51
|
Green strategies for active food packagings: A systematic review on active properties of graphene-based nanomaterials and biodegradable polymers. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
52
|
Hu D, Zou L, Gao Y, Jin Q, Ji J. Emerging nanobiomaterials against bacterial infections in postantibiotic era. VIEW 2020. [DOI: 10.1002/viw.20200014] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Dengfeng Hu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Lingyun Zou
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Yifan Gao
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|
53
|
Mohan AN, B M. Extraction of Graphene Nanostructures from Colocasia esculenta and Nelumbo nucifera Leaves and Surface Functionalization with Tin Oxide: Evaluation of Their Antibacterial Properties. Chemistry 2020; 26:8105-8114. [PMID: 32222045 DOI: 10.1002/chem.202000590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Indexed: 12/26/2022]
Abstract
Expeditious evolution of antimicrobial resistance in recent years has been identified as a growing concern by various health organizations around the world. Herein, facile and environmentally benign production of highly antibacterial carbonaceous nanomaterials from Colocasia esculenta and Nelumbo nucifera leaves is reported. After carbonization and oxidative treatment, smaller graphene domains are formed in Colocasia esculenta derivatives, whereas larger sheetlike structures are observed in the case of Nelumbo nucifera. Smaller particle size makes quantum confinement effects more prominent, as is evident in fine-tuning of the photoluminescence emission after each stage of treatment. The influence of precursor materials on the antibacterial properties of the nanosystems is also demonstrated. When microbiocidal activity was tested against model bacteria Pseudomonas aeruginosa, the nanocomposite derived from Colocasia esculenta leaves showed higher activity than the antibiotic drug clarithromycin (control) with a measured zone of inhibition of 40±0.5 mm. This is one of the highest values reported in comparison with plant-based carbon-silver nanosystems. Quantitative analysis revealed that the nanocomposite obtained from Colocasia esculenta leaves has antimicrobial efficacy equivalent to those of commercial antibiotic drugs and is able to eradicate bacteria at much lower concentrations than that obtained from Nelumbo nucifera leaves.
Collapse
Affiliation(s)
- Anu N Mohan
- Materials Science Research Laboratory, Department of Physics and Electronics, CHRIST (Deemed to be University), Bengaluru, Karnataka, 560029, India
| | - Manoj B
- Materials Science Research Laboratory, Department of Physics and Electronics, CHRIST (Deemed to be University), Bengaluru, Karnataka, 560029, India
| |
Collapse
|
54
|
Mohammed H, Kumar A, Bekyarova E, Al-Hadeethi Y, Zhang X, Chen M, Ansari MS, Cochis A, Rimondini L. Antimicrobial Mechanisms and Effectiveness of Graphene and Graphene-Functionalized Biomaterials. A Scope Review. Front Bioeng Biotechnol 2020; 8:465. [PMID: 32523939 PMCID: PMC7261933 DOI: 10.3389/fbioe.2020.00465] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
Bacterial infections represent nowadays the major reason of biomaterials implant failure, however, most of the available implantable materials do not hold antimicrobial properties, thus requiring antibiotic therapy once the infection occurs. The fast raising of antibiotic-resistant pathogens is making this approach as not more effective, leading to the only solution of device removal and causing devastating consequences for patients. Accordingly, there is a large research about alternative strategies based on the employment of materials holding intrinsic antibacterial properties in order to prevent infections. Between these new strategies, new technologies involving the use of carbon-based materials such as carbon nanotubes, fullerene, graphene and diamond-like carbon shown very promising results. In particular, graphene- and graphene-derived materials (GMs) demonstrated a broad range antibacterial activity toward bacteria, fungi and viruses. These antibacterial activities are attributed mainly to the direct physicochemical interaction between GMs and bacteria that cause a deadly deterioration of cellular components, principally proteins, lipids, and nucleic acids. In fact, GMs hold a high affinity to the membrane proteoglycans where they accumulate leading to membrane damages; similarly, after internalization they can interact with bacteria RNA/DNA hydrogen groups interrupting the replicative stage. Moreover, GMs can indirectly determine bacterial death by activating the inflammatory cascade due to active species generation after entering in the physiological environment. On the opposite, despite these bacteria-targeted activities, GMs have been successfully employed as pro-regenerative materials to favor tissue healing for different tissue engineering purposes. Taken into account these GMs biological properties, this review aims at explaining the antibacterial mechanisms underlying graphene as a promising material applicable in biomedical devices.
Collapse
Affiliation(s)
- Hiba Mohammed
- Biomaterials Lab, Department of Health Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy.,Biomaterials Lab, Interdisciplinary Research Center of Autoimmune Diseases, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Novara, Italy
| | - Ajay Kumar
- Biomaterials Lab, Department of Health Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy.,Biomaterials Lab, Interdisciplinary Research Center of Autoimmune Diseases, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Novara, Italy
| | - Elena Bekyarova
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, United States.,Center for Nanoscale Science and Engineering, University of California, Riverside, Riverside, CA, United States
| | - Yas Al-Hadeethi
- Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Xixiang Zhang
- Advanced Nanofabrication, Imaging and Characterization Core Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mingguang Chen
- Advanced Nanofabrication, Imaging and Characterization Core Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Andrea Cochis
- Biomaterials Lab, Department of Health Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy.,Biomaterials Lab, Interdisciplinary Research Center of Autoimmune Diseases, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Novara, Italy
| | - Lia Rimondini
- Biomaterials Lab, Department of Health Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy.,Biomaterials Lab, Interdisciplinary Research Center of Autoimmune Diseases, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Novara, Italy
| |
Collapse
|
55
|
Rozmysłowska-Wojciechowska A, Mitrzak J, Szuplewska A, Chudy M, Woźniak J, Petrus M, Wojciechowski T, Vasilchenko AS, Jastrzębska AM. Engineering of 2D Ti 3C 2 MXene Surface Charge and Its Influence on Biological Properties. MATERIALS 2020; 13:ma13102347. [PMID: 32443733 PMCID: PMC7287753 DOI: 10.3390/ma13102347] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022]
Abstract
Current trends in the field of MXenes emphasize the importance of controlling their surface features for successful application in biotechnological areas. The ability to stabilize the surface properties of MXenes has been demonstrated here through surface charge engineering. It was thus determined how changing the surface charges of two-dimensional (2D) Ti3C2 MXene phase flakes using cationic polymeric poly-L-lysine (PLL) molecules affects the colloidal and biological properties of the resulting hybrid 2D nanomaterial. Electrostatic adsorption of PLL on the surface of delaminated 2D Ti3C2 flakes occurs efficiently, leads to changing an MXene's negative surface charge toward a positive value, which can also be effectively managed through pH changes. Analysis of bioactive properties revealed additional antibacterial functionality of the developed 2D Ti3C2/PLL MXene flakes concerning Escherichia. coli Gram-negative bacteria cells. A reduction of two orders of magnitude of viable cells was achieved at a concentration of 200 mg L-1. The in vitro analysis also showed lowered toxicity in the concentration range up to 375 mg L-1. The presented study demonstrates a feasible approach to control surface properties of 2D Ti3C2 MXene flakes through surface charge engineering which was also verified in vitro for usage in biotechnology or nanomedicine applications.
Collapse
Affiliation(s)
- Anita Rozmysłowska-Wojciechowska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland; (J.M.); (J.W.); (M.P.); (A.M.J.)
- Correspondence:
| | - Joanna Mitrzak
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland; (J.M.); (J.W.); (M.P.); (A.M.J.)
| | - Aleksandra Szuplewska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (M.C.); (T.W.)
| | - Michał Chudy
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (M.C.); (T.W.)
| | - Jarosław Woźniak
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland; (J.M.); (J.W.); (M.P.); (A.M.J.)
| | - Mateusz Petrus
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland; (J.M.); (J.W.); (M.P.); (A.M.J.)
| | - Tomasz Wojciechowski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (M.C.); (T.W.)
| | - Alexey S. Vasilchenko
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia;
| | - Agnieszka M. Jastrzębska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland; (J.M.); (J.W.); (M.P.); (A.M.J.)
| |
Collapse
|
56
|
Caires CSA, Farias LAS, Gomes LE, Pinto BP, Gonçalves DA, Zagonel LF, Nascimento VA, Alves DCB, Colbeck I, Whitby C, Caires ARL, Wender H. Effective killing of bacteria under blue-light irradiation promoted by green synthesized silver nanoparticles loaded on reduced graphene oxide sheets. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110984. [PMID: 32487400 DOI: 10.1016/j.msec.2020.110984] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/03/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
Graphene oxide (GO) materials loaded with silver nanoparticles (AgNPs) have drawn considerable attention due to their capacity to efficiently inactivate bacteria though a multifaceted mechanism of action, as well as for presenting a synergetic effect against bacteria when compared to the activity of AgNPs and GO alone. In this investigation, we present an inexpensive and environmentally-friendly method for synthesizing reduced GO sheets coated with silver nanoparticles (AgNPs/r-GO) using a coffee extract solution as a green reducing agent. The physical and chemical properties of the produced materials were extensively characterized by scanning electron microscopy (SEM), field-emission gun transmission electron microscopy (FEG-TEM), ultraviolet and visible absorption (UV-Vis), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), inductively coupled plasma-optical emission spectroscopy (ICP-OES) and ion release determination. The results demonstrated that AgNPs/r-GO composites were successfully produced, revealing the formation of micrometer-sized r-GO sheets decorated by AgNPs of approximately 70 nm diameter. Finally, bactericidal and photobactericidal effects of the AgNPs/r-GO composites were tested against Staphylococcus aureus, in which the results showed that the composites presented antimicrobial and photoantimicrobial activities. Moreover, our results demonstrated for the first time, to our knowledge, that an efficient process of bacterial inactivation can be achieved by using AgNPs/r-GO composites under blue light irradiation as a result of three different bacterial killing processes: (i) chemical effect promoted by Ag+ ion release from AgNPs; (ii) photocatalytic activity induced by AgNPs/r-GO composites, enhancing the bacterial photoinactivation due to the excited-Plasmons of the AgNPs when anchored on r-GO; and (iii) photodynamic effect produced by bacterial endogenous photosensitizers under blue-light irradiation. In summary, the present findings demonstrated that AgNPs/r-GO can be obtained by a non-toxic procedure with great potential for biomedical-related applications.
Collapse
Affiliation(s)
- Cynthia S A Caires
- Laboratory of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil; School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Luiz A S Farias
- Laboratory of Nanomaterials and Applied Nanotechnology (LNNA), Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Luiz E Gomes
- Laboratory of Nanomaterials and Applied Nanotechnology (LNNA), Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Bruno P Pinto
- Laboratory of Nanomaterials and Applied Nanotechnology (LNNA), Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Daniel A Gonçalves
- Laboratory of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil; Department of Chemistry, Minas Gerais State University - UEMG, Ituiutaba, MG 38302-192, Brazil
| | - Luiz F Zagonel
- "Gleb Wataghin" Institute of Physics, University of Campinas - UNICAMP, 13083-859 Campinas, São Paulo, Brazil
| | - Valter A Nascimento
- Laboratory of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Diego C B Alves
- Laboratory of Nanomaterials and Applied Nanotechnology (LNNA), Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Ian Colbeck
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Corinne Whitby
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Anderson R L Caires
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK; Laboratory of Optics and Photonics, Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil.
| | - Heberton Wender
- Laboratory of Nanomaterials and Applied Nanotechnology (LNNA), Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil.
| |
Collapse
|
57
|
Rojas-Andrade MD, Nguyen TA, Mistler WP, Armas J, Lu JE, Roseman G, Hollingsworth WR, Nichols F, Millhauser GL, Ayzner A, Saltikov C, Chen S. Antimicrobial activity of graphene oxide quantum dots: impacts of chemical reduction. NANOSCALE ADVANCES 2020; 2:1074-1083. [PMID: 36133054 PMCID: PMC9417586 DOI: 10.1039/c9na00698b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/19/2020] [Indexed: 06/11/2023]
Abstract
Design and engineering of graphene-based functional nanomaterials for effective antimicrobial applications has been attracting extensive interest. In the present study, graphene oxide quantum dots (GOQDs) were prepared by chemical exfoliation of carbon fibers and exhibited apparent antimicrobial activity. Transmission electron microscopic measurements showed that the lateral length ranged from a few tens to a few hundred nanometers. Upon reduction by sodium borohydride, whereas the UV-vis absorption profile remained largely unchanged, steady-state photoluminescence measurements exhibited a marked blue-shift and increase in intensity of the emission, due to (partial) removal of phenanthroline-like structural defects within the carbon skeletons. Consistent results were obtained in Raman and time-resolved photoluminescence measurements. Interestingly, the samples exhibited apparent, but clearly different, antimicrobial activity against Staphylococcus epidermidis cells. In the dark and under photoirradiation (400 nm), the as-produced GOQDs exhibited markedly higher cytotoxicity than the chemically reduced counterparts, likely because of (i) effective removal by NaBH4 reduction of redox-active phenanthroline-like moieties that interacted with the electron-transport chain of the bacterial cells, and (ii) diminished production of hydroxyl radicals that were potent bactericidal agents after chemical reduction as a result of increased conjugation within the carbon skeletons.
Collapse
Affiliation(s)
- Mauricio D Rojas-Andrade
- Department of Chemistry and Biochemistry, University of California 1156 High Street Santa Cruz California 95064 USA
| | - Tuan Anh Nguyen
- Department of Chemistry and Biochemistry, University of California 1156 High Street Santa Cruz California 95064 USA
| | - William P Mistler
- Department of Chemistry and Biochemistry, University of California 1156 High Street Santa Cruz California 95064 USA
| | - Juan Armas
- Department of Chemistry and Biochemistry, University of California 1156 High Street Santa Cruz California 95064 USA
| | - Jia En Lu
- Department of Chemistry and Biochemistry, University of California 1156 High Street Santa Cruz California 95064 USA
| | - Graham Roseman
- Department of Chemistry and Biochemistry, University of California 1156 High Street Santa Cruz California 95064 USA
| | - William R Hollingsworth
- Department of Chemistry and Biochemistry, University of California 1156 High Street Santa Cruz California 95064 USA
| | - Forrest Nichols
- Department of Chemistry and Biochemistry, University of California 1156 High Street Santa Cruz California 95064 USA
| | - Glenn L Millhauser
- Department of Chemistry and Biochemistry, University of California 1156 High Street Santa Cruz California 95064 USA
| | - Alexander Ayzner
- Department of Chemistry and Biochemistry, University of California 1156 High Street Santa Cruz California 95064 USA
| | - Chad Saltikov
- Department of Microbiology and Environmental Toxicology, University of California 1156 High Street Santa Cruz California 95064 USA
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California 1156 High Street Santa Cruz California 95064 USA
| |
Collapse
|
58
|
Borges I, Henriques PC, Gomes RN, Pinto AM, Pestana M, Magalhães FD, Gonçalves IC. Exposure of Smaller and Oxidized Graphene on Polyurethane Surface Improves its Antimicrobial Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E349. [PMID: 32085467 PMCID: PMC7075169 DOI: 10.3390/nano10020349] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 12/12/2022]
Abstract
Catheter-related infections are a common worldwide health problem, highlighting the need for antimicrobial catheters. Here, antibacterial potential of graphene nanoplatelets (GNP) incorporated in the commonly used polymer for catheter manufacture-polyurethane (PU)-is investigated. Two strategies are explored: melt-blending, producing a composite, and dip coating, where a composite layer is deposited on top of PU. GNP with different lateral sizes and oxidation degrees-GNP-M5, GNP-M15, GNP-M5ox, GNP-M15ox-are applied in both strategies, and the antimicrobial potential towards Staphylococcus epidermidis of GNP dispersions and GNP-containing PU evaluated. As dispersions, oxidized and smaller GNP powders (GNP-M5ox) inhibit 74% bacteria growth at 128 µg/mL. As surfaces, GNP exposure strongly impacts their antimicrobial profile: GNP absence at the surface of composites yields no significant effects on bacteria, while by varying GNP: PU ratio and GNP concentration, coatings enhance GNP exposure, depicting an antimicrobial profile. Oxidized GNP-containing coatings induce higher antibacterial effect than non-oxidized forms, particularly with smaller GNPox, where a homogeneous layer of fused platelets is formed on PU, leading to 70% reduction in bacterial adhesion and 70% bacterial death. This pioneering work unravels how to turn a polymer clinically used to produce catheters into an antimicrobial surface, crucial to reducing risk of infection associated with catheterization.
Collapse
Affiliation(s)
- Inês Borges
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; (I.B.); (P.C.H.); (R.N.G.); (M.P.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Patrícia C. Henriques
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; (I.B.); (P.C.H.); (R.N.G.); (M.P.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Rita N. Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; (I.B.); (P.C.H.); (R.N.G.); (M.P.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Artur M. Pinto
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; (I.B.); (P.C.H.); (R.N.G.); (M.P.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Manuel Pestana
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; (I.B.); (P.C.H.); (R.N.G.); (M.P.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Department of Nephrology, São João Hospital Center, EPE, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Medicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Fernão D. Magalhães
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Inês C. Gonçalves
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; (I.B.); (P.C.H.); (R.N.G.); (M.P.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| |
Collapse
|
59
|
Chen S, Wang H, Jian Z, Fei G, Qian W, Luo G, Wang Z, Xia H. Novel Poly(vinyl alcohol)/Chitosan/Modified Graphene Oxide Biocomposite for Wound Dressing Application. Macromol Biosci 2020; 20:e1900385. [PMID: 32058669 DOI: 10.1002/mabi.201900385] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/10/2020] [Indexed: 12/15/2022]
Abstract
Rapid absorption of wound exudate and prevention of wound infection are prerequisites for wound dressing to accelerate wound healing. In this study, a novel kind of promising wound dressing is developed by incorporating polyhexamethylene guanidine (PHMG)-modified graphene oxide (mGO) into the poly(vinyl alcohol)/chitosan (PVA/CS) matrix, conferring the dressing the required mechanical properties, higher water vapor transmission rate (WVTR), less swelling time, improved antibacterial activity, and more cell proliferation compared to the PVA/CS film crosslinked by genipin. In vivo experiments indicate that the PVA/CS/mGO composite film can accelerate wound healing via enhancement of the re-epithelialization. PVA/CS/mGO composite film with 0.5 wt% mGO sheets displays the best wound healing properties, as manifested by the 50% higher antibacterial rate compared to GO and the wound healing rate of the mouse using this dressing is about 41% faster than the control group and 31% faster than the pure PVA/CS dressing. The underlying mechanism of the accelerated wound healing properties may be a result of the improved antibacterial ability to eradicate pathogenic bacteria on the wound area and maintain an appropriate moist aseptic wound healing environment to accelerate re-epithelialization. These findings suggest that this novel composite PVA/CS/mGO film may have promising applications in wound dressing.
Collapse
Affiliation(s)
- Siyao Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - He Wang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhiwen Jian
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Guoxia Fei
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Wei Qian
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhanhua Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Hesheng Xia
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| |
Collapse
|
60
|
Olate-Moya F, Arens L, Wilhelm M, Mateos-Timoneda MA, Engel E, Palza H. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4343-4357. [PMID: 31909967 DOI: 10.1021/acsami.9b22062] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Scaffolds based on bioconjugated hydrogels are attractive for tissue engineering because they can partly mimic human tissue characteristics. For example, they can further increase their bioactivity with cells. However, most of the hydrogels present problems related to their processability, consequently limiting their use in 3D printing to produce tailor-made scaffolds. The goal of this work is to develop bioconjugated hydrogel nanocomposite inks for 3D printed scaffold fabrication through a micro-extrusion process having improved both biocompatibility and processability. The hydrogel is based on a photocrosslinkable alginate bioconjugated with both gelatin and chondroitin sulfate in order to mimic the cartilage extracellular matrix, while the nanofiller is based on graphene oxide to enhance the printability and cell proliferation. Our results show that the incorporation of graphene oxide into the hydrogel inks considerably improved the shape fidelity and resolution of 3D printed scaffolds because of a faster viscosity recovery post extrusion of the ink. Moreover, the nanocomposite inks produce anisotropic threads after the 3D printing process because of the templating of the graphene oxide liquid crystal. The in vitro proliferation assay of human adipose tissue-derived mesenchymal stem cells (hADMSCs) shows that bioconjugated scaffolds present higher cell proliferation than pure alginate, with the nanocomposites presenting the highest values at long times. Live/Dead assay otherwise displays full viability of hADMSCs adhered on the different scaffolds at day 7. Notably, the scaffolds produced with nanocomposite hydrogel inks were able to guide the cell proliferation following the direction of the 3D printed threads. In addition, the bioconjugated alginate hydrogel matrix induced chondrogenic differentiation without exogenous pro-chondrogenesis factors as concluded from immunostaining after 28 days of culture. This high cytocompatibility and chondroinductive effect toward hADMSCs, together with the improved printability and anisotropic structures, makes these nanocomposite hydrogel inks a promising candidate for cartilage tissue engineering based on 3D printing.
Collapse
Affiliation(s)
- Felipe Olate-Moya
- Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas , Universidad de Chile , Beauchef 851 , 8370456 Santiago , Chile
| | - Lukas Arens
- Institute for Technical Chemistry and Polymer Chemistry (ITCP) , Karlsruhe Institute of Technology (KIT) , Engesserstr. 18 , 76131 Karlsruhe , Germany
| | - Manfred Wilhelm
- Institute for Technical Chemistry and Polymer Chemistry (ITCP) , Karlsruhe Institute of Technology (KIT) , Engesserstr. 18 , 76131 Karlsruhe , Germany
| | - Miguel Angel Mateos-Timoneda
- Institute for Bioengineering of Catalonia (IBEC) , The Barcelona Institute of Science and Technology , Baldiri Reixac 10-12 , 08028 Barcelona , Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Monforte de Lemos, 3-5 , 28029 Madrid , Spain
- Department of Materials Science, EEBE , Technical University of Catalonia (UPC) , d'Eduard Maristany 16 , 08019 Barcelona , Spain
| | - Elisabeth Engel
- Institute for Bioengineering of Catalonia (IBEC) , The Barcelona Institute of Science and Technology , Baldiri Reixac 10-12 , 08028 Barcelona , Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Monforte de Lemos, 3-5 , 28029 Madrid , Spain
- Department of Materials Science, EEBE , Technical University of Catalonia (UPC) , d'Eduard Maristany 16 , 08019 Barcelona , Spain
| | - Humberto Palza
- Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas , Universidad de Chile , Beauchef 851 , 8370456 Santiago , Chile
- Millennium Nuclei in Soft Smart Mechanical Metamaterials , Beauchef 851 , 8370456 Santiago , Chile
| |
Collapse
|
61
|
Enhanced synergetic antibacterial activity by a reduce graphene oxide/Ag nanocomposite through the photothermal effect. Colloids Surf B Biointerfaces 2020; 185:110616. [DOI: 10.1016/j.colsurfb.2019.110616] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 10/17/2019] [Accepted: 10/27/2019] [Indexed: 11/21/2022]
|
62
|
|
63
|
Barrios AC, Wang Y, Gilbertson LM, Perreault F. Structure-Property-Toxicity Relationships of Graphene Oxide: Role of Surface Chemistry on the Mechanisms of Interaction with Bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14679-14687. [PMID: 31697064 DOI: 10.1021/acs.est.9b05057] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graphene oxide (GO) is an antimicrobial agent with tunable surface chemistry. To identify the physicochemical determinants of GO's antimicrobial activity, we generated different modified Hummer's GO materials thermally annealed at 200, 500, or 800 °C (TGO200, TGO500, and TGO800, respectively) to modify the surface oxygen groups on the material. Plating assays show that as-received GO (ARGO) and TGO200, TGO500, and TGO800 reduce Escherichia coli viability by 50% (EC50) at 183, 143, 127, and 86 μg/mL, respectively, indicating higher bacterial toxicity as ARGO is reduced. To uncover the toxicity mechanism of GO, fluorescent dye-based assays were used to measure oxidative stress at the EC50. ARGO showed an increase in intracellular reactive oxygen species, measured as an increase in 2',7'-dichlorodihydrofluorescein diacetate fluorescence, whereas TGO500 and TGO800 induced an increase in the fluorescence of fluorescein diacetate (FDA) by 30 and 42%, suggesting a decrease in cell permeability. Because of a possible wrapping mechanism, plating assays after post-exposure sonication were performed to explain TGO's low oxidative response and high FDA levels. Results show no difference in colony-forming units, indicating that inhibition of cell growth is a result of the adsorption of bacterial cells on the GO material. By comparing different GO samples at their EC50, this study reveals that reduction of GO alters both the mechanisms of cellular interaction and the degree of toxicity to bacteria.
Collapse
|
64
|
Mansi A, Boccuni F, Iavicoli S. Nanomaterials as a new opportunity for protecting workers from biological risk. INDUSTRIAL HEALTH 2019; 57:668-675. [PMID: 30814393 PMCID: PMC6885598 DOI: 10.2486/indhealth.2018-0197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/25/2019] [Indexed: 05/24/2023]
Abstract
Healthcare-Associated Infections (HAIs) represent a frequent complication for hospitalized patients and more rarely for workers. In recent years, substantial scientific evidence has been reached regarding the role played by the inanimate surfaces, especially those touched in patient-care areas, in the transmission of nosocomial pathogens. Therefore, it is essential to find new collective protective measures to minimize microbial contamination in healthcare facilities, thereby preventing the spread of multi-drug resistant bacteria. We present an overview of the major nano-enabled AntiMicrobial Coatings (AMCs) which may be used as collective protective measures in healthcare setting, discussing also some aspects related to their effectiveness and safety. AMCs may be classified within three groups on base of their mechanism of action: surfaces releasing active compound, contact-killing surfaces and anti-adhesive surfaces. To date, little information is available on the effectiveness of AMCs to reduce the risk of HAIs since the most of studies do not reach conclusive results on their beneficial effects. Moreover, the lack of standard protocols for assessing antimicrobial efficacy and poor data about the interaction between AMCs and disinfectants prevent their placing on the market. Further studies are needed for assessing risks and benefits of AMCs as collective protective measures in healthcare setting.
Collapse
Affiliation(s)
- Antonella Mansi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Italy
| | - Fabio Boccuni
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Italy
| | - Sergio Iavicoli
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Italy
| |
Collapse
|
65
|
Hu D, Zou L, Li B, Hu M, Ye W, Ji J. Photothermal Killing of Methicillin-Resistant Staphylococcus aureus by Bacteria-Targeted Polydopamine Nanoparticles with Nano-Localized Hyperpyrexia. ACS Biomater Sci Eng 2019; 5:5169-5179. [PMID: 33455223 DOI: 10.1021/acsbiomaterials.9b01173] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bacterial infections caused by antibiotic-resistant pathogens have become intractable problems to public health. Therefore, there is an imperious demand for developing new approaches to effectively kill antibiotic-resistant bacteria. In this work, we report a kind of bacteria-targeted polydopamine nanoparticle exhibiting great photothermal killing ability toward methicillin-resistant Staphylococcus aureus (MRSA) by nano-localized hyperpyrexia under low-power near-infrared (NIR) light irradiation. These bacteria-targeted nanoparticles (PDA-PEG-Van) are prepared by modifying polydopamine nanoparticles with thiol-poly(ethylene glycol) (mPEG-SH) and vancomycin (Van) molecules. The PEG shell endows the nanoparticles with excellent long-term circulation stability. Due to the multivalent hydrogen-bond interactions between vancomycin and the MRSA cell wall, the vancomycin-modified polydopamine nanoparticles can specifically target MRSA rather than mammalian cells. These bacteria-targeted nanoparticles are employed as a nano-localized heat source to kill MRSA via disrupting the bacterial cell wall and membrane under irradiation of low-power NIR light. More importantly, the surrounding healthy tissues suffer bare damage, owing to the absence of any targeting effect of PDA-PEG-Van toward mammalian cells and the low power of NIR light used in the therapeutic process. Given the above advantages, the bacteria-targeted polydopamine nanoparticles proposed in this work show tremendous potential to treat MRSA infections, because they can effectively limit localized heating in the infection sites to kill bacteria and cut down damage to healthy tissues.
Collapse
Affiliation(s)
- Dengfeng Hu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lingyun Zou
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bochao Li
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mi Hu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wanying Ye
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
66
|
Das NM, Singh AK, Ghosh D, Bandyopadhyay D. Graphene oxide nanohybrids for electron transfer-mediated antimicrobial activity. NANOSCALE ADVANCES 2019; 1:3727-3740. [PMID: 36133551 PMCID: PMC9418889 DOI: 10.1039/c9na00272c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/15/2019] [Indexed: 05/25/2023]
Abstract
The rapid increase in the prevalence of antibiotic-resistant bacterial strains poses a global health risk. In this scenario, alternative strategies are needed to combat the alarming rise in multidrug-resistant bacterial populations. For example, metal-incorporated graphene derivatives have emerged as model nanomaterials owing to their intrinsic antibacterial activity together with their biocompatibility. Interestingly, photon-activated phthalocyanine sensitizers have also shown promising physiochemical biocidal effects against pathogenic bacteria populations when conjugated with diverse nanomaterials. Herein, we report the facile synthesis of graphene oxide incorporated zinc phthalocyanine (ZnPc-GO) nanohybrids showing bactericidal activity against Gram-negative Escherichia coli (E. coli) cells, in the absence of any photo-excitation. The ZnPc-GO hybrid nanomaterials were synthesized by the in situ deposition of GO flakes on ZnPc-coated indium tin oxide (ITO) substrates. Two types of morphologically different ZnPc molecules, potato-chip-like α-phase ZnPc, namely ZnPc(A), and nanorod-like β-phase ZnPc(B), were used for the synthesis of the ZnPc(A/B)-GO nanocomposites. The interactions of GO with the underlying ZnPc(A/B) entities in the ZnPc-GO systems were investigated using multiple characterization techniques. It was observed that the GO flakes in the ZnPc(B)-GO nanocomposite possess stronger π-π interactions and thus show a more efficient electron transfer mechanism when compared with the ZnPc(A) counterpart. Furthermore, the E. coli bacterial cells with an electronegative surface demonstrated a profound adherence to the electron-withdrawing ZnPc(B)-GO surface. The death kinetics of bacteria with ZnPc(B)-GO were further investigated using surface potential mapping and Kelvin probe force microscopy (KPFM) analysis. Upon direct contact with ZnPc(B)-GO, the adhered bacterial cells showed outer cell deformation and membrane protein leakage, induced by a proposed charge-transfer mechanism between negatively charged cells and the electron-withdrawing ZnPc(B)-GO surface. These new findings may provide insights into the design of potential ZnPc-GO-based novel antimicrobial nanomaterials or surface coatings.
Collapse
Affiliation(s)
- Nayan Mani Das
- Department of Chemical Engineering, Indian Institute of Technology Guwahati Guwahati - 781039 India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati Guwahati - 781039 India
| | - Amit Kumar Singh
- Centre for Nanotechnology, Indian Institute of Technology Guwahati Guwahati - 781039 India
| | - Debdatta Ghosh
- Department of Chemical Engineering, Indian Institute of Technology Guwahati Guwahati - 781039 India
| | - Dipankar Bandyopadhyay
- Department of Chemical Engineering, Indian Institute of Technology Guwahati Guwahati - 781039 India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati Guwahati - 781039 India
| |
Collapse
|
67
|
Naz S, Mansoor Q, Nisar A, Karim S, Khan M, Ali G, Rahman A, Ahmad M. Silver Nanoparticles Embedded Graphene Oxide Nanocomposite with Enhanced Antibacterial and Photocatalytic Degradation Activities. ChemistrySelect 2019. [DOI: 10.1002/slct.201901124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Saira Naz
- Nanomaterials Research GroupPhysics Division, PINSTECH, Islamabad 44000 Pakistan
- Institute of Chemical SciencesUniversity of Peshawar, Peshawar Pakistan
| | - Qaisar Mansoor
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad Pakistan
| | - Amjad Nisar
- Nanomaterials Research GroupPhysics Division, PINSTECH, Islamabad 44000 Pakistan
| | - Shafqat Karim
- Nanomaterials Research GroupPhysics Division, PINSTECH, Islamabad 44000 Pakistan
| | - Maaz Khan
- Nanomaterials Research GroupPhysics Division, PINSTECH, Islamabad 44000 Pakistan
| | - Ghafar Ali
- Nanomaterials Research GroupPhysics Division, PINSTECH, Islamabad 44000 Pakistan
| | - Ataur Rahman
- Institute of Chemical SciencesUniversity of Peshawar, Peshawar Pakistan
| | - Mashkoor Ahmad
- Nanomaterials Research GroupPhysics Division, PINSTECH, Islamabad 44000 Pakistan
| |
Collapse
|
68
|
Jan T, Azmat S, Mansoor Q, Waqas HM, Adil M, Ilyas SZ, Ahmad I, Ismail M. Superior antibacterial activity of ZnO-CuO nanocomposite synthesized by a chemical Co-precipitation approach. Microb Pathog 2019; 134:103579. [PMID: 31175970 DOI: 10.1016/j.micpath.2019.103579] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/10/2018] [Accepted: 06/05/2019] [Indexed: 01/06/2023]
Abstract
Synthesis of highly efficient antibacterial agents has become highly important due to emergence of antibiotic resistance. Herein, Pristine ZnO and ZnO-CuO nanocomposite has been synthesized by simple chemical co-precipitation method and characterized by X-ray diffraction (XRD), microscopic and spectroscopic techniques. The prepared ZnO-CuO nanocomposite is composed of two dimensional nanosheets consisting of hexagonal ZnO and monoclinic CuO crystal phases present in coexistence. Moreover, a minute presence of Cu5Zn8 cubic phase has been evident in the XRD pattern of ZnO-CuO nanocomposite. Fourier Transform Infrared Spectroscopy (FTIR) spectrum of the prepared nanocomposite has revealed the presence of vibrational modes related to both Zn-O and Cu-O. Photoluminescence (PL) investigations depicted the formation of huge amounts of surface defects in ZnO-CuO nanocomposite as compared to pristine ZnO nanostructures. The prepared ZnO-CuO nanocomposite has efficiently killed Methicillin resistant Staphylococus aureus (s. aureus) bacterium by producing 24 mm of zone of inhibition (ZOI) comparing to 8 mm ZOI produced by pristine ZnO. The superior antibacterial activity of ZnO-CuO nanocomposite has been attributed to oxidative stress generated by electron transfer pathway and reactive oxygen species (ROS) generation.
Collapse
Affiliation(s)
- Tariq Jan
- Department of Physics, Allama Iqbal Open University, Islamabad, Pakistan.
| | - Sohail Azmat
- Experimental Physics Labs, National Centre for Physics, Islamabad, Pakistan
| | - Qaisar Mansoor
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | - H M Waqas
- Department of Physics, University of Lahore, Sargodha Campus, Sargodha, Pakistan
| | - M Adil
- Center for Advanced Materials Research, University of Sharjah, Sharjah, United Arab Emirates
| | - S Z Ilyas
- Department of Physics, Allama Iqbal Open University, Islamabad, Pakistan
| | - Ishaq Ahmad
- Experimental Physics Labs, National Centre for Physics, Islamabad, Pakistan; NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Muhammad Ismail
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| |
Collapse
|
69
|
Wang L, Yuan Z, Karahan HE, Wang Y, Sui X, Liu F, Chen Y. Nanocarbon materials in water disinfection: state-of-the-art and future directions. NANOSCALE 2019; 11:9819-9839. [PMID: 31080989 DOI: 10.1039/c9nr02007a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Water disinfection practices are critical for supplying safe drinking water. Existing water disinfection methods come with various drawbacks, calling for alternative or complementary solutions. Nanocarbon materials (NCMs) offer unique advantages for water disinfection owing to their high antimicrobial activity, often low environmental/human toxicity, and tunable physicochemical properties. Nevertheless, it is a challenge to assess the research progress made so far due to the structure and property diversity in NCMs as well as their different targeted applications. Because of these, here we provide a broad outline of this emerging field in three parts. First, we introduce the antimicrobial activities of the different types of NCMs, including fullerenes, nanodiamonds, carbon (nano)dots, carbon nanotubes, and graphene-family materials. Next, we discuss the current status in applying these NCMs for different water disinfection problems, especially as hydrogel filters, filtration membranes, recyclable aggregates, and electrochemical devices. We also introduce the use of NCMs in photocatalysts for photocatalytic water disinfection. Lastly, we put forward the key hurdles of the field that hamper the realization of the practical applications and propose possible directions for future investigations to address those. We hope that this minireview will encourage researchers to tackle these challenges and innovate NCM-based water disinfection platforms in the near future.
Collapse
Affiliation(s)
- Liang Wang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Ziwen Yuan
- The University of Sydney, School of Chemical and Biomolecular Engineering, NSW, 2006, Australia.
| | - H Enis Karahan
- Nanyang Technological University, School of Chemical and Biomedical Engineering, 62 Nanyang Drive, 637459, Singapore
| | - Yilei Wang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Xiao Sui
- The University of Sydney, School of Chemical and Biomolecular Engineering, NSW, 2006, Australia.
| | - Fei Liu
- The University of Sydney, School of Chemical and Biomolecular Engineering, NSW, 2006, Australia. and State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, 100 Central Xianlie Road, Guangzhou 510070, China
| | - Yuan Chen
- The University of Sydney, School of Chemical and Biomolecular Engineering, NSW, 2006, Australia.
| |
Collapse
|
70
|
Zhang Y, Chen S, An J, Fu H, Wu X, Pang C, Gao H. Construction of an Antibacterial Membrane Based on Dopamine and Polyethylenimine Cross-Linked Graphene Oxide. ACS Biomater Sci Eng 2019; 5:2732-2739. [PMID: 33405605 DOI: 10.1021/acsbiomaterials.9b00061] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yongxin Zhang
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, No. 391, West Binshui Road, Tianjin 300384, P. R. China
| | - Shuai Chen
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, No. 391, West Binshui Road, Tianjin 300384, P. R. China
| | - Jinxia An
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, No. 391, West Binshui Road, Tianjin 300384, P. R. China
| | - Hao Fu
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, No. 391, West Binshui Road, Tianjin 300384, P. R. China
| | - Xinshi Wu
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, No. 391, West Binshui Road, Tianjin 300384, P. R. China
| | - Chengcai Pang
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, No. 391, West Binshui Road, Tianjin 300384, P. R. China
| | - Hui Gao
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, No. 391, West Binshui Road, Tianjin 300384, P. R. China
| |
Collapse
|
71
|
Tan KH, Sattari S, Beyranvand S, Faghani A, Ludwig K, Schwibbert K, Böttcher C, Haag R, Adeli M. Thermoresponsive Amphiphilic Functionalization of Thermally Reduced Graphene Oxide to Study Graphene/Bacteria Hydrophobic Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4736-4746. [PMID: 30840824 DOI: 10.1021/acs.langmuir.8b03660] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
An understanding of the interactions of 2D nanomaterials with pathogens is of vital importance to developing and controlling their antimicrobial properties. In this work, the interaction of functionalized graphene with tunable hydrophobicity and bacteria is investigated. Poly(ethylene glycol)- block-(poly- N-isopropylacrylamide) copolymer (PEG- b-PNIPAM) with the triazine joint point was attached to the graphene surface by a nitrene [2 + 1] cycloaddition reaction. By thermally switching between hydrophobic and hydrophilic states, functionalized graphene sheets were able to bind to bacteria. Bacteria were eventually disrupted when the functionality was switched to the hydrophobic state. On the basis of measuring the different microscopy methods and a live/dead viability assay, it was found that Escherichia coli ( E. coli) bacteria are more susceptible to hydrophobic interactions than B. cereus bacteria, under the same conditions. Our investigations confirm that hydrophobic interaction is one of the main driving forces at the presented graphene/bacteria interfaces and promotes the antibacterial activity of graphene derivatives significantly.
Collapse
Affiliation(s)
- Kok H Tan
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Shabnam Sattari
- Department of Chemistry, Faculty of Science , Lorestan University , Khorram Abad , Iran
| | - Siamak Beyranvand
- Department of Chemistry, Faculty of Science , Lorestan University , Khorram Abad , Iran
| | - Abbas Faghani
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Kai Ludwig
- Forschungszentrum für Elektronenmikroskopie and Core Facility BioSupraMol, Institut für Chemie und Biochemie , Freie Universität Berlin , Fabeckstr. 36a , 14195 Berlin , Germany
| | - Karin Schwibbert
- Department of Materials and the Environment , Division of Biodeterioration and Reference Organisms of Bundesanstalt für Materialforschung und -Prüfung , Unter den Eichen 87 , 12205 Berlin , Germany
| | - Christoph Böttcher
- Forschungszentrum für Elektronenmikroskopie and Core Facility BioSupraMol, Institut für Chemie und Biochemie , Freie Universität Berlin , Fabeckstr. 36a , 14195 Berlin , Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Mohsen Adeli
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
- Department of Chemistry, Faculty of Science , Lorestan University , Khorram Abad , Iran
| |
Collapse
|
72
|
Facile synthesis of graphene-tin oxide nanocomposite derived from agricultural waste for enhanced antibacterial activity against Pseudomonas aeruginosa. Sci Rep 2019; 9:4170. [PMID: 30862854 PMCID: PMC6414503 DOI: 10.1038/s41598-019-40916-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/26/2019] [Indexed: 12/20/2022] Open
Abstract
Antibacterial screening of graphene-tin oxide nanocomposites synthesized from carbonized wood and coconut shell is investigated against Pseudomonas aeruginosa for the first time. Efficient and facile one step hydrothermal process adopted in the present work for the synthesis of graphene-tin oxide nanoparticles provides an ideal method for the economic large-scale production of the same. Graphene-tin oxide nanocomposites derived from wood charcoal possess a spherical morphology whereas rod like structures are seen in the case of coconut shell derivatives. An excitation independent fluorescence response is observed in graphene-tin oxide nanohybrids while graphene oxide nanostructures exhibited an excitation dependent behavior. These hydrophilic nanostructures are highly stable and exhibited no sign of luminescence quenching or particle aggregation even after a storage of 30 months. Bactericidal effects of the nanostructures obtained from coconut shell is found to be relatively higher compared to those procured from wood. This variation in antibacterial performance of the samples is directly related to their morphological difference which in turn is heavily influenced by the precursor material used. MIC assay revealed that coconut shell derived graphene-tin oxide composite is able to inhibit the bacterial growth at a lower concentration (250 μg/mL) than the other nanostructures. Nanocomposites synthesized from agro-waste displayed significantly higher antimicrobial activity compared to the precursor and graphene oxide nanostructures thereby making them excellent candidates for various bactericidal applications such as disinfectants, sanitary agents etc.
Collapse
|
73
|
Shi Y, Xia W, Liu S, Guo J, Qi Z, Zou Y, Wang L, Duan SZ, Zhou Y, Lin C, Shi J, Wang L, Fan C, Lv M, Tang Z. Impact of Graphene Exposure on Microbial Activity and Community Ecosystem in Saliva. ACS APPLIED BIO MATERIALS 2019; 2:226-235. [DOI: 10.1021/acsabm.8b00566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuting Shi
- National Clinical
Research Center of Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Wenjun Xia
- National Clinical
Research Center of Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Shima Liu
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jingyang Guo
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Zhengnan Qi
- National Clinical
Research Center of Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Yan Zou
- National Clinical
Research Center of Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Liping Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Sheng-Zhong Duan
- National Clinical
Research Center of Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Yi Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chenglie Lin
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiye Shi
- UCB Pharma, Slough, Berkshire SL1 3WE, U.K
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Min Lv
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Zisheng Tang
- National Clinical
Research Center of Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| |
Collapse
|
74
|
Mohan AN, B. M. Biowaste derived graphene quantum dots interlaced with SnO2 nanoparticles – a dynamic disinfection agent against Pseudomonas aeruginosa. NEW J CHEM 2019. [DOI: 10.1039/c9nj00379g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A biocidal GQD/SnO2 nanocomposite derived from discarded sugarcane bagasse is a cost effective, renewable and green replacement for the traditional hazardous microbicides.
Collapse
Affiliation(s)
- Anu N. Mohan
- Materials Science Research Laboratory
- Department of Physics and Electronics
- CHRIST (Deemed to be University)
- Bengaluru-560029
- India
| | - Manoj B.
- Materials Science Research Laboratory
- Department of Physics and Electronics
- CHRIST (Deemed to be University)
- Bengaluru-560029
- India
| |
Collapse
|
75
|
Gao D, Li Y, Lyu B, Lyu L, Chen S, Ma J. Construction of durable antibacterial and anti-mildew cotton fabric based on P(DMDAAC-AGE)/Ag/ZnO composites. Carbohydr Polym 2019; 204:161-169. [DOI: 10.1016/j.carbpol.2018.09.087] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/18/2018] [Accepted: 09/29/2018] [Indexed: 10/28/2022]
|
76
|
Anand A, Unnikrishnan B, Wei SC, Chou CP, Zhang LZ, Huang CC. Graphene oxide and carbon dots as broad-spectrum antimicrobial agents - a minireview. NANOSCALE HORIZONS 2019; 4:117-137. [PMID: 32254148 DOI: 10.1039/c8nh00174j] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Due to the increasing global population, growing contamination of water and air, and wide spread of infectious diseases, antibiotics are extensively used as a major antibacterial drug. However, many microbes have developed resistance to antibiotics through mutation over time. As an alternative to antibiotics, antimicrobial nanomaterials have attracted great attention due to their advantageous properties and unique mechanisms of action toward microbes. They inhibit bacterial growth and destroy cells through complex mechanisms, making it difficult for bacteria to develop drug resistance, though some health concerns related to biocompatibility remain for practical applications. Among various antibacterial nanomaterials, carbon-based materials, especially graphene oxide (GO) and carbon dots (C-Dots), are promising candidates due to the ease of production and functionalization, high dispersibility in aqueous media, and promising biocompatibility. The antibacterial properties of these nanomaterials can be easily adjusted by surface modification. They are promising materials for future applications against multidrug-resistant bacteria based on their strong capacity in disruption of microbial membranes. Though many studies have reported excellent antibacterial activity of carbon nanomaterials, their impact on the environment and living organisms is of concern due to the accumulatory and cytotoxic effects. In this review, we discuss antimicrobial applications of the functional carbon nanomaterials (GO and C-Dots), their antibacterial mechanisms, factors affecting antibacterial activity, and concerns regarding cytotoxicity.
Collapse
Affiliation(s)
- Anisha Anand
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | | | | | | | | | | |
Collapse
|
77
|
Liu S, Cao S, Guo J, Luo L, Zhou Y, Lin C, Shi J, Fan C, Lv M, Wang L. Graphene oxide-silver nanocomposites modulate biofilm formation and extracellular polymeric substance (EPS) production. NANOSCALE 2018; 10:19603-19611. [PMID: 30325394 DOI: 10.1039/c8nr04064h] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Biofilms with positive and negative actions ubiquitously affect medical infections, environmental remediation and industrial processes. However, it remains challenging to control the growth of harmful biofilms as well as to exploit the use of beneficial biofilms. Here we investigated the effect of an antibacterial graphene oxide-silver nanoparticles (GO-AgNPs) composite on Pseudomonas aeruginosa biofilm formation. We found that GO-AgNPs prevented biofilm formation in a dose-dependent manner, with a threshold of 15 μg mL-1. Interestingly, the bacterial biomass significantly decreased, but extracellular polymeric substance (EPS) production remarkably increased in mature biofilms treated with GO-AgNPs of an appropriate concentration, suggesting that GO-AgNPs effectively modulate biofilm development and structure. Moreover, we established that GO-AgNPs caused bacterial death via both physical damage and oxidative stress, showing the synergic action of GO and AgNPs. These findings facilitate the use of graphene-based nanocomposites for greener antibiotic applications.
Collapse
Affiliation(s)
- Shima Liu
- College of Sciences, Shanghai University, Shanghai 200444, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Li N, Zeng C, Qin Q, Zhang B, Chen L, Luo Z. Powerful antibacterial activity of graphene/nanoflower-like nickelous hydroxide nanocomposites. Nanomedicine (Lond) 2018; 13:2901-2916. [DOI: 10.2217/nnm-2018-0200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The development of new and efficient antibacterial agents is urgent to overcome emerging antimicrobial resistance. Materials & methods: Herein, we have presented a new type of 3D antibacterial system to prompt bacteria to contact with the any plane of nanocomposites. Results: Comparing the antibacterial activity of graphene oxide, reduced graphene oxide and graphene-loaded nanoflower-like nickelous hydroxide (GN/Ni(OH)2) nanocomposites; the GN/Ni(OH)2 showed stronger bactericidal capability toward Gram-negative/-positive bacteria. Moreover, the GN/Ni(OH)2 with low cytotoxicity can promote it as ‘green’ antimicrobial agents. And, the GN/Ni(OH)2 presented long-term stable antibacterial effectiveness after 2-month storage. The antibacterial mechanisms of GN/Ni(OH)2 were evidenced as the 3D contact and violent damage to the bacterial structure. Conclusion: The GN/Ni(OH)2 provides new insights into the antibacterial properties of 3D nanocomposites for effectively fighting pathogen threats in biomedicine and public health.
Collapse
Affiliation(s)
- Na Li
- Guangxi Key Laboratory of Agricultural Resources Chemistry & Biotechnology, College of Chemistry & Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China
| | - Chujie Zeng
- Guangxi Key Laboratory of Agricultural Resources Chemistry & Biotechnology, College of Chemistry & Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China
| | - Qipin Qin
- Guangxi Key Laboratory of Agricultural Resources Chemistry & Biotechnology, College of Chemistry & Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China
| | - Biaoming Zhang
- Guangxi Key Laboratory of Agricultural Resources Chemistry & Biotechnology, College of Chemistry & Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China
| | - Lina Chen
- Guangxi Key Laboratory of Agricultural Resources Chemistry & Biotechnology, College of Chemistry & Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China
| | - Zhihui Luo
- Guangxi Key Laboratory of Agricultural Resources Chemistry & Biotechnology, College of Chemistry & Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China
| |
Collapse
|
79
|
Dai X, Zhao Y, Yu Y, Chen X, Wei X, Zhang X, Li C. All-in-one NIR-activated nanoplatforms for enhanced bacterial biofilm eradication. NANOSCALE 2018; 10:18520-18530. [PMID: 30211421 DOI: 10.1039/c8nr04748k] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The chronic infection of humans by antibiotic-resistant bacteria and their related biofilm have, so far, not been properly addressed. In the present work, we developed a novel antibacterial nanoplatform showing the most efficient antibiotic-resistant bacteria inhibition and biofilm eradication. This particular formulation contains tobramycin-conjugated graphene oxide, for efficiently capturing bacteria through electrostatic interactions and eliminating bacteria as a "nano-knife", and copper sulphide nanoparticles for enhancing the photothermal and photodynamic properties. This novel formulation can selectively eliminate bacteria over NIH 3T3 cells, and the biofilm eradication capacity was up to 70%. Importantly, the nanoplatforms can inhibit bacterial growth and promote the repair of antibiotic-resistant bacteria-infected wounds on rats without non-specific damage to normal tissue. This work provides an effective, simple, and rapid method for the design and fabrication of near-infrared light-induced nanoplatforms that offer possibilities to treat biofilm-related infections.
Collapse
Affiliation(s)
- Xiaomei Dai
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | | | | | | | | | | | | |
Collapse
|
80
|
Graphene-based materials: The missing piece in nanomedicine? Biochem Biophys Res Commun 2018; 504:686-689. [DOI: 10.1016/j.bbrc.2018.09.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022]
|
81
|
Rabchinskii MK, Dideikin AT, Kirilenko DA, Baidakova MV, Shnitov VV, Roth F, Konyakhin SV, Besedina NA, Pavlov SI, Kuricyn RA, Lebedeva NM, Brunkov PN, Vul' AY. Facile reduction of graphene oxide suspensions and films using glass wafers. Sci Rep 2018; 8:14154. [PMID: 30237450 PMCID: PMC6147865 DOI: 10.1038/s41598-018-32488-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/06/2018] [Indexed: 02/07/2023] Open
Abstract
This paper reports a facile and green method for conversion of graphene oxide (GO) into graphene by low-temperature heating (80 °C) in the presence of a glass wafer. Compared to conventional GO chemical reduction methods, the presented approach is easy-scalable, operationally simple, and based on the use of a non-toxic recyclable deoxygenation agent. The efficiency of the proposed method is further expanded by the fact that it can be applied for reducing both GO suspensions and large-scale thin films formed on various substrates prior to the reduction process. The quality of the obtained reduced graphene oxide (rGO) strongly depends on the type of the used glass wafer, and, particularly, magnesium silicate glass can provide rGO with the C/O ratio of 7.4 and conductivity of up to 33000 S*cm-1. Based on the data obtained, we have suggested a mechanism of the observed reduction process in terms of the hydrolysis of the glass wafer with subsequent interaction of the leached alkali and alkali earth cations and silicate anions with graphene oxide, resulting in elimination of the oxygen-containing groups from the latter one. The proposed approach can be efficiently used for low-cost bulk-quantity production of graphene and graphene-based materials for a wide field of applications.
Collapse
Affiliation(s)
| | - Arthur T Dideikin
- Ioffe Institute, 26 Politekhnicheskaya, Saint-Petersburg, 194021, Russia
| | - Demid A Kirilenko
- Ioffe Institute, 26 Politekhnicheskaya, Saint-Petersburg, 194021, Russia. .,ITMO University, 49 Kronverksky Pr., Saint-Petersburg, 197101, Russia.
| | - Marina V Baidakova
- Ioffe Institute, 26 Politekhnicheskaya, Saint-Petersburg, 194021, Russia.,ITMO University, 49 Kronverksky Pr., Saint-Petersburg, 197101, Russia
| | - Vladimir V Shnitov
- Ioffe Institute, 26 Politekhnicheskaya, Saint-Petersburg, 194021, Russia
| | - Friedrich Roth
- TU Bergakademie Freiberg, Institute of Experimental Physics, Freiberg, D-09599, Germany
| | - Sergei V Konyakhin
- Ioffe Institute, 26 Politekhnicheskaya, Saint-Petersburg, 194021, Russia.,St. Petersburg Academic University, St. Petersburg, 194021, Russia.,Institute Pascal, PHOTON-N2, University Clermont Auvergne, CNRS, 63178, Aubiere Cedex, France
| | - Nadezhda A Besedina
- Ioffe Institute, 26 Politekhnicheskaya, Saint-Petersburg, 194021, Russia.,St. Petersburg Academic University, St. Petersburg, 194021, Russia
| | - Sergei I Pavlov
- Ioffe Institute, 26 Politekhnicheskaya, Saint-Petersburg, 194021, Russia
| | - Roman A Kuricyn
- Ioffe Institute, 26 Politekhnicheskaya, Saint-Petersburg, 194021, Russia
| | - Natalie M Lebedeva
- Ioffe Institute, 26 Politekhnicheskaya, Saint-Petersburg, 194021, Russia
| | - Pavel N Brunkov
- ITMO University, 49 Kronverksky Pr., Saint-Petersburg, 197101, Russia
| | - Alexander Ya Vul'
- Ioffe Institute, 26 Politekhnicheskaya, Saint-Petersburg, 194021, Russia
| |
Collapse
|
82
|
Sun W, Wu FG. Two-Dimensional Materials for Antimicrobial Applications: Graphene Materials and Beyond. Chem Asian J 2018; 13:3378-3410. [DOI: 10.1002/asia.201800851] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/14/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Wei Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering; Southeast University; 2 Sipailou Road Nanjing 210096 P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering; Southeast University; 2 Sipailou Road Nanjing 210096 P. R. China
| |
Collapse
|
83
|
Karahan HE, Wang Y, Li W, Liu F, Wang L, Sui X, Riaz MA, Chen Y. Antimicrobial graphene materials: the interplay of complex materials characteristics and competing mechanisms. Biomater Sci 2018; 6:766-773. [PMID: 29387845 DOI: 10.1039/c7bm00987a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Graphene materials (GMs) exhibit attractive antimicrobial activities promising for biomedical and environmental applications. However, we still lack full control over their behaviour and performance mainly due to the complications arising from the coexistence and interplay of multiple factors. Therefore, in this minireview, we attempt to illustrate the structure-property-activity relationships of GMs' antimicrobial activity. We first examine the chemical/physical complexity of GMs focusing on five aspects of their materials characteristics: (i) chemical composition, (ii) impurities and imperfections, (iii) lateral dimension, (iv) self-association (e.g., restacking), and (v) composite/hybrid formation. Next, we briefly summarise the current understanding of their antimicrobial mechanisms. Then, we assign the outlined materials characteristics of GMs to the proposed antimicrobial mechanisms. Lastly, we share our vision regarding the future of research and development in this fast-emerging field.
Collapse
Affiliation(s)
- H Enis Karahan
- The University of Sydney, School of Chemical and Biomolecular Engineering, NSW 2006, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Karahan HE, Wiraja C, Xu C, Wei J, Wang Y, Wang L, Liu F, Chen Y. Graphene Materials in Antimicrobial Nanomedicine: Current Status and Future Perspectives. Adv Healthc Mater 2018; 7:e1701406. [PMID: 29504283 DOI: 10.1002/adhm.201701406] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/16/2018] [Indexed: 02/06/2023]
Abstract
Graphene materials (GMs), such as graphene, graphene oxide (GO), reduced GO (rGO), and graphene quantum dots (GQDs), are rapidly emerging as a new class of broad-spectrum antimicrobial agents. This report describes their state-of-the-art and potential future covering both fundamental aspects and biomedical applications. First, the current understanding of the antimicrobial mechanisms of GMs is illustrated, and the complex picture of underlying structure-property-activity relationships is sketched. Next, the different modes of utilization of antimicrobial GMs are explained, which include their use as colloidal dispersions, surface coatings, and photothermal/photodynamic therapy agents. Due to their practical relevance, the examples where GMs function as synergistic agents or release platforms for metal ions and/or antibiotic drugs are also discussed. Later, the applicability of GMs in the design of wound dressings, infection-protective coatings, and antibiotic-like formulations ("nanoantibiotics") is assessed. Notably, to support our assessments, the existing clinical applications of conventional carbon materials are also evaluated. Finally, the key hurdles of the field are highlighted, and several possible directions for future investigations are proposed. We hope that the roadmap provided here will encourage researchers to tackle remaining challenges toward clinical translation of promising research findings and help realize the potential of GMs in antimicrobial nanomedicine.
Collapse
Affiliation(s)
- Hüseyin Enis Karahan
- School of Chemical and Biomolecular Engineering The University of Sydney NSW 2006 Australia
- School of Chemical and Biomedical Engineering Nanyang Technological University Singapore 637459 Singapore
- Singapore Institute of Manufacturing Technology Singapore 638075 Singapore
| | - Christian Wiraja
- School of Chemical and Biomedical Engineering Nanyang Technological University Singapore 637459 Singapore
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering Nanyang Technological University Singapore 637459 Singapore
- NTU‐Northwestern Institute of Nanomedicine Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Jun Wei
- Singapore Institute of Manufacturing Technology Singapore 638075 Singapore
| | - Yilei Wang
- School of Chemistry & Chemical Engineering Tianjin University of Technology 391 Binshui, Xidao, Xiqing District Tianjin 300384 China
| | - Liang Wang
- School of Chemistry & Chemical Engineering Tianjin University of Technology 391 Binshui, Xidao, Xiqing District Tianjin 300384 China
| | - Fei Liu
- State Key Laboratory of Applied Microbiology Southern China Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application Guangdong Institute of Microbiology 100 Central Xianlie Road Guangzhou 510070 China
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering The University of Sydney NSW 2006 Australia
| |
Collapse
|
85
|
Gouvêa RF, Del Aguila EM, Paschoalin VM, Andrade CT. Extruded hybrids based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and reduced graphene oxide composite for active food packaging. Food Packag Shelf Life 2018. [DOI: 10.1016/j.fpsl.2018.02.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
86
|
Zhao R, Kong W, Sun M, Yang Y, Liu W, Lv M, Song S, Wang L, Song H, Hao R. Highly Stable Graphene-Based Nanocomposite (GO-PEI-Ag) with Broad-Spectrum, Long-Term Antimicrobial Activity and Antibiofilm Effects. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17617-17629. [PMID: 29767946 DOI: 10.1021/acsami.8b03185] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Various silver nanoparticle (AgNP)-decorated graphene oxide (GO) nanocomposites (GO-Ag) have received increasing attention owing to their antimicrobial activity and biocompatibility; however, their aggregation in physiological solutions and the generally complex synthesis methods warrant improvement. This study aimed to synthesize a polyethyleneimine (PEI)-modified and AgNP-decorated GO nanocomposite (GO-PEI-Ag) through a facile approach through microwave irradiation without any extra reductants and surfactants; its antimicrobial activity was investigated on Gram-negative/-positive bacteria (including drug-resistant bacteria) and fungi. Compared with GO-Ag, GO-PEI-Ag acquired excellent stability in physiological solutions and electropositivity, showing substantially higher antimicrobial efficacy. Moreover, GO-PEI-Ag exhibited particularly excellent long-term effects, presenting no obvious decline in antimicrobial activity after 1 week storage in physiological saline and repeated use for three times and the lasting inhibition of bacterial growth in nutrient-rich culture medium. In contrast, GO-Ag exhibited a >60% decline in antimicrobial activity after storage. Importantly, GO-PEI-Ag effectively eliminated adhered bacteria, thereby preventing biofilm formation. The primary antimicrobial mechanisms of GO-PEI-Ag were evidenced as physical damage to the pathogen structure, causing cytoplasmic leakage. Hence, stable GO-PEI-Ag with robust, long-term antimicrobial activity holds promise in combating public-health threats posed by drug-resistant bacteria and biofilms.
Collapse
Affiliation(s)
- Rongtao Zhao
- Institute of Disease Control and Prevention, PLA , Beijing 100071 , P. R. China
| | - Wen Kong
- Institute of Disease Control and Prevention, PLA , Beijing 100071 , P. R. China
- Guangxi Medical University , Nanning 530021 , Guangxi , P. R. China
| | - Mingxuan Sun
- Institute of Disease Control and Prevention, PLA , Beijing 100071 , P. R. China
| | - Yi Yang
- Institute of Disease Control and Prevention, PLA , Beijing 100071 , P. R. China
| | - Wanying Liu
- Institute of Disease Control and Prevention, PLA , Beijing 100071 , P. R. China
| | - Min Lv
- Division of Physical Biology & Bioimaging Center, Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201800 , P. R. China
| | - Shiping Song
- Division of Physical Biology & Bioimaging Center, Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201800 , P. R. China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201800 , P. R. China
| | - Hongbin Song
- Institute of Disease Control and Prevention, PLA , Beijing 100071 , P. R. China
| | - Rongzhang Hao
- Institute of Disease Control and Prevention, PLA , Beijing 100071 , P. R. China
| |
Collapse
|
87
|
Tang Z, Zhao L, Yang Z, Liu Z, Gu J, Bai B, Liu J, Xu J, Yang H. Mechanisms of oxidative stress, apoptosis, and autophagy involved in graphene oxide nanomaterial anti-osteosarcoma effect. Int J Nanomedicine 2018; 13:2907-2919. [PMID: 29844673 PMCID: PMC5961647 DOI: 10.2147/ijn.s159388] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Graphene and its derivative graphene oxide (GO) have been implicated in a wide range of anticancer effects. Purpose The objective of this study was to systematically evaluate the toxicity and underlying mechanisms of GO on two osteosarcoma (OSA) cancer cell lines, MG-63 and K7M2 cells. Methods MG-63 and K7M2 cells were treated by GO (0–50 µg/mL) for various time periods. Cell viability was tested by MTT and Live/Dead assays. A ROS Detection Kit based on DHE oxidative reaction was used for ROS detection. An Annexin V-FITC Apoptosis Kit was used for apoptosis detection. Dansylcadaverine (MDC) dyeing was applied for seeking unspecific autophagosomes. Western blot and Immunofluorescence analysis were used for related protein expression and location. Results K7M2 cells were more sensitive to GO compared with MG-63 cells. The mechanism was attributed to the different extent of the generation of reactive oxygen species (ROS). In K7M2 cells, ROS was easily stimulated and the apoptosis pathway was subsequently activated, accompanied by elevated expression of proapoptosis proteins (such as caspase-3) and decreased expression levels of antiapoptosis proteins (such as Bcl-2). A ROS inhibitor (N-acetylcysteine) could alleviate the cytotoxic effects of GO in K7M2 cells. However, the production of ROS in MG-63 cells was probably inhibited by the activation of an antioxidative factor, nuclear factor-E2-related factor-2, which translocated from the cytoplasm to the nucleus after GO treatment, while a nuclear factor-E2-related factor-2 inhibitor (ML385) significantly increased ROS production in MG-63 cells when combined with GO treatment. In addition, autophagy was simultaneously stimulated by characteristic autophagosome formation, autophagy flux, and increased the expression level of autophagy-related proteins (such as LC3I to LC3II conversion, ATG5, and ATG7). Conclusion This paper proposes various underlying mechanisms of the anticancer effect of GO. The novel synthetic use of GO with an oxidizing agent is the key step for further potential applications in clinical OSA cancer therapy.
Collapse
Affiliation(s)
- Zhibing Tang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.,Department of Orthopaedic Surgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Lin Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.,Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Zaixing Yang
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Zhaohui Liu
- Department of Anatomy and Histology and Embryology, Basic Medical and Biological Sciences, School of Medicine, Soochow University, Suzhou, China
| | - Jia Gu
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Bing Bai
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Jinlian Liu
- Department of Orthopaedic Surgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Jiaying Xu
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| |
Collapse
|
88
|
Qian W, Yan C, He D, Yu X, Yuan L, Liu M, Luo G, Deng J. pH-triggered charge-reversible of glycol chitosan conjugated carboxyl graphene for enhancing photothermal ablation of focal infection. Acta Biomater 2018; 69:256-264. [PMID: 29374599 DOI: 10.1016/j.actbio.2018.01.022] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/10/2018] [Accepted: 01/16/2018] [Indexed: 11/17/2022]
Abstract
Subcutaneous abscesses infected by multidrug-resistant bacteria are becoming an increasing challenge to human health. To address this challenge, a surface-adaptive and biocompatible glycol chitosan conjugated carboxyl graphene (GCS-CG) is developed, which exhibits unique self-adaptive target to the acidic microenvironment of abscess (∼pH 6.3) and no damage to the healthy tissue (pH 7.4) around the abscess. Originally, following conjugated with GCS, the absorbance of CG obviously increases in the near-infrared (NIR) region, enabling GCS-CG to generate an increment amount of heat. GCS-CG shows fast pH-responsive surface charge transition from negative to positive, which presents strong adherence to negatively charged bacteria surface in abscess, while exhibits poor affinity to host cells in healthy tissues. The local temperature of NIR-irradiated GCS-CG is estimated to be higher than their ambient temperature, ensuring targeted heating and eradicating the bacteria to reduce the damage to tissue; hence, wound healing is accelerated. Moreover, the in vitro and in vivo biosafety results demonstrate that GCS-CG presents greatly biocompatible even at a high concentration of 1 mg·mL-1. Given the above advantages as well as the simple preparation, graphene developed here may provide a new potential application as a useful antibacterial agent in the areas of healthcare. STATEMENT OF SIGNIFICANCE A surface-adaptive nanomaterial, glycol chitosan conjugated carboxyl graphene (GCS-CG) is developed, which realizes the acidity-triggered bacteria targeting. GCS-CG can result in direct thermal ablation of bacteria and enhancement of the infected wound healing, but exhibit no damage to healthy tissues. The pH-responsive GCS-CG described here, containing no antibiotics, has great potentials in treating bacterial infection and even multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Wei Qian
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chang Yan
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Danfeng He
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xunzhou Yu
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Long Yuan
- Department of Breast Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Menglong Liu
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
89
|
Farid MU, Jeong S, Seo DH, Ahmed R, Lau C, Gali NK, Ning Z, An AK. Mechanistic insight into the in vitro toxicity of graphene oxide against biofilm forming bacteria using laser-induced breakdown spectroscopy. NANOSCALE 2018; 10:4475-4487. [PMID: 29459912 DOI: 10.1039/c8nr00189h] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
While the cytotoxicity of graphene oxide (GO) has been well established, its bactericidal mechanism, however, has yet to be elucidated to advance GO-based biomedical and environmental applications. In an attempt to better understand the bactericidal action of GO, herein we studied the interactions of GO with Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus cells using physical techniques and chemical probes, respectively. In particular, a novel laser-induced breakdown spectroscopy (LIBS) based elemental fingerprint analysis revealed notable differences between viable and non-viable cells based on the difference in the concentration of trace inorganic elements in complex bacterial systems, which reflect cellular membrane integrity. Lower emission intensities from essential inorganic ions in the GO-treated cells offered explicit evidence on the efflux of intracellular molecules from the bacteria through damaged cell membranes. Furthermore, a detailed structural and morphological investigation of bacterial membrane integrity confirmed GO-induced membrane stress upon direct contact interactions with bacterial cells, resulting in the disruption of cellular membranes. Moreover, the generation of intracellular reactive oxygen species (ROS) in the presence of an added antioxidant underlined the role of GO-mediated oxidative stress in bacterial cell inactivation. Thus, by correlating the changes in the bacterial elemental compositions with the severe morphological alterations and the high ROS production witnessed herein, we propose that the bactericidal mechanism of GO is likely to be the synergy between membrane and oxidative stress towards both tested species. Our findings offer useful guidelines for the future development of GO-based antibacterial surfaces and coatings.
Collapse
Affiliation(s)
- Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region, China.
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Surface modifications for antimicrobial effects in the healthcare setting: a critical overview. J Hosp Infect 2018; 99:239-249. [PMID: 29410096 DOI: 10.1016/j.jhin.2018.01.018] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/25/2018] [Indexed: 12/30/2022]
Abstract
The spread of infections in healthcare environments is a persistent and growing problem in most countries, aggravated by the development of microbial resistance to antibiotics and disinfectants. In addition to indwelling medical devices (e.g. implants, catheters), such infections may also result from adhesion of microbes either to external solid-water interfaces such as shower caps, taps, drains, etc., or to external solid-gas interfaces such as door handles, clothes, curtains, computer keyboards, etc. The latter are the main focus of the present work, where an overview of antimicrobial coatings for such applications is presented. This review addresses well-established and novel methodologies, including chemical and physical functional modification of surfaces to reduce microbial contamination, as well as the potential risks associated with the implementation of such anticontamination measures. Different chemistry-based approaches are discussed, for instance anti-adhesive surfaces (e.g. superhydrophobic, zwitterions), contact-killing surfaces (e.g. polymer brushes, phages), and biocide-releasing surfaces (e.g. triggered release, quorum sensing-based systems). The review also assesses the impact of topographical modifications at distinct dimensions (micrometre and nanometre orders of magnitude) and the importance of applying safe-by-design criteria (e.g. toxicity, contribution for unwanted acquisition of antimicrobial resistance, long-term stability) when developing and implementing antimicrobial surfaces.
Collapse
|
91
|
Zheng H, Ma R, Gao M, Tian X, Li YQ, Zeng L, Li R. Antibacterial applications of graphene oxides: structure-activity relationships, molecular initiating events and biosafety. Sci Bull (Beijing) 2018; 63:133-142. [PMID: 36658925 DOI: 10.1016/j.scib.2017.12.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/16/2017] [Accepted: 12/11/2017] [Indexed: 01/21/2023]
Abstract
Bacterial infections may lead to diverse acute or chronic diseases (e.g., inflammation, sepsis and cancer). New antibiotics against bacteria are rarely discovered in recent years, which necessitates the exploration of new antibacterial agents. Engineered nanomaterials (ENMs) have been extensively studied for antibacterial use because of their long lasting killing effects in wide spectra of bacteria. Graphene oxide (GO) is one of the most widely studied ENMs and exhibit strong bactericidal effects. The physicochemical properties of GO play important roles in bacterial killing by triggering a cascade of toxic events. Many studies have explored the signaling pathways of GO in bacteria. Although molecular initiating events (MIEs) of GO in bacteria dominate its killing efficiency as well as toxicity mechanisms, they have been rarely reviewed. In this report, we discussed the structure-activity relationships (SARs) involved in GO-induced bacterial killing and the MIEs including redox reaction with biomolecules, mechanical destruction of membranes and catalysis of extracellular metabolites. Furthermore, we summarized the clinical or commercial applications of GO-based antibacterial products and discussed their biosafety in mammal. Finally, we reviewed the remaining challenges in GO for antibacterial applications, which may offer new insights for the development of nano antibacterial studies.
Collapse
Affiliation(s)
- Huizhen Zheng
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ronglin Ma
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Meng Gao
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xin Tian
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yong-Qiang Li
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lingwen Zeng
- Institute of Environmental and Food Safety, Wuhan Academy of Agricultural Science and Technology, Wuhan 430000, China; Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| | - Ruibin Li
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| |
Collapse
|
92
|
Ni Z, Gu X, He Y, Wang Z, Zou X, Zhao Y, Sun L. Synthesis of silver nanoparticle-decorated hydroxyapatite (HA@Ag) poriferous nanocomposites and the study of their antibacterial activities. RSC Adv 2018; 8:41722-41730. [PMID: 35558815 PMCID: PMC9091964 DOI: 10.1039/c8ra08148d] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/29/2018] [Indexed: 12/31/2022] Open
Abstract
Herein, we demonstrate a facile and green rapid approach for the synthesis of uniform poriferous hydroxylapatite [Ca10(PO4)6(OH)2, HA] and poriferous silver nanoparticle (Ag NPs)-decorated hydroxylapatite (HA@Ag) nanocomposites with excellent antibacterial properties. All the nanocomposites were fully characterized in the solid state via various techniques such as X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), automatic specific surface area and porosity analysis (BET) and field emission scanning electron microscopy (FESEM). The results show that HA has a porous rod-like structure, which the HA@Ag nanocomposites retained, and the surface of HA was loaded with globular-like Ag NPs with an average diameter of about 5.8 nm, which exhibit a well-crystalline state. The experimental parameters such as pH, the molar ratio of HA and Tollens' reagent, and reductant have a significant effect on the size and distribution of the Ag NPs. Moreover, the antimicrobial activities of HA and HA@Ag against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) were evaluated via broth dilution, filter paper diffusion, optical density (OD600) and electron microscopy observation. The as-prepared HA@Ag nanocomposites exhibit excellent antibacterial activities, especially for S. aureus. The minimum inhibition concentration (MIC) of HA@Ag is only 3.9 μg mL−1. We demonstrate a facile and green rapid approach for the synthesis of uniform poriferous hydroxylapatite (HA) and poriferous silver nanoparticles (Ag NPs)-decorated hydroxylapatite (HA@Ag) nanocomposites with excellent antibacterial properties.![]()
Collapse
Affiliation(s)
- Zhihui Ni
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- P. R. China
- MOE Key Laboratory of Cluster Science
| | - Xiuxian Gu
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- P. R. China
| | - Yali He
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials
- Henan University
- Kaifeng 475004
- P. R. China
| | - Zhihua Wang
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- P. R. China
| | - Xueyan Zou
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials
- Henan University
- Kaifeng 475004
- P. R. China
| | - Yanbao Zhao
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials
- Henan University
- Kaifeng 475004
- P. R. China
| | - Lei Sun
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials
- Henan University
- Kaifeng 475004
- P. R. China
| |
Collapse
|
93
|
Liu J, Rojas-Andrade MD, Chata G, Peng Y, Roseman G, Lu JE, Millhauser GL, Saltikov C, Chen S. Photo-enhanced antibacterial activity of ZnO/graphene quantum dot nanocomposites. NANOSCALE 2017; 10:158-166. [PMID: 29143052 DOI: 10.1039/c7nr07367d] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Synthesis of new, highly active antibacterial agents has become increasingly important in light of emerging antibiotic resistance. In the present study, ZnO/graphene quantum dot (GQD) nanocomposites were produced by a facile hydrothermal method and characterized by an array of microscopic and spectroscopic measurements, including transmission electron microscopy, X-ray photoelectron spectroscopy, UV-vis and photoluminescence spectroscopy. Antibacterial activity of the ZnO/GQD nanocomposites was evaluated with Escherichia coli within the context of minimum inhibitory concentration and the reduction of the number of bacterial colonies in a standard plate count method, in comparison to those with ZnO and GQD separately. It was found that the activity was markedly enhanced under UV photoirradiation as compared to that in ambient light. This was ascribed to the enhanced generation of reactive oxygen species under UV photoirradiation, with minor contributions from membrane damage, as manifested in electron paramagnetic resonance and fluorescence microscopic measurements. The results highlight the significance of functional nanocomposites based on semiconductor nanoparticles and graphene derivatives in the development of effective bactericidal agents.
Collapse
Affiliation(s)
- Junli Liu
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Arshad A, Iqbal J, Mansoor Q. NiO-nanoflakes grafted graphene: an excellent photocatalyst and a novel nanomaterial for achieving complete pathogen control. NANOSCALE 2017; 9:16321-16328. [PMID: 29051936 DOI: 10.1039/c7nr05756c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The increased levels of industrial pollutants in water and of drug-resistant pathogens more generally are a serious threat to human and aquatic life. Herein, we present the solar-light-induced dye removal and bactericidal properties of nickel oxide (NiO) and graphene nanoplatelet (GNP) nanocomposites. The conducting nature of GNPs is the key factor that accounts for the enhanced photocatalytic and antibacterial activity. Remarkably, the graphene/NiO nanocomposite shows outstanding photocatalytic activity (99% degradation) as compared to NiO (34%) alone, which makes it a potential candidate for the depollution of dye-contaminated water. In addition, the optimized amount of GNPs in the graphene/NiO nanocomposite renders it an exceptional antibacterial material, producing 100% growth inhibition of pathogenic microorganisms (both Gram-positive and Gram-negative bacteria). Therefore, the graphene/NiO nanocomposite can be an innovative material to achieve complete pathogen control, alongside being an economic solution for water treatment.
Collapse
Affiliation(s)
- A Arshad
- Department of Physics, International Islamic University, Islamabad, Pakistan
| | | | | |
Collapse
|
95
|
Patelis N, Schizas D, Liakakos T, Klonaris C. Aortic Graft Infection: Graphene Shows the Way to an Infection-Resistant Vascular Graft. Front Surg 2017; 4:25. [PMID: 28523270 PMCID: PMC5415571 DOI: 10.3389/fsurg.2017.00025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/18/2017] [Indexed: 11/13/2022] Open
Abstract
Aortic graft infection is a potentially lethal complication of open and endovascular repair of aortic aneurysms. Graphene is the only existing two-dimensional material, and its unique structure gives graphene and its derivatives a plethora of original characteristics. Among other characteristics, graphene demonstrates bacteriostatic and bactericidal effects that could potentially resolve the problem of graft infection in the future. Data already exist in literature supporting this antibacterial effect of graphene oxide and reduced graphene oxide. Combining these materials with other substances enhances the antibacterial effect. Additionally, it looks feasible to expect antibiotic-delivering graphene-based graft materials in the future. Based on already published data, we could conclude that regarding graphene and its derivatives, the blessing of bactericidal effect comes with the curse of human cells toxicity. Therefore, it is important to find a fine balance between the desired antibacterial and the adverse cytotoxic effect before graphene is used in graft materials for humans.
Collapse
Affiliation(s)
- Nikolaos Patelis
- First Department of Surgery, Vascular Unit, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Dimitrios Schizas
- First Department of Surgery, Vascular Unit, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Theodoros Liakakos
- First Department of Surgery, Vascular Unit, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Chris Klonaris
- First Department of Surgery, Vascular Unit, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| |
Collapse
|