51
|
Takeda AN, Oberoi-Khanuja TK, Glatz G, Schulenburg K, Scholz RP, Carpy A, Macek B, Remenyi A, Rajalingam K. Ubiquitin-dependent regulation of MEKK2/3-MEK5-ERK5 signaling module by XIAP and cIAP1. EMBO J 2014; 33:1784-801. [PMID: 24975362 PMCID: PMC4195761 DOI: 10.15252/embj.201487808] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 05/18/2014] [Accepted: 05/26/2014] [Indexed: 11/09/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are highly conserved protein kinase modules, and they control fundamental cellular processes. While the activation of MAPKs has been well studied, little is known on the mechanisms driving their inactivation. Here we uncover a role for ubiquitination in the inactivation of a MAPK module. Extracellular-signal-regulated kinase 5 (ERK5) is a unique, conserved member of the MAPK family and is activated in response to various stimuli through a three-tier cascade constituting MEK5 and MEKK2/3. We reveal an unexpected role for Inhibitors of Apoptosis Proteins (IAPs) in the inactivation of ERK5 pathway in a bimodal manner involving direct interaction and ubiquitination. XIAP directly interacts with MEKK2/3 and competes with PB1 domain-mediated binding to MEK5. XIAP and cIAP1 conjugate predominantly K63-linked ubiquitin chains to MEKK2 and MEKK3 which directly impede MEK5-ERK5 interaction in a trimeric complex leading to ERK5 inactivation. Consistently, loss of XIAP or cIAP1 by various strategies leads to hyperactivation of ERK5 in normal and tumorigenic cells. Loss of XIAP promotes differentiation of human primary skeletal myoblasts to myocytes in a MEKK2/3-ERK5-dependent manner. Our results reveal a novel, obligatory role for IAPs and ubiquitination in the physical and functional disassembly of ERK5-MAPK module and human muscle cell differentiation.
Collapse
Affiliation(s)
- Armelle-Natsuo Takeda
- Cell Death Signaling Group, Institute of Biochemistry II Goethe University Medical School, Frankfurt, Germany
| | - Tripat Kaur Oberoi-Khanuja
- Cell Death Signaling Group, Institute of Biochemistry II Goethe University Medical School, Frankfurt, Germany
| | - Gabor Glatz
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary Institute of Enzymology, Research Centre for Natural Sciences Hungarian Academy of Sciences, Budapest, Hungary
| | - Katharina Schulenburg
- Cell Death Signaling Group, Institute of Biochemistry II Goethe University Medical School, Frankfurt, Germany
| | - Rolf-Peter Scholz
- Cell Death Signaling Group, Institute of Biochemistry II Goethe University Medical School, Frankfurt, Germany
| | - Alejandro Carpy
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology University of Tuebingen, Tuebingen, Germany
| | - Boris Macek
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology University of Tuebingen, Tuebingen, Germany
| | - Attila Remenyi
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary Institute of Enzymology, Research Centre for Natural Sciences Hungarian Academy of Sciences, Budapest, Hungary
| | - Krishnaraj Rajalingam
- Cell Death Signaling Group, Institute of Biochemistry II Goethe University Medical School, Frankfurt, Germany
| |
Collapse
|
52
|
Growth factor transduction pathways: paradigm of anti-neoplastic targeted therapy. J Mol Med (Berl) 2014; 92:723-33. [DOI: 10.1007/s00109-014-1177-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 11/30/2022]
|
53
|
Liu J, Krautzberger AM, Sui SH, Hofmann OM, Chen Y, Baetscher M, Grgic I, Kumar S, Humphreys BD, Hide WA, McMahon AP. Cell-specific translational profiling in acute kidney injury. J Clin Invest 2014; 124:1242-54. [PMID: 24569379 DOI: 10.1172/jci72126] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 12/05/2013] [Indexed: 02/01/2023] Open
Abstract
Acute kidney injury (AKI) promotes an abrupt loss of kidney function that results in substantial morbidity and mortality. Considerable effort has gone toward identification of diagnostic biomarkers and analysis of AKI-associated molecular events; however, most studies have adopted organ-wide approaches and have not elucidated the interplay among different cell types involved in AKI pathophysiology. To better characterize AKI-associated molecular and cellular events, we developed a mouse line that enables the identification of translational profiles in specific cell types. This strategy relies on CRE recombinase-dependent activation of an EGFP-tagged L10a ribosomal protein subunit, which allows translating ribosome affinity purification (TRAP) of mRNA populations in CRE-expressing cells. Combining this mouse line with cell type-specific CRE-driver lines, we identified distinct cellular responses in an ischemia reperfusion injury (IRI) model of AKI. Twenty-four hours following IRI, distinct translational signatures were identified in the nephron, kidney interstitial cell populations, vascular endothelium, and macrophages/monocytes. Furthermore, TRAP captured known IRI-associated markers, validating this approach. Biological function annotation, canonical pathway analysis, and in situ analysis of identified response genes provided insight into cell-specific injury signatures. Our study provides a deep, cell-based view of early injury-associated molecular events in AKI and documents a versatile, genetic tool to monitor cell-specific and temporal-specific biological processes in disease modeling.
Collapse
|
54
|
Deng X, Elkins JM, Zhang J, Yang Q, Erazo T, Gomez N, Choi HG, Wang J, Dzamko N, Lee JD, Sim T, Kim N, Alessi DR, Lizcano JM, Knapp S, Gray NS. Structural determinants for ERK5 (MAPK7) and leucine rich repeat kinase 2 activities of benzo[e]pyrimido-[5,4-b]diazepine-6(11H)-ones. Eur J Med Chem 2013; 70:758-767. [PMID: 24239623 PMCID: PMC3914206 DOI: 10.1016/j.ejmech.2013.10.052] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 02/08/2023]
Abstract
The benzo[e]pyrimido-[5,4-b]diazepine-6(11H)-one core was discovered as a novel ERK5 (also known as MAPK7 and BMK1) inhibitor scaffold, previously. Further structure-activity relationship studies of this scaffold led to the discovery of ERK5-IN-1 (26) as the most selective and potent ERK5 inhibitor reported to date. 26 potently inhibits ERK5 biochemically with an IC₅₀ of 0.162 ± 0.006 μM and in cells with a cellular EC₅₀ for inhibiting epidermal growth factor induced ERK5 autophosphorylation of 0.09 ± 0.03 μM. Furthermore, 26 displays excellent selectivity over other kinases with a KINOMEscan selectivity score (S₁₀) of 0.007, and exhibits exceptional bioavailability (F%) of 90% in mice. 26 will serve as a valuable tool compound to investigate the ERK5 signaling pathway and as a starting point for developing an ERK5 directed therapeutic agent.
Collapse
Affiliation(s)
- Xianming Deng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, 250 Longwood Ave, SGM 628, Boston, MA 02115, USA
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave, SGM 628, Boston, MA 02115, USA
| | - Jonathan M. Elkins
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine and Target Discovery Institute (TDI), University of Oxford, Oxford, UK
| | - Jinwei Zhang
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Qingkai Yang
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Tatiana Erazo
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, E-08193 Barcelona, Spain
| | - Nestor Gomez
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, E-08193 Barcelona, Spain
| | - Hwan Geun Choi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, 250 Longwood Ave, SGM 628, Boston, MA 02115, USA
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave, SGM 628, Boston, MA 02115, USA
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, 250 Longwood Ave, SGM 628, Boston, MA 02115, USA
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave, SGM 628, Boston, MA 02115, USA
| | - Nicolas Dzamko
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Jiing-Dwan Lee
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Taebo Sim
- Future Convergence Research Division, Korea Institute of Science and Technology, 39-1 Hawologok-Dong, Wolsong-Gil5, Seongbuk-Gu, Seoul, 136-791, South Korea
| | - NamDoo Kim
- Future Convergence Research Division, Korea Institute of Science and Technology, 39-1 Hawologok-Dong, Wolsong-Gil5, Seongbuk-Gu, Seoul, 136-791, South Korea
| | - Dario R. Alessi
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Jose M. Lizcano
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, E-08193 Barcelona, Spain
| | - Stefan Knapp
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine and Target Discovery Institute (TDI), University of Oxford, Oxford, UK
| | - Nathanael S. Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, 250 Longwood Ave, SGM 628, Boston, MA 02115, USA
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave, SGM 628, Boston, MA 02115, USA
| |
Collapse
|
55
|
Qiu F, Yang L, Fang W, Li Y, Yang R, Yang X, Deng J, Huang B, Xie C, Zhou Y, Lu J. A functional polymorphism in the promoter of ERK5 gene interacts with tobacco smoking to increase the risk of lung cancer in Chinese populations. Mutagenesis 2013; 28:561-7. [PMID: 23804708 DOI: 10.1093/mutage/get033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mitogen/extracellular signal-regulated kinase-5 (MEK5)/extracellular signal-regulated protein kinase-5 (ERK5) pathway plays a pro-oncogenic role in tumourigenesis by anticell apoptosis, promoting cell proliferation and differentiation in response to extracellular stimuli. As overexpressed MEK5/ERK5 is involved in the development of lung cancer, we hypothesised that the single nucleotide polymorphisms (SNPs) in MEK5 and ERK5 genes may influence gene expression and thus be associated with lung cancer risk. Five putative functional polymorphisms (rs3743353T>C, rs7172582C>T and rs2278076A>G of MEK5 and rs3866958G>T and rs2233083C>T of ERK5) were genotyped in two independent case-control studies with a total of 1559 lung cancer patients and 1679 controls in southern and eastern Chinese population. We found the rs3866958G>T of ERK5 was significantly associated with lung cancer risk, while other SNPs were not. Compared with the rs3866958TG/TT genotypes, the GG genotype conferred an increased risk of lung cancer (odds ratio = 1.30, 95% confidence interval = 1.12-1.51, P = 5.0×10(-4)), and this effect was more pronounced in smokers, accompanying with a significant interaction with smoking (P interaction = 0.013). The GG genotype also had significant higher mRNA levels of ERK5 in lung cancer tissues than TG/TT genotypes (P = 1.0×10(-4)); the luciferase reporter with the G allele showed significant higher transcription activities than the T allele, especially after the treatment with tobacco extract in vitro. Our data indicated that the functional polymorphism rs3866958G>T in ERK5 was associated with an increased lung cancer risk in smokers by virtue of the positive interaction with smoking on promoting the ERK5 expression, which might be a valuable indicator for predicting lung cancer risk in smokers.
Collapse
Affiliation(s)
- Fuman Qiu
- The Institute for Chemical Carcinogenesis, The State Key Lab of Respiratory Disease, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou 510182, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Elkins JM, Wang J, Deng X, Pattison MJ, Arthur JSC, Erazo T, Gomez N, Lizcano JM, Gray NS, Knapp S. X-ray crystal structure of ERK5 (MAPK7) in complex with a specific inhibitor. J Med Chem 2013; 56:4413-21. [PMID: 23656407 PMCID: PMC3683888 DOI: 10.1021/jm4000837] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
protein kinase ERK5 (MAPK7) is an emerging drug target for
a variety of indications, in particular for cancer where it plays
a key role mediating cell proliferation, survival, epithelial–mesenchymal
transition, and angiogenesis. To date, no three-dimensional structure
has been published that would allow rational design of inhibitors.
To address this, we determined the X-ray crystal structure of the
human ERK5 kinase domain in complex with a highly specific benzo[e]pyrimido[5,4-b]diazepine-6(11H)-one inhibitor. The structure reveals that specific residue
differences in the ATP-binding site, compared to the related ERKs
p38s and JNKs, allow for the development of ERK5-specific inhibitors.
The selectivity of previously observed ERK5 inhibitors can also be
rationalized using this structure, which provides a template for future
development of inhibitors with potential for treatment of disease.
Collapse
Affiliation(s)
- Jonathan M Elkins
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Carbon monoxide: Mechanisms of action and potential clinical implications. Pharmacol Ther 2013; 137:133-52. [DOI: 10.1016/j.pharmthera.2012.09.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 09/10/2012] [Indexed: 01/27/2023]
|
58
|
SOX15 is a candidate tumor suppressor in pancreatic cancer with a potential role in Wnt/β-catenin signaling. Oncogene 2013; 33:279-88. [PMID: 23318427 DOI: 10.1038/onc.2012.595] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 10/23/2012] [Accepted: 11/02/2012] [Indexed: 12/19/2022]
Abstract
Pancreatic cancer is among the top five deadliest cancers in developed countries. Better knowledge of the molecular mechanisms contributing to its tumorigenesis is imperative to improve patient prognosis. Identification of novel tumor suppressor genes (TSGs) in pancreatic cancer will reveal new mechanisms of pathway deregulation and will ultimately help improve our understanding of this aggressive disease. According to Knudson's two-hit model, TSGs are classically disrupted by two concerted genetic events. In this study, we combined DNA methylation profiling with copy number and mRNA expression profiling to identify novel TSGs in a set of 20 pancreatic cancer cell lines. These data sets were integrated for each of ∼12 000 genes in each cell line enabling the elucidation of those genes that undergo DNA hypermethylation, copy-number loss and mRNA downregulation simultaneously in multiple cell lines. Using this integrative genomics strategy, we identified SOX15 (sex determining region Y-box 15) as a candidate TSG in pancreatic cancer. Expression of SOX15 in pancreatic cancer cell lines with undetectable expression resulted in reduced viability of cancer cells both in vitro and in vivo demonstrating its tumor suppressive capability. We also found reduced expression, homozygous deletion and aberrant DNA methylation of SOX15 in clinical pancreatic tumor data sets. Furthermore, we deduced a novel role for SOX15 in suppressing the Wnt/β-catenin signaling pathway, which we hypothesize is a pathway through which SOX15 may exert its tumor suppressive effects in pancreatic cancer.
Collapse
|
59
|
Ni Y, Meng L, Wang L, Dong W, Shen H, Wang G, Liu Q, Du J. MicroRNA-143 functions as a tumor suppressor in human esophageal squamous cell carcinoma. Gene 2012; 517:197-204. [PMID: 23276710 DOI: 10.1016/j.gene.2012.12.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 10/05/2012] [Accepted: 12/02/2012] [Indexed: 12/22/2022]
Abstract
Esophageal cancer is one of the most common cancers worldwide with a poor prognosis. MicroRNAs(miRNAs) are a class of naturally occurring small noncoding RNAs and play an important role in cancer initiation and development. In this study, we demonstrate that the expression levels of miR-143 and miR-145 were significantly decreased in ESCC tissues in comparison with adjacent normal esophageal squamous tissues(NESTs). Furthermore, an inverse correlation between miR-143 and tumor invasion depth and lymph node metastasis was observed. The enforced expression of miR-143 induced growth suppression and apoptosis of ESCC cells. Rescue of miR-143 significantly suppressed the ESCC cells migration and invasion capabilities. Moreover, we show that functions of miR-143 in ESCC are mediated at least in part by the inhibition of extracellular signal regulated kinase-5(ERK-5) activity. These results prove that miR-143 may act as a tumor suppressor in ESCC.
Collapse
Affiliation(s)
- Yang Ni
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, PR China
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Perez-Madrigal D, Finegan KG, Paramo B, Tournier C. The extracellular-regulated protein kinase 5 (ERK5) promotes cell proliferation through the down-regulation of inhibitors of cyclin dependent protein kinases (CDKs). Cell Signal 2012; 24:2360-8. [PMID: 22917534 DOI: 10.1016/j.cellsig.2012.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/27/2012] [Accepted: 08/07/2012] [Indexed: 01/11/2023]
Abstract
Activation of the extracellular-regulated protein kinase 5 (ERK5) has been associated with mitogenic signal transduction. However, conflicting findings have challenged the idea that ERK5 is a critical regulator of cell proliferation. We have addressed this issue by testing the effect of the conditional loss of ERK5 in primary fibroblasts. We have discovered that ERK5 suppressed the expression of the cyclin dependent protein kinase (CDKs) inhibitors, p21 and p27, by decreasing mRNA and protein stability, respectively. As a result, low level CDK2 activity detected in ERK5-deficient cells correlated with a defect in G1 to S phase transition of the cell cycle. Similarly, we found that the malignant MDA-MB-231 human breast cancer cell line was dependent on ERK5 to proliferate. We propose that ERK5 blocks p21 expression in MDA-MB-231 cells via a mechanism that implicates c-Myc-dependent transcriptional regulation of the miR-17-92 cluster. Together with evidence that cancer patients with poor prognosis display a high level of expression of components of the ERK5 signaling pathway, these findings support the hypothesis that ERK5 can be a potential target for cancer therapy.
Collapse
|
61
|
Nithianandarajah-Jones GN, Wilm B, Goldring CEP, Müller J, Cross MJ. ERK5: structure, regulation and function. Cell Signal 2012; 24:2187-96. [PMID: 22800864 DOI: 10.1016/j.cellsig.2012.07.007] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 07/09/2012] [Indexed: 01/06/2023]
Abstract
Extracellular signal-regulated kinase 5 (ERK5), also termed big mitogen-activated protein kinase-1 (BMK1), is the most recently identified member of the mitogen-activated protein kinase (MAPK) family and consists of an amino-terminal kinase domain, with a relatively large carboxy-terminal of unique structure and function that makes it distinct from other MAPK members. It is ubiquitously expressed in numerous tissues and is activated by a variety of extracellular stimuli, such as cellular stresses and growth factors, to regulate processes such as cell proliferation and differentiation. Targeted deletion of Erk5 in mice has revealed that the ERK5 signalling cascade plays a critical role in cardiovascular development and vascular integrity. Recent data points to a potential role in pathological conditions such as cancer and tumour angiogenesis. This review focuses on the physiological and pathological role of ERK5, the regulation of this kinase and the recent development of small molecule inhibitors of the ERK5 signalling cascade.
Collapse
Affiliation(s)
- Gopika N Nithianandarajah-Jones
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | | | | | | | | |
Collapse
|
62
|
Kondo M, Inamura H, Matsumura KI, Matsuoka M. Cadmium activates extracellular signal-regulated kinase 5 in HK-2 human renal proximal tubular cells. Biochem Biophys Res Commun 2012; 421:490-3. [PMID: 22521884 DOI: 10.1016/j.bbrc.2012.04.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 04/04/2012] [Indexed: 01/06/2023]
Abstract
We examined the effects of cadmium chloride (CdCl(2)) exposure on the phosphorylation and functionality of extracellular signal-regulated kinase 5 (ERK5), a recently identified member of the mitogen-activated protein kinase (MAPK) family, in HK-2 human renal proximal tubular cells. Following exposure to CdCl(2), ERK5 phosphorylation increased markedly, but the level of total ERK5 was unchanged. ERK5 phosphorylation following CdCl(2) exposure was rapid and transient, similar to the time course of ERK1/2 phosphorylation. Treatment of HK-2 cells with the MAPK/ERK kinase 5 inhibitor, BIX02189, suppressed CdCl(2)-induced ERK5 but not ERK1/2 phosphorylation. The CdCl(2)-induced increase of phosphorylated cAMP response element-binding protein (CREB) and activating transcription factor-1 (ATF-1), as well as the accumulation of mobility-shifted c-Fos protein, were suppressed by BIX02189 treatment. Furthermore, BIX02189 treatment enhanced cleavage of poly(ADP-ribose) polymerase and increased the level of cytoplasmic nucleosomes in HK-2 cells exposed to CdCl(2). These findings suggest that ERK5 pathway activation by CdCl(2) exposure might induce the phosphorylation of cell survival-transcription factors, such as CREB, ATF-1, and c-Fos, and may exert a partial anti-apoptotic role in HK-2 cells.
Collapse
Affiliation(s)
- Mio Kondo
- Department of Hygiene and Public Health I, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | | | | | | |
Collapse
|