51
|
Ronchetti S, Ayroldi E, Ricci E, Gentili M, Migliorati G, Riccardi C. A Glance at the Use of Glucocorticoids in Rare Inflammatory and Autoimmune Diseases: Still an Indispensable Pharmacological Tool? Front Immunol 2021; 11:613435. [PMID: 33584696 PMCID: PMC7874096 DOI: 10.3389/fimmu.2020.613435] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
Since their discovery, glucocorticoids (GCs) have been used to treat almost all autoimmune and chronic inflammatory diseases, as well as allergies and some forms of malignancies, because of their immunosuppressive and anti-inflammatory effects. Although GCs provide only symptomatic relief and do not eliminate the cause of the pathology, in the majority of treatments, GCs frequently cannot be replaced by other classes of drugs. Consequently, long-term treatments cause adverse effects that may, in turn, lead to new pathologies that sometimes require the withdrawal of GC therapy. Therefore, thus far, researchers have focused their efforts on molecules that have the same efficacy as that of GCs but cause fewer adverse effects. To this end, some GC-induced proteins, such as glucocorticoid-induced leucine zipper (GILZ), have been used as drugs in mouse models of inflammatory pathologies. In this review, we focus on some important but rare autoimmune and chronic inflammatory diseases for which the biomedical research investment in new therapies is less likely. Additionally, we critically evaluate the possibility of treating such diseases with other drugs, either GC-related or unrelated.
Collapse
Affiliation(s)
- Simona Ronchetti
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Emira Ayroldi
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Erika Ricci
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Marco Gentili
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Graziella Migliorati
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Carlo Riccardi
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
52
|
Cappetta D, De Angelis A, Flamini S, Cozzolino A, Bereshchenko O, Ronchetti S, Cianflone E, Gagliardi A, Ricci E, Rafaniello C, Rossi F, Riccardi C, Berrino L, Bruscoli S, Urbanek K. Deficit of glucocorticoid-induced leucine zipper amplifies angiotensin-induced cardiomyocyte hypertrophy and diastolic dysfunction. J Cell Mol Med 2021; 25:217-228. [PMID: 33247627 PMCID: PMC7810940 DOI: 10.1111/jcmm.15913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/22/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022] Open
Abstract
Poor prognosis in heart failure and the lack of real breakthrough strategies validate targeting myocardial remodelling and the intracellular signalling involved in this process. So far, there are no effective strategies to counteract hypertrophy, an independent predictor of heart failure progression and death. Glucocorticoid-induced leucine zipper (GILZ) is involved in inflammatory signalling, but its role in cardiac biology is unknown. Using GILZ-knockout (KO) mice and an experimental model of hypertrophy and diastolic dysfunction, we addressed the role of GILZ in adverse myocardial remodelling. Infusion of angiotensin II (Ang II) resulted in myocardial dysfunction, inflammation, apoptosis, fibrosis, capillary rarefaction and hypertrophy. Interestingly, GILZ-KO showed more evident diastolic dysfunction and aggravated hypertrophic response compared with WT after Ang II administration. Both cardiomyocyte and left ventricular hypertrophy were more pronounced in GILZ-KO mice. On the other hand, Ang II-induced inflammatory and fibrotic phenomena, cell death and reduction in microvascular density, remained invariant between the WT and KO groups. The analysis of regulators of hypertrophic response, GATA4 and FoxP3, demonstrated an up-regulation in WT mice infused with Ang II; conversely, such an increase did not occur in GILZ-KO hearts. These data on myocardial response to Ang II in mice lacking GILZ indicate that this protein is a new element that can be mechanistically involved in cardiovascular pathology.
Collapse
Affiliation(s)
- Donato Cappetta
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Antonella De Angelis
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Sara Flamini
- Department of MedicineSection of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Anna Cozzolino
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Oxana Bereshchenko
- Department of Philosophy, Social Sciences and EducationUniversity of PerugiaPerugiaItaly
| | - Simona Ronchetti
- Department of MedicineSection of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Eleonora Cianflone
- Department of Medical and Surgical SciencesUniversity 'Magna Graecia' of CatanzaroCatanzaroItaly
| | - Andrea Gagliardi
- Department of MedicineSection of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Erika Ricci
- Department of MedicineSection of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Concetta Rafaniello
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Francesco Rossi
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Carlo Riccardi
- Department of MedicineSection of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Liberato Berrino
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Stefano Bruscoli
- Department of MedicineSection of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Konrad Urbanek
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
- Department of Experimental and Clinical MedicineUniversity 'Magna Graecia' of CatanzaroCatanzaroItaly
| |
Collapse
|
53
|
Egi M, Ogura H, Yatabe T, Atagi K, Inoue S, Iba T, Kakihana Y, Kawasaki T, Kushimoto S, Kuroda Y, Kotani J, Shime N, Taniguchi T, Tsuruta R, Doi K, Doi M, Nakada T, Nakane M, Fujishima S, Hosokawa N, Masuda Y, Matsushima A, Matsuda N, Yamakawa K, Hara Y, Sakuraya M, Ohshimo S, Aoki Y, Inada M, Umemura Y, Kawai Y, Kondo Y, Saito H, Taito S, Takeda C, Terayama T, Tohira H, Hashimoto H, Hayashida K, Hifumi T, Hirose T, Fukuda T, Fujii T, Miura S, Yasuda H, Abe T, Andoh K, Iida Y, Ishihara T, Ide K, Ito K, Ito Y, Inata Y, Utsunomiya A, Unoki T, Endo K, Ouchi A, Ozaki M, Ono S, Katsura M, Kawaguchi A, Kawamura Y, Kudo D, Kubo K, Kurahashi K, Sakuramoto H, Shimoyama A, Suzuki T, Sekine S, Sekino M, Takahashi N, Takahashi S, Takahashi H, Tagami T, Tajima G, Tatsumi H, Tani M, Tsuchiya A, Tsutsumi Y, Naito T, Nagae M, Nagasawa I, Nakamura K, Nishimura T, Nunomiya S, Norisue Y, Hashimoto S, Hasegawa D, Hatakeyama J, Hara N, Higashibeppu N, Furushima N, Furusono H, Matsuishi Y, Matsuyama T, Minematsu Y, Miyashita R, Miyatake Y, Moriyasu M, Yamada T, et alEgi M, Ogura H, Yatabe T, Atagi K, Inoue S, Iba T, Kakihana Y, Kawasaki T, Kushimoto S, Kuroda Y, Kotani J, Shime N, Taniguchi T, Tsuruta R, Doi K, Doi M, Nakada T, Nakane M, Fujishima S, Hosokawa N, Masuda Y, Matsushima A, Matsuda N, Yamakawa K, Hara Y, Sakuraya M, Ohshimo S, Aoki Y, Inada M, Umemura Y, Kawai Y, Kondo Y, Saito H, Taito S, Takeda C, Terayama T, Tohira H, Hashimoto H, Hayashida K, Hifumi T, Hirose T, Fukuda T, Fujii T, Miura S, Yasuda H, Abe T, Andoh K, Iida Y, Ishihara T, Ide K, Ito K, Ito Y, Inata Y, Utsunomiya A, Unoki T, Endo K, Ouchi A, Ozaki M, Ono S, Katsura M, Kawaguchi A, Kawamura Y, Kudo D, Kubo K, Kurahashi K, Sakuramoto H, Shimoyama A, Suzuki T, Sekine S, Sekino M, Takahashi N, Takahashi S, Takahashi H, Tagami T, Tajima G, Tatsumi H, Tani M, Tsuchiya A, Tsutsumi Y, Naito T, Nagae M, Nagasawa I, Nakamura K, Nishimura T, Nunomiya S, Norisue Y, Hashimoto S, Hasegawa D, Hatakeyama J, Hara N, Higashibeppu N, Furushima N, Furusono H, Matsuishi Y, Matsuyama T, Minematsu Y, Miyashita R, Miyatake Y, Moriyasu M, Yamada T, Yamada H, Yamamoto R, Yoshida T, Yoshida Y, Yoshimura J, Yotsumoto R, Yonekura H, Wada T, Watanabe E, Aoki M, Asai H, Abe T, Igarashi Y, Iguchi N, Ishikawa M, Ishimaru G, Isokawa S, Itakura R, Imahase H, Imura H, Irinoda T, Uehara K, Ushio N, Umegaki T, Egawa Y, Enomoto Y, Ota K, Ohchi Y, Ohno T, Ohbe H, Oka K, Okada N, Okada Y, Okano H, Okamoto J, Okuda H, Ogura T, Onodera Y, Oyama Y, Kainuma M, Kako E, Kashiura M, Kato H, Kanaya A, Kaneko T, Kanehata K, Kano K, Kawano H, Kikutani K, Kikuchi H, Kido T, Kimura S, Koami H, Kobashi D, Saiki I, Sakai M, Sakamoto A, Sato T, Shiga Y, Shimoto M, Shimoyama S, Shoko T, Sugawara Y, Sugita A, Suzuki S, Suzuki Y, Suhara T, Sonota K, Takauji S, Takashima K, Takahashi S, Takahashi Y, Takeshita J, Tanaka Y, Tampo A, Tsunoyama T, Tetsuhara K, Tokunaga K, Tomioka Y, Tomita K, Tominaga N, Toyosaki M, Toyoda Y, Naito H, Nagata I, Nagato T, Nakamura Y, Nakamori Y, Nahara I, Naraba H, Narita C, Nishioka N, Nishimura T, Nishiyama K, Nomura T, Haga T, Hagiwara Y, Hashimoto K, Hatachi T, Hamasaki T, Hayashi T, Hayashi M, Hayamizu A, Haraguchi G, Hirano Y, Fujii R, Fujita M, Fujimura N, Funakoshi H, Horiguchi M, Maki J, Masunaga N, Matsumura Y, Mayumi T, Minami K, Miyazaki Y, Miyamoto K, Murata T, Yanai M, Yano T, Yamada K, Yamada N, Yamamoto T, Yoshihiro S, Tanaka H, Nishida O. The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020). Acute Med Surg 2021; 8:e659. [PMID: 34484801 PMCID: PMC8390911 DOI: 10.1002/ams2.659] [Show More Authors] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020), a Japanese-specific set of clinical practice guidelines for sepsis and septic shock created as revised from J-SSCG 2016 jointly by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine, was first released in September 2020 and published in February 2021. An English-language version of these guidelines was created based on the contents of the original Japanese-language version. The purpose of this guideline is to assist medical staff in making appropriate decisions to improve the prognosis of patients undergoing treatment for sepsis and septic shock. We aimed to provide high-quality guidelines that are easy to use and understand for specialists, general clinicians, and multidisciplinary medical professionals. J-SSCG 2016 took up new subjects that were not present in SSCG 2016 (e.g., ICU-acquired weakness [ICU-AW], post-intensive care syndrome [PICS], and body temperature management). The J-SSCG 2020 covered a total of 22 areas with four additional new areas (patient- and family-centered care, sepsis treatment system, neuro-intensive treatment, and stress ulcers). A total of 118 important clinical issues (clinical questions, CQs) were extracted regardless of the presence or absence of evidence. These CQs also include those that have been given particular focus within Japan. This is a large-scale guideline covering multiple fields; thus, in addition to the 25 committee members, we had the participation and support of a total of 226 members who are professionals (physicians, nurses, physiotherapists, clinical engineers, and pharmacists) and medical workers with a history of sepsis or critical illness. The GRADE method was adopted for making recommendations, and the modified Delphi method was used to determine recommendations by voting from all committee members. As a result, 79 GRADE-based recommendations, 5 Good Practice Statements (GPS), 18 expert consensuses, 27 answers to background questions (BQs), and summaries of definitions and diagnosis of sepsis were created as responses to 118 CQs. We also incorporated visual information for each CQ according to the time course of treatment, and we will also distribute this as an app. The J-SSCG 2020 is expected to be widely used as a useful bedside guideline in the field of sepsis treatment both in Japan and overseas involving multiple disciplines.
Collapse
|
54
|
Couto JFDO, Araújo MHD, Muzitano MF, Leal ICR. Humiria balsamifera extract inhibits nitric oxide and tumor necrosis factor production in LPS-stimulated macrophages. RODRIGUÉSIA 2021. [DOI: 10.1590/2175-7860202172086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract Humiria balsamifera is used in traditional medicine as anthelmintic, expectorant, to treat hepatitis, diarrhea, hemorrhoids; to cure chronic wounds; and to alleviate toothaches. This species occurs in Jurubatiba shoal, Rio de Janeiro state-Brazil, a rich region which offers a variety of promising bioactive product sources. The present study focuses on the chemical and pharmacological evaluation of H. balsamifera. The n-hexane, dichloromethane and ethyl acetate leaf fractions exhibited higher inhibitory potential on NO production. Friedelin (1), quercetin (2) and quercetin-3-α-O-arabinopyranoside (3) were isolated and characterized; the latter is described for the first time for H. balsamifera. Quercetin (2) showed the best inhibitory activity on NO production and moderate inhibition of TNF-α production. These results contribute to the knowledge of Humiria balsamifera as a source of anti-inflammatory compounds. Furthermore, the identification of the terpenes ß-amyrone, betulin, citronellol, eremophillene, dihydroactinolide and borneol, and the isolation of quercetin-3-α-O-arabinopyranoside are being reported for the first time for this species.
Collapse
|
55
|
Zhou H, Chanda B, Chen YF, Wang XJ, You MY, Zhang YH, Cheng R, Yang Y, Chen XQ. Microarray and Bioinformatics Analysis of Circular RNA Differential Expression in Newborns With Acute Respiratory Distress Syndrome. Front Pediatr 2021; 9:728462. [PMID: 34796151 PMCID: PMC8592891 DOI: 10.3389/fped.2021.728462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/05/2021] [Indexed: 12/02/2022] Open
Abstract
Previous studies pointed out that a variety of microRNAs (miRNAs) are involved in the pathogenesis of neonatal acute respiratory distress syndrome (NARDS) and play different roles in the pathological process. However, there have been few studies reporting the connection between circular RNA (circRNA) and NARDS, so the expression profile of circRNAs in newborns with acute respiratory distress syndrome remains largely unknown. In the present study, 10 samples obtained from remaining clinical blood samples of newborns hospitalized in a neonatal ward of the First Affiliated Hospital of Nanjing Medical University from January 2020 to October 2020 were divided into the "NARDS" group and "non-NARDS" group according to the Montelux standard and then were analyzed in microarray, and 10 other samples collected from the same place and from January 1, 2021 to August 31, 2021, were used to do RT-qPCR experiment. circRNA expression profiles, in which 741 circRNAs were downregulated and 588 were upregulated, were screened with circRNA high-throughput sequencing. Subsequently, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of parent genes of the differentially expressed circRNAs revealed that these circRNAs may be related to the process of protein synthesis and metabolism in NARDS. Moreover, five circRNAs-hsa_circ_0058495, hsa_circ_0000367, hsa_circ_0005389, hsa_circ_0059571, and hsa_circ_0006608-were selected randomly among the top 10 circRNAs of the downregulated or upregulated expression profiles. Then, bioinformatics tools were used to predict correlative miRNA and its target genes, which were also subjected to the same bioinformatics analysis for further study. The top 30 enriched KEGG pathway analyses of the 125 target genes suggested that these target genes are widely involved in the synthesis and secretion of endocrine hormones, and the top 30 enriched GO terms based on the 125 target genes are also focused on the protein and DNA processing. Thus, the present results show that circRNAs could promote the inflammation of NARDS which may provide a new therapeutic direction and it can be used as molecular markers for early diagnosis of NARDS, but further molecular biology verification is needed to define the specific role of differentially expressed circRNAs in NARDS.
Collapse
Affiliation(s)
- Huan Zhou
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bwalya Chanda
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Fei Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xue-Juan Wang
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming-Yu You
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi-Han Zhang
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Cheng
- Department of Neonatology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Yang
- Department of Neonatology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Qing Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
56
|
Kearney CM, Korthagen NM, Plomp SGM, Labberté MC, de Grauw JC, van Weeren PR, Brama PAJ. Treatment effects of intra-articular triamcinolone acetonide in an equine model of recurrent joint inflammation. Equine Vet J 2020; 53:1277-1286. [PMID: 33280164 DOI: 10.1111/evj.13396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/17/2020] [Accepted: 11/19/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND Intra-articular triamcinolone acetonide is a widely used treatment for joint inflammation despite limited scientific evidence of its efficacy. OBJECTIVES To investigate if intra-articular triamcinolone acetonide has sustained anti-inflammatory effects using an equine model of repeated joint inflammation. STUDY DESIGN Randomised controlled experimental study. METHOD For three consecutive cycles 2 weeks apart, inflammation was induced in both middle carpal joints of eight horses by injecting 0.25 ng lipopolysaccharide (LPS). After the first LPS injection only, treatment with 12 mg triamcinolone acetonide (TA) followed in one randomly assigned joint, while the contralateral joint was treated with sterile saline (control). Clinical parameters (composite welfare scores, joint effusion, joint circumference) were recorded and synovial fluid samples were analysed for various biomarkers (total protein, WBCC; PGE2 ; CCL2; TNFα; MMP; GAGs; C2C; CPII) at fixed timepoints (post injection hours 0, 8, 24, 72 and 168). The effects of time and treatment on clinical and synovial fluid parameters and the presence of time-treatment interactions were tested using a linear mixed model for repeated measures with horse as a random effect, and time and treatment as fixed effects. RESULTS The TA treated joints showed significantly higher peak synovial GAG concentrations (Difference in means 283.1875 µg/mL, 95% CI 179.8, 386.6, P < 0.000), and PGE2 levels (Difference in means 77.8025 pg/mL, 95% CI 21.2, 134.4, P < 0.007) after the first inflammation induction. Significantly lower TP levels were seen with TA treatment after the second induction (Difference in means -7.5 g/L, 95% CI -14.8, -0.20, P < 0.04) . Significantly lower WBCC levels were noted with TA treatment after the first (Difference in means -23.7125 × 109 cells/L, 95% CI -46.7, -0.7, P < 0.04) and second (Difference in means -35.95 × 109 cells/L, 95% CI -59.0, -12.9, P < 0.002) inflammation inductions. Significantly lower general MMP activity was also seen with TA treatment after the second inflammation inductions (Difference in means -51.65 RFU/s, 95% CI -92.4, -10.9, P < 0.01). MAIN LIMITATIONS This experimental study cannot fully reflect natural joint disease. CONCLUSIONS In this model, intra-articular TA seems to have some anti-inflammatory activity (demonstrated by reductions in TP, WBCC and general MMP activity) up to 2 weeks post treatment but not at 4 weeks. This anti-inflammatory effect appeared to outlast a shorter-lived, potentially detrimental effect illustrated by increased synovial GAG and PGE2 levels after the first induction.
Collapse
Affiliation(s)
- Clodagh M Kearney
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Nicoline M Korthagen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Saskia G M Plomp
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Margot C Labberté
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Janny C de Grauw
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - P R van Weeren
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Pieter A J Brama
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
57
|
Gong Y, Guan L, Jin Z, Chen S, Xiang G, Gao B. Effects of methylprednisolone use on viral genomic nucleic acid negative conversion and CT imaging lesion absorption in COVID-19 patients under 50 years old. J Med Virol 2020; 92:2551-2555. [PMID: 32441786 PMCID: PMC7280598 DOI: 10.1002/jmv.26052] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
The use of corticosteroids has been controversial in viral pneumonia. In most cases, application of methylprednisolone in severe and critical viral pneumonia patients can quickly alleviate the symptoms of dyspnea and prevent disease progression. However, some scholars have confirmed that corticosteroids delayed the body's clearance of the virus. In our retrospective non‐randomized study, 34 patients under 50 years old and diagnosed with coronavirus disease 2019 (COVID‐19) were included. According to the given methylprednisolone treatment (n = 18) or not (n = 16), they were separated into two groups. By comparing the clinical data we concluded that corticosteroids therapy can effectively release COVID‐19 symptoms such as persistent fever and difficult in breathing, improve oxygenation, and prevent disease progression. However, it can prolong the negative conversion of nucleic acids. 1. The use of glucocorticoids prolongs the time required for COVID‐19 patients to turn negative consecutively for nucleic acids test. 2. The use of glucocorticoids in critical and severe COVID‐19 typology patients can prevent the progression of this disease, especially to promote the absorption of CT lesion images 3. We confirm the safety and necessity of glucocorticoids applications in severe and critical COVID‐19 patients.
Collapse
Affiliation(s)
- Yuan Gong
- Department of Medicine and Respiratory, First Clinical Medical College of Three Gorges University, Yi Chang Central People's Hospital, Institute of Respiratory Diseases, Three Gorges University, Xiling, Yichang, Hubei, China
| | - Li Guan
- Department of Medicine and Respiratory, First Clinical Medical College of Three Gorges University, Yi Chang Central People's Hospital, Institute of Respiratory Diseases, Three Gorges University, Xiling, Yichang, Hubei, China
| | - Zhu Jin
- Department of Medicine and Respiratory, First Clinical Medical College of Three Gorges University, Yi Chang Central People's Hospital, Institute of Respiratory Diseases, Three Gorges University, Xiling, Yichang, Hubei, China
| | - Shixiong Chen
- Department of Medicine and Respiratory, First Clinical Medical College of Three Gorges University, Yi Chang Central People's Hospital, Institute of Respiratory Diseases, Three Gorges University, Xiling, Yichang, Hubei, China
| | - Guangming Xiang
- Department of Medicine and Respiratory, First Clinical Medical College of Three Gorges University, Yi Chang Central People's Hospital, Institute of Respiratory Diseases, Three Gorges University, Xiling, Yichang, Hubei, China
| | - Baoan Gao
- Department of Medicine and Respiratory, First Clinical Medical College of Three Gorges University, Yi Chang Central People's Hospital, Institute of Respiratory Diseases, Three Gorges University, Xiling, Yichang, Hubei, China
| |
Collapse
|
58
|
Syed AP, Greulich F, Ansari SA, Uhlenhaut NH. Anti-inflammatory glucocorticoid action: genomic insights and emerging concepts. Curr Opin Pharmacol 2020; 53:35-44. [DOI: 10.1016/j.coph.2020.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
|
59
|
De Giglio A, Nuvola G, Baldini C. Clinical consideration for choosing combination therapies in advanced non-small-cell lung cancer: age, Eastern Cooperative Organization performance status 2, steroids and antibiotics. Future Oncol 2020; 16:1683-1690. [PMID: 32479119 DOI: 10.2217/fon-2020-0183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Immune checkpoint inhibition completely changed our approach of cancer therapeutics and led to interesting response rate in a wide spectrum of tumors. However, only a portion of patients benefits from immune checkpoint blockers. To improve response rates, monoclonal antibodies targeting costimulatory receptors called PD-1 or CTLA-4 are combined together or with different therapies such as chemotherapy or antiangiogenic drugs. Some of these combinations are already approved and used in daily practice, but the safety and efficacy in particular populations such as older patients, Eastern Cooperative Organization performance status 2 or patients taking corticosteroids or antibiotics remain unclear. This special report focuses on the data available for these populations with a focus on non-small-cell lung cancer.
Collapse
Affiliation(s)
- Andrea De Giglio
- Department of Specialized, Experimental & Diagnostic Medicine, S.Orsola-Malpighi University Hospital, Alma Mater Studiorum University of Bologna, Bologna 40126, Italy
| | - Giacomo Nuvola
- Department of Specialized, Experimental & Diagnostic Medicine, S.Orsola-Malpighi University Hospital, Alma Mater Studiorum University of Bologna, Bologna 40126, Italy
| | - Capucine Baldini
- Drug Development Department, Gustave Roussy Cancer Campus, 114 Rue Edouard Vaillant, Villejuif 94800, France
| |
Collapse
|
60
|
Valbuena Perez JV, Linnenberger R, Dembek A, Bruscoli S, Riccardi C, Schulz MH, Meyer MR, Kiemer AK, Hoppstädter J. Altered glucocorticoid metabolism represents a feature of macroph-aging. Aging Cell 2020; 19:e13156. [PMID: 32463582 PMCID: PMC7294787 DOI: 10.1111/acel.13156] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/20/2020] [Accepted: 04/05/2020] [Indexed: 12/23/2022] Open
Abstract
The aging process is characterized by a chronic, low‐grade inflammatory state, termed “inflammaging.” It has been suggested that macrophage activation plays a key role in the induction and maintenance of this state. In the present study, we aimed to elucidate the mechanisms responsible for aging‐associated changes in the myeloid compartment of mice. The aging phenotype, characterized by elevated cytokine production, was associated with a dysfunction of the hypothalamic–pituitary–adrenal (HPA) axis and diminished serum corticosteroid levels. In particular, the concentration of corticosterone, the major active glucocorticoid in rodents, was decreased. This could be explained by an impaired expression and activity of 11β‐hydroxysteroid dehydrogenase type 1 (11β‐HSD1), an enzyme that determines the extent of cellular glucocorticoid responses by reducing the corticosteroids cortisone/11‐dehydrocorticosterone to their active forms cortisol/corticosterone, in aged macrophages and peripheral leukocytes. These changes were accompanied by a downregulation of the glucocorticoid receptor target gene glucocorticoid‐induced leucine zipper (GILZ) in vitro and in vivo. Since GILZ plays a central role in macrophage activation, we hypothesized that the loss of GILZ contributed to the process of macroph‐aging. The phenotype of macrophages from aged mice was indeed mimicked in young GILZ knockout mice. In summary, the current study provides insight into the role of glucocorticoid metabolism and GILZ regulation during aging.
Collapse
Affiliation(s)
| | - Rebecca Linnenberger
- Pharmaceutical Biology Department of Pharmacy Saarland University Saarbrücken Germany
| | - Anna Dembek
- Pharmaceutical Biology Department of Pharmacy Saarland University Saarbrücken Germany
| | - Stefano Bruscoli
- Pharmacology Department of Medicine Perugia University Perugia Italy
| | - Carlo Riccardi
- Pharmacology Department of Medicine Perugia University Perugia Italy
| | - Marcel H. Schulz
- Institute for Cardiovascular Regeneration Goethe University Frankfurt am Main Germany
- German Center for Cardiovascular Research (DZHK) Partner Site RheinMain Frankfurt am Main Germany
| | - Markus R. Meyer
- Department of Experimental and Clinical Toxicology Institute of Experimental and Clinical Pharmacology and Toxicology Center for Molecular Signaling (PZMS) Saarland University Homburg Germany
| | - Alexandra K. Kiemer
- Pharmaceutical Biology Department of Pharmacy Saarland University Saarbrücken Germany
| | - Jessica Hoppstädter
- Pharmaceutical Biology Department of Pharmacy Saarland University Saarbrücken Germany
| |
Collapse
|
61
|
Araujo JEDS, Miguel-dos-Santos R, Macedo FN, Cunha PS, Fontes MT, Murata GM, Lauton-Santos S, Santana-Filho VJ, Silva AMDO, Antoniolli AR, Curi R, Quintans JDSS, Barreto RDSS, Santos MRV, Quintans-Junior LJ, Barreto AS. Effects of high doses of glucocorticoids on insulin-mediated vasodilation in the mesenteric artery of rats. PLoS One 2020; 15:e0230514. [PMID: 32187237 PMCID: PMC7080254 DOI: 10.1371/journal.pone.0230514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/02/2020] [Indexed: 01/11/2023] Open
Abstract
Several pathological conditions predict the use of glucocorticoids for the management of the inflammatory response; however, chronic or high dose glucocorticoid treatment is associated with hyperglycemia, hyperlipidemia, and insulin resistance and can be considered a risk factor for cardiovascular disease. Therefore, we investigated the mechanisms involved in the vascular responsiveness and inflammatory profile of mesenteric arteries of rats treated with high doses of glucocorticoids. Wistar rats were divided into a control (CO) group and a dexamethasone (DEX) group, that received dexamethasone for 7 days (2mg/kg/day, i.p.). Blood samples were used to assess the lipid profile and insulin tolerance. Vascular reactivity to Phenylephrine (Phe) and insulin, and O2•-production were evaluated. The intracellular insulin signaling pathway PI3K/AKT/eNOS and MAPK/ET-1 were investigated. Regarding the vascular inflammatory profile, TNF-α, IL-6, IL-1β and IL-18 were assessed. Dexamethasone-treated rats had decreased insulin tolerance test and endothelium-dependent vasodilation induced by insulin. eNOS inhibition caused vasoconstriction in the DEX group, which was abolished by the ET-A antagonist. Insulin-mediated relaxation in the DEX group was restored in the presence of the O2.- scavenger TIRON. Nevertheless, in the DEX group there was an increase in Phe-induced vasoconstriction. In addition, the intracellular insulin signaling pathway PI3K/AKT/eNOS was impaired, decreasing NO bioavailability. Regarding superoxide anion generation, there was an increase in the DEX group, and all measured proinflammatory cytokines were also augmented in the DEX group. In addition, the DEX-group presented an increase in low-density lipoprotein cholesterol (LDL-c) and total cholesterol (TC) and reduced high-density lipoprotein cholesterol (HDL-c) levels. In summary, treatment with high doses of dexamethasone promoted changes in insulin-induced vasodilation, through the reduction of NO bioavailability and an increase in vasoconstriction via ET-1 associated with generation of O2•- and proinflammatory cytokines.
Collapse
Affiliation(s)
- João Eliakim dos S. Araujo
- Laboratory of Cardiovascular Pharmacology, Department of Physiology, Federal University of Sergipe, Sao Cristovao, Sergipe, Brazil
| | - Rodrigo Miguel-dos-Santos
- Laboratory of Cardiovascular Biology and Oxidative Stress, Department of Physiology, Federal University of Sergipe, Sao Cristovao, Sergipe, Brazil
| | | | - Patrícia S. Cunha
- Laboratory of Cardiovascular Pharmacology, Department of Physiology, Federal University of Sergipe, Sao Cristovao, Sergipe, Brazil
| | - Milene Tavares Fontes
- Vascular Physiology Laboratory, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gilson Masahiro Murata
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sandra Lauton-Santos
- Laboratory of Cardiovascular Biology and Oxidative Stress, Department of Physiology, Federal University of Sergipe, Sao Cristovao, Sergipe, Brazil
| | - Valter J. Santana-Filho
- Laboratory of Cardiovascular Pharmacology, Department of Physiology, Federal University of Sergipe, Sao Cristovao, Sergipe, Brazil
| | - Ana Mara de O. Silva
- Laboratory of Cardiovascular Pharmacology, Department of Physiology, Federal University of Sergipe, Sao Cristovao, Sergipe, Brazil
| | - Angelo Roberto Antoniolli
- Laboratory of Cardiovascular Pharmacology, Department of Physiology, Federal University of Sergipe, Sao Cristovao, Sergipe, Brazil
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jullyana de S. S. Quintans
- Laboratory of Cardiovascular Pharmacology, Department of Physiology, Federal University of Sergipe, Sao Cristovao, Sergipe, Brazil
| | - Rosana de S. S. Barreto
- Laboratory of Cardiovascular Pharmacology, Department of Physiology, Federal University of Sergipe, Sao Cristovao, Sergipe, Brazil
| | - Marcio R. V. Santos
- Laboratory of Cardiovascular Pharmacology, Department of Physiology, Federal University of Sergipe, Sao Cristovao, Sergipe, Brazil
| | - Lucindo J. Quintans-Junior
- Laboratory of Cardiovascular Pharmacology, Department of Physiology, Federal University of Sergipe, Sao Cristovao, Sergipe, Brazil
| | - André S. Barreto
- Laboratory of Cardiovascular Pharmacology, Department of Physiology, Federal University of Sergipe, Sao Cristovao, Sergipe, Brazil
| |
Collapse
|
62
|
Regulation of Innate Lymphoid Cells in Acute Kidney Injury: Crosstalk between Cannabidiol and GILZ. J Immunol Res 2020; 2020:6056373. [PMID: 32185239 PMCID: PMC7060850 DOI: 10.1155/2020/6056373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/23/2019] [Accepted: 12/31/2019] [Indexed: 12/15/2022] Open
Abstract
Innate lymphoid cells (ILCs) have emerged as largely tissue-resident archetypal cells of the immune system. We tested the hypotheses that renal ischemia-reperfusion injury (IRI) is a contributing factor to polarization of ILCs and that glucocorticoid-induced leucine zipper (GILZ) and cannabidiol regulate them in this condition. Mice subjected to unilateral renal IRI were treated with the following agents before restoration of renal blood flow: cannabidiol, DMSO, transactivator of transcription- (TAT-) GILZ, or the TAT peptide. Thereafter, kidney cells were prepared for flow cytometry analyses. Sham kidneys treated with either cannabidiol or TAT-GILZ displayed similar frequencies of each subset of ILCs compared to DMSO or TAT, respectively. Renal IRI increased ILC1s and ILC3s but reduced ILC2s compared to the sham group. Cannabidiol or TAT-GILZ treatment of IRI kidneys reversed this pattern as evidenced by reduced ILC1s and ILC3s but increased ILC2s compared to their DMSO- or TAT-treated counterparts. While TAT-GILZ treatment did not significantly affect cells positive for cannabinoid receptors subtype 2 (CB2+), cannabidiol treatment increased frequency of both CB2+ and GILZ-positive (GILZ+) cells of IRI kidneys. Subsequent studies showed that IRI reduced GILZ+ subsets of ILCs, an effect less marked for ILC2s. Treatment with cannabidiol increased frequencies of each subset of GILZ+ ILCs, but the effect was more marked for ILC2s. Indeed, cannabidiol treatment increased CB2+ GILZ+ ILC2s. Collectively, the results indicate that both cannabidiol and GILZ regulate ILC frequency and phenotype, in acute kidney injury, and that the effects of cannabidiol likely relate to modulation of endogenous GILZ.
Collapse
|
63
|
Hejazian SM, Zununi Vahed S, Moghaddas Sani H, Nariman-Saleh-Fam Z, Bastami M, Hosseiniyan Khatibi SM, Ardalan M, Samadi N. Steroid-resistant nephrotic syndrome: pharmacogenetics and epigenetic points and views. Expert Rev Clin Pharmacol 2020; 13:147-156. [PMID: 31847609 DOI: 10.1080/17512433.2020.1702877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Glucocorticoids (GCs) are the first-line therapy for patients with nephrotic syndrome (NS), a common glomerular disease, that cause complete remission in most of the cases. In response to the treatment, NS patients are divided into glucocorticoid-sensitive and -resistant. This variation is due to the differences in pharmacokinetics and pharmacodynamics of GCs in each patient that affect the response to the treatment modality. Since the genetic variations in drug-metabolizing enzymes and transporter proteins significantly impact the pharmacokinetics, efficacy and safety of the applied medications, this review highlights the basic mechanisms of genetic variations involved in GCs metabolism in drug-resistant NS patients.Areas covered: This review explains the pharmacogenetic variations that influence the profile of GCs responses and their pharmacokinetics in NS patients. Moreover, the epigenetic variations including histone modifications and miRNA gene regulation that have an influence on GCs responses will review. A comprehensive literature search was performed using different keywords to the reviewed topics.Expert opinion: The accumulative data suggest the importance of pharmacogenetic studies to develop personalized therapies and increase the GCs responsiveness in these patients. It is imperative to know that genetic testing does not give absolute answers to all existing questions in steroid resistance.
Collapse
Affiliation(s)
- Seyede Mina Hejazian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hakimeh Moghaddas Sani
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Ziba Nariman-Saleh-Fam
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Nasser Samadi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
64
|
|
65
|
Dai X, Ding M, Zhang W, Xuan Z, Liang J, Yang D, Zhang Q, Su B, Zhu H, Jia X. Anti-Inflammatory Effects of Different Elution Fractions of Er-Miao-San on Acute Inflammation Induced by Carrageenan in Rat Paw Tissue. Med Sci Monit 2019; 25:7958-7965. [PMID: 31645050 PMCID: PMC6822334 DOI: 10.12659/msm.916977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Er-Miao-San (EMS) is used in traditional Chinese medicine. This study aimed to investigate the effect of different elution fractions of EMS on acute inflammation induced by carrageenan in the rat paw and the possible mechanisms of action. MATERIAL AND METHODS Different aqueous fractions of EMS added to an AB-8 macroporous resin column and eluted with 0, 30%, 60%, and 90% ethanol. The content of berberine was evaluated by ultra-performance liquid chromatography (UPLC). Following injection of carrageenan and elution fractions of EMS into the rat paw, the volume of edema, levels of prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-1ß, and IL-10 in the rat tissue were quantified by enzyme-linked immunosorbent assay (ELISA). Myeloperoxidase (MPO) activity and nitric oxide (NO) levels were measured by spectrophotometry. RESULTS The 60% and 90% ethanol elution fractions of EMS contained berberine, and both inhibited edema after carrageenan injection, with inhibitory rates of 31.04-40.86% and 48.84-52.18%, respectively, and with a significant reduction in MPO activity and NO production. The 60% ethanol elution fraction of EMS significantly decreased IL-1ß levels and increased IL-10 levels, and the 30%, 60%, and 90% ethanol EMS elution fractions considerably reduced the levels of TNF-alpha. The 60% and 90% ethanol EMS elution fractions significantly reduced PGE2 levels in the rat paw. CONCLUSIONS The 60% and 90% ethanol elution fractions of EMS had an anti-inflammatory effect following injection of carrageenan in the rat paw.
Collapse
Affiliation(s)
- Xing Dai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China (mainland).,The First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Meihuizi Ding
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China (mainland).,Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, Anhui, China (mainland)
| | - Wei Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China (mainland).,Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, Anhui, China (mainland)
| | - Zihua Xuan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China (mainland).,Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, Anhui, China (mainland)
| | - Juan Liang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China (mainland).,Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, Anhui, China (mainland)
| | - Dongping Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China (mainland).,Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, Anhui, China (mainland)
| | - Qiying Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China (mainland).,Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, Anhui, China (mainland)
| | - Bo Su
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China (mainland).,Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, Anhui, China (mainland)
| | - Housheng Zhu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China (mainland).,Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, Anhui, China (mainland)
| | - Xiaoyi Jia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China (mainland).,Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, Anhui, China (mainland)
| |
Collapse
|
66
|
Huang YY, Li X, Li X, Sheng YY, Zhuang PW, Zhang YJ. Neuroimmune crosstalk in central nervous system injury-induced infection and pharmacological intervention. Brain Res Bull 2019; 153:232-238. [PMID: 31536756 DOI: 10.1016/j.brainresbull.2019.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 12/30/2022]
Abstract
Infection (such as pneumonia and urinary tract infection) is one of the leading causes of death in patients with acute central nervous system (CNS) injury, which also greatly affects the patients' prognosis and quality of life. Antibiotics are commonly used for the treatment of various infections, however, available evidence demonstrate that prophylactic antibiotic treatments for CNS injury-induced infection have been unsuccessful. Effective approaches for prevention of CNS injury induced-infection remain scarce, therefore, better understanding the molecular and cellular mechanisms of infection post-CNS injury may aid in the development of efficacious therapeutic options. CNS injury-induced infection is confirmed affected by the sympathetic/parasympathetic nervous system, hypothalamic-pituitary-adrenal axis, and even brain-gut axis. In this review, we summarized the mechanisms of CNS injury- induced infection, crosstalk between the CNS and the immune system and current pharmacological intervention to provide ideas for the development of new anti- infective therapeutic strategies.
Collapse
Affiliation(s)
- Ying-Ying Huang
- Tianjin University of Traditional Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Chinese Medicine Pharmacology, 301617, China.
| | - Xueli Li
- Tianjin University of Traditional Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Chinese Medicine Pharmacology, 301617, China.
| | - Xiaojin Li
- Tianjin University of Traditional Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Chinese Medicine Pharmacology, 301617, China.
| | - Yuan-Yuan Sheng
- Tianjin University of Traditional Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Chinese Medicine Pharmacology, 301617, China.
| | - Peng-Wei Zhuang
- Tianjin University of Traditional Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Chinese Medicine Pharmacology, 301617, China.
| | - Yan-Jun Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Chinese Medicine Pharmacology, 301617, China.
| |
Collapse
|
67
|
Bougarne N, Mylka V, Ratman D, Beck IM, Thommis J, De Cauwer L, Tavernier J, Staels B, Libert C, De Bosscher K. Mechanisms Underlying the Functional Cooperation Between PPARα and GRα to Attenuate Inflammatory Responses. Front Immunol 2019; 10:1769. [PMID: 31447832 PMCID: PMC6695567 DOI: 10.3389/fimmu.2019.01769] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/12/2019] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids (GCs) act via the glucocorticoid receptor (NR3C1, GRα) to combat overshooting responses to infectious stimuli, including lipopolysaccharide (LPS). As such, GCs inhibit the activity of downstream effector cytokines, such as tumor necrosis factor (TNF). PPARα (NR1C1) is a nuclear receptor described to function on the crossroad between lipid metabolism and control of inflammation. In the current work, we have investigated the molecular mechanism by which GCs and PPARα agonists cooperate to jointly inhibit NF-κB-driven expression in A549 cells. We discovered a nuclear mechanism that predominantly targets Mitogen- and Stress-activated protein Kinase-1 activation upon co-triggering GRα and PPARα. In vitro GST-pull down data further support that the anti-inflammatory mechanism may additionally involve a non-competitive physical interaction between the p65 subunit of NF-κB, GRα, and PPARα. Finally, to study metabolic effector target cells common to both receptors, we overlaid the effect of GRα and PPARα crosstalk in mouse primary hepatocytes under LPS-induced inflammatory conditions on a genome-wide level. RNA-seq results revealed lipid metabolism genes that were upregulated and inflammatory genes that were additively downregulated. Validation at the cytokine protein level finally supported a consistent additive anti-inflammatory response in hepatocytes.
Collapse
Affiliation(s)
- Nadia Bougarne
- Translational Nuclear Receptor Research Lab, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Viacheslav Mylka
- Translational Nuclear Receptor Research Lab, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Dariusz Ratman
- Translational Nuclear Receptor Research Lab, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Ilse M Beck
- Translational Nuclear Receptor Research Lab, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,VIB Center for Medical Biotechnology, Ghent, Belgium.,Receptor Research Laboratories, Cytokine Receptor Lab, Ghent, Belgium.,Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, Lille, France.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,VIB Center for Inflammation Research, Ghent, Belgium
| | - Jonathan Thommis
- Translational Nuclear Receptor Research Lab, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Lode De Cauwer
- Translational Nuclear Receptor Research Lab, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Jan Tavernier
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,VIB Center for Medical Biotechnology, Ghent, Belgium.,Receptor Research Laboratories, Cytokine Receptor Lab, Ghent, Belgium
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, Lille, France
| | - Claude Libert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,VIB Center for Inflammation Research, Ghent, Belgium
| | - Karolien De Bosscher
- Translational Nuclear Receptor Research Lab, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,VIB Center for Medical Biotechnology, Ghent, Belgium
| |
Collapse
|
68
|
Ma WT, Gao F, Gu K, Chen DK. The Role of Monocytes and Macrophages in Autoimmune Diseases: A Comprehensive Review. Front Immunol 2019; 10:1140. [PMID: 31178867 PMCID: PMC6543461 DOI: 10.3389/fimmu.2019.01140] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/07/2019] [Indexed: 12/19/2022] Open
Abstract
Monocytes (Mo) and macrophages (Mϕ) are key components of the innate immune system and are involved in regulation of the initiation, development, and resolution of many inflammatory disorders. In addition, these cells also play important immunoregulatory and tissue-repairing roles to decrease immune reactions and promote tissue regeneration. Several lines of evidence have suggested a causal link between the presence or activation of these cells and the development of autoimmune diseases. In addition, Mo or Mϕ infiltration in diseased tissues is a hallmark of several autoimmune diseases. However, the detailed contributions of these cells, whether they actually initiate disease or perpetuate disease progression, and whether their phenotype and functional alteration are merely epiphenomena are still unclear in many autoimmune diseases. Additionally, little is known about their heterogeneous populations in different autoimmune diseases. Elucidating the relevance of Mo and Mϕ in autoimmune diseases and the associated mechanisms could lead to the identification of more effective therapeutic strategies in the future.
Collapse
Affiliation(s)
- Wen-Tao Ma
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Fei Gao
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Kui Gu
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - De-Kun Chen
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
69
|
Shao G, Zhou H, Zhang Q, Jin Y, Fu C. Advancements of Annexin A1 in inflammation and tumorigenesis. Onco Targets Ther 2019; 12:3245-3254. [PMID: 31118675 PMCID: PMC6500875 DOI: 10.2147/ott.s202271] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/01/2019] [Indexed: 12/28/2022] Open
Abstract
Annexin A1 is a Ca2+-dependent phospholipid binding protein involved in a variety of pathophysiological processes. Accumulated evidence has indicated that Annexin A1 has important functions in cell proliferation, apoptosis, differentiation, metastasis, and inflammatory response. Moreover, the abnormal expression of Annexin A1 is closely related to the occurrence and development of tumors. In this review article, we focus on the structure and function of Annexin A1 protein, especially the recent evidence of Annexin A1 in the pathophysiological role of inflammatory and cancer. This summary will be very important for further investigation of the pathophysiological role of Annexin A1 and for the development of novel therapeutics of inflammatory and cancer based on targeting Annexin A1 protein.
Collapse
Affiliation(s)
- Gang Shao
- College of Life Sciences, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Hanwei Zhou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.,Institute of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou 311201, People's Republic of China
| | - Qiyu Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Yuanting Jin
- College of Life Sciences, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Caiyun Fu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
70
|
Regeneration of Dopaminergic Neurons in Adult Zebrafish Depends on Immune System Activation and Differs for Distinct Populations. J Neurosci 2019; 39:4694-4713. [PMID: 30948475 DOI: 10.1523/jneurosci.2706-18.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 12/23/2022] Open
Abstract
Adult zebrafish, in contrast to mammals, regenerate neurons in their brain, but the extent and variability of this capacity is unclear. Here we ask whether the loss of various dopaminergic neuron populations is sufficient to trigger their functional regeneration. Both sexes of zebrafish were analyzed. Genetic lineage tracing shows that specific diencephalic ependymo-radial glial (ERG) progenitor cells give rise to new dopaminergic [tyrosine hydroxylase-positive (TH+)] neurons. Ablation elicits an immune response, increased proliferation of ERG progenitor cells, and increased addition of new TH+ neurons in populations that constitutively add new neurons (e.g., diencephalic population 5/6). Inhibiting the immune response attenuates neurogenesis to control levels. Boosting the immune response enhances ERG proliferation, but not addition of TH+ neurons. In contrast, in populations in which constitutive neurogenesis is undetectable (e.g., the posterior tuberculum and locus ceruleus), cell replacement and tissue integration are incomplete and transient. This is associated with a loss of spinal TH+ axons, as well as permanent deficits in shoaling and reproductive behavior. Hence, dopaminergic neuron populations in the adult zebrafish brain show vast differences in regenerative capacity that correlate with constitutive addition of neurons and depend on immune system activation.SIGNIFICANCE STATEMENT Despite the fact that zebrafish show a high propensity to regenerate neurons in the brain, this study reveals that not all types of dopaminergic neurons are functionally regenerated after specific ablation. Hence, in the same adult vertebrate brain, mechanisms of successful and incomplete regeneration can be studied. We identify progenitor cells for dopaminergic neurons and show that activating the immune system promotes the proliferation of these cells. However, in some areas of the brain this only leads to insufficient replacement of functionally important dopaminergic neurons that later disappear. Understanding the mechanisms of regeneration in zebrafish may inform interventions targeting the regeneration of functionally important neurons, such as dopaminergic neurons, from endogenous progenitor cells in nonregenerating mammals.
Collapse
|
71
|
Sarlus H, Fontana JM, Tserga E, Meltser I, Cederroth CR, Canlon B. Circadian integration of inflammation and glucocorticoid actions: Implications for the cochlea. Hear Res 2019; 377:53-60. [PMID: 30908966 DOI: 10.1016/j.heares.2019.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/05/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022]
Abstract
Auditory function has been shown to be influenced by the circadian system. Increasing evidence point towards the regulation of inflammation and glucocorticoid actions by circadian rhythms in the cochlea. Yet, how these three systems (circadian, immune and endocrine) converge to control auditory function remains to be established. Here we review the knowledge on immune and glucocorticoid actions, and how they interact with the circadian and the auditory system, with a particular emphasis on cochlear responses to noise trauma. We propose a multimodal approach to understand the mechanisms of noise-induced hearing loss by integrating the circadian, immune and endocrine systems into the bearings of the cochlea. Considering the well-established positive impact of chronotherapeutic approaches in the treatment of cardiovascular, asthma and cancer, an increased knowledge on the mechanisms where circadian, immune and glucocorticoids meet in the cochlea may improve current treatments against hearing disorders.
Collapse
Affiliation(s)
- Heela Sarlus
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden.
| | - Jacopo Maria Fontana
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Evangelia Tserga
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Inna Meltser
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | | | - Barbara Canlon
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| |
Collapse
|
72
|
How Glucocorticoids Affect the Neutrophil Life. Int J Mol Sci 2018; 19:ijms19124090. [PMID: 30563002 PMCID: PMC6321245 DOI: 10.3390/ijms19124090] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 02/07/2023] Open
Abstract
Glucocorticoids are hormones that regulate several functions in living organisms and synthetic glucocorticoids are the most powerful anti-inflammatory pharmacological tool that is currently available. Although glucocorticoids have an immunosuppressive effect on immune cells, they exert multiple and sometimes contradictory effects on neutrophils. From being extremely sensitive to the anti-inflammatory effects of glucocorticoids to resisting glucocorticoid-induced apoptosis, neutrophils are proving to be more complex than they were earlier thought to be. The aim of this review is to explain these complex pathways by which neutrophils respond to endogenous or to exogenous glucocorticoids, both under physiological and pathological conditions.
Collapse
|