51
|
Wang H, Zhou X, Cui D, Liu R, Tan R, Wang X, Liu Z, Yin T. Comparative Study of Transcranial Magneto-Acoustic Stimulation and Transcranial Ultrasound Stimulation of Motor Cortex. Front Behav Neurosci 2019; 13:241. [PMID: 31680896 PMCID: PMC6798265 DOI: 10.3389/fnbeh.2019.00241] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/24/2019] [Indexed: 11/13/2022] Open
Abstract
Transcranial ultrasound stimulation (TUS; f < 1 MHz) is a promising approach to non-invasive brain stimulation. Transcranial magneto-acoustic stimulation (TMAS) is a technique of neuromodulation for regulating neuroelectric-activity utilizing a magnetic-acoustic coupling electric field generated by low-intensity ultrasound and magnetic fields. However, both techniques use the physical means of low-intensity ultrasound and can induce the response of the motor cortex. Therefore, it is necessary to distinguish the difference between the two techniques in the regulation of neural activity. This study is the first to quantify the amplitude and response latency of motor cortical electromyography (EMG) in mice induced by TMAS and TUS. The amplitude of EMG (2.73 ± 0.32 mV) induced by TMAS was significantly greater than that induced by TUS (2.22 ± 0.33 mV), and the EMG response latency induced by TMAS (101.25 ± 88.4 ms) was significantly lower than that induced by TUS (181.25 ± 158.4 ms). This shows that TMAS can shorten the response time of nerve activity and enhance the neuromodulation effect of TUS on the motor cortex. This provides a theoretical basis for revealing the physiological mechanisms of TMAS and the treatment of neuropsychiatric diseases using it.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhipeng Liu
- Peking Union Medical College, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Tianjin, China
| | - Tao Yin
- Peking Union Medical College, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Tianjin, China
| |
Collapse
|
52
|
Ultrasonic Neuromodulation via Astrocytic TRPA1. Curr Biol 2019; 29:3386-3401.e8. [PMID: 31588000 DOI: 10.1016/j.cub.2019.08.021] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/26/2019] [Accepted: 08/08/2019] [Indexed: 01/07/2023]
Abstract
Low-intensity, low-frequency ultrasound (LILFU) is the next-generation, non-invasive brain stimulation technology for treating various neurological and psychiatric disorders. However, the underlying cellular and molecular mechanism of LILFU-induced neuromodulation has remained unknown. Here, we report that LILFU-induced neuromodulation is initiated by opening of TRPA1 channels in astrocytes. The Ca2+ entry through TRPA1 causes a release of gliotransmitters including glutamate through Best1 channels in astrocytes. The released glutamate activates NMDA receptors in neighboring neurons to elicit action potential firing. Our results reveal an unprecedented mechanism of LILFU-induced neuromodulation, involving TRPA1 as a unique sensor for LILFU and glutamate-releasing Best1 as a mediator of glia-neuron interaction. These discoveries should prove to be useful for optimization of human brain stimulation and ultrasonogenetic manipulations of TRPA1.
Collapse
|
53
|
Gougheri HS, Dangi A, Kothapalli SR, Kiani M. A Comprehensive Study of Ultrasound Transducer Characteristics in Microscopic Ultrasound Neuromodulation. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:835-847. [PMID: 31199268 PMCID: PMC6883411 DOI: 10.1109/tbcas.2019.2922027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In order to improve the spatial resolution of transcranial focused ultrasound stimulation (tFUS), we have recently proposed microscopic ultrasound stimulation (μUS). In μUS, either an electronically phased array of ultrasound transducers or several millimeter-sized focused transducers are placed on the brain surface or sub-millimeter-sized transducers are implanted inside the brain tissue to steer and deliver a focused ultrasound pressure directly to the neural target. A key element in both tFUS and μUS is the ultrasound transducer that converts electrical power to acoustic pressure. The literature lacks a comprehensive study (in a quantitative manner) of the transducer characteristics, such as dimension, focusing, acoustic matching, backing material, and sonication frequency (fp), in the μUS. This paper studies the impact of these design parameters on the acoustic beam profile of millimeter-sized transducers with the emphasis on the stimulation spatial resolution and energy efficiency, which is defined as the μUS figure-of-merit (FoM). For this purpose, disc-shaped focused and unfocused piezoelectric (PZT-5A) transducers with different dimension (diameter, thickness), backing material (PCB, air) and acoustic matching in the frequency range of 2.2-9.56 MHz were fabricated. Our experimental studies with both water and sheep brain phantom medium demonstrate that acoustically matched focused transducers with high quality factor are desirable for μUS, as they provide fine spatial resolution and high acoustic intensities with low input electrical power levels (i.e., high FoM).
Collapse
|
54
|
Pasquinelli C, Hanson LG, Siebner HR, Lee HJ, Thielscher A. Safety of transcranial focused ultrasound stimulation: A systematic review of the state of knowledge from both human and animal studies. Brain Stimul 2019; 12:1367-1380. [PMID: 31401074 DOI: 10.1016/j.brs.2019.07.024] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Low-intensity transcranial focused ultrasound stimulation (TFUS) holds great promise as a highly focal technique for transcranial stimulation even for deep brain areas. Yet, knowledge about the safety of this novel technique is still limited. OBJECTIVE To systematically review safety related aspects of TFUS. The review covers the mechanisms-of-action by which TFUS may cause adverse effects and the available data on the possible occurrence of such effects in animal and human studies. METHODS Initial screening used key term searches in PubMed and bioRxiv, and a review of the literature lists of relevant papers. We included only studies where safety assessment was performed, and this results in 33 studies, both in humans and animals. RESULTS Adverse effects of TFUS were very rare. At high stimulation intensity and/or rate, TFUS may cause haemorrhage, cell death or damage, and unintentional blood-brain barrier (BBB) opening. TFUS may also unintentionally affect long-term neural activity and behaviour. A variety of methods was used mainly in rodents to evaluate these adverse effects, including tissue staining, magnetic resonance imaging, temperature measurements and monitoring of neural activity and behaviour. In 30 studies, adverse effects were absent, even though at least one Food and Drug Administration (FDA) safety index was frequently exceeded. Two studies reported microhaemorrhages after long or relatively intense stimulation above safety limits. Another study reported BBB opening and neuronal damage in a control condition, which intentionally and substantially exceeded the safety limits. CONCLUSION Most studies point towards a favourable safety profile of TFUS. Further investigations are warranted to establish a solid safety framework for the therapeutic window of TFUS to reliably avoid adverse effects while ensuring neural effectiveness. The comparability across studies should be improved by a more standardized reporting of TFUS parameters.
Collapse
Affiliation(s)
- Cristina Pasquinelli
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Center for Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Lars G Hanson
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Center for Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hyunjoo J Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Center for Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kgs, Lyngby, Denmark.
| |
Collapse
|
55
|
Blackmore J, Shrivastava S, Sallet J, Butler CR, Cleveland RO. Ultrasound Neuromodulation: A Review of Results, Mechanisms and Safety. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1509-1536. [PMID: 31109842 PMCID: PMC6996285 DOI: 10.1016/j.ultrasmedbio.2018.12.015] [Citation(s) in RCA: 298] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 12/13/2018] [Accepted: 12/29/2018] [Indexed: 05/03/2023]
Abstract
Ultrasonic neuromodulation is a rapidly growing field, in which low-intensity ultrasound (US) is delivered to nervous system tissue, resulting in transient modulation of neural activity. This review summarizes the findings in the central and peripheral nervous systems from mechanistic studies in cell culture to cognitive behavioral studies in humans. The mechanisms by which US mechanically interacts with neurons and could affect firing are presented. An in-depth safety assessment of current studies shows that parameters for the human studies fall within the safety envelope for US imaging. Challenges associated with accurately targeting US and monitoring the response are described. In conclusion, the literature supports the use of US as a safe, non-invasive brain stimulation modality with improved spatial localization and depth targeting compared with alternative methods. US neurostimulation has the potential to be used both as a scientific instrument to investigate brain function and as a therapeutic modality to modulate brain activity.
Collapse
Affiliation(s)
- Joseph Blackmore
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Shamit Shrivastava
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Jerome Sallet
- Wellcome Centre for Integrative Nueroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Chris R Butler
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Robin O Cleveland
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Roosevelt Drive, Oxford, UK.
| |
Collapse
|
56
|
Jo Y, Oh C, Lee HJ. Microelectromechanical Systems-Based Neurotools for Non-Invasive Ultrasound Brain Stimulation. ACTA ACUST UNITED AC 2019. [DOI: 10.33069/cim.2019.0009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
57
|
Radiation Force as a Physical Mechanism for Ultrasonic Neurostimulation of the Ex Vivo Retina. J Neurosci 2019; 39:6251-6264. [PMID: 31196935 DOI: 10.1523/jneurosci.2394-18.2019] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 05/23/2019] [Accepted: 05/30/2019] [Indexed: 12/23/2022] Open
Abstract
Focused ultrasound has been shown to be effective at stimulating neurons in many animal models, both in vivo and ex vivo Ultrasonic neuromodulation is the only noninvasive method of stimulation that could reach deep in the brain with high spatial-temporal resolution, and thus has potential for use in clinical applications and basic studies of the nervous system. Understanding the physical mechanism by which energy in a high acoustic frequency wave is delivered to stimulate neurons will be important to optimize this technology. We imaged the isolated salamander retina of either sex during ultrasonic stimuli that drive ganglion cell activity and observed micron scale displacements, consistent with radiation force, the nonlinear delivery of momentum by a propagating wave. We recorded ganglion cell spiking activity and changed the acoustic carrier frequency across a broad range (0.5-43 MHz), finding that increased stimulation occurs at higher acoustic frequencies, ruling out cavitation as an alternative possible mechanism. A quantitative radiation force model can explain retinal responses and could potentially explain previous in vivo results in the mouse, suggesting a new hypothesis to be tested in vivo Finally, we found that neural activity was strongly modulated by the distance between the transducer and the electrode array showing the influence of standing waves on the response. We conclude that radiation force is the dominant physical mechanism underlying ultrasonic neurostimulation in the ex vivo retina and propose that the control of standing waves is a new potential method to modulate these effects.SIGNIFICANCE STATEMENT Ultrasonic neurostimulation is a promising noninvasive technology that has potential for both basic research and clinical applications. The mechanisms of ultrasonic neurostimulation are unknown, making it difficult to optimize in any given application. We studied the physical mechanism by which ultrasound is converted into an effective energy form to cause neurostimulation in the retina and find that ultrasound acts via radiation force leading to a mechanical displacement of tissue. We further show that standing waves have a strong modulatory effect on activity. Our quantitative model by which ultrasound generates radiation force and leads to neural activity will be important in optimizing ultrasonic neurostimulation across a wide range of applications.
Collapse
|
58
|
Lin Z, Huang X, Zhou W, Zhang W, Liu Y, Bian T, Niu L, Meng L, Guo Y. Ultrasound Stimulation Modulates Voltage-Gated Potassium Currents Associated With Action Potential Shape in Hippocampal CA1 Pyramidal Neurons. Front Pharmacol 2019; 10:544. [PMID: 31178727 PMCID: PMC6538798 DOI: 10.3389/fphar.2019.00544] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/30/2019] [Indexed: 11/28/2022] Open
Abstract
Potassium channels (K+) play an important role in the regulation of cellular signaling. Dysfunction of potassium channels is associated with several severe ion channels diseases, such as long QT syndrome, episodic ataxia and epilepsy. Ultrasound stimulation has proven to be an effective non-invasive tool for the modulation of ion channels and neural activity. In this study, we demonstrate that ultrasound stimulation enables to modulate the potassium currents and has an impact on the shape modulation of action potentials (AP) in the hippocampal pyramidal neurons using whole-cell patch-clamp recordings in vitro. The results show that outward potassium currents in neurons increase significantly, approximately 13%, in response to 30 s ultrasound stimulation. Simultaneously, the increasing outward potassium currents directly decrease the resting membrane potential (RMP) from −64.67 ± 1.10 mV to −67.51 ± 1.35 mV. Moreover, the threshold current and AP fall rate increase while the reduction of AP half-width and after-hyperpolarization peak time is detected. During ultrasound stimulation, reduction of the membrane input resistance of pyramidal neurons can be found and shorter membrane time constant is achieved. Additionally, we verify that the regulation of potassium currents and shape of action potential is mainly due to the mechanical effects induced by ultrasound. Therefore, ultrasound stimulation may offer an alternative tool to treat some ion channels diseases related to potassium channels.
Collapse
Affiliation(s)
- Zhengrong Lin
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering - Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaowei Huang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering - Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Zhou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering - Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wenjun Zhang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering - Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Key Laboratory of E&M, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Yingzhe Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering - Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Sino-Dutch Biomedical and Information Engineering School, Northeastern University, Shenyang, China
| | - Tianyuan Bian
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering - Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Sino-Dutch Biomedical and Information Engineering School, Northeastern University, Shenyang, China
| | - Lili Niu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering - Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Long Meng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering - Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanwu Guo
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
59
|
A Novel Racing Array Transducer for Noninvasive Ultrasonic Retinal Stimulation: A Simulation Study. SENSORS 2019; 19:s19081825. [PMID: 30999576 PMCID: PMC6514975 DOI: 10.3390/s19081825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/27/2019] [Accepted: 04/03/2019] [Indexed: 12/26/2022]
Abstract
Neurostimulation has proved to be an effective method for the restoration of visual perception lost due to retinal diseases. However, the clinically available retinal neurostimulation method is based on invasive electrodes, making it a high-cost and high-risk procedure. Recently, ultrasound has been demonstrated to be an effective way to achieve noninvasive neurostimulation. In this work, a novel racing array transducer with a contact lens shape is proposed for ultrasonic retinal stimulation. The transducer is flexible and placed outside the eyeball, similar to the application of a contact lens. Ultrasound emitted from the transducer can reach the retina without passing through the lens, thus greatly minimizing the acoustic absorption in the lens. The discretized Rayleigh–Sommerfeld method was employed for the acoustic field simulation, and patterned stimulation was achieved. A 5 MHz racing array transducer with different element numbers was simulated to optimize the array configuration. The results show that a 512-element racing array is the most appropriate configuration considering the necessary tradeoff between the element number and the stimulation resolution. The stimulation resolution at a focus of 24 mm is about 0.6 mm. The obtained results indicate that the proposed racing array design of the ultrasound transducer can improve the feasibility of an ultrasound retinal prosthesis.
Collapse
|
60
|
Kim E, Anguluan E, Youn S, Kim J, Hwang JY, Kim JG. Non-invasive measurement of hemodynamic change during 8 MHz transcranial focused ultrasound stimulation using near-infrared spectroscopy. BMC Neurosci 2019; 20:12. [PMID: 30885121 PMCID: PMC6423784 DOI: 10.1186/s12868-019-0493-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/12/2019] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Transcranial focused ultrasound (tFUS) attracts wide attention in neuroscience as an effective noninvasive approach to modulate brain circuits. In spite of this, the effects of tFUS on the brain is still unclear, and further investigation is needed. The present study proposes to use near-infrared spectroscopy (NIRS) to observe cerebral hemodynamic change caused by tFUS in a noninvasive manner. RESULTS The results show a transient increase of oxyhemoglobin and decrease of deoxyhemoglobin concentration in the mouse model induced by ultrasound stimulation of the somatosensory cortex with a frequency of 8 MHz but not in sham. In addition, the amplitude of hemodynamics change can be related to the peak intensity of the acoustic wave. CONCLUSION High frequency 8 MHz ultrasound was shown to induce hemodynamic changes measured using NIRS through the intact mouse head. The implementation of NIRS offers the possibility of investigating brain response noninvasively for different tFUS parameters through cerebral hemodynamic change.
Collapse
Affiliation(s)
- Evgenii Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Eloise Anguluan
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Sangyeon Youn
- Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
| | - Jihun Kim
- Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
| | - Jae Youn Hwang
- Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
| | - Jae Gwan Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| |
Collapse
|
61
|
Alam M, Li S, Ahmed RU, Yam YM, Thakur S, Wang XY, Tang D, Ng S, Zheng YP. Development of a battery-free ultrasonically powered functional electrical stimulator for movement restoration after paralyzing spinal cord injury. J Neuroeng Rehabil 2019; 16:36. [PMID: 30850027 PMCID: PMC6408863 DOI: 10.1186/s12984-019-0501-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/22/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Functional electrical stimulation (FES) is used to restore movements in paretic limbs after severe paralyses resulting from neurological injuries such as spinal cord injury (SCI). Most chronic FES systems utilize an implantable electrical stimulator to deliver a small electric current to the targeted muscle or nerve to stimulate muscle contractions. These implanted stimulators are generally bulky, mainly due to the size of the batteries. Furthermore, these battery-powered stimulators are required to be explanted every few years for battery replacement which may result in surgical failures or infections. Hence, a wireless power transfer technique is desirable to power these implantable stimulators. METHODS Conventional wireless power transduction faces significant challenges for safe and efficient energy transfer through the skin and deep into the body. Inductive and electromagnetic power transduction is generally used for very short distances and may also interfere with other medical measurements such as X-ray and MRI. To address these issues, we have developed a wireless, ultrasonically powered, implantable piezoelectric stimulator. The stimulator is encapsulated with biocompatible materials. RESULTS The stimulator is capable of harvesting a maximum of 5.95 mW electric power at an 8-mm depth under the skin from an ultrasound beam with about 380 mW/cm2 of acoustic intensity. The stimulator was implanted in several paraplegic rats with SCI. Our implanted stimulator successfully induced several hindlimb muscle contractions and restored leg movement. CONCLUSIONS A battery-free miniature (10 mm diameter × 4 mm thickness) implantable stimulator, developed in the current study is capable of directly stimulating paretic muscles through external ultrasound signals. The required cost to develop the stimulator is relatively low as all the components are off the shelf.
Collapse
Affiliation(s)
- Monzurul Alam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Shuai Li
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Rakib Uddin Ahmed
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yat Man Yam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Suman Thakur
- Department of Chemical Sciences, Tezpur University, Tezpur, 784028 India
| | - Xiao-Yun Wang
- Guangdong Work Injury Rehabilitation Center, Guangzhou, China
| | - Dan Tang
- Guangdong Work Injury Rehabilitation Center, Guangzhou, China
| | - Serena Ng
- Community Rehabilitation Service Support Centre, Hospital Authority, Hong Kong SAR, China
| | - Yong-Ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
62
|
Li G, Qiu W, Zhang Z, Jiang Q, Su M, Cai R, Li Y, Cai F, Deng Z, Xu D, Zhang H, Zheng H. Noninvasive Ultrasonic Neuromodulation in Freely Moving Mice. IEEE Trans Biomed Eng 2019; 66:217-224. [DOI: 10.1109/tbme.2018.2821201] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
63
|
Yuan Y, Wang X, Yan J, Li X. The effect of anesthetic dose on the motor response induced by low-intensity pulsed ultrasound stimulation. BMC Neurosci 2018; 19:78. [PMID: 30509160 PMCID: PMC6278113 DOI: 10.1186/s12868-018-0476-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/22/2018] [Indexed: 01/21/2023] Open
Abstract
Background Low-intensity pulsed ultrasound stimulation (LIPUS) has been proven to be a noninvasive method with high spatial resolution and deep penetration. Previous studies have qualitatively demonstrated that the electromyographic response caused by LIPUS in the mouse motor cortex is affected by the anesthetic state of the mice. However, the quantitative relationship between motor response and anesthetic dose remains unclear. Results Experimental results show that the success rate decreases stepwise as the isoflurane concentration/mouse weight ratio increases (ratios: [0.004%/g, 0.01%/g], success rate: ~ 90%; [0.012%/g, 0.014%/g], ~ 40%; [0.016%/g, 0.018%/g], ~ 7%; 0.024%/g, 0). The latency and duration of EMG increase significantly when the ratio is more than 0.016%/g. Compared with that at ratios from 0.004 to 0.016%/g, normalized EMG amplitude decreases significantly at ratios of 0.018%/g and 0.020%/g. Conclusions Quantitative calculations indicate that the anesthetic dose has a significant regulatory effect on the motor response of mice during LIPUS. Our results have guiding significance for the selection of the anesthetic dose for LIPUS in mouse motor cortex experiments.
Collapse
Affiliation(s)
- Yi Yuan
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China.
| | - Xingran Wang
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Jiaqing Yan
- College of Electrical and Control Engineering, North China University of Technology, Beijing, 10041, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
64
|
Niu X, Yu K, He B. On the Neuromodulatory Pathways of the In Vivo Brain by Means of Transcranial Focused Ultrasound. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018; 8:61-69. [PMID: 31223668 PMCID: PMC6585998 DOI: 10.1016/j.cobme.2018.10.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
For last decade, low-intensity transcranial focused ultrasound (tFUS) has been rapidly developed for a myriad of successful applications in neuromodulation. tFUS possesses high spatial resolution, focality and depth penetration as a noninvasive neuromodulation tool. Despite the promise, confounding activation can be observed in rodents when stimulation parameters are not selected carefully. Here we summarize the existing classes of observations for ultrasound neuromodulation: ultrasound directly activates a localized area, or ultrasound indirectly activates auditory pathways, which further propagates to other cortical networks. We also present control in vivo animal studies, which suggest that underlying tFUS brain modulation is characterized by localized activation independent of auditory networks activations.
Collapse
Affiliation(s)
- Xiaodan Niu
- Department of Biomedical Engineering, Carnegie Mellon University
| | - Kai Yu
- Department of Biomedical Engineering, University of Minnesota
| | - Bin He
- Department of Biomedical Engineering, Carnegie Mellon University
| |
Collapse
|
65
|
Seok C, Ali Z, Yamaner FY, Sahin M, Oralkan O. Towards an Untethered Ultrasound Beamforming System for Brain Stimulation in Behaving Animals. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:1596-1599. [PMID: 30440697 DOI: 10.1109/embc.2018.8512551] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this paper, we present a wireless ultrasound transmit (TX) beamforming system, potentially enabling wearable brain stimulation for small awake/behaving animals. The system is comprised of a 16-element capacitive micromachined transducer (CMUT) array, driven by a custom phased-array integrated circuit (IC), which is capable of generating high-voltage (13.5 V) excitation signals with sixteen phase delays and four amplitude levels. In addition, a Bluetooth low-energy module and a power management unit were integrated into the system, which realizes a battery-operated self-contained unit. We validated the functionality of the system by demonstrating beamforming and steering with a hydrophone measurement setup. We achieved an acoustic pressure output of 554 kPapp at the depth of 5 mm, which corresponds to a spatial-peak pulse-average intensity (ISPPA) of 2.9 W/cm2. The measured 6-dB beamwidth (0.4 mm) is promising in that it can stimulate a specific region of the brain, especially for small animals such as mice. Further smart partitioning of the system will enable a truly wearable device for small animals.
Collapse
|
66
|
Kim H, Kim S, Sim NS, Pasquinelli C, Thielscher A, Lee JH, Lee HJ. Miniature ultrasound ring array transducers for transcranial ultrasound neuromodulation of freely-moving small animals. Brain Stimul 2018; 12:251-255. [PMID: 30503712 DOI: 10.1016/j.brs.2018.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Current transcranial ultrasound stimulation for small animal in vivo experiment is limited to acute stimulation under anesthesia in stereotaxic fixation due to bulky and heavy curved transducers. METHODS We developed a miniaturized ultrasound ring array transducer which is capable of invoking motor responses through neuromodulation of freely-moving awake mice. RESULTS The developed transducer is a 32-element, 183-kHz ring array with a weight of 0.035 g (with PCB: 0.73 g), a diameter of 8.1 mm, a focal length of 2.3 mm, and lateral resolution of 2.75 mm. By developing an affixation scheme suitable for freely-moving animals, the transducer was successfully coupled to the mouse brain and induced motor responses in both affixed and awake states. CONCLUSION Ultrasound neuromodulation of a freely-moving animal is now possible using the developed lightweight and compact system to conduct a versatile set of in vivo experiments.
Collapse
Affiliation(s)
- Hyunggug Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Seongyeon Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Nam Suk Sim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Cristina Pasquinelli
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, DK-2650, Hvidovre, Denmark; Department of Electrical Engineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, DK-2650, Hvidovre, Denmark; Department of Electrical Engineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Hyunjoo J Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
67
|
Lee W, Croce P, Margolin RW, Cammalleri A, Yoon K, Yoo SS. Transcranial focused ultrasound stimulation of motor cortical areas in freely-moving awake rats. BMC Neurosci 2018; 19:57. [PMID: 30231861 PMCID: PMC6146769 DOI: 10.1186/s12868-018-0459-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/15/2018] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Low-intensity transcranial focused ultrasound (tFUS) has emerged as a new non-invasive modality of brain stimulation with the potential for high spatial selectivity and penetration depth. Anesthesia is typically applied in animal-based tFUS brain stimulation models; however, the type and depth of anesthesia are known to introduce variability in responsiveness to the stimulation. Therefore, the ability to conduct sonication experiments on awake small animals, such as rats, is warranted to avoid confounding effects of anesthesia. RESULTS We developed a miniature tFUS headgear, operating at 600 kHz, which can be attached to the skull of Sprague-Dawley rats through an implanted pedestal, allowing the ultrasound to be transcranially delivered to motor cortical areas of unanesthetized freely-moving rats. Video recordings were obtained to monitor physical responses from the rat during acoustic brain stimulation. The stimulation elicited body movements from various areas, such as the tail, limbs, and whiskers. Movement of the head, including chewing behavior, was also observed. When compared to the light ketamine/xylazine and isoflurane anesthetic conditions, the response rate increased while the latency to stimulation decreased in the awake condition. The individual variability in response rates was smaller during the awake condition compared to the anesthetic conditions. Our analysis of latency distribution of responses also suggested possible presence of acoustic startle responses mixed with stimulation-related physical movement. Post-tFUS monitoring of animal behaviors and histological analysis performed on the brain did not reveal any abnormalities after the repeated tFUS sessions. CONCLUSIONS The wearable miniature tFUS configuration allowed for the stimulation of motor cortical areas in rats and elicited sonication-related movements under both awake and anesthetized conditions. The awake condition yielded diverse physical responses compared to those reported in existing literatures. The ability to conduct an experiment in freely-moving awake animals can be gainfully used to investigate the effects of acoustic neuromodulation free from the confounding effects of anesthesia, thus, may serve as a translational platform to large animals and humans.
Collapse
Affiliation(s)
- Wonhye Lee
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Phillip Croce
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Ryan W. Margolin
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Amanda Cammalleri
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Kyungho Yoon
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| |
Collapse
|
68
|
Li G, Qiu W, Hong J, Jiang Q, Su M, Mu P, Yang G, Li Y, Wang C, Zhang H, Zheng H. Imaging-Guided Dual-Target Neuromodulation of the Mouse Brain Using Array Ultrasound. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1583-1589. [PMID: 29994254 DOI: 10.1109/tuffc.2018.2847252] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Neuromodulation is an important method for investigating neural circuits and treating neurological and psychiatric disorders. Multiple-target neuromodulation is considered an advanced technology for the flexible optimization of modulation effects. However, traditional methods such as electrical and magnetic stimulations are not convenient for multiple-target applications due to their disadvantages of invasiveness or poor spatial resolution. Ultrasonic neuromodulation is a new noninvasive method that has gained wide attention in the field of neuroscience, and it is potentially able to support multiple-target stimulation by allocating multiple focal points in the brain using an array transducer. However, there are no reports in the literature of the efficacy of this technical concept, and an imaging tool for localizing the stimulation area for evaluating the neural effects in vivo has been lacking. In this study, we designed and fabricated a new system specifically for imaging-guided dual-target neuromodulation. The design of the array transducer and overall system is described in detail. The stimulation points were selectable on a B-mode image. In vivo experiments were carried out in mice, in which forelimbs shaking responses and electromyography outcomes were induced by changing the stimulation targets. The system could be a valuable tool for imaging-guided multiple-target stimulation in various neuroscience applications.
Collapse
|
69
|
Qiu W, Zhou J, Chen Y, Su M, Li G, Zhao H, Gu X, Meng D, Wang C, Xiao Y, Lam KH, Dai J, Zheng H. A Portable Ultrasound System for Non-Invasive Ultrasonic Neuro-Stimulation. IEEE Trans Neural Syst Rehabil Eng 2018; 25:2509-2515. [PMID: 29220326 DOI: 10.1109/tnsre.2017.2765001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fundamental insights into the function of the neural circuits often follows from the advances in methodologies and tools for neuroscience. Electrode- and optical- based stimulation methods have been used widely for neuro-modulation with high resolution. However, they are suffering from inherent invasive surgical procedure. Ultrasound has been proved as a promising technology for neuro-stimulation in a non-invasive manner. However, no portable ultrasound system has been developed particularly for neuro-stimulation. The utilities used currently are assembled by traditional functional generator, power amplifier, and general transducer, therefore, resulting in lack of flexibility. This paper presents a portable system to achieve ultrasonic neuro-stimulation to satisfy various studies. The system incorporated a high voltage waveform generator and a matching circuit that were optimized for neuro-stimulation. A new switching mode power amplifier was designed and fabricated. The noise generated by the power amplifier was reduced (about 30 dB), and the size and weight were smaller in contrast with commercial equipment. In addition, a miniaturized ultrasound transducer was fabricated using Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT) 1-3 composite single crystal for the improved ultrasonic performance. The spatial peak temporal average pressure was higher than 250 kPa in the range of 0.5-5 MHz. In vitro and in vivo studies were conducted to show the performance of the system.
Collapse
|
70
|
Lin Z, Zhou W, Huang X, Wang K, Tang J, Niu L, Meng L, Zheng H. On-Chip Ultrasound Modulation of Pyramidal Neuronal Activity in Hippocampal Slices. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zhengrong Lin
- Institute of Biomedical and Health Engineering; Shenzhen Institutes of Advanced Technology; Chinese Academy of Sciences; 1068 Xueyuan Avenue Shenzhen 518055 China
| | - Wei Zhou
- Institute of Biomedical and Health Engineering; Shenzhen Institutes of Advanced Technology; Chinese Academy of Sciences; 1068 Xueyuan Avenue Shenzhen 518055 China
| | - Xiaowei Huang
- Institute of Biomedical and Health Engineering; Shenzhen Institutes of Advanced Technology; Chinese Academy of Sciences; 1068 Xueyuan Avenue Shenzhen 518055 China
| | - Kaiyue Wang
- Institute of Biomedical and Health Engineering; Shenzhen Institutes of Advanced Technology; Chinese Academy of Sciences; 1068 Xueyuan Avenue Shenzhen 518055 China
| | - Jie Tang
- Department of Physiology; School of Basic Medical Sciences; Southern Medical University; 1023-1063 Shatai South Avenue Guangzhou 510515 China
| | - Lili Niu
- Institute of Biomedical and Health Engineering; Shenzhen Institutes of Advanced Technology; Chinese Academy of Sciences; 1068 Xueyuan Avenue Shenzhen 518055 China
| | - Long Meng
- Institute of Biomedical and Health Engineering; Shenzhen Institutes of Advanced Technology; Chinese Academy of Sciences; 1068 Xueyuan Avenue Shenzhen 518055 China
| | - Hairong Zheng
- Institute of Biomedical and Health Engineering; Shenzhen Institutes of Advanced Technology; Chinese Academy of Sciences; 1068 Xueyuan Avenue Shenzhen 518055 China
| |
Collapse
|
71
|
Ultrasonic modulation of neural circuit activity. Curr Opin Neurobiol 2018; 50:222-231. [PMID: 29674264 DOI: 10.1016/j.conb.2018.04.011] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 12/30/2022]
Abstract
Ultrasound (US) is recognized for its use in medical imaging as a diagnostic tool. As an acoustic energy source, US has become increasingly appreciated over the past decade for its ability to non-invasively modulate cellular activity including neuronal activity. Data obtained from a host of experimental models has shown that low-intensity US can reversibly modulate the physiological activity of neurons in peripheral nerves, spinal cord, and intact brain circuits. Experimental evidence indicates that acoustic pressures exerted by US act, in part, on mechanosensitive ion channels to modulate activity. While the precise mechanisms of action enabling US to both stimulate and suppress neuronal activity remain to be clarified, there are several advantages conferred by the physics of US that make it an appealing option for neuromodulation. For example, it can be focused with millimeter spatial resolutions through skull bone to deep-brain regions. By increasing our engineering capability to leverage such physical advantages while growing our understanding of how US affects neuronal function, the development of a new generation of non-invasive neurotechnology can be developed using ultrasonic methods.
Collapse
|
72
|
Han S, Kim M, Kim H, Shin H, Youn I. Ketamine Inhibits Ultrasound Stimulation-Induced Neuromodulation by Blocking Cortical Neuron Activity. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:635-646. [PMID: 29276137 DOI: 10.1016/j.ultrasmedbio.2017.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 09/08/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
Ultrasound (US) can be used to noninvasively stimulate brain activity. However, reproducible motor responses evoked by US are only elicited when the animal is in a light state of anesthesia. The present study investigated the effects of ketamine on US-induced motor responses and cortical neuronal activity. US was applied to the motor cortex of mice, and motor responses were evaluated based on robustness scores. Cortical neuronal activity was observed by fluorescence calcium imaging. US-induced motor responses were inhibited more than 20 min after ketamine injection, and US-triggered Ca2+ transients in cortical neurons were effectively blocked by ketamine. Our results indicate that ketamine suppresses US-triggered Ca2+ transients in cortical neurons and, therefore, inhibits US-induced motor responses in a deep anesthetic state.
Collapse
Affiliation(s)
- Sungmin Han
- Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul, Republic of Korea
| | - Minkyung Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul, Republic of Korea; Department of Biomedical Engineering, Korea University of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Hyungmin Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul, Republic of Korea; Department of Biomedical Engineering, Korea University of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Hyunjoon Shin
- Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul, Republic of Korea; Department of Biomedical Engineering, Korea University of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Inchan Youn
- Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul, Republic of Korea; Department of Biomedical Engineering, Korea University of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
73
|
Abstract
The understanding of brain function and the capacity to treat neurological and psychiatric disorders rest on the ability to intervene in neuronal activity in specific brain circuits. Current methods of neuromodulation incur a tradeoff between spatial focus and the level of invasiveness. Transcranial focused ultrasound (FUS) is emerging as a neuromodulation approach that combines noninvasiveness with focus that can be relatively sharp even in regions deep in the brain. This may enable studies of the causal role of specific brain regions in specific behaviors and behavioral disorders. In addition to causal brain mapping, the spatial focus of FUS opens new avenues for treatments of neurological and psychiatric conditions. This review introduces existing and emerging FUS applications in neuromodulation, discusses the mechanisms of FUS effects on cellular excitability, considers the effects of specific stimulation parameters, and lays out the directions for future work.
Collapse
Affiliation(s)
- Jan Kubanek
- Departments of Neurobiology and Radiology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
74
|
Constans C, Mateo P, Tanter M, Aubry JF. Potential impact of thermal effects during ultrasonic neurostimulation: retrospective numerical estimation of temperature elevation in seven rodent setups. ACTA ACUST UNITED AC 2018; 63:025003. [DOI: 10.1088/1361-6560/aaa15c] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
75
|
Kim E, Anguluan E, Kim JG. Monitoring cerebral hemodynamic change during transcranial ultrasound stimulation using optical intrinsic signal imaging. Sci Rep 2017; 7:13148. [PMID: 29030623 PMCID: PMC5640689 DOI: 10.1038/s41598-017-13572-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/25/2017] [Indexed: 12/27/2022] Open
Abstract
Transcranial ultrasound stimulation (tUS) is a promising non-invasive approach to modulate brain circuits. The application is gaining popularity, however the full effect of ultrasound stimulation is still unclear and further investigation is needed. This study aims to apply optical intrinsic signal imaging (OISI) for the first time, to simultaneously monitor the wide-field cerebral hemodynamic change during tUS on awake animal with high spatial and temporal resolution. Three stimulation paradigms were delivered using a single-element focused transducer operating at 425 kHz in pulsed mode having the same intensity (ISPPA = 1.84 W/cm2, ISPTA = 129 mW/cm2) but varying pulse repetition frequencies (PRF). The results indicate a concurrent hemodynamic change occurring with all actual tUS but not under a sham stimulation. The stimulation initiated the increase of oxygenated hemoglobin (HbO) and decrease of deoxygenated hemoglobin (RHb). A statistically significant difference (p < 0.05) was found in the amplitude change of hemodynamics evoked by varying PRF. Moreover, the acoustic stimulation was able to trigger a global as well as local cerebral hemodynamic alteration in the mouse cortex. Thus, the implementation of OISI offers the possibility of directly investigating brain response in an awake animal during tUS through cerebral hemodynamic change.
Collapse
Affiliation(s)
- Evgenii Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Eloise Anguluan
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Jae Gwan Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea. .,Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.
| |
Collapse
|
76
|
Zhou W, Wang J, Wang K, Huang B, Niu L, Li F, Cai F, Chen Y, Liu X, Zhang X, Cheng H, Kang L, Meng L, Zheng H. Ultrasound neuro-modulation chip: activation of sensory neurons in Caenorhabditis elegans by surface acoustic waves. LAB ON A CHIP 2017; 17:1725-1731. [PMID: 28447086 DOI: 10.1039/c7lc00163k] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ultrasound neuro-modulation has gained increasing attention as a non-invasive method. In this paper, we present an ultrasound neuro-modulation chip, capable of initiating reversal behaviour and activating neurons of C. elegans under the stimulation of a single-shot, short-pulsed ultrasound. About 85.29% ± 6.17% of worms respond to the ultrasound stimulation exhibiting reversal behaviour. Furthermore, the worms can adapt to the ultrasound stimulation with a lower acoustic pulse duration of stimulation. In vivo calcium imaging shows that the activity of ASH, a polymodal sensory neuron in C. elegans, can be directly evoked by the ultrasound stimulation. On the other hand, AFD, a thermal sensitive neuron, cannot be activated by the ultrasound stimulation using the same parameter and the temperature elevation during the stimulation process is relatively small. Consistent with the calcium imaging results, the tax-4 mutants, which are insensitive to temperature increase, do not show a significant difference in avoidance probability compared to the wild type. Therefore, the mechanical effects induced by ultrasound are the main reason for neural and behavioural modulation of C. elegans. With the advantages of confined acoustic energy on the surface, compatible with standard calcium imaging, this neuro-modulation chip could be a powerful tool for revealing the molecular mechanisms of ultrasound neuro-modulation.
Collapse
Affiliation(s)
- Wei Zhou
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Constans C, Deffieux T, Pouget P, Tanter M, Aubry JF. A 200-1380-kHz Quadrifrequency Focused Ultrasound Transducer for Neurostimulation in Rodents and Primates: Transcranial In Vitro Calibration and Numerical Study of the Influence of Skull Cavity. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:717-724. [PMID: 28092531 DOI: 10.1109/tuffc.2017.2651648] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Low intensity transcranial focused ultrasound has been demonstrated to produce neuromodulation in both animals and humans. Primarily for technical reasons, frequency is one of the most poorly investigated critical wave parameters. We propose the use of a quadri-band transducer capable of operating at 200, 320, 850, and 1380 kHz for further investigation of the frequency dependence of neuromodulation efficacy while keeping the position of the transducer fixed with respect to the subject's head. This paper presents the results of the transducer calibration in water, in vitro transmission measurements through a monkey skull flap, 3-D simulations based on both a μ -computed tomography ( μ CT)-scan of a rat and on CT-scans of two macaques. A maximum peak pressure greater than 0.52 MPa is expected at each frequency in rat and macaque heads. According to the literature, our transducer can achieve neuromodulation in rodents and primates at each four frequencies. The impact of standing waves is shown to be most prominent at the lowest frequencies.
Collapse
|
78
|
Abstract
Ultrasound (US) is widely known for its utility as a biomedical imaging modality. An abundance of evidence has recently accumulated showing that US is also useful for non-invasively modulating brain circuit activity. Through a series of studies discussed in this short review, it has recently become recognized that transcranial focused ultrasound can exert mechanical (non-thermal) bioeffects on neurons and cells to produce focal changes in the activity of brain circuits. In addition to highlighting scientific breakthroughs and observations that have driven the development of the field of ultrasonic neuromodulation, this study also provides a discussion of mechanisms of action underlying the ability of ultrasound to physically stimulate and modulate brain circuit activity. Exemplifying some forward-looking tools that can be developed by integrating ultrasonic neuromodulation with other advanced acoustic technologies, some innovative acoustic imaging, beam forming, and focusing techniques are briefly reviewed. Finally, the future outlook for ultrasonic neuromodulation is discussed, specifically in the context of applications employing transcranial focused ultrasound for the investigation, diagnosis, and treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Maria Fini
- a School of Biological and Health Systems Engineering , Arizona State University , Tempe , AZ , USA
| | - William J Tyler
- a School of Biological and Health Systems Engineering , Arizona State University , Tempe , AZ , USA
| |
Collapse
|
79
|
Gao M, Yu Y, Zhao H, Li G, Jiang H, Wang C, Cai F, Chan LLH, Chiu B, Qian W, Qiu W, Zheng H. Simulation Study of an Ultrasound Retinal Prosthesis With a Novel Contact-Lens Array for Noninvasive Retinal Stimulation. IEEE Trans Neural Syst Rehabil Eng 2017; 25:1605-1611. [PMID: 28320674 DOI: 10.1109/tnsre.2017.2682923] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Millions of people around the world suffer from varying degrees of vision loss (including complete blindness) because of retinal degenerative diseases. Artificial retinal prosthesis, which is usually based on electrical neurostimulation, is the most advanced technology for different types of retinal degeneration. However, this technology involves placing a device into the eyeball, and such a highly invasive procedure is inevitably highly risk and expensive. Ultrasound has been demonstrated to be a promising technology for noninvasive neurostimulation, making it possible to stimulate the retina and induce action potentials similar to those elicited by light stimulation. However, the technology of ultrasound retinal stimulation still requires considerable developments before it could be applied clinically. This paper proposes a novel contact-lens array transducer for use in an ultrasound retinal prosthesis (USRP). The transducer was designed in the shape of a contact lens so as to facilitate acoustic coupling with the eye liquid. The key parameters of the ultrasound transducer were simulated, and results are presented that indicate the achievement of 2-D pattern generation and that the proposed contact-lens array is suitable for multiple-focus neurostimulation, and can be used in a USRP.
Collapse
|