51
|
Abstract
The Warburg effect refers to the phenomenon whereby cancer cells avidly take up glucose and produce lactic acid under aerobic conditions. Although the molecular mechanisms underlying tumor reliance on glycolysis remains not completely clear, its inhibition opens feasible therapeutic windows for cancer treatment. Indeed, several small molecules have emerged by combinatorial studies exhibiting promising anticancer activity both in vitro and in vivo, as a single agent or in combination with other therapeutic modalities. Therefore, besides reviewing the alterations of glycolysis that occur with malignant transformation, this manuscript aims at recapitulating the most effective pharmacological therapeutics of its targeting. In particular, we describe the principal mechanisms of action and the main targets of 3-bromopyruvate, an alkylating agent with impressive antitumor effects in several models of animal tumors. Moreover, we discuss the chemo-potentiating strategies that would make unparalleled the putative therapeutic efficacy of its use in clinical settings.
Collapse
|
52
|
Huang YN, Zhao DD, Gao B, Zhong K, Zhu RX, Zhang Y, Xie WJ, Jia LR, Gao H. Anti-hyperglycemic effect of chebulagic acid from the fruits of Terminalia chebula Retz. Int J Mol Sci 2012; 13:6320-6333. [PMID: 22754367 PMCID: PMC3382786 DOI: 10.3390/ijms13056320] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 05/14/2012] [Accepted: 05/16/2012] [Indexed: 11/26/2022] Open
Abstract
In the present study, we firstly compared rat intestinal α-glucosidase inhibitory activity by different ethanol-aqueous extractions from the dried fruits of Terminalia chebula Retz. The enzymatic assay showed that the 80% ethanol extract was more potent against maltase activity than both 50% and 100% ethanol extracts. By HPLC analysis, it was determined that the 80% ethanol extract had a higher content of chebulagic acid than each of 50% or 100% ethanol extract. Next, we investigated how efficiently chebulagic acid could inhibit sugar digestion by determining the glucose level on the apical side of the Caco-2 cell monolayer. The result showed that the maltose-hydrolysis activity was down-regulated by chebulagic acid, which proved to be a reversible inhibitor of maltase in Caco-2 cells. On the other hand, chebulagic acid showed a weak inhibition of sucrose-hydrolysis activity. Meanwhile, chebulagic acid did not have an obvious influence on intestinal glucose uptake and was not effective on glucose transporters. Further animal studies revealed that the oral administration of chebulagic acid (100 mg/kg body weight) significantly reduced postprandial blood glucose levels by 11.1% in maltose-loaded Sprague-Dawley (SD) rats compared with the control group, whereas the oral administration of chebulagic acid did not show a suppressive effect on postprandial hyperglycemia in sucrose- or glucose-loaded SD-rats. The results presented here suggest that chebulagic acid from T. chebula can be used to control blood glucose and manage type 2 diabetes, although clinical trials are needed.
Collapse
Affiliation(s)
- Yi-Na Huang
- Department of Public Health, Hua Xi Medicinal Center of Sichuan University, Chengdu 610041, China; E-Mails: (Y.-N.H.); (B.G.)
| | - Dong-Dong Zhao
- Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Chengdu 610072, China; E-Mail:
| | - Bo Gao
- Department of Public Health, Hua Xi Medicinal Center of Sichuan University, Chengdu 610041, China; E-Mails: (Y.-N.H.); (B.G.)
| | - Kai Zhong
- College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu 610065, China; E-Mails: (K.Z.); (R.-X.Z.); (Y.Z.); (W.-J.X.)
| | - Rui-Xue Zhu
- College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu 610065, China; E-Mails: (K.Z.); (R.-X.Z.); (Y.Z.); (W.-J.X.)
| | - Yan Zhang
- College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu 610065, China; E-Mails: (K.Z.); (R.-X.Z.); (Y.Z.); (W.-J.X.)
| | - Wang-Jun Xie
- College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu 610065, China; E-Mails: (K.Z.); (R.-X.Z.); (Y.Z.); (W.-J.X.)
| | - Li-Rong Jia
- College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu 610065, China; E-Mails: (K.Z.); (R.-X.Z.); (Y.Z.); (W.-J.X.)
- Authors to whom correspondence should be addressed; E-Mails: (L.-R.J.); (H.G.); Tel.: +86-28-8540-5236; Fax: +86-28-8540-5137
| | - Hong Gao
- College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu 610065, China; E-Mails: (K.Z.); (R.-X.Z.); (Y.Z.); (W.-J.X.)
- Authors to whom correspondence should be addressed; E-Mails: (L.-R.J.); (H.G.); Tel.: +86-28-8540-5236; Fax: +86-28-8540-5137
| |
Collapse
|
53
|
Kim HK, Baek SS, Cho HY. Inhibitory Effect of Pomegranate on Intestinal Sodium Dependent Glucose Uptake. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 39:1015-27. [DOI: 10.1142/s0192415x11009378] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Intestinal glucose uptake is mainly performed by its specific transporters, SGLT1 and GLUTs expressed in the intestinal epithelial cells. By using Caco -2 cells and 2-NBDG, we observed that intestinal glucose uptake was markedly inhibited by pomegranate (Punica granatum L, PG) among 200 screened edible Korean plants. The effects of the PG extract on Na +-dependent glucose uptake were further evaluated using brush border membrane vesicles (BBMV) obtained from the mouse small intestine. PG inhibited Na +-dependent glucose uptake with the IC50 value of 424 μg/ml. The SGLT1 protein expression was dose dependently down regulated with PG treatment in Caco -2 cells. We next assessed the antihyperglycemic effect of PG in streptozotocin (STZ)-induced diabetic mice. Administration of PG (800 mg/kg) to STZ mice for four weeks improved postprandial glucose regulation. Furthermore, elevated Na +-dependent glucose uptake by BBMV isolated from STZ mice was normalized by PG treratment. These results suggest that PG could play a role in controlling the dietary glucose absorption at the intestinal tract by decreasing SGLT1 expression, and may contribute to blood glucose homeostasis in the diabetic condition.
Collapse
Affiliation(s)
- Hye Kyung Kim
- Department of Food and Biotechnology, Hanseo University, Seosan 356-706, Republic of Korea
| | - Soon-Sun Baek
- Ginseng Research Institute, R&D Headquarters, Korea Ginseng Corporation, Daejeon 305-345, Republic of Korea
| | - Hong-Yon Cho
- Department of Food and Biotechnology, Korea University, Jochiwon 339-700, Republic of Korea
| |
Collapse
|
54
|
Goto T, Horita M, Nagai H, Nagatomo A, Nishida N, Matsuura Y, Nagaoka S. Tiliroside, a glycosidic flavonoid, inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract. Mol Nutr Food Res 2011; 56:435-45. [DOI: 10.1002/mnfr.201100458] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 08/09/2011] [Accepted: 08/18/2011] [Indexed: 12/11/2022]
|
55
|
Overexpression of SGLT1 is correlated with tumor development and poor prognosis of ovarian carcinoma. Arch Gynecol Obstet 2011; 285:1455-61. [DOI: 10.1007/s00404-011-2166-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 11/28/2011] [Indexed: 10/14/2022]
|
56
|
Benner J, Daniel H, Spanier B. A glutathione peroxidase, intracellular peptidases and the TOR complexes regulate peptide transporter PEPT-1 in C. elegans. PLoS One 2011; 6:e25624. [PMID: 21980510 PMCID: PMC3182239 DOI: 10.1371/journal.pone.0025624] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 09/08/2011] [Indexed: 11/18/2022] Open
Abstract
The intestinal peptide transporter PEPT-1 in Caenorhabditis elegans is a rheogenic H+-dependent carrier responsible for the absorption of di- and tripeptides. Transporter-deficient pept-1(lg601) worms are characterized by impairments in growth, development and reproduction and develop a severe obesity like phenotype. The transport function of PEPT-1 as well as the influx of free fatty acids was shown to be dependent on the membrane potential and on the intracellular pH homeostasis, both of which are regulated by the sodium-proton exchanger NHX-2. Since many membrane proteins commonly function as complexes, there could be proteins that possibly modulate PEPT-1 expression and function. A systematic RNAi screening of 162 genes that are exclusively expressed in the intestine combined with a functional transport assay revealed four genes with homologues existing in mammals as predicted PEPT-1 modulators. While silencing of a glutathione peroxidase surprisingly caused an increase in PEPT-1 transport function, silencing of the ER to Golgi cargo transport protein and of two cytosolic peptidases reduced PEPT-1 transport activity and this even corresponded with lower PEPT-1 protein levels. These modifications of PEPT-1 function by gene silencing of homologous genes were also found to be conserved in the human epithelial cell line Caco-2/TC7 cells. Peptidase inhibition, amino acid supplementation and RNAi silencing of targets of rapamycin (TOR) components in C. elegans supports evidence that intracellular peptide hydrolysis and amino acid concentration are a part of a sensing system that controls PEPT-1 expression and function and that involves the TOR complexes TORC1 and TORC2.
Collapse
Affiliation(s)
- Jacqueline Benner
- ZIEL Research Center of Nutrition and Food Sciences, Abteilung Biochemie, Technische Universität München, Freising, Germany
| | - Hannelore Daniel
- ZIEL Research Center of Nutrition and Food Sciences, Abteilung Biochemie, Technische Universität München, Freising, Germany
| | - Britta Spanier
- ZIEL Research Center of Nutrition and Food Sciences, Abteilung Biochemie, Technische Universität München, Freising, Germany
- * E-mail:
| |
Collapse
|
57
|
Oliveira PF, Alves MG, Rato L, Silva J, Sá R, Barros A, Sousa M, Carvalho RA, Cavaco JE, Socorro S. Influence of 5α-dihydrotestosterone and 17β-estradiol on human Sertoli cells metabolism. ACTA ACUST UNITED AC 2011; 34:e612-20. [PMID: 21812787 DOI: 10.1111/j.1365-2605.2011.01205.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sertoli cells metabolize glucose, converting it to lactate that is used by developing germ cells for their energy metabolism. Androgens and oestrogens have metabolic roles that reach far beyond reproductive processes. So, the main purpose of this study was to examine the effect of sex steroid hormones on metabolite secretion/consumption in human Sertoli cells. Human Sertoli cell-enriched primary cultures were maintained in a defined medium for 50 h and glucose, pyruvate, lactate and alanine variations were determined using (1) H-NMR spectra analysis, in the absence or presence of 100 nm 17β-estradiol (E(2) ) or 100 nm 5α-dihydrotestosterone (DHT). The mRNA expression levels of glucose transporters, lactate dehydrogenase and monocarboxylate transporters were also determined using semi-quantitative RT-PCR. Cells cultured in the absence (control) or presence of E(2) consumed the same amounts of glucose at similar rates during the 50 h. During the first 15 h of treatment with DHT, glucose consumption and glucose consumption rate were significantly higher. Nevertheless, DHT-treated cells secreted a significantly lower amount of lactate than control and E(2) -treated cells. Such a decrease was concomitant with a significant decrease in lactate dehydrogenase A mRNA levels after 50 h treatment in DHT-treated groups. Finally, alanine production was significantly increased in E(2) -treated cells after 25 h treatment, which indicated a lower redox/higher oxidative state for the cells on those conditions. These results support the existence of a relationship between sex steroid hormones action and energy metabolism, providing the first assessment of androgens and oestrogens as metabolic modulators of human Sertoli cells.
Collapse
Affiliation(s)
- P F Oliveira
- CICS - UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Kim HK, Baek SS, Cho HY. Isolation of Intestinal Glucose Uptake Inhibitor from Punica granatum L. Prev Nutr Food Sci 2011. [DOI: 10.3746/jfn.2011.16.2.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
59
|
Chou CW, Wu MS, Huang WC, Chen CC. HDAC inhibition decreases the expression of EGFR in colorectal cancer cells. PLoS One 2011; 6:e18087. [PMID: 21464950 PMCID: PMC3064594 DOI: 10.1371/journal.pone.0018087] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 02/24/2011] [Indexed: 01/27/2023] Open
Abstract
Epidermal growth factor receptor (EGFR), a receptor tyrosine kinase which
promotes cell proliferation and survival, is abnormally overexpressed in
numerous tumors of epithelial origin, including colorectal cancer (CRC). EGFR
monoclonal antibodies have been shown to increase the median survival and are
approved for the treatment of colorectal cancer. Histone deacetylases (HDACs),
frequently overexpressed in colorectal cancer and several malignancies, are
another attractive targets for cancer therapy. Several inhibitors of HDACs
(HDACi) are developed and exhibit powerful antitumor abilities. In this study,
human colorectal cancer cells treated with HDACi exhibited reduced EGFR
expression, thereby disturbed EGF-induced ERK and Akt phosphorylation. HDACi
also decreased the expression of SGLT1, an active glucose transporter found to
be stabilized by EGFR, and suppressed the glucose uptake of cancer cells. HDACi
suppressed the transcription of EGFR and class I HDACs were proved to be
involved in this event. Chromatin immunoprecipitation analysis showed that HDACi
caused the dissociation of SP1, HDAC3 and CBP from EGFR promoter. Our data
suggested that HDACi could serve as a single agent to block both EGFR and HDAC,
and may bring more benefits to the development of CRC therapy.
Collapse
Affiliation(s)
- Chia-Wei Chou
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
60
|
Characterization of basolateral-to-apical transepithelial transport of cadmium in intestinal TC7 cell monolayers. Biometals 2011; 24:857-74. [PMID: 21424617 DOI: 10.1007/s10534-011-9440-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 03/08/2011] [Indexed: 10/18/2022]
Abstract
Cadmium (Cd) is a toxic metal with an extremely long half-life in humans. The intestinal absorption of Cd has been extensively studied but the role the intestinal epithelium may play in metal excretion has never been considered. The basolateral (BL)-to-apical (AP) transepithelial transport of Cd was characterized in TC7 human intestinal cells. Both AP and BL uptakes varied with days in culture, and BL uptake was twofold higher compared to AP in differentiated cultures. A 50% increase in the BL uptake of 0.5 μM (109)Cd was observed at pH 8.5 in a chloride but not nitrate medium, suggesting the involvement of a pH-sensitive mechanism of transport for chloro-complexes. Fe and Zn inhibited the BL uptake of Cd whereas complexation by albumin had no effect, but the stimulatory effect of pH 8.5 was lost in the presence of albumin. The BL uptake of [(3)H]-MPP(+) and (109)Cd were both inhibited by decynium22 without reciprocal inhibition. MRP2 and MDR1 mRNA levels increased as a function of days in culture. A 25 and 20% decrease in the cellular AP efflux of Cd was observed in the presence of verapamil and probenecid, respectively. In cells treated with BSO, which lowered by 26% the total cellular thiol content, the inhibitory effect of verapamil increased, whereas that of probenecid decreased. These results reveal the existence of a decynium22-sensitive mechanism of transport for Cd at the BL membrane, and suggest the involvement of MDR1 and MRP2 in cellular Cd efflux at the AP membrane. It is conceivable that the intestinal epithelium may contribute to Cd blood excretion.
Collapse
|
61
|
Manzano S, Williamson G. Polyphenols and phenolic acids from strawberry and apple decrease glucose uptake and transport by human intestinal Caco-2 cells. Mol Nutr Food Res 2010; 54:1773-80. [DOI: 10.1002/mnfr.201000019] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
62
|
Nistor Baldea LA, Martineau LC, Benhaddou-Andaloussi A, Arnason JT, Lévy É, Haddad PS. Inhibition of intestinal glucose absorption by anti-diabetic medicinal plants derived from the James Bay Cree traditional pharmacopeia. JOURNAL OF ETHNOPHARMACOLOGY 2010; 132:473-482. [PMID: 20804840 DOI: 10.1016/j.jep.2010.07.055] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/23/2010] [Accepted: 07/06/2010] [Indexed: 05/29/2023]
Abstract
BACKGROUND Type II diabetes and obesity are major health problems worldwide and aboriginal peoples are particularly at risk. To address this problem in Canadian native populations who find modern pharmaceuticals culturally inappropriate, our team is testing the traditional pharmacopeia of the James Bay Cree for anti-diabetic and anti-obesity activities. More specifically, the aim of the present study was to define the effects of traditional plants on intestinal glucose absorption, an under-appreciated anti-hyperglycaemic and anti-obesity activity. METHODS Crude ethanol extracts of 17 Boreal forest medicinal plants were tested in vitro using the Caco-2 human enterocytic cell line and in vivo using an oral glucose tolerance test. RESULTS Thirteen of seventeen extracts were observed to significantly inhibit uptake when administered simultaneously with (3)H-deoxyglucose. Inhibition was dose-dependent and, in a few cases, even surpassed that induced by a combination of the positive controls. To validate these effects in vivo, four plant extracts were administered by intragastric gavage at 250 mg/kg to normal rats simultaneously with a 3g/kg bolus of glucose. This resulted in a decrease in peak glycaemia by approximately 40% for two of them. Similarly, only 2 extracts reduced glucose transport after long term incubation and this could be related to reductions in the expression of SGLT-1 or GLUT-2 proteins. CONCLUSIONS These findings indicate that competitive inhibition of intestinal glucose uptake can be achieved by crude extracts of medicinal plants. Such extracts could be taken with meals to control postprandial glycaemia and reduce caloric intake in high risk populations that are positively inclined towards traditional medicine.
Collapse
Affiliation(s)
- Lidia A Nistor Baldea
- Natural Health Products and Metabolic Diseases Laboratory, Department of Pharmacology, Université de Montréal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
63
|
Grefner NM, Gromova LV, Gruzdkov AA, Komissarchik YY. Comparative analysis of SGLT1 and GLUT2 transporters distribution in rat small-intestine enterocytes and Caco-2 cells during hexose absorption. ACTA ACUST UNITED AC 2010. [DOI: 10.1134/s1990519x10040085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
64
|
Nahdi A, Hammami I, Brasse-Lagnel C, Pilard N, Hamdaoui MH, Beaumont C, El May M. Influence of garlic or its main active component diallyl disulfide on iron bioavailability and toxicity. Nutr Res 2010; 30:85-95. [PMID: 20226993 DOI: 10.1016/j.nutres.2010.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 01/15/2010] [Accepted: 01/15/2010] [Indexed: 01/01/2023]
Abstract
Garlic is regularly consumed and is known to have diverse biologic activities, particularly due to its antioxidant properties. In this study, we hypothesized that crude garlic can prevent iron-mediated oxidative stress in a rat model of nutritional iron overload, and we used an in vitro model to confirm the results. For the in vivo studies, rats received a basal diet supplemented with or without carbonyl iron (3%) and were fed distilled water or garlic solution (1g/kg body weight) by gavage for 3 weeks. The presence of both garlic and iron led to a 2-fold increase in plasma iron and a 50% increase in liver iron as compared with iron alone. However, garlic did not offer any protection against iron-induced oxidative stress. Duodenal divalent metal transporter-1 mRNA expression was fully repressed by iron and by the combined treatments but was also reduced by garlic alone. To confirm these data, we tested the effect of diallyl disulfide, one of the active components in garlic, in vitro on polarized Caco-2 cells. A 24-hour treatment decreased iron uptake at the apical side of Caco-2 cells but increased the percentage of iron transfer at the basolateral side. This probably resulted from a modest induction of ferroportin mRNA and protein expression. These results suggest that garlic, when given in the presence of iron, enhances iron absorption by increasing ferroportin expression. The presence of garlic in the diet at the dose studied does not seem to protect against iron-mediated oxidative stress.
Collapse
Affiliation(s)
- Afef Nahdi
- Unité de recherche 01/UR/08-07, Laboratoire d'histologie-embryologie et biologie cellulaire, Faculté de Médecine de Tunis, Tunis, Tunisie
| | | | | | | | | | | | | |
Collapse
|
65
|
Nakkrasae LI, Thongon N, Thongbunchoo J, Krishnamra N, Charoenphandhu N. Transepithelial calcium transport in prolactin-exposed intestine-like Caco-2 monolayer after combinatorial knockdown of TRPV5, TRPV6 and Ca(v)1.3. J Physiol Sci 2010; 60:9-17. [PMID: 19885716 PMCID: PMC10717236 DOI: 10.1007/s12576-009-0068-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 10/07/2009] [Indexed: 12/14/2022]
Abstract
The milk-producing hormone prolactin (PRL) increases the transcellular intestinal calcium absorption by enhancing apical calcium uptake through voltage-dependent L-type calcium channel (Ca(v)) 1.3. However, the redundancy of apical calcium channels raised the possibility that Ca(v)1.3 may operate with other channels, especially transient receptor potential vanilloid family calcium channels (TRPV) 5 or 6, in an interdependent manner. Herein, TRPV5 knockdown (KD), TRPV5/TRPV6, TRPV5/Ca(v)1.3, and TRPV6/Ca(v)1.3 double KD, and TRPV5/TRPV6/Ca(v)1.3 triple KD Caco-2 monolayers were generated by transfecting cells with small interfering RNAs (siRNA). siRNAs downregulated only the target mRNAs, and did not induce compensatory upregulation of the remaining channels. After exposure to 600 ng/mL PRL, the transcellular calcium transport was increased by ~2-fold in scrambled siRNA-treated, TRPV5 KD and TRPV5/TRPV6 KD monolayers, but not in TRPV5/Ca(v)1.3, TRPV6/Ca(v)1.3 and TRPV5/TRPV6/Ca(v)1.3 KD monolayers. The results suggested that Ca(v)1.3 was the sole apical channel responsible for the PRL-stimulated transcellular calcium transport in intestine-like Caco-2 monolayer.
Collapse
Affiliation(s)
- La-iad Nakkrasae
- Consortium for Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Narongrit Thongon
- Consortium for Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Medical Science, Faculty of Science, Burapha University, Chonburi, Thailand
| | - Jirawan Thongbunchoo
- Consortium for Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nateetip Krishnamra
- Consortium for Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400 Thailand
| | - Narattaphol Charoenphandhu
- Consortium for Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400 Thailand
| |
Collapse
|
66
|
Casneuf VF, Fonteyne P, Van Damme N, Demetter P, Pauwels P, de Hemptinne B, De Vos M, Van de Wiele C, Peeters M. Expression of SGLT1, Bcl-2 and p53 in Primary Pancreatic Cancer Related to Survival. Cancer Invest 2009; 26:852-9. [DOI: 10.1080/07357900801956363] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
67
|
Hayeshi R, Hilgendorf C, Artursson P, Augustijns P, Brodin B, Dehertogh P, Fisher K, Fossati L, Hovenkamp E, Korjamo T, Masungi C, Maubon N, Mols R, Müllertz A, Mönkkönen J, O'Driscoll C, Oppers-Tiemissen HM, Ragnarsson EGE, Rooseboom M, Ungell AL. Comparison of drug transporter gene expression and functionality in Caco-2 cells from 10 different laboratories. Eur J Pharm Sci 2008; 35:383-96. [PMID: 18782614 DOI: 10.1016/j.ejps.2008.08.004] [Citation(s) in RCA: 197] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 07/24/2008] [Accepted: 08/04/2008] [Indexed: 10/21/2022]
Abstract
Caco-2 cells, widely used to study carrier mediated uptake and efflux mechanisms, are known to have different properties when cultured under different conditions. In this study, Caco-2 cells from 10 different laboratories were compared in terms of mRNA expression levels of 72 drug and nutrient transporters, and 17 other target genes, including drug metabolising enzymes, using real-time PCR. The rank order of the top five expressed genes was: HPT1>GLUT3>GLUT5>GST1A>OATP-B. Rank correlation showed that for most of the samples, the gene ranking was not significantly different. Functionality of transporters and the permeability of passive transport markers metoprolol (transcellular) and atenolol (paracellular) were also compared. MDR1 and PepT1 function was investigated using talinolol and Gly-Sar transport, respectively. Sulfobromophthalein (BSP) was used as a marker for MRP2 and OATP-B functionality. Atenolol permeability was more variable across laboratories than metoprolol permeability. Talinolol efflux was observed by all the laboratories, whereas only five laboratories observed significant apical uptake of Gly-Sar. Three laboratories observed significant efflux of BSP. MDR1 expression significantly correlated to the efflux ratio and net active efflux of talinolol. PepT1 mRNA levels showed significant correlation to the uptake ratio and net active uptake of Gly-Sar. MRP2 and OATP-B showed no correlation to BSP transport parameters. Heterogeneity in transporter activity may thus be due to differences in transporter expression as shown for PepT1 and MDR1 which in turn is determined by the culture conditions. Absolute expression of genes was variable indicating that small differences in culture conditions have a significant impact on gene expression, although the overall expression patterns were similar.
Collapse
Affiliation(s)
- Rose Hayeshi
- Discovery DMPK and Bioanalytical Chemistry, AstraZeneca R&D Mölndal, S-431 83 Mölndal, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Douard V, Ferraris RP. Regulation of the fructose transporter GLUT5 in health and disease. Am J Physiol Endocrinol Metab 2008; 295:E227-37. [PMID: 18398011 PMCID: PMC2652499 DOI: 10.1152/ajpendo.90245.2008] [Citation(s) in RCA: 324] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 03/27/2008] [Indexed: 12/11/2022]
Abstract
Fructose is now such an important component of human diets that increasing attention is being focused on the fructose transporter GLUT5. In this review, we describe the regulation of GLUT5 not only in the intestine and testis, where it was first discovered, but also in the kidney, skeletal muscle, fat tissue, and brain where increasing numbers of cell types have been found to have GLUT5. GLUT5 expression levels and fructose uptake rates are also significantly affected by diabetes, hypertension, obesity, and inflammation and seem to be induced during carcinogenesis, particularly in the mammary glands. We end by highlighting research areas that should yield information needed to better understand the role of GLUT5 during normal development, metabolic disturbances, and cancer.
Collapse
Affiliation(s)
- Veronique Douard
- Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07101, USA
| | | |
Collapse
|
69
|
Tobin V, Le Gall M, Fioramonti X, Stolarczyk E, Blazquez AG, Klein C, Prigent M, Serradas P, Cuif MH, Magnan C, Leturque A, Brot-Laroche E. Insulin internalizes GLUT2 in the enterocytes of healthy but not insulin-resistant mice. Diabetes 2008; 57:555-62. [PMID: 18057092 DOI: 10.2337/db07-0928] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVES A physiological adaptation to a sugar-rich meal is achieved by increased sugar uptake to match dietary load, resulting from a rapid transient translocation of the fructose/glucose GLUT2 transporter to the brush border membrane (BBM) of enterocytes. The aim of this study was to define the contributors and physiological mechanisms controlling intestinal sugar absorption, focusing on the action of insulin and the contribution of GLUT2-mediated transport. RESEARCH DESIGN AND METHODS The studies were performed in the human enterocytic colon carcinoma TC7 subclone (Caco-2/TC7) cells and in vivo during hyperinsulinemic-euglycemic clamp experiments in conscious mice. Chronic high-fructose or high-fat diets were used to induce glucose intolerance and insulin resistance in mice. RESULTS AND CONCLUSIONS In Caco-2/TC7 cells, insulin action diminished the transepithelial transfer of sugar and reduced BBM and basolateral membrane (BLM) GLUT2 levels, demonstrating that insulin can target sugar absorption by controlling the membrane localization of GLUT2 in enterocytes. Similarly, in hyperinsulinemic-euglycemic clamp experiments in sensitive mice, insulin abolished GLUT2 (i.e., the cytochalasin B-sensitive component of fructose absorption), decreased BBM GLUT2, and concomitantly increased intracellular GLUT2. Acute insulin treatment before sugar intake prevented the insertion of GLUT2 into the BBM. Insulin resistance in mice provoked a loss of GLUT2 trafficking, and GLUT2 levels remained permanently high in the BBM and low in the BLM. We propose that, in addition to its peripheral effects, insulin inhibits intestinal sugar absorption to prevent excessive blood glucose excursion after a sugar meal. This protective mechanism is lost in the insulin-resistant state induced by high-fat or high-fructose feeding.
Collapse
Affiliation(s)
- Vanessa Tobin
- Université Pierre et Marie Curie-Paris 6, Unité Mixte de Recherche S 872, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
Models predictive of intestinal drug absorption are important in drug development to identify compounds with promising biopharmaceutical properties. Since permeability is a factor affecting absorption, cell culture models (e.g., Caco-2, MDCK) have been developed to predict drug transport from the intestinal lumen into the bloodstream. The differences as to how the assays are performed, along with heterogeneity of the cell lines, have lead to different permeability values for the same drug. Transport and metabolic properties of cultured cells can vary due to culture conditions, seeding density, passage number, confluency, filter support, monolayer age, and stage of differentiation. During the transport experiment, cell absorption properties can change due to the composition and pH of the transport buffer, solute concentration and solubility, temperature, additives and/or cosolvents, agitation, sampling schedule, sink conditions, and analytical methods. Such variability within a laboratory can be avoided by characterizing a cell culture method and setting acceptance criteria in terms of monolayer integrity, passive transport, and active transport. The repeated evaluation of reference compounds will then facilitate intra-laboratory comparisons.
Collapse
Affiliation(s)
- Donna A Volpe
- Division of Product Quality Research, Life Sciences Bldg. 64, 10903 New Hampshire Ave., Silver Spring, Maryland 20993-0002, USA.
| |
Collapse
|
71
|
Bourderioux A, Bénéteau V, Mérour JY, Baldeyrou B, Ballot C, Lansiaux A, Bailly C, Le Guével R, Guillouzo C, Routier S. Synthesis and biological evaluation of novel oxophenylarcyriaflavins as potential anticancer agents. Org Biomol Chem 2008; 6:2108-17. [DOI: 10.1039/b801121d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
72
|
Chang TC, Huang SF, Yang TC, Chan FN, Lin HC, Chang WL. Effect of ginsenosides on glucose uptake in human Caco-2 cells is mediated through altered Na+/glucose cotransporter 1 expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:1993-8. [PMID: 17269785 DOI: 10.1021/jf062714k] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In this study, we measured the effect of ginsenosides on glucose uptake using the Caco-2 cell system. At submicromolar concentrations, these compounds exhibited marked effects on the rate of glucose transport across the differentiated Caco-2 cell monolayer. Compound K (CK), the main intestinal bacterial metabolite of the protopanaxadiol ginsenosides, significantly enhanced the steady-state glucose transport rate to about 50% of the control sample rate (from 1.54 +/- 0.09 to 2.25 +/- 0.15 nmol/min). Conversely, the protopanaxatriol ginsenoside Rg1 inhibited glucose transport to about 70% of the original rate (from 1.54 +/- 0.09 to 1.02 +/- 0.05 nmol/min). Consistent with the effect on glucose uptake rate, CK and Rg1 conferred a significant and paralleled alteration on both the protein and mRNA expression levels of the Na+/glucose cotransporter 1 (SGLT1) gene. Unlike SGLT1, there is no significant alteration on the protein or mRNA levels of GLUTs in CK- or Rg1-treated cells. Taken together, our results demonstrate that ginsenosides CK and Rg1 elicited potent enhancing and suppressing effects, respectively, on glucose uptake across human intestinal Caco-2 monolayer through modulation of SGLT1 expression.
Collapse
Affiliation(s)
- Tsu-Chung Chang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, Republic of China.
| | | | | | | | | | | |
Collapse
|
73
|
Koda Y, Shiotani K, Toth I, Tsuda Y, Okada Y, Blanchfield JT. Comparison of the in vitro apparent permeability and stability of opioid mimetic compounds with that of the native peptide. Bioorg Med Chem Lett 2007; 17:2043-6. [PMID: 17300932 DOI: 10.1016/j.bmcl.2007.01.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 12/30/2006] [Accepted: 01/05/2007] [Indexed: 11/28/2022]
Abstract
Three dimethyl-L-tyrosine (Dmt) based peptide analogues were identified in a previous study as excellent agonists for the mu-opioid receptor showing very low K(i) values and good in vivo antinociceptive activity upon intracerebroventricular administration to mice. This activity decreased markedly when the compounds were delivered subcutaneously or orally. To establish the cause of this decrease of activity the apparent permeability across Caco-2 cell monolayers of each compound and their relative stability to the digestive enzymes present in the cell line has been determined and compared to that of the native peptide endomorphin 2. The compounds' permeabilities clearly correlate with their increasing lipophilicity suggesting that the analogues cross the monolayer via passive diffusion and the results show that the compound with high K(i) value for the mu-receptor (K(i)mu=0.114 nM) exhibited the highest permeability suggesting that this may be the better lead compound despite the lower binding affinity than that of compound 2 or 3.
Collapse
Affiliation(s)
- Yasuko Koda
- School of Pharmacy, University of Queensland, St. Lucia, Qld 4072, Australia
| | | | | | | | | | | |
Collapse
|
74
|
Pauquai T, Bouchoux J, Chateau D, Vidal R, Rousset M, Chambaz J, Demignot S. Adaptation of enterocytic Caco-2 cells to glucose modulates triacylglycerol-rich lipoprotein secretion through triacylglycerol targeting into the endoplasmic reticulum lumen. Biochem J 2006; 395:393-403. [PMID: 16393142 PMCID: PMC1422772 DOI: 10.1042/bj20051359] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 12/13/2005] [Accepted: 01/04/2006] [Indexed: 01/18/2023]
Abstract
Enterocytes are responsible for the absorption of dietary lipids, which involves TRL [TG (triacylglycerol)-rich lipoprotein] assembly and secretion. In the present study, we analysed the effect on TRL secretion of Caco-2 enterocyte adaptation to a differential glucose supply. We showed that TG secretion in cells adapted to a low glucose supply for 2 weeks after confluence was double that of control cells maintained in high-glucose-containing medium, whereas the level of TG synthesis remained similar in both conditions. This increased secretion resulted mainly from an enlargement of the mean size of the secreted TRL. The increased TG availability for TRL assembly and secretion was not due to an increase in the MTP (microsomal TG transfer protein) activity that is required for lipid droplet biogenesis in the ER (endoplasmic reticulum) lumen, or to the channelling of absorbed fatty acids towards the monoacylglycerol pathway for TG synthesis. Interestingly, by electron microscopy and subcellular fractionation studies, we observed, in the low glucose condition, an increase in the TG content available for lipoprotein assembly in the ER lumen, with the cytosolic/microsomal TG levels being verapamil-sensitive. Overall, we demonstrate that Caco-2 enterocytes modulate TRL secretion through TG partitioning between the cytosol and the ER lumen according to the glucose supply. Our model will help in identifying the proteins involved in the control of the balance between TRL assembly and cytosolic lipid storage. This mechanism may be a way for enterocytes to regulate TRL secretion after a meal, and thus impact on our understanding of post-prandial hypertriglyceridaemia.
Collapse
Key Words
- apolipoprotein b
- caco-2 cell
- cytosolic lipid droplet
- enterocyte
- lipoprotein secretion
- microsomal triacylglycerol transfer protein (mtp)
- apob, apolipoprotein b
- ba, batyl alcohol
- dgat, diacylglycerol acyltransferase
- dge, diacylglyceryl ether
- dmem, dulbecco's modified eagle's medium
- er, endoplasmic reticulum
- fcs, foetal calf serum
- gpat, glycerolphosphate acyltransferase
- lpc, l-α-lysophosphatidylcholine
- mg, monoacylglycerol
- mgat, mg acyltransferase
- 2-mo, 2-mono-oleoylglycerol
- tg, triacylglycerol
- mtp, microsomal tg transfer protein
- oa, oleic acid
- pdi, protein disulphide-isomerase
- trl, tg-rich lipoprotein
Collapse
Affiliation(s)
- Thomas Pauquai
- UMR 505 INSERM-Université Pierre et Marie Curie and Laboratoire de Pharmacologie Cellulaire de l'Ecole Pratique des Hautes Etudes, Centre de Recherches Biomédicales des Cordeliers, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Julien Bouchoux
- UMR 505 INSERM-Université Pierre et Marie Curie and Laboratoire de Pharmacologie Cellulaire de l'Ecole Pratique des Hautes Etudes, Centre de Recherches Biomédicales des Cordeliers, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Danielle Chateau
- UMR 505 INSERM-Université Pierre et Marie Curie and Laboratoire de Pharmacologie Cellulaire de l'Ecole Pratique des Hautes Etudes, Centre de Recherches Biomédicales des Cordeliers, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Romain Vidal
- UMR 505 INSERM-Université Pierre et Marie Curie and Laboratoire de Pharmacologie Cellulaire de l'Ecole Pratique des Hautes Etudes, Centre de Recherches Biomédicales des Cordeliers, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Monique Rousset
- UMR 505 INSERM-Université Pierre et Marie Curie and Laboratoire de Pharmacologie Cellulaire de l'Ecole Pratique des Hautes Etudes, Centre de Recherches Biomédicales des Cordeliers, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Jean Chambaz
- UMR 505 INSERM-Université Pierre et Marie Curie and Laboratoire de Pharmacologie Cellulaire de l'Ecole Pratique des Hautes Etudes, Centre de Recherches Biomédicales des Cordeliers, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Sylvie Demignot
- UMR 505 INSERM-Université Pierre et Marie Curie and Laboratoire de Pharmacologie Cellulaire de l'Ecole Pratique des Hautes Etudes, Centre de Recherches Biomédicales des Cordeliers, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| |
Collapse
|
75
|
Gong X, Tsai SW, Yan B, Rubin LP. Cooperation between MEF2 and PPARgamma in human intestinal beta,beta-carotene 15,15'-monooxygenase gene expression. BMC Mol Biol 2006; 7:7. [PMID: 16504037 PMCID: PMC1526748 DOI: 10.1186/1471-2199-7-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Accepted: 02/21/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vitamin A and its derivatives, the retinoids, are essential for normal embryonic development and maintenance of cell differentiation. beta, beta-carotene 15,15'-monooxygenase 1 (BCMO1) catalyzes the central cleavage of beta-carotene to all-trans retinal and is the key enzyme in the intestinal metabolism of carotenes to vitamin A. However, human and various rodent species show markedly different efficiencies in intestinal BCMO1-mediated carotene to retinoid conversion. The aim of this study is to identify potentially human-specific regulatory control mechanisms of BCMO1 gene expression. RESULTS We identified and functionally characterized the human BCMO1 promoter sequence and determined the transcriptional regulation of the BCMO1 gene in a BCMO1 expressing human intestinal cell line, TC-7. Several functional transcription factor-binding sites were identified in the human promoter that are absent in the mouse BCMO1 promoter. We demonstrate that the proximal promoter sequence, nt -190 to +35, confers basal transcriptional activity of the human BCMO1 gene. Site-directed mutagenesis of the myocyte enhancer factor 2 (MEF2) and peroxisome proliferator-activated receptor (PPAR) binding elements resulted in decreased basal promoter activity. Mutation of both promoter elements abrogated the expression of intestinal cell BCMO1. Electrophoretic mobility shift and supershift assays and transcription factor co-expression in TC-7 cells showed MEF2C and PPARgamma bind to their respective DNA elements and synergistically transactivate BCMO1 expression. CONCLUSION We demonstrate that human intestinal cell BCMO1 expression is dependent on the functional cooperation between PPARgamma and MEF2 isoforms. The findings suggest that the interaction between MEF2 and PPAR factors may provide a molecular basis for interspecies differences in the transcriptional regulation of the BCMO1 gene.
Collapse
Affiliation(s)
- Xiaoming Gong
- Department of Pediatrics, Women and Infants' Hospital of Rhode Island and Brown Medical School, Providence, Rhode Island, USA
- Department of Cell Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Shu-Whei Tsai
- Department of Pediatrics, Women and Infants' Hospital of Rhode Island and Brown Medical School, Providence, Rhode Island, USA
| | - Bingfang Yan
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Lewis P Rubin
- Department of Pediatrics, Women and Infants' Hospital of Rhode Island and Brown Medical School, Providence, Rhode Island, USA
- Program in Fetal Medicine, Women and Infants' Hospital of Rhode Island and Brown Medical School, Providence, Rhode Island, USA
- Department of Cell Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
76
|
Sharma N, Laftah A, Brookes M, Cooper B, Iqbal T, Tselepis C. A role for tumour necrosis factor alpha in human small bowel iron transport. Biochem J 2006; 390:437-46. [PMID: 15901240 PMCID: PMC1198923 DOI: 10.1042/bj20050256] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytokines are integral to the development of anaemia of chronic inflammation. Cytokines modulate hepcidin expression and iron sequestration by the reticuloendothelial system but their direct effects on small bowel iron transport are not well characterized. The aim of the present study was to examine the local effects of TNFalpha (tumour necrosis factor alpha) on small bowel iron transport and on iron transporter expression in the absence of hepcidin. The effects of TNFalpha on iron transport were determined using radiolabelled iron in an established Caco-2 cell model. The effect of TNFalpha on the expression and localization of the enterocyte iron transporters DMT-1 (divalent metal transporter 1), IREG-1 (iron-regulated transporter 1) and ferritin was determined utilizing Caco-2 cells and in a human ex vivo small bowel culture system. TNFalpha mediated an early induction in both iron import and iron export, which were associated with increased DMT-1 and IREG-1 mRNA and protein expression (P<0.05). However, by 24 h, both iron import and iron export were significantly inhibited, coinciding with an induction of ferritin heavy chain (P<0.05) and a decrease in DMT-1 and IREG-1 to baseline levels. In addition, there was a relocalization of IREG-1 away from the basolateral cell border and increased iron deposition in villous enterocytes. In conclusion, TNFalpha has a direct effect on small bowel iron transporter expression and function, leading to an inhibition of iron transport.
Collapse
Affiliation(s)
- Naveen Sharma
- *Division of Medical Sciences, University of Birmingham, Vincent Drive, Edgbaston, Birmingham B15 2TH, U.K
| | - Abas H. Laftah
- *Division of Medical Sciences, University of Birmingham, Vincent Drive, Edgbaston, Birmingham B15 2TH, U.K
| | - Matthew J. Brookes
- *Division of Medical Sciences, University of Birmingham, Vincent Drive, Edgbaston, Birmingham B15 2TH, U.K
| | - Brian Cooper
- †Gastroenterology Unit, City Hospital, Dudley Road, Birmingham, U.K
| | - Tariq Iqbal
- †Gastroenterology Unit, City Hospital, Dudley Road, Birmingham, U.K
| | - Chris Tselepis
- *Division of Medical Sciences, University of Birmingham, Vincent Drive, Edgbaston, Birmingham B15 2TH, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
77
|
Bhardwaj RK, Herrera-Ruiz D, Sinko PJ, Gudmundsson OS, Knipp G. Delineation of human peptide transporter 1 (hPepT1)-mediated uptake and transport of substrates with varying transporter affinities utilizing stably transfected hPepT1/Madin-Darby canine kidney clones and Caco-2 cells. J Pharmacol Exp Ther 2005; 314:1093-100. [PMID: 15901802 DOI: 10.1124/jpet.105.087148] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present investigation, the uptake and transport kinetics of valacyclovir (VACV), 5-aminolevulinic acid (5-ALA), and benzylpenicillin (BENZ) were studied in stably transfected Madin-Darby canine kidney (MDCK)/human peptide transporter 1 (hPepT1)-V5&His clonal cell lines expressing varying levels of epitope-tagged hPepT1 protein (low, medium, and high expression) and in Caco-2 cells to delineate hPepT1-mediated transport kinetics. These compounds were selected due to the fact that they are known PepT1 substrates, yet also have affinity for other transporters. Caco-2 cells, traditionally used for studying peptide-based drug transport, were included for comparison purposes. The time, pH, sodium, and concentration dependence of cellular uptake and permeability were measured using mock, clonal hPepT1-MDCK, and Caco-2 cells. A pH-dependent effect was observed in the hPepT1-expressing clones and Caco-2 cells, with an increase of 1.96-, 1.84-, and 2.05-fold for VACV, 5-ALA, and BENZ uptake, respectively, at pH 6 versus 7.4 in the high-expressing hPepT1 cells. BENZ uptake was significantly decreased in Caco-2 and MDCK cells in Na(+)-depleted buffer, whereas VACV uptake only decreased in Caco-2 cells. Concentration-dependent uptake studies in the mock-corrected hPepT1-MDCK and Caco-2 cells demonstrated hPepT1 affinity ranking of VACV > 5-ALA > BENZ. The apical-to-basal apparent permeability coefficient (P(app)) values of VACV, 5-ALA, and BENZ in mock-corrected hPepT1-MDCK cells showed solely hPepT1-mediated transport in contrast to Caco-2 cells. Lower K(m) values and higher P(app) in Caco-2 cells compared with hPepT1-MDCK cells suggested the involvement of multiple transporters in Caco-2 cells. Thus, hPepT1-MDCK cells corrected for endogenous transporter expression may be a more appropriate model for screening compounds for their affinity to hPepT1.
Collapse
Affiliation(s)
- Rajinder K Bhardwaj
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, NJ 08854-8022, USA
| | | | | | | | | |
Collapse
|
78
|
Herrera-Ruiz D, Faria TN, Bhardwaj RK, Timoszyk J, Gudmundsson OS, Moench P, Wall DA, Smith RL, Knipp GT. A novel hPepT1 stably transfected cell line: establishing a correlation between expression and function. Mol Pharm 2005; 1:136-44. [PMID: 15832510 DOI: 10.1021/mp034011l] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stably transfected MDCK/hPepT1-V5&His clonal cell lines expressing varying levels of epitope-tagged hPepT1 protein were established to quantify the relationship between transgene hPepT1 expression levels and its functional kinetics in facilitating peptide and peptide-like drug uptake and transport in vitro. The hPepT1 sequence was amplified from Caco-2 cell mRNA, inserted into the pcDNA3.1 -V5&His TOPO plasmid, and transfected into MDCK cells. Transgene protein levels were quantified by Western Blot analysis utilizing a standard curve generated with a positive control protein containing a V5&His epitope. Three clones expressing different levels of the hPepT1 fusion protein (low, medium, and high) were selected for the functional characterization with [14C]Gly-Sar and [3H]carnosine. The MDCK/hPepT1 cells expressed a novel hPepT1/epitope tag protein with an apparent molecular mass of 110 kDa. The [14C]Gly-Sar uptake in the transfected cells was sodium-independent and pH-dependent, demonstrating enhanced uptake, the rate of which increased significantly from the weakly to strongly expressing hPepT1 MDCK/hPepT1 -V5&His clones as compared to the mock cell line at pH 6.0. The uptake and permeability of [14C]Gly-Sar and [3H]carnosine demonstrated a direct correlation between the hPepT1 level of expression, uptake, and transport capabilities. Molecular and functional characterization of the MDCK/hPepT1-V5&His cell line confirmed a directly proportional relationship between Vmax and Papp versus the molar levels of hPepT1 transgene expression. This stably transfected hPepT1 cell line may serve as a useful in vitro model for screening and quantifying peptide and peptide-like drug transport as a function of hPepT1 expression in drug discovery.
Collapse
Affiliation(s)
- Dea Herrera-Ruiz
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey 08854-8022, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Chaïbi C, Cotte-Laffitte J, Sandré C, Esclatine A, Servin AL, Quéro AM, Géniteau-Legendre M. Rotavirus induces apoptosis in fully differentiated human intestinal Caco-2 cells. Virology 2005; 332:480-90. [PMID: 15680413 DOI: 10.1016/j.virol.2004.11.039] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 07/07/2004] [Accepted: 11/18/2004] [Indexed: 01/06/2023]
Abstract
Rotaviruses, which are the main cause of viral gastroenteritis in young children, induce structural and functional damages in infected mature enterocytes of the small intestine. To investigate a relationship between rotavirus infection and cell death by apoptosis, we used the human intestinal Caco-2 cell line. We demonstrated by several methods including TUNEL and ELISA detection of cytoplasmic histone-associated DNA fragments that the infection of fully differentiated Caco-2 cells by the RRV rotavirus strain induces apoptosis. Rotavirus infection leads to the loss of mitochondrial membrane potential and the release of cytochrome C from mitochondria. We showed that rotavirus-induced apoptosis was dependent of the multiplicity of infection and increased with time from 4 h to 24 h of infection. Flow cytometric analysis showed that DNA fragmentation occurs in productively infected cells, suggesting that rotavirus induces apoptosis by a direct mechanism. We also demonstrated that non-replicative RRV particles are not sufficient to induce apoptosis and viral gene expression seems required. Intracellular calcium plays a role in RRV-induced apoptosis because treatment with an intracellular calcium ion chelator (BAPTA-AM) partially inhibited apoptosis.
Collapse
Affiliation(s)
- Charlotte Chaïbi
- Institut National de la Santé et de la Recherche Médicale, U 510, Pathogènes et Fonctions des Cellules Epithéliales Polarisées, Faculté de Pharmacie, 5 rue J.B. Clément, 92290 Châtenay-Malabry, France
| | | | | | | | | | | | | |
Collapse
|
80
|
Johnston K, Sharp P, Clifford M, Morgan L. Dietary polyphenols decrease glucose uptake by human intestinal Caco-2 cells. FEBS Lett 2005; 579:1653-7. [PMID: 15757656 DOI: 10.1016/j.febslet.2004.12.099] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 12/16/2004] [Accepted: 12/29/2004] [Indexed: 01/06/2023]
Abstract
The effect of different classes of dietary polyphenols on intestinal glucose uptake was investigated using polarised Caco-2 intestinal cells. Glucose uptake into cells under sodium-dependent conditions was inhibited by flavonoid glycosides and non-glycosylated polyphenols whereas aglycones and phenolic acids were without effect. Under sodium-free conditions, aglycones and non-glycosylated polyphenols inhibited glucose uptake whereas glycosides and phenolic acids were ineffective. These data suggest that aglycones inhibit facilitated glucose uptake whereas glycosides inhibit the active transport of glucose. The non-glycosylated dietary polyphenols appear to exert their effects via steric hindrance, and (-)-epigallochatechingallate, (-)-epichatechingallate and (-)-epigallochatechin are effective against both transporters.
Collapse
Affiliation(s)
- Kelly Johnston
- Centre for Nutrition and Food Safety, School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | | | | | | |
Collapse
|
81
|
Johnson D, Bayele H, Johnston K, Tennant J, Srai SK, Sharp P. Tumour necrosis factor alpha regulates iron transport and transporter expression in human intestinal epithelial cells. FEBS Lett 2004; 573:195-201. [PMID: 15327997 DOI: 10.1016/j.febslet.2004.07.081] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 06/28/2004] [Accepted: 07/07/2004] [Indexed: 12/13/2022]
Abstract
TNFalpha has dramatic effects on iron metabolism contributing to the generation of hypoferraemia in the anaemia of chronic disease. Interestingly, TNFalpha is also synthesised and released within the intestinal mucosa, suggesting that this pro-inflammatory cytokine may play a role in regulating dietary iron absorption. To investigate this possibility, we stimulated intestinal Caco-2 cells with TNFalpha (10 ng/ml). In TNFalpha-treated cells, apical iron uptake was significantly decreased and this was accompanied by a reduction in divalent metal transporter protein and mRNA expression. Our data suggest that TNFalpha could regulate dietary iron absorption and that the apical transport machinery is the target for these actions.
Collapse
Affiliation(s)
- Deborah Johnson
- School of Biomedical and Molecular Sciences, University of Surrey, Guildford GU2 7XH, UK
| | | | | | | | | | | |
Collapse
|
82
|
De Stasio G, Frazer BH, Girasole M, Wiese LM, Krasnowska EK, Greco G, Serafino A, Parasassi T. Imaging the cell surface: argon sputtering to expose inner cell structures. Microsc Res Tech 2004; 63:115-121. [PMID: 14722909 DOI: 10.1002/jemt.20019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Established microscopies such as Scanning Electron Microscopy (SEM) and more recent developments such as Atomic Force Microscopy (AFM) and X-ray Photo-Electron Emission spectroMicroscopy (X-PEEM) can only image the sample surface. We present an argon sputtering method able to progressively expose inner cell structures without apparent damage. By varying the sputtering time, the structure of cell cytoskeleton, vesicles, mitochondria, nuclear membrane, and nucleoli can be imaged. We compared images obtained with confocal fluorescence microscopy, transmission electron microscopy (TEM), SEM, and X-PEEM on similar samples after argon sputtering, then confirmed the similarity of reference intracellular structures, including cytoskeleton fibers, cell-cell and cell-substrate adhesion structures, and secretory vesicles. We conclude that the sputtering method is a new valuable tool for surface sensitive microscopies.
Collapse
Affiliation(s)
- Gelsomina De Stasio
- University of Wisconsin-Madison, Department of Physics and Synchrotron Radiation Center, Stoughton, Wisconsin 53589, USA.
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Play B, Salvini S, Haikal Z, Charbonnier M, Harbis A, Roussel M, Lairon D, Jourdheuil-Rahmani D. Glucose and galactose regulate intestinal absorption of cholesterol. Biochem Biophys Res Commun 2003; 310:446-51. [PMID: 14521930 DOI: 10.1016/j.bbrc.2003.08.150] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A dose-dependent increase in cholesterol absorption was induced by glucose addition (0-75 mM) to the apical medium of TC7 cells, a well-characterized clone of Caco-2. The uptake into the cells and the secretion rate to the basolateral space were both enhanced by glucose and galactose. This up-regulation was suppressed by SGLT1 inhibition but not by GLUT2 inhibition. Cholesterol cell uptake was significantly decreased by PMA and increased by chelerythrine, with more pronounced changes in the presence of hexoses. Thus, the involvement of a protein kinase C signalling pathway was evidenced in the regulation processes of intestinal cholesterol absorption. In the presence of antibodies directed to hSR-BI cholesterol absorption was reduced by 40% and glucose or galactose no longer enhanced it. We suggest that glucose or galactose, through an interaction with SGLT1, activates a protein kinase C pathway that regulates the activity of one of the intestinal cholesterol transporters, namely hSR-BI.
Collapse
Affiliation(s)
- Barbara Play
- UMR-U 476--INSERM (Human Nutrition and Lipids, National Institute for Health and Medical Research), Faculté de Médecine, Université de la Méditerrannée, 27 Bd Jean Moulin, 13385 Marseille cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Gouyon F, Onesto C, Dalet V, Pages G, Leturque A, Brot-Laroche E. Fructose modulates GLUT5 mRNA stability in differentiated Caco-2 cells: role of cAMP-signalling pathway and PABP (polyadenylated-binding protein)-interacting protein (Paip) 2. Biochem J 2003; 375:167-74. [PMID: 12820898 PMCID: PMC1223656 DOI: 10.1042/bj20030661] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2003] [Revised: 06/10/2003] [Accepted: 06/23/2003] [Indexed: 11/17/2022]
Abstract
In intestinal cells, levels of the fructose transporter GLUT5 are increased by glucose and to a greater extent by fructose. We investigated the mechanism by which fructose increases GLUT5 expression. In Caco-2 cells, fructose and glucose increased activity of the -2500/+41 GLUT5 promoter to the same extent. cAMP also activated the GLUT5 promoter. However, if a protein kinase A inhibitor was used to block cAMP signalling, extensive GLUT5 mRNA degradation was observed, with no change in basal transcription levels demonstrating the involvement of cAMP in GLUT5 mRNA stability. Indeed, the half-life of GLUT5 mRNA was correlated ( R2=0.9913) with cellular cAMP levels. Fructose increased cAMP concentration more than glucose, accounting for the stronger effect of fructose when compared with that of glucose on GLUT5 production. We identified several complexes between GLUT5 3'-UTR RNA (where UTR stands for untranslated region) and cytosolic proteins that might participate in mRNA processing. Strong binding of a 140 kDa complex I was observed in sugar-deprived cells, with levels of binding lower in the presence of fructose and glucose by factors of 12 and 6 respectively. This may account for differences in the effects of fructose and glucose. In contrast, the amounts of two complexes of 96 and 48 kDa increased equally after stimulation with either glucose or fructose. Finally, PABP (polyadenylated-binding protein)-interacting protein 2, a destabilizing partner of PABP, was identified as a component of GLUT5 3'-UTR RNA-protein complexes. We conclude that the post-transcriptional regulation of GLUT5 by fructose involves increases in mRNA stability mediated by the cAMP pathway and Paip2 (PABP-interacting protein 2) binding.
Collapse
Affiliation(s)
- Florence Gouyon
- Institut National de la Santé et de la Recherche Médicale U505, Université Pierre et Marie Curie, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | | | | | | | | | | |
Collapse
|
85
|
Maulén NP, Henríquez EA, Kempe S, Cárcamo JG, Schmid-Kotsas A, Bachem M, Grünert A, Bustamante ME, Nualart F, Vera JC. Up-regulation and polarized expression of the sodium-ascorbic acid transporter SVCT1 in post-confluent differentiated CaCo-2 cells. J Biol Chem 2003; 278:9035-41. [PMID: 12381735 DOI: 10.1074/jbc.m205119200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human cells acquire vitamin C using two different transporter systems, the sodium-ascorbic acid co-transporters with specificity for ascorbic acid, and the facilitative glucose transporters with specificity for dehydroascorbic acid. There is no information on the mechanism of vitamin C transport across the intestinal barrier, a step that determines the bioavailability of vitamin C in humans. We used the colon carcinoma cell line CaCo-2 as an in vitro model for vitamin C transport in enterocyte-like cells. The results of transport kinetics, sodium dependence, inhibition studies, and reverse transcriptase-PCR analysis indicated that CaCo-2 cells express the sodium-ascorbate co-transporters SVCT1 and SVCT2, the dehydroascorbic acid transporters GLUT1 and GLUT3, and a third dehydroascorbic acid transporter with properties expected for GLUT2. Analysis by real time quantitative PCR revealed that the post-confluent differentiation of CaCo-2 cells was accompanied by a marked increase (4-fold) in the steady-state level of SVCT1 mRNA, without changes in SVCT2 mRNA levels. Functional studies revealed that the differentiated cells expressed only one functional ascorbic acid transporter having properties expected for SVCT1, and transported ascorbic acid with a V(max) that was increased at least 2-fold compared with pre-confluent cells. Moreover, post-confluent Caco-2 cells growing as monolayers in permeable filter inserts showed selective sorting of SVCT1 to the apical membrane compartment, without functional evidence for the expression of SVCT2. The identification of SVCT1 as the transporter that allows vectorial uptake of ascorbic acid in differentiated CaCo-2 cells has a direct impact on our understanding of the mechanism for vitamin C transport across the intestinal barrier.
Collapse
Affiliation(s)
- Nancy P Maulén
- Departamento de Fisiopatologia, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario S/N, Concepción, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Liévin-Le Moal V, Amsellem R, Servin AL, Coconnier MH. Lactobacillus acidophilus (strain LB) from the resident adult human gastrointestinal microflora exerts activity against brush border damage promoted by a diarrhoeagenic Escherichia coli in human enterocyte-like cells. Gut 2002; 50:803-11. [PMID: 12010882 PMCID: PMC1773224 DOI: 10.1136/gut.50.6.803] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS The normal gastrointestinal microflora exerts a barrier effect against enteropathogens. The aim of this study was to examine whether lactobacilli, a minor genus of the resident gut microflora, exerts a protective effect against the cellular injuries promoted by the diarrhoeagenic Afa/Dr diffusely adhering Escherichia coli (Afa/Dr DAEC) C1845 strain in human intestinal cells. METHODS Cultured human intestinal fully differentiated enterocyte-like Caco-2/TC7 cells were used. Antibacterial activity was examined by measuring the viability of the adhering C1845 bacteria. The distribution of brush border associated cytoskeleton and functional proteins was examined by immunofluorescence labelling coupled to confocal laser scanning microscopy analysis. RESULTS The activity of Lactobacillus acidophilus strain LB isolated from the resident human gastrointestinal microflora was examined. A dose dependent decrease in viability of C1845 bacteria was observed after both direct contact in vitro between the spent culture supernatant (LB-SCS) and the bacteria, and when the bacteria were adherent on Caco-2/TC7 cells. Protection against the C1845 induced alterations in expression of F-actin, sucrase-isomaltase, dipeptidylpeptidase IV, alkaline phosphatase, and fructose transporter alterations was observed when the cells were exposed to LB-SCS. CONCLUSION L acidophilus strain isolated from the resident adult human gastrointestinal microflora, together with its antimicrobial activity, exerts a protective effect against the brush border lesions promoted by the diarrhoeagenic Afa/Dr DAEC strain C1845.
Collapse
Affiliation(s)
- V Liévin-Le Moal
- Institut National de la Santé et de la Recherche Médicale, Unité 510, Pathogénes et Fonctions des Cellules Epithéliales Polarisées, Faculté de Pharmacie, Université Paris XI, F-92296, Chãtenay-Malabry, France
| | | | | | | |
Collapse
|
87
|
Abstract
The Na(+)-dependent glucose transporter SGLT1 and the facilitated fructose transporter GLUT5 absorb sugars from the intestinal lumen across the brush-border membrane into the cells. The activity of these transport systems is known to be regulated primarily by diet and development. The cloning of these transporters has led to a surge of studies on cellular mechanisms regulating intestinal sugar transport. However, the small intestine can be a difficult organ to study, because its cells are continuously differentiating along the villus, and because the function of absorptive cells depends on both their state of maturity and their location along the villus axis. In this review, I describe the typical patterns of regulation of transport activity by dietary carbohydrate, Na(+) and fibre, how these patterns are influenced by circadian rhythms, and how they vary in different species and during development. I then describe the molecular mechanisms underlying these regulatory patterns. The expression of these transporters is tightly linked to the villus architecture; hence, I also review the regulatory processes occurring along the crypt-villus axis. Regulation of glucose transport by diet may involve increased transcription of SGLT1 mainly in crypt cells. As cells migrate to the villus, the mRNA is degraded, and transporter proteins are then inserted into the membrane, leading to increases in glucose transport about a day after an increase in carbohydrate levels. In the SGLT1 model, transport activity in villus cells cannot be modulated by diet. In contrast, GLUT5 regulation by the diet seems to involve de novo synthesis of GLUT5 mRNA synthesis and protein in cells lining the villus, leading to increases in fructose transport a few hours after consumption of diets containing fructose. In the GLUT5 model, transport activity can be reprogrammed in mature enterocytes lining the villus column. Innovative experimental approaches are needed to increase our understanding of sugar transport regulation in the small intestine. I close by suggesting specific areas of research that may yield important information about this interesting, but difficult, topic.
Collapse
|
88
|
Sharp P, Tandy S, Yamaji S, Tennant J, Williams M, Singh Srai SK. Rapid regulation of divalent metal transporter (DMT1) protein but not mRNA expression by non-haem iron in human intestinal Caco-2 cells. FEBS Lett 2002; 510:71-6. [PMID: 11755534 DOI: 10.1016/s0014-5793(01)03225-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A divalent metal transporter, DMT1, located on the apical membrane of intestinal enterocytes is the major pathway for the absorption of dietary non-haem iron. Using human intestinal Caco-2 TC7 cells, we have shown that iron uptake and DMT1 protein in the plasma membrane were significantly decreased by exposure to high iron for 24 h, in a concentration-dependent manner, whereas whole cell DMT1 protein abundance was unaltered. This suggests that part of the response to high iron involved redistribution of DMT1 between the cytosol and cell membrane. These events preceded changes in DMT1 mRNA, which was only decreased following 72 h exposure to high iron.
Collapse
Affiliation(s)
- Paul Sharp
- Centre for Nutrition and Food Safety, School of Biomedical and Life Sciences, University of Surrey, Guildford GU2 7XH, UK.
| | | | | | | | | | | |
Collapse
|
89
|
Abstract
The Na(+)-dependent glucose transporter SGLT1 and the facilitated fructose transporter GLUT5 absorb sugars from the intestinal lumen across the brush-border membrane into the cells. The activity of these transport systems is known to be regulated primarily by diet and development. The cloning of these transporters has led to a surge of studies on cellular mechanisms regulating intestinal sugar transport. However, the small intestine can be a difficult organ to study, because its cells are continuously differentiating along the villus, and because the function of absorptive cells depends on both their state of maturity and their location along the villus axis. In this review, I describe the typical patterns of regulation of transport activity by dietary carbohydrate, Na(+) and fibre, how these patterns are influenced by circadian rhythms, and how they vary in different species and during development. I then describe the molecular mechanisms underlying these regulatory patterns. The expression of these transporters is tightly linked to the villus architecture; hence, I also review the regulatory processes occurring along the crypt-villus axis. Regulation of glucose transport by diet may involve increased transcription of SGLT1 mainly in crypt cells. As cells migrate to the villus, the mRNA is degraded, and transporter proteins are then inserted into the membrane, leading to increases in glucose transport about a day after an increase in carbohydrate levels. In the SGLT1 model, transport activity in villus cells cannot be modulated by diet. In contrast, GLUT5 regulation by the diet seems to involve de novo synthesis of GLUT5 mRNA synthesis and protein in cells lining the villus, leading to increases in fructose transport a few hours after consumption of diets containing fructose. In the GLUT5 model, transport activity can be reprogrammed in mature enterocytes lining the villus column. Innovative experimental approaches are needed to increase our understanding of sugar transport regulation in the small intestine. I close by suggesting specific areas of research that may yield important information about this interesting, but difficult, topic.
Collapse
Affiliation(s)
- R P Ferraris
- Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, 185 S. Orange Avenue, Newark, NJ 07103-2714, USA.
| |
Collapse
|
90
|
Vayro S, Wood IS, Dyer J, Shirazi-Beechey SP. Transcriptional regulation of the ovine intestinal Na+/glucose cotransporter SGLT1 gene. Role of HNF-1 in glucose activation of promoter function. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5460-70. [PMID: 11606209 DOI: 10.1046/j.0014-2956.2001.02488.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dietary sugars D-glucose and D-galactose are transported across the intestinal brush-border membrane by the Na+/glucose cotransporter, SGLT1. In various species studied, it has been shown that the activity, and expression, of intestinal SGLT1 is regulated by dietary sugars. We report in this paper that regulation of the intestinal SGLT1 gene by lumenal sugar is due, in part, to an increase in transcription. Using deletion analyses of the -66/+21-bp fragment, we have identified the minimal region of the ovine SGLT1 promoter able to support transcription. Site-directed mutagenesis of the hepatic nuclear factor-1 (HNF-1) consensus motif within this domain eliminates basal promoter function. In addition, we show direct evidence for glucose-induced activation of the -66/+21-bp promoter region. There is a co-ordinated decline in the abundance of ovine intestinal HNF-1 and SGLT1 transcripts during transition from preruminant to adult ruminant. This decline is recovered after glucose infusion of adult sheep intestine. Similarly, as shown using DNA mobility-shift assays, the intensity of the HNF-1-binding complex to the target promoter sequence decreases during maturation of the animal; this is restored after intestinal sugar infusion. These data indicate that HNF-1 plays an important role in the glucose responsiveness of the ovine SGLT1 gene. This is the first report of in vitro glucose-induced activation of the intestinal SGLT1 promoter and identification of a glucose-responsive region of the ovine SGLT1 promoter.
Collapse
Affiliation(s)
- S Vayro
- Epithelial Function and Development Group, Department of Veterinary Preclinical Sciences, University of Liverpool, UK
| | | | | | | |
Collapse
|
91
|
Abstract
The gastrointestinal tract represents the first barrier met by the exogenous compounds of food or orally delivered drugs. To be transferred to the whole body, drugs and xenobiotics have first to pass through the intestinal epithelium, where detoxification systems have to minimize the potential of damage from toxic xenobiotics. However, most studies on xenobiotic-metabolizing enzymes have focused on liver enzymes. Such a situation may be explained by the fact that this organ is the site of toxification/detoxification for both endogenous and exogenous compounds, and also because adequate in vitro hepatocytes models have been available for a long time. By contrast, normal cellular models for the in vitro study of the intestinal processes of biotransformation still remain difficult to obtain. In the present report we will thus focus on the most commonly used models, which are Caco-2 cells and their derivative clones, and we will report recent procedures that allow the isolation of normal enterocytes which maintain their functions and integrity for several hours or even several days. Their respective performance and advantages for the study of the induction of the drug-metabolizing enzymes will be discussed.
Collapse
Affiliation(s)
- V Carrière
- Université Pierre et Marie Curie, INSERM U505, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | | | | |
Collapse
|
92
|
Ishikawa N, Oguri T, Isobe T, Fujitaka K, Kohno N. SGLT gene expression in primary lung cancers and their metastatic lesions. Jpn J Cancer Res 2001; 92:874-9. [PMID: 11509120 PMCID: PMC5926833 DOI: 10.1111/j.1349-7006.2001.tb01175.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Cancer cells show increased glucose uptake and utilization in comparison with their normal counterparts. Glucose transporters play an important role in glucose uptake. We previously reported the differential gene expression of the GLUT family in primary and metastatic lesions of lung cancer. To investigate the role of Na( +) / glucose cotransporter (SGLT) genes in cancers, we examined the levels of expression of SGLT1 and SGLT2 genes in primary lung cancers and their metastatic lesions. Ninety-six autopsy samples (35 primary lung cancers, 35 corresponding normal lung tissues, 10 metastatic liver lesions, and 16 metastatic lymph nodes) from 35 patients were analyzed for SGLT1 and SGLT2 expression by reverse transcription (RT)-polymerase chain reaction (PCR). There were no significant differences in the level of expression of either gene between the primary lung cancers and normal lung tissues. The level of SGLT1 expression in the metastatic lesions and primary lung cancers did not differ significantly. The level of SGLT2 expression was, however, significantly higher in the metastatic lesions of both the liver and lymph node than in the primary lung cancers. These results suggest that SGLT2 plays a role in glucose uptake in the metastatic lesions of lung cancer.
Collapse
Affiliation(s)
- N Ishikawa
- Second Department of Internal Medicine, Hiroshima University Faculty of Medicine, Minami-ku, Hiroshima 734-8551, Japan.
| | | | | | | | | |
Collapse
|
93
|
Murota K, Shimizu S, Chujo H, Moon JH, Terao J. Efficiency of absorption and metabolic conversion of quercetin and its glucosides in human intestinal cell line Caco-2. Arch Biochem Biophys 2001; 384:391-7. [PMID: 11368329 DOI: 10.1006/abbi.2000.2123] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The efficiency of intestinal absorption and metabolic conversion of quercetin aglycone and its glucosides, quercetin-4'-O-beta-D-glucoside (Q4'G), quercetin-3-O-beta-D-glucoside (Q3G), and quercetin-3,4'-di-O-beta-D-glucoside (Q3,4'G), was estimated by using Caco-2 cell monolayers as an intestinal epithelial cell model. Aglycone was significantly lost from the apical side, resulting in the appearance of free and conjugated forms of quercetin and those of isorhamnetin in the cellular extracts. In the basolateral solution, the conjugated form of quercetin was predominant and increased with the elapse of incubation. As compared with quercetin aglycone, none of the quercetin glucosides were absorbed efficiently from apical side. However, Q4'G yielded conjugated quercetin and isorhamnetin in basolateral solution at higher amounts than Q3G or Q3,4'G. Lipophilicity of Q4'G was found to be higher than that of Q3G or Q3,4'G. This suggests that lipophilicity contributes to the relatively efficient absorption of Q4'G. It is likely that the occurrence of hydrolysis enhances the efficiency of intestinal absorption and metabolic conversion of dietary quercetin glucosides.
Collapse
Affiliation(s)
- K Murota
- Department of Nutrition, School of Medicine, The University of Tokushima, Japan
| | | | | | | | | |
Collapse
|
94
|
Peiffer I, Bernet-Camard MF, Rousset M, Servin AL. Impairments in enzyme activity and biosynthesis of brush border-associated hydrolases in human intestinal Caco-2/TC7 cells infected by members of the Afa/Dr family of diffusely adhering Escherichia coli. Cell Microbiol 2001; 3:341-57. [PMID: 11298656 DOI: 10.1046/j.1462-5822.2001.00121.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wild-type diffusely adhering Escherichia coli (DAEC) harbouring afimbrial adhesin (Afa) or fimbrial Dr and F1845 adhesins (Afa/Dr DAEC) apically infecting the human intestinal epithelial cells promote injuries in the brush border of the cells. We report here that infection by Afa/Dr DAEC wild-type strains C1845 and IH11128 in polarized human fully differentiated Caco-2/TC7 cells dramatically impaired the enzyme activity of functional brush border-associated proteins sucrase-isomaltase (SI) and dipeptidylpeptidase IV (DPP IV). Blockers of the transduction signal molecules, previously found to be active against the Afa/Dr DAEC-induced cytoskeleton injury, were inactive against the Afa/Dr-induced decrease in sucrase enzyme activity. In parallel, Afa/Dr DAEC infection promotes the blockade of the biosynthesis of SI and DPP IV without affection enzyme stability. The observation that no changes occurred in mRNA levels of SI and DPP IV upon infection suggested that the decrease in biosynthesis probably resulted from a decrease in the translation rate. When the cells were infected with recombinant E. coli strains expressing homologous adhesins of the wild-type strains, neither a decrease in sucrase and DPP IV enzyme activities nor an inhibition of enzyme biosynthesis were observed. In conclusion, taken together, these data give new insights into the mechanisms by which the wild-type Afa/Dr DAEC strains induce functional injuries in polarized fully differentiated human intestinal cells. Moreover, the results revealed that other pathogenic factor(s) distinct from the Afa/Dr adhesins may play(s) a crucial role in this mechanism of pathogenicity.
Collapse
Affiliation(s)
- I Peiffer
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 510, Faculté de Pharmacie Paris XI, F-92296 Châtenay-Malabry Cedex, France
| | | | | | | |
Collapse
|
95
|
Peiffer I, Guignot J, Barbat A, Carnoy C, Moseley SL, Nowicki BJ, Servin AL, Bernet-Camard MF. Structural and functional lesions in brush border of human polarized intestinal Caco-2/TC7 cells infected by members of the Afa/Dr diffusely adhering family of Escherichia coli. Infect Immun 2000; 68:5979-90. [PMID: 10992510 PMCID: PMC101562 DOI: 10.1128/iai.68.10.5979-5990.2000] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diffusely adhering Escherichia coli (DAEC) strains expressing F1845 fimbrial adhesin or Dr hemagglutinin belonging to the Afa/Dr family of adhesins infect cultured polarized human intestinal cells through recognition of the brush border-associated decay-accelerating factor (DAF; CD55) as a receptor. The wild-type Afa/Dr DAEC strain C1845 has been shown to induce brush border lesions by an adhesin-dependent mechanism triggering apical F-actin rearrangements. In the present study, we undertook to further characterize cell injuries following the interaction of wild-type Afa/Dr DAEC strains C1845 and IH11128 expressing fimbrial F1845 adhesin and Dr hemagglutinin, respectively, with polarized, fully differentiated Caco-2/TC7 cells. In both cases, bacterium-cell interaction was followed by rearrangement of the major brush border-associated cytoskeletal proteins F-actin, villin, and fimbrin, proteins which play a pivotal role in brush border assembly. In contrast, distribution of G-actin, actin-depolymerizing factor, and tubulin was not modified. Using draE mutants, we found that a mutant in which cysteine replaces aspartic acid at position 54 conserved binding capacity but failed to induce F-actin disassembly. Accompanying the cytoskeleton injuries, we found that the distribution of brush border-associated functional proteins sucrase-isomaltase (SI), dipeptidylpeptidase IV (DPPIV), glucose transporter SGLT1, and fructose transporter GLUT5 was dramatically altered. In parallel, SI and DPPIV enzyme activity decreased.
Collapse
Affiliation(s)
- I Peiffer
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 510, Faculté de Pharmacie Paris XI, F-92296 Châtenay-Malabry, France
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Pandrea IV, Carrière V, Barbat A, Cambier D, Dussaulx E, Lesuffleur T, Rousset M, Zweibaum A. Postmitotic differentiation of colon carcinoma caco-2 cells does not prevent reentry in the cell cycle and tumorigenicity. Exp Mol Pathol 2000; 69:37-45. [PMID: 10891291 DOI: 10.1006/exmp.2000.2309] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our purpose was to analyze whether postmitotic Caco-2 colon cancer cells, although they express most of the differentiation characteristics of terminally differentiated intestinal epithelial cells, still maintain, unlike normal cells, a proliferation potential. Experiments were performed with clone TC7 of the Caco-2 cell line. Dividing TC7 cells are undifferentiated and express detectable levels of thymidylate synthase (TS) and cytochrome P450 1A1 (CYP1A1) mRNAs. When reaching confluence TS and CYP1A1 are downregulated, mitosis is no longer detectable, and differentiation takes place, as demonstrated by appearance and increasing levels of differentiation-associated marker mRNAs (e.g., sucrase-isomaltase (SI), dipeptidylpeptidase-IV (DPP-IV) or GLUT5), increasing activities of sucrase and DPP-IV, and increasing expression, on immunofluorescence analysis, of SI on the surface of the cell layer. Trypsinization and seeding of late postconfluent cells (day 30) expressing complete differentiation results within 24 h in upregulation of TS and CYP1A1, a concomitant and dramatic disappearance of differentiation marker mRNAs associated with a decrease in sucrase and DPP-IV activities, and delayed resumption of cell division. This is followed, after the cells have reached confluence again, by downregulation of TS and CYP1A1 and resumption of cell differentiation. The ability of differentiated cells to dedifferentiate was further confirmed by wounding the cell layer of late postconfluent differentiated cultures: within 24 h following the wound, cells migrate from the wound edge and dedifferentiate, as demonstrated by transmission electron microscopy and disappearance of SI from the cell surface of migrating cells. Late postconfluent differentiated cells were tumorigenic in nude mice. These results raise the question of the validity of the concept of differentiation therapy when applied to colon cancer cells.
Collapse
Affiliation(s)
- I V Pandrea
- INSERM U178, 16 Avenue Paul Vaillant-Couturier, Villejuif Cedex, 94807,
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Martín MG, Wang J, Solorzano-Vargas RS, Lam JT, Turk E, Wright EM. Regulation of the human Na(+)-glucose cotransporter gene, SGLT1, by HNF-1 and Sp1. Am J Physiol Gastrointest Liver Physiol 2000; 278:G591-603. [PMID: 10762614 DOI: 10.1152/ajpgi.2000.278.4.g591] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Na(+)-glucose cotransporter (SGLT1) is expressed primarily by small intestinal epithelial cells and transports the monosaccharides glucose and galactose across the apical membrane. Here we describe the isolation and characterization of 5.3 kb of the 5'-flanking region of the SGLT1 gene by transiently transfecting reporter constructs into a variety of epithelial cell lines. A fragment (nt -235 to +22) of the promoter showed strong activity in the intestinal cell line Caco-2 but was inactive in a nonintestinal epithelial cell line (Chinese hamster ovary). Within this region, three cis-elements, a hepatocyte nuclear factor-1 (HNF-1) and two GC box sites are critical for maintaining the gene's basal level of expression. The two GC boxes bind to several members of the Sp1 family of transcription factors and, in the presence of HNF-1, synergistically upregulate transactivation of the promoter. A novel 16-bp element just downstream of one GC box was also shown to influence the interaction of Sp1 to its binding site. In summary, we report the identification and characterization of the human SGLT1 minimal promoter and the critical role that HNF-1 and Sp1-multigene members have in enhancing the basal level of its transcription in Caco-2 cells.
Collapse
Affiliation(s)
- M G Martín
- Department of Division of Gastroenterology and Nutrition, UCLA School of Medicine, Los Angeles 90095-1751, USA.
| | | | | | | | | | | |
Collapse
|
98
|
Smith TA, Titley JC. Uptake of glucose analogues by colonic tumour cells during growth and after treatment with hydroxyurea. Cancer Lett 1999; 141:85-91. [PMID: 10454247 DOI: 10.1016/s0304-3835(99)00075-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
SW620 cells were grown in tissue culture flasks to various cell densities producing populations of cells with a range of proliferative indices. The uptake of the two glucose analogues, deoxy-D-glucose (DG) and 3-O-methylglucose (OMG) was determined and found to be associated with S-phase fraction. The strong correlation between DG and OMG uptakes suggested that proliferation-related changes in transmembrane transport accounted for the association with S-phase fraction. Treatment of SW620 cells with the cell cycle inhibitor hydroxyurea was found to increase the uptake of DG and OMG in a time-dependent manner.
Collapse
Affiliation(s)
- T A Smith
- Department of Nuclear Medicine, Royal Marsden NHS Trust and Institute of Cancer Research, Sutton, Surrey, UK.
| | | |
Collapse
|
99
|
Glucose and thyroid hormone co-regulate the expression of the intestinal fructose transporter GLUT5. Biochem J 1999. [PMID: 10191252 DOI: 10.1042/0264-6021:3390233] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Expression of the fructose transporter GLUT5 in Caco-2 cells is controlled by the carbohydrate content of the culture media [Mesonero, Matosin, Cambier, Rodriguez-Yoldi and Brot-Laroche (1995) Biochem. J. 312, 757-762] and by the metabolic status of the cells [Mahraoui, Takeda, Mesonero, Chantret, Dussaulx, Bell, and Brot-Laroche (1994) Biochem. J. 301, 169-175]. In this study we show that, in fully differentiated Caco-2/TC7 cells, thyroid hormone and glucose increase GLUT5 mRNA abundance in a dose-dependent manner. Using Caco-2/TC7 cells stably transformed with various fragments of the GLUT5 promoter inserted upstream of the luciferase reporter gene, we localized the sequences that confer 3,3',5-l-tri-iodothyronine (T3)- and/or glucose-sensitivity to the gene. Glucose responsiveness is conferred by the -272/+41 fragment of the promoter, but it is only with the -338/+41 region that transcription of the luciferase reporter gene is stimulated by T3. This 70 bp fragment from position -338 to -272 of the GLUT5 gene is able to confer T3/glucose-responsiveness to the heterologous thymidine kinase promoter. Electrophoretic-mobility-shift assays demonstrate that thyroid hormone receptors alpha and beta are expressed in Caco-2/TC7 cells. They further show that the -308/-290 region of the GLUT5 promoter binds thyroid hormone receptor/retinoid X receptor heterodimers, and that glucose and/or T3 exert a deleterious effect on the binding of the nuclear protein complex.
Collapse
|
100
|
Matosin-Matekalo M, Mesonero JE, Laroche TJ, Lacasa M, Brot-Laroche E. Glucose and thyroid hormone co-regulate the expression of the intestinal fructose transporter GLUT5. Biochem J 1999; 339 ( Pt 2):233-9. [PMID: 10191252 PMCID: PMC1220150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Expression of the fructose transporter GLUT5 in Caco-2 cells is controlled by the carbohydrate content of the culture media [Mesonero, Matosin, Cambier, Rodriguez-Yoldi and Brot-Laroche (1995) Biochem. J. 312, 757-762] and by the metabolic status of the cells [Mahraoui, Takeda, Mesonero, Chantret, Dussaulx, Bell, and Brot-Laroche (1994) Biochem. J. 301, 169-175]. In this study we show that, in fully differentiated Caco-2/TC7 cells, thyroid hormone and glucose increase GLUT5 mRNA abundance in a dose-dependent manner. Using Caco-2/TC7 cells stably transformed with various fragments of the GLUT5 promoter inserted upstream of the luciferase reporter gene, we localized the sequences that confer 3,3',5-l-tri-iodothyronine (T3)- and/or glucose-sensitivity to the gene. Glucose responsiveness is conferred by the -272/+41 fragment of the promoter, but it is only with the -338/+41 region that transcription of the luciferase reporter gene is stimulated by T3. This 70 bp fragment from position -338 to -272 of the GLUT5 gene is able to confer T3/glucose-responsiveness to the heterologous thymidine kinase promoter. Electrophoretic-mobility-shift assays demonstrate that thyroid hormone receptors alpha and beta are expressed in Caco-2/TC7 cells. They further show that the -308/-290 region of the GLUT5 promoter binds thyroid hormone receptor/retinoid X receptor heterodimers, and that glucose and/or T3 exert a deleterious effect on the binding of the nuclear protein complex.
Collapse
Affiliation(s)
- M Matosin-Matekalo
- Unité de Recherches sur la Différenciation Cellulaire Intestinale, INSERM U178, 16 avenue Paul-Vaillant-Couturier, 97807 Villejuif cedex, France
| | | | | | | | | |
Collapse
|