51
|
Abstract
FtsH is a cytoplasmic membrane protein that has N-terminally located transmembrane segments and a main cytosolic region consisting of AAA-ATPase and Zn2+-metalloprotease domains. It forms a homo-hexamer, which is further complexed with an oligomer of the membrane-bound modulating factor HflKC. FtsH degrades a set of short-lived proteins, enabling cellular regulation at the level of protein stability. FtsH also degrades some misassembled membrane proteins, contributing to their quality maintenance. It is an energy-utilizing and processive endopeptidase with a special ability to dislocate membrane protein substrates out of the membrane, for which its own membrane-embedded nature is essential. We discuss structure-function relationships of this intriguing enzyme, including the way it recognizes the soluble and membrane-integrated substrates differentially, on the basis of the solved structure of the ATPase domain as well as extensive biochemical and genetic information accumulated in the past decade on this enzyme.
Collapse
Affiliation(s)
- Koreaki Ito
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan.
| | | |
Collapse
|
52
|
Abstract
The motility of some kinds of bacteria depends on their spiral form, as does the virulence of certain pathogenic species. We propose a novel mechanism for the development of spiral shape in bacteria and the supercoiling of chains ('filaments') of many cells. Recently discovered actin-like proteins lying just under the cell wall form fibers that play a role in maintaining cell shape. Some species have a single actin-like fiber helically wrapped around the cell, while others have two fibers wrapped in the same direction. Here, we show that if these fibers elongate more slowly than growth lengthens the cell, the cell both twists and bends, taking on a spiral shape. We tested this mechanism using a mathematical model of expanding fiber-wound structures and via experiments that measure the shape changes of elongating physical models. Comparison of the model with in vivo experiments on stationary phase Caulobacter crescentus filaments provide the first evidence that mechanical stretching of cytoskeletal fibers influences cell morphology. Any hydraulic cylinder can spiral by this mechanism if it is reinforced by stretch-resistant fibers wrapped helically in the same direction, or shortened by contractile elements. This might be useful in the design of man-made actuators.
Collapse
Affiliation(s)
- Charles W Wolgemuth
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030-3505, USA
| | | | | | | | | | | |
Collapse
|
53
|
Sciochetti SA, Ohta N, Newton A. The role of polar localization in the function of an essential Caulobacter crescentus tyrosine kinase. Mol Microbiol 2005; 56:1467-80. [PMID: 15916599 DOI: 10.1111/j.1365-2958.2005.04652.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DivL is an essential tyrosine kinase in Caulobacter crescentus that controls an early step in the cell division cycle. We show here that DivL dynamically localizes to the stalk-distal cell pole and less frequently to the stalked cell pole during the S-phase. The kinase is subsequently released from the cell poles late in division and remains dispersed in the newly divided progeny stalk and swarmer cells. Mutational analysis of DivL in a DivL-GFP fusion protein demonstrated that the extreme C-terminus and residues in the conserved four-helix bundle, which is the phosphorylation-dimerization domain, are important for localization. We speculate that the four-helix bundle of the core catalytic domain may serve as a recognition site for the "localization machinery". Unexpectedly, a DivL protein with mutations in the C-terminal localization sequence, and an intact catalytic domain, efficiently complemented a divL null mutation. Thus, subcellular localization of DivL is not essential to its function in cell division regulation. Regulation of cell division by DivL does, however, depend on its localization in the cell membrane.
Collapse
|
54
|
Schmid AK, Howell HA, Battista JR, Peterson SN, Lidstrom ME. HspR is a global negative regulator of heat shock gene expression in Deinococcus radiodurans. Mol Microbiol 2005; 55:1579-90. [PMID: 15720562 DOI: 10.1111/j.1365-2958.2005.04494.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The HspR protein functions as a negative regulator of chaperone and protease gene expression in a diversity of bacteria. Here we have identified, cloned and deleted the Deinococcus radiodurans HspR homologue, DR0934. Delta hspR mutants exhibit moderate growth defects when shifted to mild heat shock temperatures, but are severely impaired for survival at 48 degrees C. Using quantitative reverse transcription polymerase chain reaction and global transcriptional analysis, we have identified 14 genes that are derepressed in the absence of stress in the delta hspR background, 11 of which encode predicted chaperones and proteases, including dnaKJgrpE, ftsH, lonB, hsp20 and clpB. Promoter mapping indicated that the transcription of these genes initiates from a promoter bearing a sigma70-type consensus, and that putative HspR binding sites (HAIR) were present in the 5'-untranslated regions. Electrophoretic mobility shift assays indicated that HspR binds to these promoters at the HAIR site in vitro. These results strongly suggest that DR0934 encodes the HspR-like global negative regulator of D. radiodurans that directly represses chaperone and protease gene expression by binding to the HAIR site in close proximity to promoter regions.
Collapse
Affiliation(s)
- Amy K Schmid
- Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195-2180, USA
| | | | | | | | | |
Collapse
|
55
|
Abstract
The cellular stress response is a universal mechanism of extraordinary physiological/pathophysiological significance. It represents a defense reaction of cells to damage that environmental forces inflict on macromolecules. Many aspects of the cellular stress response are not stressor specific because cells monitor stress based on macromolecular damage without regard to the type of stress that causes such damage. Cellular mechanisms activated by DNA damage and protein damage are interconnected and share common elements. Other cellular responses directed at re-establishing homeostasis are stressor specific and often activated in parallel to the cellular stress response. All organisms have stress proteins, and universally conserved stress proteins can be regarded as the minimal stress proteome. Functional analysis of the minimal stress proteome yields information about key aspects of the cellular stress response, including physiological mechanisms of sensing membrane lipid, protein, and DNA damage; redox sensing and regulation; cell cycle control; macromolecular stabilization/repair; and control of energy metabolism. In addition, cells can quantify stress and activate a death program (apoptosis) when tolerance limits are exceeded.
Collapse
Affiliation(s)
- Dietmar Kültz
- Physiological Genomics Group, Department of Animal Sciences, University of California, Davis, California 95616, USA.
| |
Collapse
|
56
|
Martin ME, Trimble MJ, Brun YV. Cell cycle-dependent abundance, stability and localization of FtsA and FtsQ in Caulobacter crescentus. Mol Microbiol 2004; 54:60-74. [PMID: 15458405 DOI: 10.1111/j.1365-2958.2004.04251.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Coordination between cell division and DNA replication is ensured by checkpoints that act through proteins required for cell division. Following a block in DNA replication, transcription of the cell division progression genes ftsA and ftsQ is prevented in Caulobacter crescentus. One requirement for this checkpoint is that FtsA and/or FtsQ should be limiting for division in the next cell cycle. We show that the number of FtsA and FtsQ molecules fluctuates such that their concentration is low in swarmer and stalked cells, peaks in pre-divisional cells, and then dramatically decreases after cell division. Despite constitutive expression from an inducible promoter, FtsA and FtsQ levels still vary during the cell cycle, and the half-life of FtsA increases from 13 min in swarmer cells to 55 min in stalked cell types, confirming cell type-specific degradation. The post-division degradation of FtsA and FtsQ in swarmer cells reduces their concentration to 7% and 10% of their maximal level, respectively, strongly suggesting that de novo synthesis of both proteins is required for each division cycle. The localization of FtsA and FtsQ is also cell type-specific. FtsA and FtsQ are recruited to the midcell during a short period in late pre-divisional cells, consistent with the demonstrated requirement of FtsA for late stages of cell division. As previously reported for FtsZ, constitutive expression of FtsA causes cell division defects. These results indicate that the tight control of FtsA, and probably FtsQ, by cell cycle transcription, proteolysis, and localization are critical for optimal cell division and the coordination of cell division with the DNA replication cycle.
Collapse
Affiliation(s)
- Miriam E Martin
- Department of Biology, Indiana University, 1001 E. 3rd St., Bloomington, IN 47405, USA
| | | | | |
Collapse
|
57
|
Susin MF, Perez HR, Baldini RL, Gomes SL. Functional and structural analysis of HrcA repressor protein from Caulobacter crescentus. J Bacteriol 2004; 186:6759-67. [PMID: 15466027 PMCID: PMC522201 DOI: 10.1128/jb.186.20.6759-6767.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A large number of bacteria regulate chaperone gene expression during heat shock by the HrcA-CIRCE system, in which the DNA element called CIRCE serves as binding site for the repressor protein HrcA under nonstress conditions. In Caulobacter crescentus, the groESL operon presents a dual type of control. Heat shock induction is controlled by a sigma32-dependent promoter and the HrcA-CIRCE system plays a role in regulation of groESL expression under physiological temperatures. To study the activity of HrcA in vitro, we purified a histidine-tagged version of the protein, and specific binding to the CIRCE element was obtained by gel shift assays. The amount of retarded DNA increased significantly in the presence of GroES/GroEL, suggesting that the GroE chaperonin machine modulates HrcA activity. Further evidence of this modulation was obtained using lacZ transcription fusions with the groESL regulatory region in C. crescentus cells, producing different amounts of GroES/GroEL. In addition, we identified the putative DNA-binding domain of HrcA through extensive protein sequence comparison and constructed various HrcA mutant proteins containing single amino acid substitutions in or near this region. In vitro and in vivo experiments with these mutated proteins indicated several amino acids important for repressor activity.
Collapse
Affiliation(s)
- Michelle F Susin
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748 São Paulo, SP 05508-900, Brazil
| | | | | | | |
Collapse
|
58
|
Grünenfelder B, Tawfilis S, Gehrig S, ØSterås M, Eglin D, Jenal U. Identification of the protease and the turnover signal responsible for cell cycle-dependent degradation of the Caulobacter FliF motor protein. J Bacteriol 2004; 186:4960-71. [PMID: 15262933 PMCID: PMC451599 DOI: 10.1128/jb.186.15.4960-4971.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Flagellar ejection is tightly coupled to the cell cycle in Caulobacter crescentus. The MS ring protein FliF, which anchors the flagellar structure in the inner membrane, is degraded coincident with flagellar release. Previous work showed that removal of 26 amino acids from the C terminus of FliF prevents degradation of the protein and interferes with flagellar assembly. To understand FliF degradation in more detail, we identified the protease responsible for FliF degradation and performed a high-resolution mutational analysis of the C-terminal degradation signal of FliF. Cell cycle-dependent turnover of FliF requires an intact clpA gene, suggesting that the ClpAP protease is required for removal of the MS ring protein. Deletion analysis of the entire C-terminal cytoplasmic portion of FliF C confirmed that the degradation signal was contained in the last 26 amino acids that were identified previously. However, only deletions longer than 20 amino acids led to a stable FliF protein, while shorter deletions dispersed over the entire 26 amino acids critical for turnover had little effect on stability. This indicated that the nature of the degradation signal is not based on a distinct primary amino acid sequence. The addition of charged amino acids to the C-terminal end abolished cell cycle-dependent FliF degradation, implying that a hydrophobic tail feature is important for the degradation of FliF. Consistent with this, ClpA-dependent degradation was restored when a short stretch of hydrophobic amino acids was added to the C terminus of stable FliF mutant forms.
Collapse
Affiliation(s)
- Björn Grünenfelder
- Division of Molecular Microbiology, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
59
|
Shaw T, Winston M, Rupp CJ, Klapper I, Stoodley P. Commonality of elastic relaxation times in biofilms. PHYSICAL REVIEW LETTERS 2004; 93:098102. [PMID: 15447143 DOI: 10.1103/physrevlett.93.098102] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Indexed: 05/24/2023]
Abstract
Biofilms, sticky conglomerations of microorganisms and extracellular polymers, are among the Earth's most common life forms. One component for their survival is an ability to withstand external mechanical stress. Measurements indicate that biofilm elastic relaxation times are approximately the same (about 18 min) over a wide sample of biofilms though other material properties vary significantly. A possible survival significance of this time scale is that it is the shortest period over which a biofilm can mount a phenotypic response to transient mechanical stress.
Collapse
Affiliation(s)
- T Shaw
- Department of Mathematical Sciences, Montana State University, Bozeman, Montana 59717, USA
| | | | | | | | | |
Collapse
|
60
|
Anilkumar G, Srinivasan R, Ajitkumar P. Genomic organization and in vivo characterization of proteolytic activity of FtsH of Mycobacterium smegmatis SN2. Microbiology (Reading) 2004; 150:2629-2639. [PMID: 15289559 DOI: 10.1099/mic.0.27090-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
TheftsHgene ofMycobacterium smegmatisSN2 (MsftsH) was cloned from two independent partial genomic DNA libraries and characterized, along with the identification ofephAandfolEas the neighbouring upstream and downstream genes respectively. The genomic organization of the MsftsHlocus was found to be identical to that of theMycobacterium tuberculosis ftsHgene (MtftsH) and similar to that of other bacterial genera, but with divergence in the upstream region. The MsftsHgene is 2·3 kb in size and encodes the AAA (ATPasesAssociated with diverse cellularActivities) family Zn2+-metalloprotease FtsH (MsFtsH) of 85 kDa molecular mass. This was demonstrated from the expression of the full-length recombinant gene inEscherichia coliJM109 cells and from the identification of native MsFtsH inM. smegmatisSN2 cell lysates by Western blotting with anti-MtFtsH and anti-EcFtsH antibodies respectively. The recombinant and the native MsFtsH proteins were found localized to the membrane ofE. coliandM. smegmatiscells respectively. Expression of MsFtsH protein inE. coliwas toxic and resulted in growth arrest and filamentation of cells. The MsftsHgene did not complement lethality of a ΔftsH3 : : kan mutation inE. coli, but when expressed inE. colicells, it efficiently degraded conventional FtsH substrates, namelyσ32protein and the protein translocase subunit SecY, ofE. colicells.
Collapse
Affiliation(s)
| | - Ramanujam Srinivasan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Parthasarathi Ajitkumar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
61
|
Lithgow JK, Ingham E, Foster SJ. Role of the hprT-ftsH locus in Staphylococcus aureus. MICROBIOLOGY-SGM 2004; 150:373-381. [PMID: 14766915 DOI: 10.1099/mic.0.26674-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The roles of two adjacent genes in the Staphylococcus aureus chromosome with functions in starvation survival and the response to stressful conditions have been characterized. One of these, hprT, encoding a hypoxanthine-guanine phosphoribosyltransferase homologue, was initially identified in a transposon mutagenesis screen. Mutation of hprT affects starvation survival in amino-acid-limiting conditions and the ability of S. aureus to grow in high-salt concentrations. Downstream of hprT is ftsH, which encodes a membrane-bound, ATP- and Zn(2+)-dependent 'AAA'-type protease. Mutation of ftsH in S. aureus leads to pleiotropic defects including slower growth, sensitivity to salt, acid, methyl viologen and potassium tellurite stresses, and reduced survival in amino-acid- or phosphate-limiting conditions. Both hprT-lacZ and ftsH-lacZ gene fusions are expressed maximally in the post-exponential phase of growth. Although secretion of exoproteins is not affected, an ftsH mutant is attenuated in a murine skin lesion model of pathogenicity.
Collapse
Affiliation(s)
- James K Lithgow
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Eileen Ingham
- Department of Microbiology, University of Leeds, Leeds LS2 9JT, UK
| | - Simon J Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
62
|
Affiliation(s)
- Regine Hengge
- Institut für Biologie, Mikrobiologie, Freie Universität Berlin, 14195 Berlin, Germany.
| | | |
Collapse
|
63
|
da Silva ACA, Simão RCG, Susin MF, Baldini RL, Avedissian M, Gomes SL. Downregulation of the heat shock response is independent of DnaK and sigma32 levels in Caulobacter crescentus. Mol Microbiol 2003; 49:541-53. [PMID: 12828648 DOI: 10.1046/j.1365-2958.2003.03581.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Expression of heat shock genes in Gram-negative proteobacteria is positively modulated by the transcriptional regulator RpoH, the sigma(32) subunit of RNA polymerase (RNAP). In this study we investigated the chaperones DnaK/DnaJ and GroES/GroEL as possible modulators of the heat response in Caulobacter crescentus. We have shown that cells overexpressing DnaK show poor induction of heat shock protein (HSP) synthesis, even though sigma(32) levels present a normal transient increase upon heat stress. On the other hand, depletion of DnaK led to higher levels of sigma(32) and increased transcription of HSP genes, at normal growth temperature. In contrast, changes in the amount of GroES/EL had little effect on sigma(32) levels and HSP gene transcription. Despite the strong effect of DnaK levels on the induction phase of the heat shock response, downregulation of HSP synthesis was not affected by changes in the amount this chaperone. Thus, we propose that competition between sigma(32) and sigma(73), the major sigma factor, for the core RNAP could be the most important factor controlling the shut-off of HSP synthesis during recovery phase. In agreement with this hypothesis, we have shown that expression of sigma(73) gene is heat shock inducible.
Collapse
Affiliation(s)
- Antonio C A da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C. P. 26077, São Paulo, SP, 05513-970, Brazil
| | | | | | | | | | | |
Collapse
|
64
|
Abstract
In Caulobacter crescentus, a complex regulatory network integrates temporal and spatial information to control the ordered progression of the cell cycle, and to synchronize cell proliferation with development. Periodicity includes the timed synthesis, activation or destruction of key regulatory proteins, which activate a large number of genes at the appropriate time of the cell cycle. Checkpoints serve to couple cell division and polar development to the replication and segregation state of the chromosome. Asymmetrically positioned regulatory components are involved in the sequential positioning of polar organelles. New work sheds light on the spatial organization of cellular components involved in cell cycle progression and polar differentiation, and starts to define the molecular nature of checkpoints involved in cell cycle control and development.
Collapse
Affiliation(s)
- Urs Jenal
- Biozentrum, University of Basel, Klingelbergstrasse 70 4054, Basel, Switzerland.
| | | |
Collapse
|