transcription factors. Expression analysis of identified transcripts revealed that higher expression of Csa-lncRNA_1231 in the bud sequesters Csa-miRNA-156b by indirectly mimicking the miRNA and leading to increased expression of flower-specific SQUAMOSA promoter-binding protein-like (SPL-12) TF indicating their potential role in flower development. The present study will help in understanding the molecular regulatory mechanism governing the induction of flowering in C. scarabaeoides.
Collapse
|
76
|
Hou X, Cui J, Liu W, Jiang N, Zhou X, Qi H, Meng J, Luan Y. LncRNA39026 Enhances Tomato Resistance to Phytophthora infestans by Decoying miR168a and Inducing PR Gene Expression. PHYTOPATHOLOGY 2020; 110:873-880. [PMID: 31876247 DOI: 10.1094/phyto-12-19-0445-r] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Our previous study has indicated that a long noncoding RNA (lncRNA), lncRNA39026, can be responsive to Phytophthora infestans infection. However, the function and regulation mechanism of lncRNA39026 during tomato resistance to P. infestans are unknown. In this study, an lncRNA39026 sequence was cloned from tomato Zaofen No. 2, and this sequence contained an endogenous target mimicry for miR168a, which might suppress the expression of miR168a. LncRNA39026 was strongly downregulated at 3 h in the tomato plants infected with P. infestans, and its expression level displayed a negative correlation with the expression level of miR168a and a positive correlation with the expression levels of SlAGO1 genes (target gene of miR168a) upon P. infestans infection. Tomato plants in which lncRNA39026 was overexpressed displayed enhanced resistance to P. infestans, decreased level of miR168a, and increased level of SlAGO1, whereas the resistance was impaired, level of miR168a was increased, and level of SlAGO1 was decreased after lncRNA39026 silencing. In addition, lncRNA39026 could also induce the expression of pathogenesis-related (PR) genes, as shown by increased and decreased expression levels of PR genes in tomato plants with overexpressed and silenced lncRNA39026, respectively. The result demonstrated that lncRNA39026 might function to decoy miR168a and affect the expression of PR genes in tomato plants, increasing resistance to disease.
Collapse
Affiliation(s)
- Xinxin Hou
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jun Cui
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Weiwei Liu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Ning Jiang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaoxu Zhou
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Hongyan Qi
- College of Horticulture, Shenyang Agricultural University/Key Laboratory of Protected Horticulture, Ministry of Education/Northern National & Local Joint Engineering Research Center of Horticultural Facilities Design and Application Technology (Liaoning), Shenyang 110866, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
77
|
Sun Y, Zhang H, Fan M, He Y, Guo P. Genome-wide identification of long non-coding RNAs and circular RNAs reveal their ceRNA networks in response to cucumber green mottle mosaic virus infection in watermelon. Arch Virol 2020; 165:1177-1190. [PMID: 32232674 DOI: 10.1007/s00705-020-04589-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/11/2020] [Indexed: 01/21/2023]
Abstract
Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) play vital roles in plant defense responses against viral infections. However, there is no systematic understanding of lncRNAs and circRNAs and their competing endogenous RNA (ceRNA) networks in watermelon under cucumber green mottle mosaic virus (CGMMV) stress. Here, we present the characterization and expression profiles of lncRNAs and circRNAs in watermelon leaves 48-h post-inoculation (48 hpi) with CGMMV, with mock inoculation as a control. Deep sequencing analysis revealed 2373 lncRNAs and 606 circRNAs in the two libraries. Among them, 67 lncRNAs (40 upregulated and 27 downregulated) and 548 circRNAs (277 upregulated and 271 downregulated) were differentially expressed (DE) in the 48 hpi library compared with the control library. Furthermore, 263 cis-acting matched lncRNA-mRNA pairs were detected for 49 of the DE-lncRNAs. KEGG pathway analysis of the cis target genes of the DE-lncRNAs revealed significant associations with phenylalanine metabolism, the citrate cycle (TCA cycle), and endocytosis. Additionally, 30 DE-lncRNAs were identified as putative target mimics of 33 microRNAs (miRNAs), and 153 DE-circRNAs were identified as putative target mimics of 88 miRNAs. Furthermore, ceRNA networks of lncRNA/circRNA-miRNA-mRNA in response to CGMMV infection are described, with 12 DE-lncRNAs and 65 DE-circRNAs combining with 22 miRNAs and competing for the miRNA binding sites on 29 mRNAs. The qRT-PCR validation of selected lncRNAs and circRNAs showed a general correlation with the high-throughput sequencing results. This study provides a valuable resource of lncRNAs and circRNAs involved in the response to CGMMV infection in watermelon.
Collapse
Affiliation(s)
- Yuyan Sun
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Huiqing Zhang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Min Fan
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Yanjun He
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Pingan Guo
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
78
|
Jannesar M, Seyedi SM, Moazzam Jazi M, Niknam V, Ebrahimzadeh H, Botanga C. A genome-wide identification, characterization and functional analysis of salt-related long non-coding RNAs in non-model plant Pistacia vera L. using transcriptome high throughput sequencing. Sci Rep 2020; 10:5585. [PMID: 32221354 PMCID: PMC7101358 DOI: 10.1038/s41598-020-62108-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/09/2020] [Indexed: 11/09/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play crucial roles in regulating gene expression in response to plant stresses. Given the importance regulatory roles of lncRNAs, providing methods for predicting the function of these molecules, especially in non-model plants, is strongly demanded by researchers. Here, we constructed a reference sequence for lncRNAs in P. vera (Pistacia vera L.) with 53220 transcripts. In total, we identified 1909 and 2802 salt responsive lncRNAs in Ghazvini, a salt tolerant cultivar, after 6 and 24 h salt treatment, respectively and 1820 lncRNAs in Sarakhs, a salt sensitive cultivar, after 6 h salt treatment. Functional analysis of these lncRNAs by several hybrid methods, revealed that salt responsive NAT-related lncRNAs associated with transcription factors, CERK1, LEA, Laccase genes and several genes involved in the hormone signaling pathways. Moreover, gene ontology (GO) enrichment analysis of salt responsive target genes related to top five selected lncRNAs showed their involvement in the regulation of ATPase, cation transporter, kinase and UDP-glycosyltransferases genes. Quantitative real-time PCR (qRT-PCR) experiment results of lncRNAs, pre-miRNAs and mature miRNAs were in accordance with our RNA-seq analysis. In the present study, a comparative analysis of differentially expressed lncRNAs and microRNA precursors between salt tolerant and sensitive pistachio cultivars provides valuable knowledge on gene expression regulation under salt stress condition.
Collapse
Affiliation(s)
- Masoomeh Jannesar
- Department of Plant Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Seyed Mahdi Seyedi
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | - Maryam Moazzam Jazi
- Research Institute for Endocrine Science (RIES), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Niknam
- Department of Plant Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Hassan Ebrahimzadeh
- Department of Plant Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Christopher Botanga
- Department of Biological Sciences, Chicago State University, Chicago, Illinois, United States of America
| |
Collapse
|
79
|
Gao C, Sun J, Dong Y, Wang C, Xiao S, Mo L, Jiao Z. Comparative transcriptome analysis uncovers regulatory roles of long non-coding RNAs involved in resistance to powdery mildew in melon. BMC Genomics 2020; 21:125. [PMID: 32024461 PMCID: PMC7003419 DOI: 10.1186/s12864-020-6546-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/31/2020] [Indexed: 12/23/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs with more than 200 nucleotides in length, which play vital roles in a wide range of biological processes. Powdery mildew disease (PM) has become a major threat to the production of melon. To investigate the potential roles of lncRNAs in resisting to PM in melon, it is necessary to identify lncRNAs and uncover their molecular functions. In this study, we compared the lncRNAs between a resistant and a susceptible melon in response to PM infection. Results It is reported that 11,612 lncRNAs were discovered, which were distributed across all 12 melon chromosomes, and > 85% were from intergenic regions. The melon lncRNAs have shorter transcript lengths and fewer exon numbers than protein-coding genes. In addition, a total of 407 and 611 lncRNAs were found to be differentially expressed after PM infection in PM-susceptible and PM-resistant melons, respectively. Furthermore, 1232 putative targets of differently expressed lncRNAs (DELs) were discovered and gene ontology enrichment (GO) analysis showed that these target genes were mainly enriched in stress-related terms. Consequently, co-expression patterns between LNC_018800 and CmWRKY21, LNC_018062 and MELO3C015771 (glutathione reductase coding gene), LNC_014937 and CmMLO5 were confirmed by qRT-PCR. Moreover, we also identified 24 lncRNAs that act as microRNA (miRNA) precursors, 43 lncRNAs as potential targets of 22 miRNA families and 13 lncRNAs as endogenous target mimics (eTMs) for 11 miRNAs. Conclusion This study shows the first characterization of lncRNAs involved in PM resistance in melon and provides a starting point for further investigation into the functions and regulatory mechanisms of lncRNAs in the resistance to PM.
Collapse
Affiliation(s)
- Chao Gao
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetable, Vegetable Science Observation and Experiment Station in Huang huai District of Ministry of Agriculture (Shandong), Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Jianlei Sun
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetable, Vegetable Science Observation and Experiment Station in Huang huai District of Ministry of Agriculture (Shandong), Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yumei Dong
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetable, Vegetable Science Observation and Experiment Station in Huang huai District of Ministry of Agriculture (Shandong), Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Chongqi Wang
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetable, Vegetable Science Observation and Experiment Station in Huang huai District of Ministry of Agriculture (Shandong), Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Shouhua Xiao
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetable, Vegetable Science Observation and Experiment Station in Huang huai District of Ministry of Agriculture (Shandong), Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Longfei Mo
- College of horticulture, Jilin Agricultural University, Changchun, 130118, China
| | - Zigao Jiao
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetable, Vegetable Science Observation and Experiment Station in Huang huai District of Ministry of Agriculture (Shandong), Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| |
Collapse
|
80
|
Cui J, Jiang N, Hou X, Wu S, Zhang Q, Meng J, Luan Y. Genome-Wide Identification of lncRNAs and Analysis of ceRNA Networks During Tomato Resistance to Phytophthora infestans. PHYTOPATHOLOGY 2020; 110:456-464. [PMID: 31448997 DOI: 10.1094/phyto-04-19-0137-r] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Our previous studies have revealed the function of long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) in tomato in response to Phytophthora infestans infection. However, the interaction relationships between lncRNAs and miRNAs during tomato resistance to P. infestans infection are unknown. In this study, 9,011 lncRNAs were identified from tomato plants, including 115 upregulated and 81 downregulated lncRNAs. Among these, 148 were found to be differentially expressed and might affect the expression of 771 genes, which are composed of 887 matched lncRNA-mRNA pairs. In total, 88 lncRNAs were identified as endogenous RNAs (ceRNAs) and predicted to decoy 46 miRNAs. Degradome sequencing revealed that 11 miRNAs that were decoyed by 20 lncRNAs could target 30 genes. These lncRNAs, miRNAs, and target genes were predicted to form 10 regulatory modules. Among them, lncRNA42705/lncRNA08711, lncRNA39896, and lncRNA11265/lncRNA15816 might modulate MYB, HD-Zip, and NAC transcription factors by decoying miR159, miR166b, and miR164a-5p, respectively. Upon P. infestans infection, the expression levels of lncRNA42705 and lncRNA08711 displayed a negative correlation with the expression level of miR159 and a positive correlation with the expression levels of MYB genes. Tomato plants in which lncRNA42705 and lncRNA08711 were silenced displayed increased levels of miR159 and decreased levels of MYB, respectively. The result demonstrated that lncRNAs might function as ceRNAs to decoy miRNAs and affect their target genes in tomato plants, increasing resistance to disease.
Collapse
Affiliation(s)
- Jun Cui
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Ning Jiang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Xinxin Hou
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Sihan Wu
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Qiang Zhang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
81
|
Zhou X, Cui J, Cui H, Jiang N, Hou X, Liu S, Gao P, Luan Y, Meng J, Luan F. Identification of lncRNAs and their regulatory relationships with target genes and corresponding miRNAs in melon response to powdery mildew fungi. Gene 2020; 735:144403. [PMID: 32004668 DOI: 10.1016/j.gene.2020.144403] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 01/24/2023]
Abstract
Melon (Cucumis melo L.), an economically beneficial crop widely cultivated around the world, is vulnerable to powdery mildew (PM). However, the studies on molecular mechanism of melon response to PM fungi is still limited. Long non coding RNAs (lncRNAs) have emerged as new regulators in plants response to biotic stresses. We predicted and identified the intricate regulatory roles of lncRNAs in melon response to PM fungi. A total of 539 lncRNAs were identified from PM-resistant (MR-1) and susceptible melon (Top Mark), in which 254 were significantly altered after PM fungi infection. Multiple target genes of lncRNAs were found to be involved in the hydrolysis of chitin, callose deposition and cell wall thickening, plant-pathogen interaction and plant hormone signal transduction pathway. Additionally, a total of 42 lncRNAs possess the various functions with microRNAs (miRNAs), including lncRNAs that are targeted by miRNAs and function as miRNA precursors or miRNA sponges. These findings provide a comprehensive view of potentially functional lncRNAs, corresponding target genes and related lncRNA-miRNA pairs, which will greatly increase our knowledge of the mechanism underlying susceptibility and resistance to PM in melon.
Collapse
Affiliation(s)
- Xiaoxu Zhou
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jun Cui
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Haonan Cui
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Ning Jiang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Xinxin Hou
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Shi Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Peng Gao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Feishi Luan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
82
|
Zhu C, Zhang S, Fu H, Zhou C, Chen L, Li X, Lin Y, Lai Z, Guo Y. Transcriptome and Phytochemical Analyses Provide New Insights Into Long Non-Coding RNAs Modulating Characteristic Secondary Metabolites of Oolong Tea ( Camellia sinensis) in Solar-Withering. FRONTIERS IN PLANT SCIENCE 2019; 10:1638. [PMID: 31929782 PMCID: PMC6941427 DOI: 10.3389/fpls.2019.01638] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/20/2019] [Indexed: 05/08/2023]
Abstract
Oolong tea is a popular and semi-fermented beverage. During the processing of tea leaves, withering is the first indispensable process for improving flavor. However, the roles of long non-coding RNAs (lncRNAs) and the characteristic secondary metabolites during the withering of oolong tea leaves remain unknown. In this study, phytochemical analyses indicated that total polyphenols, flavonoids, catechins, epigallocatechin (EGC), catechin gallate (CG), gallocatechin gallate (GCG), epicatechin gallate (ECG), and epigallocatechin gallate (EGCG) were all less abundant in the solar-withered leaves (SW) than in the fresh leaves (FL) and indoor-withered leaves (IW). In contrast, terpenoid, jasmonic acid (JA), and methyl jasmonate (MeJA) contents were higher in the SW than in the FL and IW. By analyzing the transcriptome data, we detected 32,036 lncRNAs. On the basis of the Kyoto Encyclopedia of Genes and Genomes analysis, the flavonoid metabolic pathway, the terpenoid metabolic pathway, and the JA/MeJA biosynthesis and signal transduction pathway were enriched pathways. Additionally, 63 differentially expressed lncRNAs (DE-lncRNAs) and 23 target genes were identified related to the three pathways. A comparison of the expression profiles of the DE-lncRNAs and their target genes between the SW and IW revealed four up-regulated genes (FLS, CCR, CAD, and HCT), seven up-regulated lncRNAs, four down-regulated genes (4CL, CHI, F3H, and F3'H), and three down-regulated lncRNAs related to flavonoid metabolism; nine up-regulated genes (DXS, CMK, HDS, HDR, AACT, MVK, PMK, GGPPS, and TPS), three up-regulated lncRNAs, and six down-regulated lncRNAs related to terpenoid metabolism; as well as six up-regulated genes (LOX, AOS, AOC, OPR, ACX, and MFP2), four up-regulated lncRNAs, and three down-regulated lncRNAs related to JA/MeJA biosynthesis and signal transduction. These results suggested that the expression of DE-lncRNAs and their targets involved in the three pathways may be related to the low abundance of the total polyphenols, flavonoids, and catechins (EGC, CG, GCG, ECG, and EGCG) and the high abundance of terpenoids in the SW. Moreover, solar irradiation, high JA and MeJA contents, and the endogenous target mimic (eTM)-related regulatory mechanism in the SW were also crucial for increasing the terpenoid levels. These findings provide new insights into the greater contribution of solar-withering to the high-quality flavor of oolong tea compared with the effects of indoor-withering.
Collapse
Affiliation(s)
- Chen Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuting Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haifeng Fu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chengzhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lan Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaozhen Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuling Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuqiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
83
|
Zhang B, Zhang X, Zhang M, Guo L, Qi T, Wang H, Tang H, Qiao X, Shahzad K, Xing C, Wu J. Transcriptome Analysis Implicates Involvement of Long Noncoding RNAs in Cytoplasmic Male Sterility and Fertility Restoration in Cotton. Int J Mol Sci 2019; 20:ijms20225530. [PMID: 31698756 PMCID: PMC6888562 DOI: 10.3390/ijms20225530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022] Open
Abstract
The cytoplasmic male sterility (CMS)/restorer-of-fertility system is an important tool to exploit heterosis during commercially hybrid seed production. The importance of long noncoding RNAs (lncRNAs) in plant development is recognized, but few analyses of lncRNAs during anther development of three-line hybrid cotton (CMS-D2 line A, maintainer line B, restorer-of-fertility line R) have been reported. Here, we performed transcriptome sequencing during anther development in three-line hybrid cotton. A total of 80,695 lncRNAs were identified, in which 43,347 and 44,739 lncRNAs were differentially expressed in A–B and A–R comparisons, respectively. These lncRNAs represent functional candidates involved in CMS and fertility restoration. GO analysis indicated that cellular hormone metabolic processes and oxidation–reduction reaction processes might be involved in CMS, and cellular component morphogenesis and small molecular biosynthetic processes might participate in fertility restoration. Additionally, 63 lncRNAs were identified as putative precursors of 35 miRNAs, and quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed a similar expression pattern to RNA-seq data. Furthermore, construction of lncRNA regulatory networks indicated that several miRNA–lncRNA–mRNA networks might be involved in CMS and fertility restoration. Our findings provide systematic identification of lncRNAs during anther development and lays a solid foundation for the regulatory mechanisms and utilization in hybrid cotton breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Chaozhu Xing
- Correspondence: (C.X.); (J.W.); Tel.: +86-372-256-2371 (C.X.); +86-372-256-2288 (J.W.)
| | - Jianyong Wu
- Correspondence: (C.X.); (J.W.); Tel.: +86-372-256-2371 (C.X.); +86-372-256-2288 (J.W.)
| |
Collapse
|
84
|
Yang T, Ma H, Zhang J, Wu T, Song T, Tian J, Yao Y. Systematic identification of long noncoding RNAs expressed during light-induced anthocyanin accumulation in apple fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:572-590. [PMID: 31344284 DOI: 10.1111/tpj.14470] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/27/2019] [Accepted: 07/09/2019] [Indexed: 05/23/2023]
Abstract
Anthocyanin pigments contribute to the red color of apple (Malus × domestica) fruit and have a major influence on their ornamental, dietary and market value. In this study, we investigated the potential role of long noncoding RNAs (lncRNAs) in anthocyanin biosynthesis. RNA-seq analysis of apple peels from the 'Red Fuji' cultivar during light-induced rapid anthocyanin accumulation revealed 5297 putative lncRNAs. Differential expression analysis further showed that lncRNAs were induced during light treatment and were involved in photosynthesis. Using the miRNA-lncRNA-mRNA network and endogenous target mimic (eTM) analysis, we predicted that two differentially expressed lncRNAs, MLNC3.2 and MLNC4.6, were potential eTMs for miRNA156a and promoted the expression of the SPL2-like and SPL33 transcription factors. Transient expression in apple fruit and stable transformation of apple callus showed that overexpression of the eTMs and SPLs promoted anthocyanin accumulation, with the opposite results in eTM and SPL-silenced fruit. Silencing or overexpressing of miR156a also affected the expression of the identified eTMs and SPLs. These results indicated that MLNC3.2 and MLNC4.6 function as eTMs for miR156a and prevent cleavage of SPL2-like and SPL33 by miR156a during light-induced anthocyanin biosynthesis. Our study provides fundamental insights into lncRNA involvement in the anthocyanin biosynthetic pathway in apple fruit.
Collapse
Affiliation(s)
- Tuo Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
- National Demonstration Center for Experimental Plant Production Education (Beijing University of Agriculture), Beijing, China
| | - Huaying Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
- National Demonstration Center for Experimental Plant Production Education (Beijing University of Agriculture), Beijing, China
| | - Jie Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
- National Demonstration Center for Experimental Plant Production Education (Beijing University of Agriculture), Beijing, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Tingting Song
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Ji Tian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
- National Demonstration Center for Experimental Plant Production Education (Beijing University of Agriculture), Beijing, China
| | - Yuncong Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
- National Demonstration Center for Experimental Plant Production Education (Beijing University of Agriculture), Beijing, China
| |
Collapse
|
85
|
Chen R, Li M, Zhang H, Duan L, Sun X, Jiang Q, Zhang H, Hu Z. Continuous salt stress-induced long non-coding RNAs and DNA methylation patterns in soybean roots. BMC Genomics 2019; 20:730. [PMID: 31606033 PMCID: PMC6790039 DOI: 10.1186/s12864-019-6101-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/12/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Environmental stimuli can activate a series of physiological and biochemical responses in plants accompanied by extensive transcriptional reprogramming. Long non-coding RNAs (lncRNAs), as versatile regulators, control gene expression in multiple ways and participate in the adaptation to biotic and abiotic stresses. RESULTS In this study, soybean seedlings were continuously cultured for 15 days with high salinity solutions started from seed germination. Strand-specific whole transcriptome sequencing and stringent bioinformatic analysis led to the identification of 3030 long intergenic non-coding RNAs (lincRNAs) and 275 natural antisense transcripts (lncNATs) in soybean roots. In contrast to mRNAs, newly identified lncRNAs exhibited less exons, similar AU content to UTRs, even distribution across the genome and low evolutionary conservation. Remarkably, more than 75% of discovered lncRNAs that were activated or up-regulated by continuous salt stress mainly targeted proteins with binding and catalytic activities. Furthermore, two DNA methylation maps with single-base resolution were generated by using reduced representation bisulfite sequencing, offering a genome-wide perspective and important clues for epigenetic regulation of stress-associated lncRNAs and protein-coding genes. CONCLUSIONS Taken together, our findings systematically demonstrated the characteristics of continuous salt stress-induced lncRNAs and extended the knowledge of corresponding methylation profiling, providing valuable evidence for a better understanding of how plants cope with long-term salt stress circumstances.
Collapse
Affiliation(s)
- Rui Chen
- Tianjin Institute of Agricultural Quality Standard and Testing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.
| | - Ming Li
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Huiyuan Zhang
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lijin Duan
- Tianjin Institute of Agricultural Quality Standard and Testing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Xianjun Sun
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiyan Jiang
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui Zhang
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zheng Hu
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
86
|
Summanwar A, Basu U, Rahman H, Kav N. Identification of lncRNAs Responsive to Infection by Plasmodiophora brassicae in Clubroot-Susceptible and -Resistant Brassica napus Lines Carrying Resistance Introgressed from Rutabaga. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1360-1377. [PMID: 31090490 DOI: 10.1094/mpmi-12-18-0341-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Clubroot disease, caused by Plasmodiophora brassicae Woronin, is a major threat to the production of Brassica' crops. Resistance to different P. brassicae pathotypes has been reported in the A genome, chromosome A08; however, the molecular mechanism of this resistance, especially the involvement of long noncoding RNAs (lncRNAs), is not understood. We have used a strand-specific lncRNA-Seq approach to catalog lncRNAs from the roots of clubroot-susceptible and -resistant Brassica napus lines. In total, 530 differentially expressed (DE) lncRNAs were identified, including 88% of long intergenic RNAs and 11% natural antisense transcripts. Sixteen lncRNAs were identified as target mimics of the microRNAs (miRNAs) and eight were identified as the precursors of miRNAs. KEGG pathway analysis of the DE lncRNAs showed that the cis-regulated target genes mostly belong to the phenylpropanoid biosynthetic pathway (15%) and plant-pathogen interactions (15%) while the transregulated target genes mostly belong to carbon (18%) and amino acid biosynthesis pathway (19%). In all, 24 DE lncRNAs were identified from chromosome A08, which is known to harbor a quantitative trait locus conferring resistance to different P. brassicae pathotypes; however, eight of these lncRNAs showed expression only in the resistant plants. These results could form the basis for future studies aimed at delineating the roles of lncRNAs in plant-microbe interactions.
Collapse
Affiliation(s)
- Aarohi Summanwar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada
| | - Urmila Basu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada
| | - Habibur Rahman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada
| | - Nat Kav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada
| |
Collapse
|
87
|
Rai MI, Alam M, Lightfoot DA, Gurha P, Afzal AJ. Classification and experimental identification of plant long non-coding RNAs. Genomics 2019; 111:997-1005. [DOI: 10.1016/j.ygeno.2018.04.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 02/07/2023]
|
88
|
Yu Y, Zhang Y, Chen X, Chen Y. Plant Noncoding RNAs: Hidden Players in Development and Stress Responses. Annu Rev Cell Dev Biol 2019; 35:407-431. [PMID: 31403819 DOI: 10.1146/annurev-cellbio-100818-125218] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A large and significant portion of eukaryotic transcriptomes consists of noncoding RNAs (ncRNAs) that have minimal or no protein-coding capacity but are functional. Diverse ncRNAs, including both small RNAs and long ncRNAs (lncRNAs), play essential regulatory roles in almost all biological processes by modulating gene expression at the transcriptional and posttranscriptional levels. In this review, we summarize the current knowledge of plant small RNAs and lncRNAs, with a focus on their biogenesis, modes of action, local and systemic movement, and functions at the nexus of plant development and environmental responses. The complex connections among small RNAs, lncRNAs, and small peptides in plants are also discussed, along with the challenges of identifying and investigating new classes of ncRNAs.
Collapse
Affiliation(s)
- Yu Yu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yuchan Zhang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
| | - Xuemei Chen
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, California 92521, USA;
| | - Yueqin Chen
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
| |
Collapse
|
89
|
Genome-Wide Identification and Characterization of Long Non-Coding RNAs in Peanut. Genes (Basel) 2019; 10:genes10070536. [PMID: 31311183 PMCID: PMC6679159 DOI: 10.3390/genes10070536] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/29/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in various regulatory processes although they do not encode protein. Presently, there is little information regarding the identification of lncRNAs in peanut (Arachis hypogaea Linn.). In this study, 50,873 lncRNAs of peanut were identified from large-scale published RNA sequencing data that belonged to 124 samples involving 15 different tissues. The average lengths of lncRNA and mRNA were 4335 bp and 954 bp, respectively. Compared to the mRNAs, the lncRNAs were shorter, with fewer exons and lower expression levels. The 4713 co-expression lncRNAs (expressed in all samples) were used to construct co-expression networks by using the weighted correlation network analysis (WGCNA). LncRNAs correlating with the growth and development of different peanut tissues were obtained, and target genes for 386 hub lncRNAs of all lncRNAs co-expressions were predicted. Taken together, these findings can provide a comprehensive identification of lncRNAs in peanut.
Collapse
|
90
|
Narnoliya LK, Kaushal G, Singh SP. Long noncoding RNAs and miRNAs regulating terpene and tartaric acid biosynthesis in rose-scented geranium. FEBS Lett 2019; 593:2235-2249. [PMID: 31210363 DOI: 10.1002/1873-3468.13493] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study aimed to explore the noncoding RNAs, which have emerged as key regulatory molecules in biological processes, in rose-scented geranium. We analyzed RNA-seq data revealing 26 784 long noncoding RNAs (lncRNAs) and 871 miRNAs in rose-scented geranium. A total of 466 lncRNAs were annotated using different plant lncRNA public databases. Furthermore, 372 lncRNAs and 99 miRNAs were detected that target terpene and tartarate biosynthetic pathways. An interactome, comprising of lncRNAs, miRNAs, and mRNAs, was constructed that represents a noncoding RNA regulatory network of the target mRNAs. Real-time quantitative PCR expression validation was done for selected lncRNAs involved in the regulation of terpene and tartaric acid pathways. This study provides the first insights into the regulatory functioning of noncoding RNAs in rose-scented geranium.
Collapse
Affiliation(s)
| | - Girija Kaushal
- Center of Innovative and Applied Bioprocessing, S.A.S. Nagar, Mohali, India
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing, S.A.S. Nagar, Mohali, India
| |
Collapse
|
91
|
Şahin-Çevik M, Sivri ED, Çevik B. Identification and Expression Analysis of Genes Induced in Response to Tomato chlorosis virus Infection in Tomato. THE PLANT PATHOLOGY JOURNAL 2019; 35:257-273. [PMID: 31244571 PMCID: PMC6586192 DOI: 10.5423/ppj.oa.12.2018.0287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/10/2019] [Accepted: 03/13/2019] [Indexed: 05/05/2023]
Abstract
Tomato (Solanum lycopersicum) is one of the most widely grown and economically important vegetable crops in the world. Tomato chlorosis virus (ToCV) is one of the recently emerged viruses of tomato distributed worldwide. ToCV-tomato interaction was investigated at the molecular level for determining changes in the expression of tomato genes in response to ToCV infection in this study. A cDNA library enriched with genes induced in response to ToCV infection were constructed and 240 cDNAs were sequenced from this library. The macroarray analysis of 108 cDNAs revealed that the expression of 92 non-redundant tomato genes was induced by 1.5-fold or greater in response to ToCV infection. The majority of ToCV-induced genes identified in this study were associated with a variety of cellular functions including transcription, defense and defense signaling, metabolism, energy, transport facilitation, protein synthesis and fate and cellular biogenesis. Twenty ToCV-induced genes from different functional groups were selected and induction of 19 of these genes in response to ToCV infection was validated by RT-qPCR assay. Finally, the expression of 6 selected genes was analyzed in different stages of ToCV infection from 0 to 45 dpi. While the expression of three of these genes was only induced by ToCV infection, others were induced both by ToCV infection and wounding. The result showed that ToCV induced the basic defense response and activated the defense signaling in tomato plants at different stages of the infection. Functions of these defense related genes and their potential roles in disease development and resistance to ToCV are also discussed.
Collapse
Affiliation(s)
- Mehtap Şahin-Çevik
- Isparta University of Applied Sciences, Faculty of Agricultural Sciences and Technologies, Department of Agricultural Biotechnology, 32260 Isparta,
Turkey
- Corresponding author: Phone) +902462118544, FAX) +902462114885, E-mail)
| | - Emine Doguş Sivri
- Isparta University of Applied Sciences, Faculty of Agricultural Sciences and Technologies, Department of Agricultural Biotechnology, 32260 Isparta,
Turkey
| | - Bayram Çevik
- Isparta University of Applied Sciences, Faculty of Agricultural Sciences and Technologies, Department of Plant Protection, 32260 Isparta,
Turkey
| |
Collapse
|
92
|
Ramesh SV, Govindasamy V, Rajesh MK, Sabana AA, Praveen S. Stress-responsive miRNAome of Glycine max (L.) Merrill: molecular insights and way forward. PLANTA 2019; 249:1267-1284. [PMID: 30798358 DOI: 10.1007/s00425-019-03114-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
MAIN CONCLUSION Analysis of stress-associated miRNAs of Glycine max (L.) Merrill reveals wider ramifications of small RNA-mediated (conserved and legume-specific miRNAs) gene regulatory foot prints in molecular adaptive responses. MicroRNAs (miRNAs) are indispensable components of gene regulatory mechanism of plants. Soybean is a crop of immense commercial potential grown worldwide for its edible oil and soy meal. Intensive research efforts, using the next generation sequencing and bioinformatics techniques, have led to the identification and characterization of numerous small RNAs, especially microRNAs (miRNAs), in soybean. Furthermore, studies have unequivocally demonstrated the significance of miRNAs during the developmental processes and various stresses in soybean. In this review, we summarize the current state of understanding of miRNA-based abiotic and biotic stress responses in soybean. In addition, the molecular insights gained from the stress-related soybean miRNAs have been compared to the miRNAs of other crops, especially legumes, and the core commonalities have been highlighted, though differences among them were not ignored. Nature of response of soybean-derived conserved miRNAs during various stresses was also analyzed to gain deeper insights regarding sRNAome-based defense responses. This review further provides way forward in legume small RNA transcriptomics based on the adaptive responses of soybean and other legume-derived miRNAs.
Collapse
Affiliation(s)
- S V Ramesh
- ICAR-Indian Institute of Soybean Research (ICAR-IISR), Indore, Madhya Pradesh, 452001, India.
- ICAR-Central Plantation Crops Research Institute (ICAR-CPCRI), Kasaragod, Kerala, 671124, India.
| | - V Govindasamy
- ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, 110012, India
| | - M K Rajesh
- ICAR-Central Plantation Crops Research Institute (ICAR-CPCRI), Kasaragod, Kerala, 671124, India
| | - A A Sabana
- ICAR-Central Plantation Crops Research Institute (ICAR-CPCRI), Kasaragod, Kerala, 671124, India
| | - Shelly Praveen
- ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, 110012, India
| |
Collapse
|
93
|
Shi Y, Su Z, Yang H, Wang W, Jin G, He G, Siddique AN, Zhang L, Zhu A, Xue R, Zhang C. Alternative splicing coupled to nonsense-mediated mRNA decay contributes to the high-altitude adaptation of maca (Lepidium meyenii). Gene 2019; 694:7-18. [PMID: 30716438 DOI: 10.1016/j.gene.2018.12.082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 12/25/2018] [Accepted: 12/30/2018] [Indexed: 12/31/2022]
Abstract
Alpine plants remain the least studied plant communities in terrestrial ecosystems. However, how they adapt to high-altitude environments is far from clear. Here, we used RNA-seq to investigate a typical alpine plant maca (Lepidium meyenii) to understand its high-altitude adaptation at transcriptional and post-transcriptional level. At transcriptional level, we found that maca root significantly up-regulated plant immunity genes in day-time comparing to night-time, and up-regulated abiotic (cold/osmotic) stress response genes in Nov and Dec comparing to Oct. In addition, 17 positively selected genes were identified, which could be involved in mitochondrion. At post-transcriptional level, we found that maca had species-specific characterized alternative splicing (AS) profile which could be influenced by stress environments. For example, the alternative 3' splice site events (A3SS, 39.62%) were predominate AS events in maca, rather than intron retention (IR, 23.17%). Interestingly, besides serine/arginine-rich (SR) proteins and long non-coding RNAs (lncRNAs), a lot of components in nonsense-mediated mRNA decay (NMD) were identified under differential alternative splicing (DAS), supporting AS coupled to NMD as essential mechanisms for maca's stress responses and high-altitude adaptation. Taken together, we first attempted to unveil maca's high-altitude adaptation mechanisms based on transcriptome and post-transcriptome evidence. Our data provided valuable insights to understand the high-altitude adaptation of alpine plants.
Collapse
Affiliation(s)
- Yong Shi
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zechun Su
- Alpine Economic Plant Research Institute, Yunnan Academy of Agricultural Sciences, Lijiang, Yunnan 674100, China
| | - Hong Yang
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenzhi Wang
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; School of Life Sciences, Southwest Forestry University, Kunming 650224, China
| | - Guihua Jin
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guiqing He
- Alpine Economic Plant Research Institute, Yunnan Academy of Agricultural Sciences, Lijiang, Yunnan 674100, China
| | - Abu Nasar Siddique
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Department of Biotechnology, Bacha Khan University, Charsadda 24420, Pakistan
| | - Liangsheng Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Andan Zhu
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Runguang Xue
- Alpine Economic Plant Research Institute, Yunnan Academy of Agricultural Sciences, Lijiang, Yunnan 674100, China.
| | - Chengjun Zhang
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
94
|
Identification and functional prediction of cold-related long non-coding RNA (lncRNA) in grapevine. Sci Rep 2019; 9:6638. [PMID: 31036931 PMCID: PMC6488645 DOI: 10.1038/s41598-019-43269-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 04/18/2019] [Indexed: 11/09/2022] Open
Abstract
Plant long non-coding RNA (lncRNA) undergoes dynamic regulation and acts in developmental and stress regulation. In this study, we surveyed the expression dynamics of lncRNAs in grapevine (Vitis vinifera L.) under cold stress using high-throughput sequencing. Two-hundred and three known lncRNAs were significantly up-regulated and 144 known lncRNAs were significantly down-regulated in cold-treated grapevine. In addition, 2 088 novel lncRNA transcripts were identified in this study, with 284 novel lncRNAs significantly up-regulated and 182 novel lncRNAs significantly down-regulated in cold-treated grapevine. Two-hundred and forty-two differentially expressed grapevine lncRNAs were predicted to target 326 protein-coding genes in a cis-regulatory relationship. Many differentially expressed grapevine lncRNAs targeted stress response-related genes, such as CBF4 transcription factor genes, late embryogenesis abundant protein genes, peroxisome biogenesis protein genes, and WRKY transcription factor genes. Sixty-two differentially expressed grapevine lncRNAs were predicted to target 100 protein-coding genes in a trans-regulatory relationship. The expression of overall target genes in both cis and trans-regulatory relationships were positively related to the expression of lncRNAs in grapevines under cold stress. We identified 31 known lncRNAs as 34 grapevine micro RNA (miRNA) precursors and some miRNAs may be derived from multiple lncRNAs. We found 212 lncRNAs acting as targets of miRNAs in grapevines, involving 150 miRNAs; additionally, 120 grapevine genes were predicted as targets of grapevine miRNAs and lncRNAs. We found one gene cluster that was up-regulated and showed the same expression trend. In this cluster, many genes may be involved in abiotic stress response such as WRKY, Hsf, and NAC transcription factor genes.
Collapse
|
95
|
Prasad A, Sharma N, Muthamilarasan M, Rana S, Prasad M. Recent advances in small RNA mediated plant-virus interactions. Crit Rev Biotechnol 2019; 39:587-601. [PMID: 30947560 DOI: 10.1080/07388551.2019.1597830] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Small RNAs (sRNA) are reported to play pivotal roles in the epigenetic and post-transcriptional regulation of gene expression during growth, development, and stress response in plants. Recently, the involvement of two different classes of sRNAs namely, miRNAs (microRNAs), and siRNAs (small interfering RNAs) in biotic stress response has been underlined. Notably, during virus infection, these sRNAs deploy antiviral defense by regulating the gene expression of the modulators of host defense pathways. As a counter defense, viruses have evolved strategic pathways involving the production of suppressors that interfere with the host silencing machinery. This molecular arms race between the sophisticated gene regulatory mechanism of host plants fine-tuned by sRNAs and the defense response exhibited by the virus has gained much attention among the researchers. So far, several reports have been published showing the mechanistic insights on sRNA-regulated defense mechanism in response to virus infection in several crop plants. In this context, our review enumerates the molecular mechanisms underlying host immunity against viruses mediated by sRNAs, the counter defense strategies employed by viruses to surpass this immunogenic response and the advances made in our understanding of plant-virus interactions. Altogether, the report would be insightful for the researchers working to decode the sRNA-mediated defense response in crop plants challenged with virus infection.
Collapse
Affiliation(s)
- Ashish Prasad
- a National Institute of Plant Genome Research , New Delhi , India
| | - Namisha Sharma
- a National Institute of Plant Genome Research , New Delhi , India
| | - Mehanathan Muthamilarasan
- a National Institute of Plant Genome Research , New Delhi , India.,b ICAR-National Research Centre on Plant Biotechnology , New Delhi , India
| | - Sumi Rana
- a National Institute of Plant Genome Research , New Delhi , India.,b ICAR-National Research Centre on Plant Biotechnology , New Delhi , India
| | - Manoj Prasad
- a National Institute of Plant Genome Research , New Delhi , India
| |
Collapse
|
96
|
Xing Q, Zhang W, Liu M, Li L, Li X, Yan J. Genome-Wide Identification of Long Non-coding RNAs Responsive to Lasiodiplodia theobromae Infection in Grapevine. Evol Bioinform Online 2019; 15:1176934319841362. [PMID: 30992656 PMCID: PMC6449811 DOI: 10.1177/1176934319841362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 02/26/2019] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) refer to a class of RNA molecules that are longer
than 200 nucleotides and do not encode proteins. Numerous lncRNAs have recently
emerged as important regulators of many biological processes in animals and
plants, including responses to environmental stress and pathogens.
Botryosphaeria dieback is one of the more severe grapevine
trunk diseases worldwide. However, how lncRNAs function during
Botryosphaeriaceae infection is largely unknown. We performed high-throughput
RNA-sequencing (RNA-seq) of susceptible and more tolerant grapevine cultivars
infected with Lasiodiplodia theobromae. Overall, we predicted
1826 novel candidate lncRNAs, including long intergenic non-coding RNAs
(lincRNAs) and natural antisense transcripts (lncNATs). The data reveal the
functions of a set of lncRNAs that were differentially expressed between the
resistant cultivar Merlot and the susceptible cultivar Cabernet Franc. Several
lncRNAs were predicted to be precursors for grape microRNAs involved in the
L theobromae infection. These results provide new insight
into the lncRNAs of grapevine that are involved in the response to L
theobromae infection.
Collapse
Affiliation(s)
- Qikai Xing
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.,Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Beijing, China
| | - Wei Zhang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.,Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Beijing, China
| | - Mei Liu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lingxian Li
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xinghong Li
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.,Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Beijing, China
| | - Jiye Yan
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.,Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Beijing, China
| |
Collapse
|
97
|
Ding Z, Tie W, Fu L, Yan Y, Liu G, Yan W, Li Y, Wu C, Zhang J, Hu W. Strand-specific RNA-seq based identification and functional prediction of drought-responsive lncRNAs in cassava. BMC Genomics 2019; 20:214. [PMID: 30866814 PMCID: PMC6417064 DOI: 10.1186/s12864-019-5585-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/05/2019] [Indexed: 12/21/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) have emerged as playing crucial roles in abiotic stress responsive regulation, however, the mechanism of lncRNAs underlying drought-tolerance remains largely unknown in cassava, an important tropical and sub-tropical root crop of remarkable drought tolerance. Results In this study, a total of 833 high-confidence lncRNAs, including 652 intergenic and 181 anti-sense lncRNAs, were identified in cassava leaves and root using strand-specific RNA-seq technology, of which 124 were drought-responsive. Trans-regulatory co-expression network revealed that lncRNAs exhibited tissue-specific expression patterns and they preferred to function differently in distinct tissues: e.g., cell-related metabolism, cell wall, and RNA regulation of transcription in folded leaf (FL); degradation of major carbohydrate (CHO) metabolism, calvin cycle and light reaction, light signaling, and tetrapyrrole synthesis in full expanded leaf (FEL); synthesis of major CHO metabolism, nitrogen-metabolism, photosynthesis, and redox in bottom leaf (BL); and hormone metabolism, secondary metabolism, calcium signaling, and abiotic stress in root (RT). In addition, 27 lncRNA-mRNA pairs referred to cis-acting regulation were identified, and these lncRNAs regulated the expression of their neighboring genes mainly through hormone metabolism, RNA regulation of transcription, and signaling of receptor kinase. Besides, 11 lncRNAs were identified acting as putative target mimics of known miRNAs in cassava. Finally, five drought-responsive lncRNAs and 13 co-expressed genes involved in trans-acting, cis-acting, or target mimic regulation were selected and confirmed by qRT-PCR. Conclusions These findings provide a comprehensive view of cassava lncRNAs in response to drought stress, which will enable in-depth functional analysis in the future. Electronic supplementary material The online version of this article (10.1186/s12864-019-5585-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zehong Ding
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, China.
| | - Weiwei Tie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, China
| | - Lili Fu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, China
| | - Yan Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, China
| | - Guanghua Liu
- Institute of Tropical and Sub-tropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, Yunnan, China
| | - Wei Yan
- Institute of Tropical and Sub-tropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, Yunnan, China
| | - Yanan Li
- Institute of Tropical and Sub-tropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, Yunnan, China
| | - Chunlai Wu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, China.,Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jiaming Zhang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, China.
| |
Collapse
|
98
|
Bhatia G, Sharma S, Upadhyay SK, Singh K. Long Non-coding RNAs Coordinate Developmental Transitions and Other Key Biological Processes in Grapevine. Sci Rep 2019; 9:3552. [PMID: 30837504 PMCID: PMC6401051 DOI: 10.1038/s41598-019-38989-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 01/15/2019] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts >200 nucleotides that have prominently surfaced as dynamic regulatory molecules. Using computational approaches, we identified and characterized 56,441 lncRNAs in grapevine (Vitis vinifera) by harnessing RNA-seq data from 10 developmental stages of leaf, inflorescence, and berry tissues. We conducted differential expression analysis and determined tissue- and developmental stage-specificity of lncRNAs in grapevine, which indicated their spatiotemporal regulation. Functional annotation using co-expression analysis revealed their involvement in regulation of developmental transitions in sync with transcription factors (TFs). Further, pathway enrichment analysis revealed lncRNAs associated with biosynthetic and secondary metabolic pathways. Additionally, we identified 115, 560, and 133 lncRNAs as putative miRNA precursors, targets, and endogenous target mimics, respectively, which provided an insight into the interplay of regulatory RNAs. We also explored lncRNA-mediated regulation of extra-chromosomal genes-i.e., mitochondrial and chloroplast coding sequences and observed their involvement in key biological processes like 'photosynthesis' and 'oxidative phosphorylation'. In brief, these transcripts coordinate important biological functions via interactions with both coding and non-coding RNAs as well as TFs in grapevine. Our study would facilitate future experiments in unraveling regulatory mechanisms of development in this fruit crop of economic importance.
Collapse
Affiliation(s)
- Garima Bhatia
- Department of Biotechnology, Panjab University, 160014, Chandigarh, India
| | - Shailesh Sharma
- National Institute of Animal Biotechnology (NIAB), D. No. 1-121/1, 4th and 5th Floors, Axis Clinicals Building, Opp. to Talkie Town, Miyapur, Hyderabad, 500 049, Telangana, India
| | | | - Kashmir Singh
- Department of Biotechnology, Panjab University, 160014, Chandigarh, India.
| |
Collapse
|
99
|
Cui J, Jiang N, Meng J, Yang G, Liu W, Zhou X, Ma N, Hou X, Luan Y. LncRNA33732-respiratory burst oxidase module associated with WRKY1 in tomato- Phytophthora infestans interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:933-946. [PMID: 30472748 DOI: 10.1111/tpj.14173] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 11/10/2018] [Accepted: 11/15/2018] [Indexed: 05/09/2023]
Abstract
Our previous studies indicated that tomato WRKY1 transcription factor acts as a positive regulator during tomato resistance to Phytophthora infestans. However, the molecular mechanism of WRKY1-mediated resistance regulation remains unclear. Here, we used a comparative transcriptome analysis between wild-type and WRKY1-overexpressing tomato plants to identify differentially expressed genes (DEGs) and long non-coding RNAs (DELs), and we examined long non-coding RNA (lncRNA)-gene networks. The promoter sequences of the upregulated DEGs and DELs were analyzed. Among 1073 DEGs and 199 DELs, 1 kb 5'-upstream regions of 59 DEGs and 22 DELs contain the W-box, the target sequence of the WRKY1. The results of promoter-β-glucuronidase (GUS) fusion and yeast one-hybrid assay showed that lncRNA33732 was activated by WRKY1 through sequence-specific interactions with the W-box element in its promoter. The overexpression and silencing analysis of lncRNA33732 in tomato showed that lncRNA33732 acts as a positive regulator and enhanced tomato resistance to P. infestans by induction of the expression of respiratory burst oxidase (RBOH) and increase in the accumulation of H2 O2 . When the expression of RBOH gene was inhibited in tomato plants, H2 O2 accumulation decreased and resistance were impaired. These findings suggest that lncRNA33732 activated by WRKY1 induces RBOH expression to increase H2 O2 accumulation in early defense reaction of tomato to P. infestans attack. Our results provide insights into the WRKY1-lncRNA33732-RBOH module involved in the regulation of H2 O2 accumulation and resistance to P. infestans, as well as provide candidates to enhance broad-spectrum resistance to pathogens in tomato.
Collapse
Affiliation(s)
- Jun Cui
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Ning Jiang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Guanglei Yang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Weiwei Liu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Xiaoxu Zhou
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Ning Ma
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Xinxin Hou
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Yushi Luan
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
100
|
Karlik E, Ari S, Gozukirmizi N. LncRNAs: genetic and epigenetic effects in plants. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1581085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Elif Karlik
- Department of Biotechnology Institute of Graduate Studies in Science and Engineering, Istanbul University, Istanbul, Turkey
- Department of Molecular Biology and Genetics Faculty of Science, Istinye University, Istanbul, Turkey
| | - Sule Ari
- Department of Molecular Biology and Genetics Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Nermin Gozukirmizi
- Department of Molecular Biology and Genetics Faculty of Science, Istanbul University, Istanbul, Turkey
- Department of Molecular Biology and Genetics Faculty of Science, Istinye University, Istanbul, Turkey
| |
Collapse
|