51
|
The emerging interrelation between ROCO and related kinases, intracellular Ca 2+ signaling, and autophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:1054-1067. [PMID: 30582936 DOI: 10.1016/j.bbamcr.2018.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022]
Abstract
ROCO kinases form a family of proteins characterized by kinase activity in addition to the presence of the so-called ROC (Ras of complex proteins)/COR (C-terminal of ROC) domains having a role in their GTPase activity. These are the death-associated protein kinase (DAPK) 1 and the leucine-rich repeat kinases (LRRK) 1 and 2. These kinases all play roles in cellular life and death decisions and in autophagy in particular. Related to the ROCO kinases is DAPK 2 that however cannot be classified as a ROCO protein due to the absence of the ROC/COR domains. This review aims to bring together what is known about the relation between these proteins and intracellular Ca2+ signals in the induction and regulation of autophagy. Interestingly, DAPK 1 and 2 and LRRK2 are all linked to Ca2+ signaling in their effects on autophagy, though in various ways. Present evidence supports an upstream role for LRRK2 that via lysosomal and endoplasmic reticulum Ca2+ release can trigger autophagy induction. In contrast herewith, DAPK1 and 2 react on existing Ca2+ signals to stimulate the autophagic pathway. Further research will be needed for obtaining a full understanding of the role of these various kinases in autophagy and to assess their exact relation with intracellular Ca2+ signaling as this would be helpful in the development of novel therapeutic strategies against neurodegenerative disorders, cancer and auto-immune diseases. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
|
52
|
Mamais A, Manzoni C, Nazish I, Arber C, Sonustun B, Wray S, Warner TT, Cookson MR, Lewis PA, Bandopadhyay R. Analysis of macroautophagy related proteins in G2019S LRRK2 Parkinson's disease brains with Lewy body pathology. Brain Res 2018; 1701:75-84. [PMID: 30055128 PMCID: PMC6361106 DOI: 10.1016/j.brainres.2018.07.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/04/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022]
Abstract
LRRK2, the gene encoding the multidomain kinase Leucine-Rich Repeat Kinase 2 (LRRK2), has been linked to familial and sporadic forms of Parkinson's disease (PD), as well as cancer, leprosy and Crohn's disease, establishing it as a target for discovery therapeutics. LRRK2 has been associated with a range of cellular processes, however its physiological and pathological functions remain unclear. The most prevalent LRRK2 mutations in PD have been shown to affect macroautophagy in various cellular models while a role in autophagy signalling has been recapitulated in vivo. Dysregulation of autophagy has been implicated in PD pathology, and this raises the possibility that differential autophagic activity is relevant to disease progression in PD patients carrying LRRK2 mutations. To examine the relevance of LRRK2 to the regulation of macroautophagy in a disease setting we examined the levels of autophagic markers in the basal ganglia of G2019S LRRK2 PD post-mortem tissue, in comparison to pathology-matched idiopathic PD (iPD), using immunoblotting (IB). Significantly lower levels of p62 and LAMP1 were observed in G2019S LRRK2 PD compared to iPD cases. Similarly, an increase in ULK1 was observed in iPD but was not reflected in G2019S LRRK2 PD cases. Furthermore, examination of p62 by immunohistochemistry (IH) recapitulated a distinct signature for G2019S PD. IH of LAMP1, LC3 and ULK1 broadly correlated with the IB results. Our data from a small but pathologically well-characterized cases highlights a divergence of G2019S PD carriers in terms of autophagic response in alpha-synuclein pathology affected brain regions compared to iPD.
Collapse
Affiliation(s)
- Adamantios Mamais
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, United Kingdom; Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, NIA, NIH, Building 35, 35 Convent Drive, Bethesda, MD 20892-3707, USA.
| | - Claudia Manzoni
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AP, United Kingdom; Department of Neurodegenerative Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | - Iqra Nazish
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, United Kingdom; Department of Clinical and Movement Neuroscience, UCL Institute of Neurology, WC1N 3BG, United Kingdom
| | - Charles Arber
- Department of Neurodegenerative Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | - Berkiye Sonustun
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, United Kingdom
| | - Selina Wray
- Department of Neurodegenerative Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | - Thomas T Warner
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, United Kingdom; Department of Clinical and Movement Neuroscience, UCL Institute of Neurology, WC1N 3BG, United Kingdom
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, NIA, NIH, Building 35, 35 Convent Drive, Bethesda, MD 20892-3707, USA
| | - Patrick A Lewis
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AP, United Kingdom; Department of Neurodegenerative Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | - Rina Bandopadhyay
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, United Kingdom; Department of Clinical and Movement Neuroscience, UCL Institute of Neurology, WC1N 3BG, United Kingdom.
| |
Collapse
|
53
|
Sun Y, Yao X, Zhang QJ, Zhu M, Liu ZP, Ci B, Xie Y, Carlson D, Rothermel BA, Sun Y, Levine B, Hill JA, Wolf SE, Minei JP, Zang QS. Beclin-1-Dependent Autophagy Protects the Heart During Sepsis. Circulation 2018; 138:2247-2262. [PMID: 29853517 PMCID: PMC6274625 DOI: 10.1161/circulationaha.117.032821] [Citation(s) in RCA: 289] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 05/16/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cardiac dysfunction is a major component of sepsis-induced multiorgan failure in critical care units. Changes in cardiac autophagy and its role during sepsis pathogenesis have not been clearly defined. Targeted autophagy-based therapeutic approaches for sepsis are not yet developed. METHODS Beclin-1-dependent autophagy in the heart during sepsis and the potential therapeutic benefit of targeting this pathway were investigated in a mouse model of lipopolysaccharide (LPS)-induced sepsis. RESULTS LPS induced a dose-dependent increase in autophagy at low doses, followed by a decline that was in conjunction with mammalian target of rapamycin activation at high doses. Cardiac-specific overexpression of Beclin-1 promoted autophagy, suppressed mammalian target of rapamycin signaling, improved cardiac function, and alleviated inflammation and fibrosis after LPS challenge. Haplosufficiency for beclin 1 resulted in opposite effects. Beclin-1 also protected mitochondria, reduced the release of mitochondrial danger-associated molecular patterns, and promoted mitophagy via PTEN-induced putative kinase 1-Parkin but not adaptor proteins in response to LPS. Injection of a cell-permeable Tat-Beclin-1 peptide to activate autophagy improved cardiac function, attenuated inflammation, and rescued the phenotypes caused by beclin 1 deficiency in LPS-challenged mice. CONCLUSIONS These results suggest that Beclin-1 protects the heart during sepsis and that the targeted induction of Beclin-1 signaling may have important therapeutic potential.
Collapse
Affiliation(s)
- Yuxiao Sun
- Departments of Surgery (Y.S., X.Y., D.C., S.E.W., J.P.M., Q.S.Z.), University of Texas Southwestern Medical Center, Dallas
| | - Xiao Yao
- Departments of Surgery (Y.S., X.Y., D.C., S.E.W., J.P.M., Q.S.Z.), University of Texas Southwestern Medical Center, Dallas
| | - Qing-Jun Zhang
- Internal Medicine, Cardiology Division (Q.-J.Z., M.Z., Z.-P.L., B.A.R., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Min Zhu
- Internal Medicine, Cardiology Division (Q.-J.Z., M.Z., Z.-P.L., B.A.R., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Zhi-Ping Liu
- Internal Medicine, Cardiology Division (Q.-J.Z., M.Z., Z.-P.L., B.A.R., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Bo Ci
- Clinical Science, Quantitative Biomedical Research Center (B.C., Y.X.), University of Texas Southwestern Medical Center, Dallas
| | - Yang Xie
- Clinical Science, Quantitative Biomedical Research Center (B.C., Y.X.), University of Texas Southwestern Medical Center, Dallas
| | - Deborah Carlson
- Departments of Surgery (Y.S., X.Y., D.C., S.E.W., J.P.M., Q.S.Z.), University of Texas Southwestern Medical Center, Dallas
| | - Beverly A Rothermel
- Internal Medicine, Cardiology Division (Q.-J.Z., M.Z., Z.-P.L., B.A.R., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Yuxiang Sun
- Department of Nutrition and Food Science, Texas A&M University, College Station (Y.S.)
| | - Beth Levine
- Internal Medicine, Center for Autophagy Research, Howard Hughes Medical Institute (B.L.), University of Texas Southwestern Medical Center, Dallas
| | - Joseph A Hill
- Internal Medicine, Cardiology Division (Q.-J.Z., M.Z., Z.-P.L., B.A.R., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Steven E Wolf
- Departments of Surgery (Y.S., X.Y., D.C., S.E.W., J.P.M., Q.S.Z.), University of Texas Southwestern Medical Center, Dallas
| | - Joseph P Minei
- Departments of Surgery (Y.S., X.Y., D.C., S.E.W., J.P.M., Q.S.Z.), University of Texas Southwestern Medical Center, Dallas
| | - Qun S Zang
- Departments of Surgery (Y.S., X.Y., D.C., S.E.W., J.P.M., Q.S.Z.), University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
54
|
PICK1 Deficiency Induces Autophagy Dysfunction via Lysosomal Impairment and Amplifies Sepsis-Induced Acute Lung Injury. Mediators Inflamm 2018; 2018:6757368. [PMID: 30402043 PMCID: PMC6192133 DOI: 10.1155/2018/6757368] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/25/2018] [Accepted: 08/02/2018] [Indexed: 12/19/2022] Open
Abstract
Sepsis is a systemic inflammatory reaction caused by infection. Multiple organ failure ultimately leads to high morbidity and mortality. Unfortunately, therapies against these responses have been unsuccessful due to the insufficient underlying pathophysiological evidence. Protein interacting with C-kinase 1 (PICK1) has received considerable attention because of its important physiological functions in many tissues. However, its role in sepsis-induced acute lung injury (ALI) is unclear. In this study, we used cecal ligation and puncture (CLP) to establish a septic model and found that decreased microtubule-associated protein-1light chain 3 (LC3)-II/LC3-I in PICK1−/− septic mice was caused by autophagy dysfunction. Consistently, the transmission electron microscopy (TEM) of bone marrow-derived macrophages (BMDMs) from PICK1−/− mice showed the accumulation of autophagosomes as well. However, more serious damage was caused by PICK1 deficiency indicating that the disrupted autophagic flux was harmful to sepsis-induced ALI. We also observed that it was the impaired lysosomal function that mediated autophagic flux blockade, and the autophagy progress was relevant to PI3K-Akt-mTOR pathway. These findings will aid in the potential development of PICK1 with novel evidence of autophagy in sepsis treatment and prevention.
Collapse
|
55
|
Croce KR, Yamamoto A. A role for autophagy in Huntington's disease. Neurobiol Dis 2018; 122:16-22. [PMID: 30149183 DOI: 10.1016/j.nbd.2018.08.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/10/2018] [Accepted: 08/23/2018] [Indexed: 12/19/2022] Open
Abstract
The lysosome-mediated degradation pathway known as macroautophagy is the most versatile means through which cells can eliminate and recycle unwanted materials. Through both selective and non-selective means, macroautophagy can degrade a wide range of cargoes from bulk cytosol to organelles and aggregated proteins. Although studies of disorders such as Parkinson's disease and Amyotrophic Lateral Sclerosis suggest that autophagic and lysosomal dysfunction directly contributes to disease, this had not been the case for the polyglutamine disorder Huntington's disease (HD), for which there was little indication of a disruption in the autophagic-lysosomal system. This supported the possibility of targeting autophagy as a much needed therapeutic approach to combat this disease. Possibly challenging this view, however, are a recent set of studies suggesting that the protein affected in Huntington's disease, huntingtin, might mechanistically contribute to macroautophagy. In this review, we will explore how autophagy might impact or be impacted by HD pathogenesis, and whether a therapeutic approach centering on autophagy may be possible for this yet incurable disease.
Collapse
Affiliation(s)
- Katherine R Croce
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, United States
| | - Ai Yamamoto
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, United States; Department of Neurology, Columbia University, New York, NY 10032, United States.
| |
Collapse
|
56
|
Boland B, Yu WH, Corti O, Mollereau B, Henriques A, Bezard E, Pastores GM, Rubinsztein DC, Nixon RA, Duchen MR, Mallucci GR, Kroemer G, Levine B, Eskelinen EL, Mochel F, Spedding M, Louis C, Martin OR, Millan MJ. Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat Rev Drug Discov 2018; 17:660-688. [PMID: 30116051 DOI: 10.1038/nrd.2018.109] [Citation(s) in RCA: 379] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurodegenerative disorders of ageing (NDAs) such as Alzheimer disease, Parkinson disease, frontotemporal dementia, Huntington disease and amyotrophic lateral sclerosis represent a major socio-economic challenge in view of their high prevalence yet poor treatment. They are often called 'proteinopathies' owing to the presence of misfolded and aggregated proteins that lose their physiological roles and acquire neurotoxic properties. One reason underlying the accumulation and spread of oligomeric forms of neurotoxic proteins is insufficient clearance by the autophagic-lysosomal network. Several other clearance pathways are also compromised in NDAs: chaperone-mediated autophagy, the ubiquitin-proteasome system, extracellular clearance by proteases and extrusion into the circulation via the blood-brain barrier and glymphatic system. This article focuses on emerging mechanisms for promoting the clearance of neurotoxic proteins, a strategy that may curtail the onset and slow the progression of NDAs.
Collapse
Affiliation(s)
- Barry Boland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Wai Haung Yu
- Department of Pathology and Cell Biology, Taub Institute for Alzheimer's Disease Research, Columbia University, New York, NY, USA
| | - Olga Corti
- ICM Institute for Brain and Spinal Cord, Paris, France
| | | | | | - Erwan Bezard
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Greg M Pastores
- Department of Metabolic Diseases, Mater Misericordiae University Hospital, Dublin, Ireland
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge and UK Dementia Research Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA.,Departments of Psychiatry and Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Michael R Duchen
- UCL Consortium for Mitochondrial Research and Department of Cell and Developmental Biology, University College London, London, UK
| | - Giovanna R Mallucci
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou (AP-HP), Paris, France
| | - Beth Levine
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Howard Hughes Medical Institute, Dallas, TX, USA
| | | | - Fanny Mochel
- INSERM U 1127, Brain and Spine Institute, Paris, France
| | | | - Caroline Louis
- Centre for Therapeutic Innovation in Neuropsychiatry, IDR Servier, 78290 Croissy sur Seine, France
| | - Olivier R Martin
- Université d'Orléans & CNRS, Institut de Chimie Organique et Analytique (ICOA), Orléans, France
| | - Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, IDR Servier, 78290 Croissy sur Seine, France
| |
Collapse
|
57
|
Kritzinger A, Ferger B, Gillardon F, Stierstorfer B, Birk G, Kochanek S, Ciossek T. Age-related pathology after adenoviral overexpression of the leucine-rich repeat kinase 2 in the mouse striatum. Neurobiol Aging 2018; 66:97-111. [DOI: 10.1016/j.neurobiolaging.2018.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 01/04/2018] [Accepted: 02/10/2018] [Indexed: 02/07/2023]
|
58
|
mTOR independent alteration in ULK1 Ser758 phosphorylation following chronic LRRK2 kinase inhibition. Biosci Rep 2018; 38:BSR20171669. [PMID: 29563162 PMCID: PMC5968188 DOI: 10.1042/bsr20171669] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 12/31/2022] Open
Abstract
Unc-51 Like Kinase 1 (ULK1) is a critical regulator of the biogenesis of autophagosomes, the central component of the catabolic macroautophagy pathway. Regulation of ULK1 activity is dependent upon several phosphorylation events acting to repress or activate the enzymatic function of this protein. Phosphorylation of Ser758 ULK1 has been linked to repression of autophagosome biogenesis and was thought to be exclusively dependent upon mTOR complex 1 kinase activity. In the present study, a novel regulation of Ser758 ULK1 phosphorylation is reported following prolonged inhibition of the Parkinson’s disease linked protein leucine rich repeat kinase 2 (LRRK2). Here, modulation of Ser758 ULK1 phosphorylation following LRRK2 inhibition is decoupled from the repression of autophagosome biogenesis and independent of mTOR complex 1 activity.
Collapse
|
59
|
P62/SQSTM1 is a novel leucine-rich repeat kinase 2 (LRRK2) substrate that enhances neuronal toxicity. Biochem J 2018. [PMID: 29519959 DOI: 10.1042/bcj20170699] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Autosomal-dominant, missense mutations in the leucine-rich repeat protein kinase 2 (LRRK2) gene are the most common genetic predisposition to develop Parkinson's disease (PD). LRRK2 kinase activity is increased in several pathogenic mutations (N1437H, R1441C/G/H, Y1699C, G2019S), implicating hyperphosphorylation of a substrate in the pathogenesis of the disease. Identification of the downstream targets of LRRK2 is a crucial endeavor in the field to understand LRRK2 pathway dysfunction in the disease. We have identified the signaling adapter protein p62/SQSTM1 as a novel endogenous interacting partner and a substrate of LRRK2. Using mass spectrometry and phospho-specific antibodies, we found that LRRK2 phosphorylates p62 on Thr138 in vitro and in cells. We found that the pathogenic LRRK2 PD-associated mutations (N1437H, R1441C/G/H, Y1699C, G2019S) increase phosphorylation of p62 similar to previously reported substrate Rab proteins. Notably, we found that the pathogenic I2020T mutation and the risk factor mutation G2385R displayed decreased phosphorylation of p62. p62 phosphorylation by LRRK2 is blocked by treatment with selective LRRK2 inhibitors in cells. We also found that the amino-terminus of LRRK2 is crucial for optimal phosphorylation of Rab7L1 and p62 in cells. LRRK2 phosphorylation of Thr138 is dependent on a p62 functional ubiquitin-binding domain at its carboxy-terminus. Co-expression of p62 with LRRK2 G2019S increases the neurotoxicity of this mutation in a manner dependent on Thr138. p62 is an additional novel substrate of LRRK2 that regulates its toxic biology, reveals novel signaling nodes and can be used as a pharmacodynamic marker for LRRK2 kinase activity.
Collapse
|
60
|
Wallot-Hieke N, Verma N, Schlütermann D, Berleth N, Deitersen J, Böhler P, Stuhldreier F, Wu W, Seggewiß S, Peter C, Gohlke H, Mizushima N, Stork B. Systematic analysis of ATG13 domain requirements for autophagy induction. Autophagy 2018; 14:743-763. [PMID: 29173006 PMCID: PMC6070014 DOI: 10.1080/15548627.2017.1387342] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Macroautophagy/autophagy is an evolutionarily conserved cellular process whose induction is regulated by the ULK1 protein kinase complex. The subunit ATG13 functions as an adaptor protein by recruiting ULK1, RB1CC1 and ATG101 to a core ULK1 complex. Furthermore, ATG13 directly binds both phospholipids and members of the Atg8 family. The central involvement of ATG13 in complex formation makes it an attractive target for autophagy regulation. Here, we analyzed known interactions of ATG13 with proteins and lipids for their potential modulation of ULK1 complex formation and autophagy induction. Targeting the ATG101-ATG13 interaction showed the strongest autophagy-inhibitory effect, whereas the inhibition of binding to ULK1 or RB1CC1 had only minor effects, emphasizing that mutations interfering with ULK1 complex assembly do not necessarily result in a blockade of autophagy. Furthermore, inhibition of ATG13 binding to phospholipids or Atg8 proteins had only mild effects on autophagy. Generally, the observed phenotypes were more severe when autophagy was induced by MTORC1/2 inhibition compared to amino acid starvation. Collectively, these data establish the interaction between ATG13 and ATG101 as a promising target in disease-settings where the inhibition of autophagy is desired.
Collapse
Affiliation(s)
- Nora Wallot-Hieke
- a Institute of Molecular Medicine I, Medical Faculty , Heinrich Heine University Düsseldorf , Düsseldorf , Germany
| | - Neha Verma
- b Institute for Pharmaceutical and Medicinal Chemistry, Faculty of Mathematics and Natural Sciences , Heinrich Heine University Düsseldorf , Düsseldorf , Germany
| | - David Schlütermann
- a Institute of Molecular Medicine I, Medical Faculty , Heinrich Heine University Düsseldorf , Düsseldorf , Germany
| | - Niklas Berleth
- a Institute of Molecular Medicine I, Medical Faculty , Heinrich Heine University Düsseldorf , Düsseldorf , Germany
| | - Jana Deitersen
- a Institute of Molecular Medicine I, Medical Faculty , Heinrich Heine University Düsseldorf , Düsseldorf , Germany
| | - Philip Böhler
- a Institute of Molecular Medicine I, Medical Faculty , Heinrich Heine University Düsseldorf , Düsseldorf , Germany
| | - Fabian Stuhldreier
- a Institute of Molecular Medicine I, Medical Faculty , Heinrich Heine University Düsseldorf , Düsseldorf , Germany
| | - Wenxian Wu
- a Institute of Molecular Medicine I, Medical Faculty , Heinrich Heine University Düsseldorf , Düsseldorf , Germany
| | - Sabine Seggewiß
- a Institute of Molecular Medicine I, Medical Faculty , Heinrich Heine University Düsseldorf , Düsseldorf , Germany
| | - Christoph Peter
- a Institute of Molecular Medicine I, Medical Faculty , Heinrich Heine University Düsseldorf , Düsseldorf , Germany
| | - Holger Gohlke
- b Institute for Pharmaceutical and Medicinal Chemistry, Faculty of Mathematics and Natural Sciences , Heinrich Heine University Düsseldorf , Düsseldorf , Germany
| | - Noboru Mizushima
- c Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine , The University of Tokyo , Tokyo , Japan
| | - Björn Stork
- a Institute of Molecular Medicine I, Medical Faculty , Heinrich Heine University Düsseldorf , Düsseldorf , Germany
| |
Collapse
|
61
|
Abstract
The discovery of numerous genetic variants in the human genome that are associated with inflammatory bowel disease (IBD) has revealed critical pathways that play important roles in intestinal homeostasis. These genetic studies have identified a critical role for macroautophagy/autophagy and more recently, lysosomal function, in maintaining the intestinal barrier and mucosal homeostasis. This review highlights recent work on the functional characterization of IBD-associated human genetic variants in cell type-specific functions for autophagy.
Collapse
Affiliation(s)
- Kara G Lassen
- a Broad Institute ; Cambridge , MA USA.,b Center for Computational and Integrative Biology ; Massachusetts General Hospital ; Boston , MA USA
| | - Ramnik J Xavier
- a Broad Institute ; Cambridge , MA USA.,b Center for Computational and Integrative Biology ; Massachusetts General Hospital ; Boston , MA USA.,c Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease ; Massachusetts General Hospital; Harvard Medical School ; Boston , MA USA
| |
Collapse
|
62
|
Autophagy impairment in Parkinson's disease. Essays Biochem 2017; 61:711-720. [PMID: 29233880 DOI: 10.1042/ebc20170023] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/14/2017] [Accepted: 10/24/2017] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) is a debilitating movement disorder typically associated with the accumulation of intracytoplasmic aggregate prone protein deposits. Over recent years, increasing evidence has led to the suggestion that the mutations underlying certain forms of PD impair autophagy. Autophagy is a degradative pathway that delivers cytoplasmic content to lysosomes for degradation and represents a major route for degradation of aggregated cellular proteins and dysfunctional organelles. Autophagy up-regulation is a promising therapeutic strategy that is being explored for its potential to protect cells against the toxicity of aggregate-prone proteins in neurodegenerative diseases. Here, we describe how the mutations in different subtypes of PD can affect different stages of autophagy.
Collapse
|
63
|
The LRRK2-macroautophagy axis and its relevance to Parkinson's disease. Biochem Soc Trans 2017; 45:155-162. [PMID: 28202669 PMCID: PMC5310720 DOI: 10.1042/bst20160265] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/04/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023]
Abstract
A wide variety of different functions and an impressive array of interactors have been associated with leucine-rich repeat kinase 2 (LRRK2) over the years. Here, I discuss the hypothesis that LRRK2 may be capable of interacting with different proteins at different times and places, therefore, controlling a plethora of diverse functions based on the different complexes formed. Among these, I will then focus on macroautophagy in the general context of the endolysosomal system. First, the relevance of autophagy in Parkinson's disease will be evaluated giving a brief overview of all the relevant Parkinson's disease genes; then, the association of LRRK2 with macroautophagy and the endolysosomal pathway will be analyzed based on the supporting literature.
Collapse
|
64
|
Chan SL, Tan EK. Targeting LRRK2 in Parkinson's disease: an update on recent developments. Expert Opin Ther Targets 2017; 21:601-610. [PMID: 28443359 DOI: 10.1080/14728222.2017.1323881] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION LRRK2 research has progressed significantly in recent years with more reports of LRRK2 interactors and the development of more specific and sophisticated LRRK2 kinase inhibitors. Identification of bone fide LRRK2 substrates will provide new therapeutic targets in LRRK2-linked Parkinson's disease (PD). Areas covered: This review aims to put current LRRK2 research into perspective. Beginning with recent LRRK2 mammalian models employed for in vivo validation of LRRK2 substrates, followed by updates on reported LRRK2 interactors and their inferred mechanisms. Finally an overview of commonly used LRRK2 kinase inhibitors will be depicted. Expert opinion: Identification of LRRK2 non-kinase functions suggests the possibility of alternative LRRK2 drug target sites and these should be further explored. Studies on the effects of LRRK2 kinase inhibition on its non-kinase function and its self-regulatory role will provide further insights on its pathophysiologic mechanisms. Development of robust measurements of LRRK2 inhibitor efficacy will be required. These would include identification of specific imaging ligands or direct biochemical assays that can accurately capture its intrinsic activity. Testing of new therapeutic drug targets in both LRRK2 carriers and non LRRK2-linked patients will be important since their phenotype is similar.
Collapse
Affiliation(s)
- Sharon L Chan
- a Department of Neurology , National Neuroscience institute, Duke NUS Medical School , Singapore
| | - Eng-King Tan
- a Department of Neurology , National Neuroscience institute, Duke NUS Medical School , Singapore
| |
Collapse
|
65
|
Lassen KG, Xavier RJ. Genetic control of autophagy underlies pathogenesis of inflammatory bowel disease. Mucosal Immunol 2017; 10:589-597. [PMID: 28327616 PMCID: PMC6069523 DOI: 10.1038/mi.2017.18] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/19/2017] [Indexed: 02/04/2023]
Abstract
Autophagy contributes to cellular homeostasis in the face of nutrient deprivation and other cellular stresses. Cell type-specific functions for autophagy are critical in maintaining homeostasis at both the tissue level and at the whole-organism level. Recent work has highlighted the ways in which human genetic variants modulate autophagy to alter epithelial and immune responses in inflammatory bowel disease.
Collapse
Affiliation(s)
- K G Lassen
- Broad Institute, Cambridge, Massachusetts, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - R J Xavier
- Broad Institute, Cambridge, Massachusetts, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
66
|
Mittal S, Sharma PK, Tiwari R, Rayavarapu RG, Shankar J, Chauhan LKS, Pandey AK. Impaired lysosomal activity mediated autophagic flux disruption by graphite carbon nanofibers induce apoptosis in human lung epithelial cells through oxidative stress and energetic impairment. Part Fibre Toxicol 2017; 14:15. [PMID: 28454554 PMCID: PMC5408471 DOI: 10.1186/s12989-017-0194-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 04/18/2017] [Indexed: 12/25/2022] Open
Abstract
Background Graphite carbon nanofibers (GCNF) have emerged as a potential alternative of carbon nanotubes (CNT) for various biomedical applications due to their superior physico-chemical properties. Therefore in-depth understanding of the GCNF induced toxic effects and underlying mechanisms in biological systems is of great interest. Currently, autophagy activation by nanomaterials is recognized as an emerging toxicity mechanism. However, the association of GCNF induced toxicity with this form of cell death is largely unknown. In this study, we have assessed the possible mechanism; especially the role of autophagy, underlying the GCNF induced toxicity. Methods Human lung adenocarcinoma (A549) cells were exposed to a range of GCNF concentrations and various cellular parameters were analyzed (up to 48 h). Transmission electron microscopy, immunofluorescent staining, western blot and quantitative real time PCR were performed to detect apoptosis, autophagy induction, lysosomal destabilization and cytoskeleton disruption in GCNF exposed cells. DCFDA assay was used to evaluate the reactive oxygen species (ROS) production. Experiments with N-acetyl-L-cysteine (NAC), 3-methyladenine (3-MA) and LC3 siRNA was carried out to confirm the involvement of oxidative stress and autophagy in GCNF induced cell death. Comet assay and micronucleus (MN) assay was performed to assess the genotoxicity potential. Results In the present study, GCNF was found to induce nanotoxicity in human lung cells through autophagosomes accumulation followed by apoptosis via intracellular ROS generation. Mechanistically, impaired lysosomal function and cytoskeleton disruption mediated autophagic flux blockade was found to be the major cause of accumulation rather than autophagy induction which further activates apoptosis. The whole process was in line with the increased ROS level and their pharmacological inhibition leads to mitigation of GCNF induced cell death. Moreover the inhibition of autophagy attenuates apoptosis indicating the role of autophagy as cell death process. GCNF was also found to induce genomic instability. Conclusion Our present study demonstrates that GCNF perturbs various interrelated signaling pathway and unveils the potential nanotoxicity mechanism of GCNF through targeting ROS-autophagy-apoptosis axis. The current study is significant to evaluate the safety and risk assessment of fibrous carbon nanomaterials prior to their potential use and suggests caution on their utilization for biomedical research. Electronic supplementary material The online version of this article (doi:10.1186/s12989-017-0194-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandeep Mittal
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India.,Nanomaterials Toxicology Laboratory, Nanotherapeutics and Nanomaterial Toxicology Group, CSIR - Indian Institute of Toxicology Research (CSIR - IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Pradeep Kumar Sharma
- Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR - Indian Institute of Toxicology Research (CSIR - IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ratnakar Tiwari
- Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR - Indian Institute of Toxicology Research (CSIR - IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Raja Gopal Rayavarapu
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India.,Nanomaterials Toxicology Laboratory, Nanotherapeutics and Nanomaterial Toxicology Group, CSIR - Indian Institute of Toxicology Research (CSIR - IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Jai Shankar
- Electron Microscopy Laboratory, CSIR - Indian Institute of Toxicology Research (CSIR - IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Lalit Kumar Singh Chauhan
- Electron Microscopy Laboratory, CSIR - Indian Institute of Toxicology Research (CSIR - IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Alok Kumar Pandey
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India. .,Nanomaterials Toxicology Laboratory, Nanotherapeutics and Nanomaterial Toxicology Group, CSIR - Indian Institute of Toxicology Research (CSIR - IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
67
|
Cook DA, Kannarkat GT, Cintron AF, Butkovich LM, Fraser KB, Chang J, Grigoryan N, Factor SA, West AB, Boss JM, Tansey MG. LRRK2 levels in immune cells are increased in Parkinson's disease. NPJ PARKINSONS DISEASE 2017. [PMID: 28649611 PMCID: PMC5459798 DOI: 10.1038/s41531-017-0010-8] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mutations associated with leucine-rich repeat kinase 2 are the most common known cause of Parkinson’s disease. The known expression of leucine-rich repeat kinase 2 in immune cells and its negative regulatory function of nuclear factor of activated T cells implicates leucine-rich repeat kinase 2 in the development of the inflammatory environment characteristic of Parkinson’s disease. The aim of this study was to determine the expression pattern of leucine-rich repeat kinase 2 in immune cell subsets and correlate it with the immunophenotype of cells from Parkinson’s disease and healthy subjects. For immunophenotyping, blood cells from 40 Parkinson’s disease patients and 32 age and environment matched-healthy control subjects were analyzed by flow cytometry. Multiplexed immunoassays were used to measure cytokine output of stimulated cells. Leucine-rich repeat kinase 2 expression was increased in B cells (p = 0.0095), T cells (p = 0.029), and CD16+ monocytes (p = 0.01) of Parkinson’s disease patients compared to healthy controls. Leucine-rich repeat kinase 2 induction was also increased in monocytes and dividing T cells in Parkinson’s disease patients compared to healthy controls. In addition, Parkinson’s disease patient monocytes secreted more inflammatory cytokines compared to healthy control, and cytokine expression positively correlated with leucine-rich repeat kinase 2 expression in T cells from Parkinson’s disease but not healthy controls. Finally, the regulatory surface protein that limits T-cell activation signals, CTLA-4 (cytotoxic T-lymphocyte-associated protein 4), was decreased in Parkinson’s disease compared to HC in T cells (p = 0.029). In sum, these findings suggest that leucine-rich repeat kinase 2 has a regulatory role in immune cells and Parkinson’s disease. Functionally, the positive correlations between leucine-rich repeat kinase 2 expression levels in T-cell subsets, cytokine expression and secretion, and T-cell activation states suggest that targeting leucine-rich repeat kinase 2 with therapeutic interventions could have direct effects on immune cell function. High levels of leucine-rich repeat kinase 2 (LRRK2) in immune cells disrupt immune system function in patients with Parkinson’s disease (PD). Mutations in LRRK2 are the most common genetic cause of PD. Although LRRK2 is found in many immune cells, research efforts have focussed on determining its effects on neuronal function. Malu G. Tansey at Emory University, USA, and colleagues compared the levels and function of LRKK2 in immune cells from 40 late-onset PD patients and 32 age- and environment-matched healthy controls. The cells from PD patients had higher levels of LRKK2 protein and produced more pro-inflammatory molecules in response to stimulation than the control cells. As exacerbated inflammatory responses are known to aggravate neurodegeneration, monitoring LRKK2 levels may aid the assessment of disease progression in both inherited and sporadic cases of PD.
Collapse
Affiliation(s)
- D A Cook
- Department of Physiology, Emory University School of Medicine, Atlanta, GA USA
| | - G T Kannarkat
- Department of Physiology, Emory University School of Medicine, Atlanta, GA USA
| | - A F Cintron
- Department of Physiology, Emory University School of Medicine, Atlanta, GA USA
| | - Laura M Butkovich
- Department of Physiology, Emory University School of Medicine, Atlanta, GA USA
| | - Kyle B Fraser
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL USA
| | - J Chang
- Department of Physiology, Emory University School of Medicine, Atlanta, GA USA
| | - N Grigoryan
- Department of Physiology, Emory University School of Medicine, Atlanta, GA USA
| | - S A Factor
- Department of Neurology and Movement Disorders Center, Emory University School of Medicine, Atlanta, GA USA
| | - Andrew B West
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL USA
| | - J M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA USA
| | - M G Tansey
- Department of Physiology, Emory University School of Medicine, Atlanta, GA USA
| |
Collapse
|
68
|
Sweeney P, Park H, Baumann M, Dunlop J, Frydman J, Kopito R, McCampbell A, Leblanc G, Venkateswaran A, Nurmi A, Hodgson R. Protein misfolding in neurodegenerative diseases: implications and strategies. Transl Neurodegener 2017; 6:6. [PMID: 28293421 PMCID: PMC5348787 DOI: 10.1186/s40035-017-0077-5] [Citation(s) in RCA: 410] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/01/2017] [Indexed: 11/10/2022] Open
Abstract
A hallmark of neurodegenerative proteinopathies is the formation of misfolded protein aggregates that cause cellular toxicity and contribute to cellular proteostatic collapse. Therapeutic options are currently being explored that target different steps in the production and processing of proteins implicated in neurodegenerative disease, including synthesis, chaperone-assisted folding and trafficking, and degradation via the proteasome and autophagy pathways. Other therapies, like mTOR inhibitors and activators of the heat shock response, can rebalance the entire proteostatic network. However, there are major challenges that impact the development of novel therapies, including incomplete knowledge of druggable disease targets and their mechanism of action as well as a lack of biomarkers to monitor disease progression and therapeutic response. A notable development is the creation of collaborative ecosystems that include patients, clinicians, basic and translational researchers, foundations and regulatory agencies to promote scientific rigor and clinical data to accelerate the development of therapies that prevent, reverse or delay the progression of neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Patrick Sweeney
- Discovery Services, Charles Rivers Laboratories, Wilmington, MA USA
- Royal Veterinary College, University of London, London, UK
| | - Hyunsun Park
- Health & Life Science Consulting, Los Angeles, CA USA
| | - Marc Baumann
- Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - John Dunlop
- Neuroscience Innovation Medicines, Astra Zeneca, Cambridge, MA USA
| | | | | | | | | | | | - Antti Nurmi
- Discovery Services, Charles Rivers Laboratories, Wilmington, MA USA
| | - Robert Hodgson
- Discovery Services, Charles Rivers Laboratories, Wilmington, MA USA
| |
Collapse
|
69
|
Roosen DA, Cookson MR. LRRK2 at the interface of autophagosomes, endosomes and lysosomes. Mol Neurodegener 2016; 11:73. [PMID: 27927216 PMCID: PMC5142374 DOI: 10.1186/s13024-016-0140-1] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/03/2016] [Indexed: 02/07/2023] Open
Abstract
Over the past 20 years, substantial progress has been made in identifying the underlying genetics of Parkinson's disease (PD). Of the known genes, LRRK2 is a major genetic contributor to PD. However, the exact function of LRRK2 remains to be elucidated. In this review, we discuss how familial forms of PD have led us to hypothesize that alterations in endomembrane trafficking play a role in the pathobiology of PD. We will discuss the major observations that have been made to elucidate the role of LRRK2 in particular, including LRRK2 animal models and high-throughput proteomics approaches. Taken together, these studies strongly support a role of LRRK2 in vesicular dynamics. We also propose that targeting these pathways may not only be beneficial for developing therapeutics for LRRK2-driven PD, but also for other familial and sporadic cases.
Collapse
Affiliation(s)
- Dorien A. Roosen
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bldg. 35, 35 Convent Drive, Bethesda, MD 20892-3707 USA
- School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AP UK
| | - Mark R. Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bldg. 35, 35 Convent Drive, Bethesda, MD 20892-3707 USA
| |
Collapse
|