51
|
Samuels ER, Szabadi E. Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I: principles of functional organisation. Curr Neuropharmacol 2010; 6:235-53. [PMID: 19506723 PMCID: PMC2687936 DOI: 10.2174/157015908785777229] [Citation(s) in RCA: 505] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 02/25/2008] [Accepted: 06/06/2008] [Indexed: 01/09/2023] Open
Abstract
The locus coeruleus (LC) is the major noradrenergic nucleus of the brain, giving rise to fibres innervating extensive areas throughout the neuraxis. Recent advances in neuroscience have resulted in the unravelling of the neuronal circuits controlling a number of physiological functions in which the LC plays a central role. Two such functions are the regulation of arousal and autonomic activity, which are inseparably linked largely via the involvement of the LC. The LC is a major wakefulness-promoting nucleus, resulting from dense excitatory projections to the majority of the cerebral cortex, cholinergic neurones of the basal forebrain, cortically-projecting neurones of the thalamus, serotoninergic neurones of the dorsal raphe and cholinergic neurones of the pedunculopontine and laterodorsal tegmental nucleus, and substantial inhibitory projections to sleep-promoting GABAergic neurones of the basal forebrain and ventrolateral preoptic area. Activation of the LC thus results in the enhancement of alertness through the innervation of these varied nuclei. The importance of the LC in controlling autonomic function results from both direct projections to the spinal cord and projections to autonomic nuclei including the dorsal motor nucleus of the vagus, the nucleus ambiguus, the rostroventrolateral medulla, the Edinger-Westphal nucleus, the caudal raphe, the salivatory nuclei, the paraventricular nucleus, and the amygdala. LC activation produces an increase in sympathetic activity and a decrease in parasympathetic activity via these projections. Alterations in LC activity therefore result in complex patterns of neuronal activity throughout the brain, observed as changes in measures of arousal and autonomic function.
Collapse
Affiliation(s)
- E R Samuels
- Psychopharmacology Section, University of Nottingham, Division of Psychiatry, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | | |
Collapse
|
52
|
Luppi PH. Neurochemical aspects of sleep regulation with specific focus on slow-wave sleep. World J Biol Psychiatry 2010; 11 Suppl 1:4-8. [PMID: 20509826 DOI: 10.3109/15622971003637611] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The purpose of this review is to outline the mechanisms responsible for the succession of the three vigilance states, namely waking, non rapid eye movement (nonREM) and REM (paradoxical) sleep over 24 h. The latest hypothesis on the mechanisms by which cortical activity switches from an activated state during waking to a synchronised state during nonREM sleep is presented. It is proposed that the activated cortical state during waking is induced by the activity of multiple waking systems, including the serotonergic, noradrenergic, cholinergic and hypocretin systems located at different subcortical levels. In contrast, the neurons inducing nonREM sleep are all localized in a single small nucleus named the ventrolateral preoptic nucleus (VLPO) situated above the optic chiasm. These neurons all contain the inhibitory neurotransmitter gamma-aminobutyric acid. The notion that the switch from waking to nonREM sleep is due to the inhibition of the waking systems by the VLPO sleep-active neurons is introduced. At the onset of sleep, the sleep neurons are activated by the circadian clock localized in the suprachiasmatic nucleus and a hypnogenic factor, adenosine, which progressively accumulates in the brain during waking.
Collapse
Affiliation(s)
- Pierre-Hervé Luppi
- University of Lyon, Centre National de la Recherche Scientifique (CNRS), Physiologie et Physiopathologie du Cycle Veille-Sommeil, Institut Fédératif des Neurosciences (IFNL), Lyon, France.
| |
Collapse
|
53
|
Hajak G. Pharmacological intervention in slow-wave sleep: a novel approach to the management of insomnia? World J Biol Psychiatry 2010; 11 Suppl 1:29-30. [PMID: 20509830 DOI: 10.3109/15622971003637702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Göran Hajak
- Department of Psychiatry, Psychosomatics and Psychotherapy University of Regensburg, Germany.
| |
Collapse
|
54
|
Diniz Behn CG, Booth V. Simulating Microinjection Experiments in a Novel Model of the Rat Sleep-Wake Regulatory Network. J Neurophysiol 2010; 103:1937-53. [DOI: 10.1152/jn.00795.2009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study presents a novel mathematical modeling framework that is uniquely suited to investigating the structure and dynamics of the sleep-wake regulatory network in the brain stem and hypothalamus. It is based on a population firing rate model formalism that is modified to explicitly include concentration levels of neurotransmitters released to postsynaptic populations. Using this framework, interactions among primary brain stem and hypothalamic neuronal nuclei involved in rat sleep-wake regulation are modeled. The model network captures realistic rat polyphasic sleep-wake behavior consisting of wake, rapid eye movement (REM) sleep, and non-REM (NREM) sleep states. Network dynamics include a cyclic pattern of NREM sleep, REM sleep, and wake states that is disrupted by simulated variability of neurotransmitter release and external noise to the network. Explicit modeling of neurotransmitter concentrations allows for simulations of microinjections of neurotransmitter agonists and antagonists into a key wake-promoting population, the locus coeruleus (LC). Effects of these simulated microinjections on sleep-wake states are tracked and compared with experimental observations. Agonist/antagonist pairs, which are presumed to have opposing effects on LC activity, do not generally induce opposing effects on sleep-wake patterning because of multiple mechanisms for LC activation in the network. Also, different agents, which are presumed to have parallel effects on LC activity, do not induce parallel effects on sleep-wake patterning because of differences in the state dependence or independence of agonist and antagonist action. These simulation results highlight the utility of formal mathematical modeling for constraining conceptual models of the sleep-wake regulatory network.
Collapse
Affiliation(s)
| | - Victoria Booth
- Departments of Mathematics and
- Anesthesiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
55
|
Peyron C, Sapin E, Leger L, Luppi PH, Fort P. Role of the melanin-concentrating hormone neuropeptide in sleep regulation. Peptides 2009; 30:2052-9. [PMID: 19660508 DOI: 10.1016/j.peptides.2009.07.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 07/24/2009] [Accepted: 07/24/2009] [Indexed: 10/20/2022]
Abstract
Melanin-concentrating hormone (MCH), a neuropeptide secreted by a limited number of neurons within the tuberal hypothalamus, has been drawn in the field of sleep only fairly recently in 2003. Since then, growing experimental evidence indicates that MCH may play a crucial role in the homeostatic regulation of paradoxical sleep (PS). MCH-expressing neurons fire specifically during PS. When injected icv MCH induces a 200% increase in PS quantities in rats and the lack of MCH induces a decrease in sleep quantities in transgenic mice. Here, we review recent studies suggesting a role for MCH in the regulation of the sleep-wake cycle, in particular PS, including insights on (1) the specific activity of MCH neurons during PS; (2) how they might be controlled across the sleep-wake cycle; (3) how they might modulate PS; (4) and finally whether MCH might take part in the expression of some symptoms observed in primary sleep disorders.
Collapse
Affiliation(s)
- Christelle Peyron
- UMR CNRS, Université Claude Bernard Lyon1, Université de Lyon, Institut Fédératif des Neurosciences de Lyon, France.
| | | | | | | | | |
Collapse
|
56
|
Abstract
The hypocretins (Hcrts) (also called orexins) are two neuropeptides expressed in the lateral hypothalamus that play a crucial role in the stability of wakefulness. Previously, our laboratory demonstrated that in vivo photostimulation of Hcrt neurons genetically targeted with ChR2, a light-activated cation channel, was sufficient to increase the probability of an awakening event during both slow-wave sleep and rapid eye movement sleep. In the current study, we ask whether Hcrt-mediated sleep-to-wake transitions are affected by light/dark period and sleep pressure. We found that stimulation of Hcrt neurons increased the probability of an awakening event throughout the entire light/dark period but that this effect was diminished with sleep pressure induced by 2 or 4 h of sleep deprivation. Interestingly, photostimulation of Hcrt neurons was still sufficient to increase activity assessed by c-Fos expression in Hcrt neurons after sleep deprivation, although this stimulation did not cause an increase in transitions to wakefulness. In addition, we found that photostimulation of Hcrt neurons increases neural activity assessed by c-Fos expression in the downstream arousal-promoting locus ceruleus and tuberomammilary nucleus but not after 2 h of sleep deprivation. Finally, stimulation of Hcrt neurons was still sufficient to increase the probability of an awakening event in histidine decarboxylase-deficient knock-out animals. Collectively, these results suggest that the Hcrt system promotes wakefulness throughout the light/dark period by activating multiple downstream targets, which themselves are inhibited with increased sleep pressure.
Collapse
|
57
|
Belujon P, Baufreton J, Grandoso L, Boué-Grabot E, Batten TFC, Ugedo L, Garret M, Taupignon AI. Inhibitory transmission in locus coeruleus neurons expressing GABAA receptor epsilon subunit has a number of unique properties. J Neurophysiol 2009; 102:2312-25. [PMID: 19625540 DOI: 10.1152/jn.00227.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Fast inhibitory synaptic transmission in the brain relies on ionotropic GABA(A) receptors (GABA(A)R). Eighteen genes code for GABA(A)R subunits, but little is known about the epsilon subunit. Our aim was to identify the synaptic transmission properties displayed by native receptors incorporating epsilon. Immunogold localization detected epsilon at synaptic sites on locus coeruleus (LC) neurons. In situ hybridization revealed prominent signals from epsilon, and mRNAs, some low beta1 and beta3 signals, and no gamma signal. Using in vivo extracellular and in vitro patch-clamp recordings in LC, we established that neuron firing rates, GABA-activated currents, and mIPSC charge were insensitive to the benzodiazepine flunitrazepam (FLU), in agreement with the characteristics of recombinant receptors including an epsilon subunit. Surprisingly, LC provided binding sites for benzodiazepines, and GABA-induced currents were potentiated by diazepam (DZP) in the micromolar range. A number of GABA(A)R ligands significantly potentiated GABA-induced currents, and zinc ions were only active at concentrations above 1 muM, further indicating that receptors were not composed of only alpha and beta subunits, but included an epsilon subunit. In contrast to recombinant receptors including an epsilon subunit, GABA(A)R in LC showed no agonist-independent opening. Finally, we determined that mIPSCs, as well as ensemble currents induced by ultra-fast GABA application, exhibited surprisingly slow rise times. Our work thus defines the signature of native GABA(A)R with a subunit composition including epsilon: differential sensitivity to FLU and DZP and slow rise time of currents. We further propose that alpha(3,) beta(1/3,) and epsilon subunits compose GABA(A)R in LC.
Collapse
Affiliation(s)
- P Belujon
- University Bordeaux, Centre National de la Recherche Scientifique Unité Mixte de Recherche, Bordeaux, France
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Fort P, Bassetti CL, Luppi PH. Alternating vigilance states: new insights regarding neuronal networks and mechanisms. Eur J Neurosci 2009; 29:1741-53. [DOI: 10.1111/j.1460-9568.2009.06722.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
59
|
Sapin E, Lapray D, Bérod A, Goutagny R, Léger L, Ravassard P, Clément O, Hanriot L, Fort P, Luppi PH. Localization of the brainstem GABAergic neurons controlling paradoxical (REM) sleep. PLoS One 2009; 4:e4272. [PMID: 19169414 PMCID: PMC2629845 DOI: 10.1371/journal.pone.0004272] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 12/08/2008] [Indexed: 01/03/2023] Open
Abstract
Paradoxical sleep (PS) is a state characterized by cortical activation, rapid eye movements and muscle atonia. Fifty years after its discovery, the neuronal network responsible for the genesis of PS has been only partially identified. We recently proposed that GABAergic neurons would have a pivotal role in that network. To localize these GABAergic neurons, we combined immunohistochemical detection of Fos with non-radioactive in situ hybridization of GAD67 mRNA (GABA synthesis enzyme) in control rats, rats deprived of PS for 72 h and rats allowed to recover after such deprivation. Here we show that GABAergic neurons gating PS (PS-off neurons) are principally located in the ventrolateral periaqueductal gray (vlPAG) and the dorsal part of the deep mesencephalic reticular nucleus immediately ventral to it (dDpMe). Furthermore, iontophoretic application of muscimol for 20 min in this area in head-restrained rats induced a strong and significant increase in PS quantities compared to saline. In addition, we found a large number of GABAergic PS-on neurons in the vlPAG/dDPMe region and the medullary reticular nuclei known to generate muscle atonia during PS. Finally, we showed that PS-on neurons triggering PS localized in the SLD are not GABAergic. Altogether, our results indicate that multiple populations of PS-on GABAergic neurons are distributed in the brainstem while only one population of PS-off GABAergic neurons localized in the vlPAG/dDpMe region exist. From these results, we propose a revised model for PS control in which GABAergic PS-on and PS-off neurons localized in the vlPAG/dDPMe region play leading roles.
Collapse
Affiliation(s)
- Emilie Sapin
- CNRS, UMR5167, Physiopathologie des réseaux neuronaux du cycle veille-sommeil, Lyon, France
| | - Damien Lapray
- CNRS, UMR5167, Physiopathologie des réseaux neuronaux du cycle veille-sommeil, Lyon, France
| | - Anne Bérod
- CNRS, FRE3006, Pharmacologie et Imagerie de la neurotransmission sérotoninergique, Université Lyon1, Lyon, France
| | - Romain Goutagny
- CNRS, UMR5167, Physiopathologie des réseaux neuronaux du cycle veille-sommeil, Lyon, France
| | - Lucienne Léger
- CNRS, UMR5167, Physiopathologie des réseaux neuronaux du cycle veille-sommeil, Lyon, France
| | - Pascal Ravassard
- CNRS, UMR5167, Physiopathologie des réseaux neuronaux du cycle veille-sommeil, Lyon, France
| | - Olivier Clément
- CNRS, UMR5167, Physiopathologie des réseaux neuronaux du cycle veille-sommeil, Lyon, France
| | - Lucie Hanriot
- CNRS, UMR5167, Physiopathologie des réseaux neuronaux du cycle veille-sommeil, Lyon, France
| | - Patrice Fort
- CNRS, UMR5167, Physiopathologie des réseaux neuronaux du cycle veille-sommeil, Lyon, France
| | - Pierre-Hervé Luppi
- CNRS, UMR5167, Physiopathologie des réseaux neuronaux du cycle veille-sommeil, Lyon, France
- * E-mail:
| |
Collapse
|
60
|
Léger L, Goutagny R, Sapin E, Salvert D, Fort P, Luppi PH. Noradrenergic neurons expressing Fos during waking and paradoxical sleep deprivation in the rat. J Chem Neuroanat 2008; 37:149-57. [PMID: 19152834 DOI: 10.1016/j.jchemneu.2008.12.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 10/30/2008] [Accepted: 12/16/2008] [Indexed: 11/28/2022]
Abstract
Noradrenaline is known to induce waking (W) and to inhibit paradoxical sleep (PS or REM). Both roles have been exclusively attributed to the noradrenergic neurons of the locus coeruleus (LC, A6), shown to be active during W and inactive during PS. However, the A1, A2, A5 and A7 noradrenergic neurons could also be responsible. Therefore, to determine the contribution of each of the noradrenergic groups in W and in PS inhibition, rats were maintained in continuous W for 3h in a novel environment or specifically deprived of PS for 3 days, with some of them allowed to recover from this deprivation. A double immunohistochemical labeling with Fos and tyrosine hydroxylase was then performed. Thirty percent of the LC noradrenergic cells were found to be Fos-positive after exposure to the novel environment and less than 2% after PS deprivation. In contrast, a significant number of double-labeled neurons (up to 40% of the noradrenergic neurons) were observed in the A1/C1, A2 and A5 groups, after both novel environment and PS deprivation. After PS recovery and in control condition, less than 1% of the noradrenergic neurons were Fos-immunoreactive, regardless of the noradrenergic group. These results indicate that the brainstem noradrenergic cell groups are activated during W and silent during PS. They further suggest that the inhibitory effect of noradrenaline on PS may be due to the A1/C1, A2 and to a lesser degree to A5 neurons but not from those of the LC as previously hypothesized.
Collapse
|
61
|
Topchiy IA, Wood RM, Peterson B, Navas JA, Rojas MJ, Rector DM. Conditioned lick behavior and evoked responses using whisker twitches in head restrained rats. Behav Brain Res 2008; 197:16-23. [PMID: 18718491 DOI: 10.1016/j.bbr.2008.07.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 07/20/2008] [Indexed: 02/05/2023]
Abstract
To examine whisker barrel evoked response potentials in chronically implanted rats during behavioral learning with very fast response times, rats must be calm while immobilized with their head restrained. We quantified their behaviors during training with an ethogram and measured each individual animals' progress over the training period. Once calm under restraint, rats were conditioned to differentiate between a reward and control whisker twitch, then provide a lick response when presented with the correct stimulus, rewarded by a drop of water. Rats produced the correct licking response (after reward whisker twitch), and learned not to lick after a control whisker was twitched. By implementing a high-density 64-channel electrocorticogram (ECoG) electrode array, we mapped the barrel field of the somatosensory cortex with high spatial and temporal resolution during conditioned lick behaviors. In agreement with previous reports, we observe a larger evoked response after training, probably related to mechanisms of cortical plasticity.
Collapse
Affiliation(s)
- Irina A Topchiy
- Center for Narcolepsy, Sleep and Health Research, Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, 840 South Wood Street (M/C 719), University of Illinois, Chicago, IL 60607, USA
| | | | | | | | | | | |
Collapse
|
62
|
Rukhadze I, Fenik VB, Branconi JL, Kubin L. Fos expression in pontomedullary catecholaminergic cells following rapid eye movement sleep-like episodes elicited by pontine carbachol in urethane-anesthetized rats. Neuroscience 2008; 152:208-22. [PMID: 18155849 DOI: 10.1016/j.neuroscience.2007.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 11/09/2007] [Accepted: 11/09/2007] [Indexed: 02/07/2023]
Abstract
Pontine noradrenergic neurons of the locus coeruleus (LC) and sub-coeruleus (SubC) region cease firing during rapid eye movement sleep (REMS). This plays a permissive role in the generation of REMS and may contribute to state-dependent modulation of transmission in the CNS. Whether all pontomedullary catecholaminergic neurons, including those in the A1/C1, A2/C2 and A7 groups, have REMS-related suppression of activity has not been tested. We used Fos protein expression as an indirect marker of the level of neuronal activity and linear regression analysis to determine whether pontomedullary cells identified by tyrosine hydroxylase (TH) immunohistochemistry have reduced Fos expression following REMS-like state induced by pontine microinjections of a cholinergic agonist, carbachol in urethane-anesthetized rats. The percentage of Fos-positive TH cells was negatively correlated with the cumulative duration of REMS-like episodes induced during 140 min prior to brain harvesting in the A7 and rostral A5 groups bilaterally (P < 0.01 for both), and in SubC neurons on the side opposite to carbachol injection (P < 0.05). Dorsal medullary A2/C2 neurons did not exhibit such correlation, but their Fos expression (and that in A7, rostral A5 and SubC neurons) was positively correlated with the duration of the interval between the last REMS-like episode and the time of perfusion (P < 0.05). In contrast, neither of these correlations was significant for A1 /C1 or caudal A5 neurons. These findings suggest that, similar to the prototypic LC neurons, neurons of the A7, rostral A5 and A2/C2 groups have reduced or abolished activity during REMS, whereas A1 /IC1 and caudal A5 neurons do not have this feature. The reduced activity of A2/C2, A5 and A7 neurons during REMS, and the associated decrements in norepinephrine release, may cause state-dependent modulation of.transmission in brain somato- and viscerosensory, somatomotor, and cardiorespiratory pathways.
Collapse
Affiliation(s)
- I Rukhadze
- Department of Animal Biology 209E/VET, School of Veterinary Medicine and Center for Sleep and Respiratory Neurobiology, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6046, USA.
| | | | | | | |
Collapse
|
63
|
Jones BE. Modulation of cortical activation and behavioral arousal by cholinergic and orexinergic systems. Ann N Y Acad Sci 2008; 1129:26-34. [PMID: 18591466 DOI: 10.1196/annals.1417.026] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Multiple neuronal systems contribute to the promotion and maintenance of the wake state, which is characterized by cortical activation and behavioral arousal. Using predominantly glutamate as a neurotransmitter, neurons within the reticular formation of the brainstem give rise to either ascending projections into the forebrain or descending projections into the spinal cord to promote through relays fast cortical activity or motor activity with postural muscle tone. Using acetylcholine, cholinergic neurons in the brainstem project to forebrain relays and others in the basal forebrain to the cortex, by which they stimulate fast gamma activity during waking and during rapid eye movement or paradoxical sleep (PS). Other neuromodulatory systems, such as noradrenergic locus coeruleus neurons, give rise to highly diffuse projections through brain and spinal cord and simultaneously stimulate cortical activation and behavioral arousal. Although such neuromodulatory systems were thought to be redundant, a recently discovered peptide called orexin (Orx) or hypocretin, contained in diffusely projecting neurons of the hypothalamus, was found to be essential for the maintenance of waking with muscle tone, since in its absence narcolepsy with cataplexy occurred. Orx neurons discharge during active waking and cease firing during sleep. Since cholinergic neurons discharge during waking and PS, they would stimulate cortical activation in association with muscle tone when orexinergic neurons are also active but would stimulate cortical activation with muscle atonia when orexinergic neurons are silent, as in natural PS, or absent, as in pathological narcolepsy with cataplexy.
Collapse
Affiliation(s)
- Barbara E Jones
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University Street, Montreal, Quebec H3A2B4, Canada.
| |
Collapse
|
64
|
Lai YY, Hsieh KC, Nguyen D, Peever J, Siegel JM. Neurotoxic lesions at the ventral mesopontine junction change sleep time and muscle activity during sleep: an animal model of motor disorders in sleep. Neuroscience 2008; 154:431-43. [PMID: 18487021 DOI: 10.1016/j.neuroscience.2008.03.085] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 03/21/2008] [Accepted: 03/22/2008] [Indexed: 11/29/2022]
Abstract
There is no adequate animal model of restless legs syndrome (RLS) and periodic leg movements disorder (PLMD), disorders affecting 10% of the population. Similarly, there is no model of rapid eye movement (REM) sleep behavior disorder (RBD) that explains its symptoms and its link to Parkinsonism. We previously reported that the motor inhibitory system in the brainstem extends from the medulla to the ventral mesopontine junction (VMPJ). We now examine the effects of damage to the VMPJ in the cat. Based on the lesion sites and the changes in sleep pattern and behavior, we saw three distinct syndromes resulting from such lesions; the rostrolateral, rostromedial and caudal VMPJ syndromes. The change in sleep pattern was dependent on the lesion site, but was not significantly correlated with the number of dopaminergic neurons lost. An increase in wakefulness and a decrease in slow wave sleep (SWS) and REM sleep were seen in the rostrolateral VMPJ-lesioned animals. In contrast, the sleep pattern was not significantly changed in the rostromedial and caudal VMPJ-lesioned animals. All three groups of animals showed a significant increase in periodic and isolated leg movements in SWS and increased tonic muscle activity in REM sleep. Beyond these common symptoms, an increase in phasic motor activity in REM sleep, resembling that seen in human RBD, was found in the caudal VMPJ-lesioned animals. In contrast, the increase in motor activity in SWS in rostral VMPJ-lesioned animals is similar to that seen in human RLS/PLMD patients. The proximity of the VMPJ region to the substantia nigra suggests that the link between RLS/PLMD and Parkinsonism, as well as the progression from RBD to Parkinsonism may be mediated by the spread of damage from the regions identified here into the substantia nigra.
Collapse
Affiliation(s)
- Y-Y Lai
- Department of Psychiatry and Biobehavioral Science, Neurobiology Research, David Geffen School of Medicine, UCLA and Veterans Administration Greater Los Angeles Healthcare System Sepulveda, North Hills, CA 91343, USA.
| | | | | | | | | |
Collapse
|
65
|
Brown RE, McKenna JT, Winston S, Basheer R, Yanagawa Y, Thakkar MM, McCarley RW. Characterization of GABAergic neurons in rapid-eye-movement sleep controlling regions of the brainstem reticular formation in GAD67-green fluorescent protein knock-in mice. Eur J Neurosci 2008; 27:352-63. [PMID: 18215233 DOI: 10.1111/j.1460-9568.2008.06024.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent experiments suggest that brainstem GABAergic neurons may control rapid-eye-movement (REM) sleep. However, understanding their pharmacology/physiology has been hindered by difficulty in identification. Here we report that mice expressing green fluorescent protein (GFP) under the control of the GAD67 promoter (GAD67-GFP knock-in mice) exhibit numerous GFP-positive neurons in the central gray and reticular formation, allowing on-line identification in vitro. Small (10-15 microm) or medium-sized (15-25 microm) GFP-positive perikarya surrounded larger serotonergic, noradrenergic, cholinergic and reticular neurons, and > 96% of neurons were double-labeled for GFP and GABA, confirming that GFP-positive neurons are GABAergic. Whole-cell recordings in brainstem regions important for promoting REM sleep [subcoeruleus (SubC) or pontine nucleus oralis (PnO) regions] revealed that GFP-positive neurons were spontaneously active at 3-12 Hz, fired tonically, and possessed a medium-sized depolarizing sag during hyperpolarizing steps. Many neurons also exhibited a small, low-threshold calcium spike. GFP-positive neurons were tested with pharmacological agents known to promote (carbachol) or inhibit (orexin A) REM sleep. SubC GFP-positive neurons were excited by the cholinergic agonist carbachol, whereas those in the PnO were either inhibited or excited. GFP-positive neurons in both areas were excited by orexins/hypocretins. These data are congruent with the hypothesis that carbachol-inhibited GABAergic PnO neurons project to, and inhibit, REM-on SubC reticular neurons during waking, whereas carbachol-excited SubC and PnO GABAergic neurons are involved in silencing locus coeruleus and dorsal raphe aminergic neurons during REM sleep. Orexinergic suppression of REM during waking is probably mediated in part via excitation of acetylcholine-inhibited GABAergic neurons.
Collapse
Affiliation(s)
- Ritchie E Brown
- In Vitro Neurophysiology Section, Laboratory of Neuroscience, Harvard Medical School and VA Boston Healthcare System, 940 Belmont Street, Research 151-C, Brockton, MA 02301, USA.
| | | | | | | | | | | | | |
Collapse
|
66
|
Eschenko O, Sara SJ. Learning-dependent, transient increase of activity in noradrenergic neurons of locus coeruleus during slow wave sleep in the rat: brain stem-cortex interplay for memory consolidation? ACTA ACUST UNITED AC 2008; 18:2596-603. [PMID: 18321875 DOI: 10.1093/cercor/bhn020] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Memory consolidation during sleep is regaining attention due to a wave of recent reports of memory improvements after sleep or deficits after sleep disturbance. Neuromodulators have been proposed as possible players in this putative off-line memory processing, without much experimental evidence. We recorded neuronal activity in the rat noradrenergic nucleus locus coeruleus (LC) using chronically implanted movable microelectrodes while monitoring the behavioral state via electrocorticogram and online video recording. Extracellular recordings of physiologically identified noradrenergic neurons of LC were made in freely behaving rats for 3 h before and after olfactory discrimination learning. On subsequent days, if LC recording remained stable, additional learning sessions were made within the olfactory discrimination protocol, including extinction, reversals, learning new odors. Contrary to the long-standing dogma about the quiescence of noradrenergic neurons of LC, we found a transient increase in LC activity in trained rats during slow wave sleep (SWS) 2 h after learning. The discovery of learning-dependent engagement of LC neurons during SWS encourages exploration of brain stem-cortical interaction during this delayed phase of memory consolidation and should bring new insights into mechanisms underlying memory formation.
Collapse
Affiliation(s)
- Oxana Eschenko
- Neuromodulation, Neuroplasticity & Cognition, CNRS, UMR 7102, University of P & M Curie, Paris, France
| | | |
Collapse
|
67
|
Role of the dorsal paragigantocellular reticular nucleus in paradoxical (rapid eye movement) sleep generation: a combined electrophysiological and anatomical study in the rat. Neuroscience 2007; 152:849-57. [PMID: 18308473 DOI: 10.1016/j.neuroscience.2007.12.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 11/15/2007] [Accepted: 12/06/2007] [Indexed: 11/24/2022]
Abstract
It is well known that noradrenergic locus coeruleus neurons decrease their activity during slow wave sleep and are quiescent during paradoxical sleep. It was recently proposed that their inactivation during paradoxical sleep is due to a tonic GABAergic inhibition arising from neurons located into the dorsal paragigantocellular reticular nucleus (DPGi). However, the discharge profile of DPGi neurons across the sleep-waking cycle as well as their connections with brain areas involved in paradoxical sleep regulation remain to be described. Here we show, for the first time in the unanesthetized rat that the DPGi contained a subtype of neurons with a tonic and sustained firing activation specifically during paradoxical sleep (PS-on neurons). Noteworthy, their firing rate increase anticipated for few seconds the beginning of the paradoxical sleep bout. By using anterograde tract-tracing, we further showed that the DPGi, in addition to locus coeruleus, directly projected to other areas containing wake-promoting neurons such as the serotonergic neurons of the dorsal raphe nucleus and hypocretinergic neurons of the posterior hypothalamus. Finally, the DPGi sent efferents to the ventrolateral part of the periaqueductal gray matter known to contain paradoxical sleep-suppressing neurons. Taken together, our original results suggest that the PS-on neurons of the DPGi may have their major role in simultaneous inhibitory control over the wake-promoting neurons and the permissive ventrolateral part of the periaqueductal gray matter as a means of influencing vigilance states and especially PS generation.
Collapse
|
68
|
Brambilla D, Franciosi S, Opp MR, Imeri L. Interleukin-1 inhibits firing of serotonergic neurons in the dorsal raphe nucleus and enhances GABAergic inhibitory post-synaptic potentials. Eur J Neurosci 2007; 26:1862-9. [PMID: 17868373 DOI: 10.1111/j.1460-9568.2007.05796.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In vitro electrophysiological data suggest that interleukin-1 may promote non-rapid eye movement sleep by inhibiting spontaneous firing of wake-active serotonergic neurons in the dorsal raphe nucleus (DRN). Interleukin-1 enhances GABA inhibitory effects. DRN neurons are under an inhibitory GABAergic control. This study aimed to test the hypothesis that interleukin-1 inhibits DRN serotonergic neurons by potentiating GABAergic inhibitory effects. In vitro intracellular recordings were performed to assess the responses of physiologically and pharmacologically identified DRN serotonergic neurons to rat recombinant interleukin-1beta. Coronal slices containing DRN were obtained from male Sprague-Dawley rats. The impact of interleukin-1 on firing rate and on evoked post-synaptic potentials was determined. Evoked post-synaptic potentials were induced by stimulation with a bipolar electrode placed on the surface of the slice ventrolateral to DRN. Addition of interleukin-1 (25 ng/mL) to the bath perfusate significantly decreased firing rates of DRN serotonergic neurons from 1.3 +/- 0.2 Hz (before administration) to 0.7 +/- 0.2 Hz. Electrical stimulation induced depolarizing evoked post-synaptic potentials in DRN serotonergic neurons. The application of glutamatergic and GABAergic antagonists unmasked two different post-synaptic potential components: a GABAergic evoked inhibitory post-synaptic potentials and a glutamatergic evoked excitatory post-synaptic potentials, respectively. Interleukin-1 increased GABAergic evoked inhibitory post-synaptic potentials amplitudes by 30.3 +/- 3.8% (n = 6) without affecting glutamatergic evoked excitatory post-synaptic potentials. These results support the hypothesis that interleukin-1 inhibitory effects on DRN serotonergic neurons are mediated by an interleukin-1-induced potentiation of evoked GABAergic inhibitory responses.
Collapse
Affiliation(s)
- D Brambilla
- Institute of Human Physiology II, Guiseppe Moruzzi Center for Experimental Sleep Research, University of Milan Medical School, Via Mangiagalli, 32, 20133 Milano, Italy.
| | | | | | | |
Collapse
|
69
|
Luppi PH, Gervasoni D, Verret L, Goutagny R, Peyron C, Salvert D, Leger L, Fort P. Paradoxical (REM) sleep genesis: the switch from an aminergic-cholinergic to a GABAergic-glutamatergic hypothesis. ACTA ACUST UNITED AC 2007; 100:271-83. [PMID: 17689057 DOI: 10.1016/j.jphysparis.2007.05.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the middle of the last century, Michel Jouvet discovered paradoxical sleep (PS), a sleep phase paradoxically characterized by cortical activation and rapid eye movements and a muscle atonia. Soon after, he showed that it was still present in "pontine cats" in which all structures rostral to the brainstem have been removed. Later on, it was demonstrated that the pontine peri-locus coeruleus alpha (peri-LCalpha in cats, corresponding to the sublaterodorsal nucleus, SLD, in rats) is responsible for PS onset. It was then proposed that the onset and maintenance of PS is due to a reciprocal inhibitory interaction between neurons presumably cholinergic specifically active during PS localized in this region and monoaminergic neurons. In the last decade, we have tested this hypothesis with our model of head-restrained rats and functional neuroanatomical studies. Our results confirmed that the SLD in rats contains the neurons responsible for the onset and maintenance of PS. They further indicate that (1) these neurons are non-cholinergic possibly glutamatergic neurons, (2) they directly project to the glycinergic premotoneurons localized in the medullary ventral gigantocellular reticular nucleus (GiV), (3) the main neurotransmitter responsible for their inhibition during waking (W) and slow wave sleep (SWS) is GABA rather than monoamines, (4) they are constantly and tonically excited by glutamate and (5) the GABAergic neurons responsible for their tonic inhibition during W and SWS are localized in the deep mesencephalic reticular nucleus (DPMe). We also showed that the tonic inhibition of locus coeruleus (LC) noradrenergic and dorsal raphe (DRN) serotonergic neurons during sleep is due to a tonic GABAergic inhibition by neurons localized in the dorsal paragigantocellular reticular nucleus (DPGi) and the ventrolateral periaqueductal gray (vlPAG). We propose that these GABAergic neurons also inhibit the GABAergic neurons of the DPMe at the onset and during PS and are therefore responsible for the onset and maintenance of PS.
Collapse
Affiliation(s)
- Pierre-Hervé Luppi
- UMR5167 CNRS, Faculté de Médecine Laennec, Institut Fédératif des Neurosciences de Lyon (IFR 19), Université Claude Bernard Lyon I, 7, Rue Guillaume Paradin, 69372 Lyon cedex 08, France.
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
This paper presents an overview of the current knowledge of the neurophysiology and cellular pharmacology of sleep mechanisms. It is written from the perspective that recent years have seen a remarkable development of knowledge about sleep mechanisms, due to the capability of current cellular neurophysiological, pharmacological and molecular techniques to provide focused, detailed, and replicable studies that have enriched and informed the knowledge of sleep phenomenology and pathology derived from electroencephalographic (EEG) analysis. This chapter has a cellular and neurophysiological/neuropharmacological focus, with an emphasis on rapid eye movement (REM) sleep mechanisms and non-REM (NREM) sleep phenomena attributable to adenosine. The survey of neuronal and neurotransmitter-related brainstem mechanisms of REM includes monoamines, acetylcholine, the reticular formation, a new emphasis on GABAergic mechanisms and a discussion of the role of orexin/hypcretin in diurnal consolidation of REM sleep. The focus of the NREM sleep discussion is on the basal forebrain and adenosine as a mediator of homeostatic control. Control is through basal forebrain extracellular adenosine accumulation during wakefulness and inhibition of wakefulness-active neurons. Over longer periods of sleep loss, there is a second mechanism of homeostatic control through transcriptional modification. Adenosine acting at the A1 receptor produces an up-regulation of A1 receptors, which increases inhibition for a given level of adenosine, effectively increasing the gain of the sleep homeostat. This second mechanism likely occurs in widespread cortical areas as well as in the basal forebrain. Finally, the results of a new series of experimental paradigms in rodents to measure the neurocognitive effects of sleep loss and sleep interruption (modeling sleep apnea) provide animal model data congruent with those in humans.
Collapse
Affiliation(s)
- Robert W McCarley
- Neuroscience Laboratory, VA Boston Healthcare System, 940 Belmont St., Brockton, MA 02301, USA.
| |
Collapse
|
71
|
Wang H, Tanaka Y, Seki H, Jodo E, Kayama Y, Kawauchi A, Miki T, Otsuki M, Koyama Y. Acupuncture stimulation to the sacral segment affects state of vigilance in rats. Neurosci Res 2007; 57:531-7. [PMID: 17267062 DOI: 10.1016/j.neures.2006.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 12/04/2006] [Accepted: 12/22/2006] [Indexed: 11/21/2022]
Abstract
The effects of acupuncture stimulation to the sacral segment on electroencephalograms (EEGs) and activity of locus coeruleus (LC) neurons were examined in urethane-anesthetized rats. In 71 of 112 trials, when EEGs displayed small amplitude and high frequency, stimulation to the sacral segment-induced large amplitude and slow EEGs with a latency of <450s and duration ranged from 32s to >42 min. Stimulus-induced EEGs comprised significant increases in delta power and significant decreases in theta and beta powers. After intraperitoneal administration of bicuculline, stimulation to the sacral segment failed to induce changes in EEG pattern. Firing rate of noradrenergic LC neurons decreased significantly from 2.9+/-1.5 to 1.1+/-0.8 Hz (n=11, p<0.001). Decreased neuronal activity exhibited close relationships with increased EEG amplitude. These results suggest that acupuncture stimulation to the sacral segment changes the state of animals from light anesthesia to deep anesthesia, and that this change is mediated by GABAergic systems suppressing the activity of noradrenergic LC neurons.
Collapse
Affiliation(s)
- Hui Wang
- Department of Physiology, Fukushima Medical University School of Medicine, 1 Hikari-ga-oka, Fukushima 960-1295, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Datta S, Maclean RR. Neurobiological mechanisms for the regulation of mammalian sleep-wake behavior: reinterpretation of historical evidence and inclusion of contemporary cellular and molecular evidence. Neurosci Biobehav Rev 2007; 31:775-824. [PMID: 17445891 PMCID: PMC1955686 DOI: 10.1016/j.neubiorev.2007.02.004] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 01/17/2007] [Accepted: 02/26/2007] [Indexed: 11/17/2022]
Abstract
At its most basic level, the function of mammalian sleep can be described as a restorative process of the brain and body; recently, however, progressive research has revealed a host of vital functions to which sleep is essential. Although many excellent reviews on sleep behavior have been published, none have incorporated contemporary studies examining the molecular mechanisms that govern the various stages of sleep. Utilizing a holistic approach, this review is focused on the basic mechanisms involved in the transition from wakefulness, initiation of sleep and the subsequent generation of slow-wave sleep and rapid eye movement (REM) sleep. Additionally, using recent molecular studies and experimental evidence that provides a direct link to sleep as a behavior, we have developed a new model, the cellular-molecular-network model, explaining the mechanisms responsible for regulating REM sleep. By analyzing the fundamental neurobiological mechanisms responsible for the generation and maintenance of sleep-wake behavior in mammals, we intend to provide a broader understanding of our present knowledge in the field of sleep research.
Collapse
Affiliation(s)
- Subimal Datta
- Sleep and Cognitive Neuroscience Laboratory, Department of Psychiatry and Behavioral Neuroscience, Boston University School of Medicine, Boston, MA 02118, USA.
| | | |
Collapse
|
73
|
Crochet S, Onoe H, Sakai K. A potent non-monoaminergic paradoxical sleep inhibitory system: a reverse microdialysis and single-unit recording study. Eur J Neurosci 2006; 24:1404-12. [PMID: 16987225 DOI: 10.1111/j.1460-9568.2006.04995.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using reverse microdialysis and polygraphic recordings in freely moving cats, we investigated the effects on sleep-waking states of application of excitatory and inhibitory amino acid agonists, cholinergic agonist and monoamines to the periaqueductal grey and adjacent mesopontine tegmentum. Single-unit recordings during behavioural states were further used to determine the neuronal characteristics of these structures. We found that muscimol, a GABAA receptor agonist, induced a significant increase in paradoxical sleep (PS) only when applied to a dorsocaudal central tegmental field (dcFTC) located just beneath the ventrolateral periaqueductal grey. In this structure, both kainic and N-methyl-aspartic acids caused a dose-dependent increase in wakefulness (W) and decrease in both slow-wave sleep (SWS) and PS. Norepinephrine and epinephrine, and to a lesser extent histamine, also increased W and decreased SWS and PS, whereas serotonin, dopamine and carbachol, a cholinergic agonist, had no effect. Two types of neurones were recorded in this structure, those exhibiting a higher rate of tonic discharge during both W and PS compared with during SWS, and those showing a phasic increase in firing rate during both active W and PS. Both types of neurones showed a gradual increase in unit activity during PS. Our study demonstrated for the first time that the ventrolateral periaqueductal grey and dcFTC play different roles in behavioural state control, that the dcFTC neurones are critically involved in the inhibitory mechanisms of PS generation, playing a central part in its maintenance, and that these neurones are under the control of GABAergic, glutamatergic, adrenergic and histaminergic systems.
Collapse
Affiliation(s)
- Sylvain Crochet
- Laboratory of Sensory Processing, Brain and Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-SV-BMI-AAB105, Bât AAB, Station 15, CH-1015 Lausanne, Switzerland.
| | | | | |
Collapse
|
74
|
Restuccia D, Valeriani M, Della Marca G. Giant subcortical high-frequency SEPs in idiopathic generalized epilepsy: a protective mechanism against seizures? Clin Neurophysiol 2006; 118:60-8. [PMID: 17097917 DOI: 10.1016/j.clinph.2006.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 09/06/2006] [Accepted: 09/08/2006] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Recently, we found that high-frequency somatosensory evoked potentials (HF-SEPs), which are modulated by arousal-related structures, were abnormally enhanced during N-REM sleep in two seizure-free IGE patients [Restuccia D, Rubino M, Valeriani M, Della Marca G. Increase of brainstem high-frequency SEP subcomponents during light sleep in seizure-free epileptic patients. Clin Neurophysiol 2005; 116: 1774-1778]. Here, we aimed at verifying whether similar HF-SEP abnormalities were significantly correlated to the clinical outcome in a larger population of untreated IGE patients. METHODS Patients were classified as Juvenile Myoclonic epilepsy (JME; six patients) and Childhood or Juvenile Absence epilepsy (CAE and JAE, six patients). They were untreated because newly diagnosed, or because seizure-free. HF-SEPs from patients were compared with those obtained from 21 healthy volunteers. RESULTS HF-SEPs were abnormally enhanced in all seizure-free CAE-JAE patients, whereas they were normal in all JME patients and in CAE-JAE patients with frequent seizures. Not only scalp distribution, but also dipolar source analysis suggested a subcortical origin for these enhanced subcomponents, possibly in the brainstem. CONCLUSIONS The enhancement of HF-SEPs might reflect the hyperactivity of arousal-related brainstem structures; such an enhancement was found in all seizure-free CAE-JAE patients, while it was never observed in JME patients. SIGNIFICANCE We speculate that the hyperactivity of arousal-related brainstem structures might account for the different clinical outcome among IGE subsyndromes.
Collapse
Affiliation(s)
- Domenico Restuccia
- Scientific Institute E. MEDEA, Polo Friuli Venezia Giulia, Udine, Italy.
| | | | | |
Collapse
|
75
|
Muntoni AL, Pillolla G, Melis M, Perra S, Gessa GL, Pistis M. Cannabinoids modulate spontaneous neuronal activity and evoked inhibition of locus coeruleus noradrenergic neurons. Eur J Neurosci 2006; 23:2385-94. [PMID: 16706846 DOI: 10.1111/j.1460-9568.2006.04759.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The noradrenergic pathway arising from the locus coeruleus (LC) is involved in the regulation of attention, arousal, cognitive processes and sleep. These physiological activities are affected by Cannabis exposure - both in humans and laboratory animals. In addition, exogenous cannabinoids, as well as pharmacological and genetic manipulation of the endocannabinoid system, are known to influence emotional states (e.g. anxiety) for which a contributory role of the LC-noradrenergic system has long been postulated. However, whether cannabinoid administration would affect the LC neuronal activity in vivo is still unknown. To this end, single-unit extracellular recordings were performed from LC noradrenergic cells in anaesthetized rats. Intravenous injection of both the synthetic cannabinoid agonist, WIN55212-2, and the main psychoactive principle of Cannabis, Delta9-tetrahydrocannabinol, dose-dependently increased the firing rate of LC noradrenergic neurons, with WIN55212-2 being the most efficacious. Similar results were obtained by the administration of these drugs into a lateral ventricle. Cannabinoid-induced stimulation of LC noradrenergic neuronal activity was counteracted by SR141716A, a cannabinoid receptor antagonist/reverse agonist, which by itself slightly reduced LC discharge rate. Moreover, WIN55212-2 suppressed the inhibition of noradrenergic cells produced by stimulation of the major gamma-aminobutyric acid (GABA)ergic afferent to the LC, the nucleus prepositus hypoglossi. Altogether, these findings suggest the involvement of noradrenergic pathways in some consequences of Cannabis intake (e.g. cognitive and attention deficits, anxiety reactions), as well as a role for cannabinoid receptors in basic brain activities sustaining arousal and emotional states.
Collapse
Affiliation(s)
- Anna Lisa Muntoni
- Institute of Neuroscience C.N.R., c/o University of Cagliari, Cittadella Universitaria, 09042 Monserrato (CA), Italy.
| | | | | | | | | | | |
Collapse
|
76
|
Morales FR, Sampogna S, Rampon C, Luppi PH, Chase MH. Brainstem glycinergic neurons and their activation during active (rapid eye movement) sleep in the cat. Neuroscience 2006; 142:37-47. [PMID: 16891059 DOI: 10.1016/j.neuroscience.2006.05.066] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 05/19/2006] [Accepted: 05/23/2006] [Indexed: 10/24/2022]
Abstract
It is well established that, during rapid eye movement (REM) sleep, somatic motoneurons are subjected to a barrage of inhibitory synaptic potentials that are mediated by glycine. However, the source of this inhibition, which is crucial for the maintenance and preservation of REM sleep, has not been identified. Consequently, the present study was undertaken to determine in cats the location of the glycinergic neurons, that are activated during active sleep, and are responsible for the postsynaptic inhibition of motoneurons that occurs during this state. For this purpose, a pharmacologically-induced state of active sleep (AS-carbachol) was employed. Antibodies against glycine-conjugated proteins were used to identify glycinergic neurons and immunocytochemical techniques to label the Fos protein were employed to identify activated neurons. Two distinct populations of glycinergic neurons that expressed c-fos were distinguished. One population was situated within the nucleus reticularis gigantocellularis (NRGc) and nucleus magnocellularis (Mc) in the rostro-ventral medulla; this group of neurons extended caudally to the ventral portion of the nucleus paramedianus reticularis (nPR). Forty percent of the glycinergic neurons in the NRGc and Mc and 25% in the nPR expressed c-fos during AS-carbachol. A second population was located in the caudal medulla adjacent to the nucleus ambiguus (nAmb), wherein 40% of the glycinergic cells expressed c-fos during AS-carbachol. Neither population of glycinergic cells expressed c-fos during quiet wakefulness or quiet (non-rapid eye movement) sleep. We suggest that the population of glycinergic neurons in the NRGc, Mc, and nPR participates in the inhibition of somatic brainstem motoneurons during active sleep. These neurons may also be responsible for the inhibition of sensory and other processes during this state. It is likely that the group of glycinergic neurons adjacent to the nucleus ambiguus (nAmb) is responsible for the active sleep-selective inhibition of motoneurons that innervate the muscles of the larynx and pharynx.
Collapse
Affiliation(s)
- F R Morales
- WebSciences International, 1251 Westwood Boulevard, Los Angeles, CA 90024, USA
| | | | | | | | | |
Collapse
|
77
|
Urbain N, Creamer K, Debonnel G. Electrophysiological diversity of the dorsal raphe cells across the sleep-wake cycle of the rat. J Physiol 2006; 573:679-95. [PMID: 16613874 PMCID: PMC1779756 DOI: 10.1113/jphysiol.2006.108514] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Through their widespread projections to the entire brain, dorsal raphe cells participate in many physiological functions and are associated with neuropsychiatric disorders. In previous studies, the width of action potentials was used as a criterion to identify putative serotonergic neurons, and to demonstrate that cells with broad spikes were more active in wakefulness, slowed down their activity in slow wave sleep and became virtually silent during paradoxical sleep. However, recent studies reported that about half of these presumed serotonergic cells were not immunoreactive for tyrosine hydroxylase. Here, we re-examine the electrophysiological properties of dorsal raphe cells across the sleep-wake cycle in rats by the extracellular recording of a large sample of single units (n = 770). We identified two major types of cells, which differ in spike waveform: a first population characterized by broad, mostly positive spikes, and a second one displaying symmetrical positive-negative spikes with a large distribution of spike durations (0.6-3.2 ms). Although we found classical broad-spike cells that were more active in wakefulness, we also found that about one-third of these cells increased or did not change their firing rate during sleep compared with wakefulness. Moreover, 62% of the latter cells were active in paradoxical sleep when most of raphe cells were silent. Such a diversity in the neuronal firing behaviour is important in the light of the recent controversy regarding the neurochemical identity of dorsal raphe cells exhibiting broad spikes. Our results also suggest that the dorsal raphe contains subpopulations of neurons with reciprocal activity across the sleep-wake cycle.
Collapse
Affiliation(s)
- Nadia Urbain
- Department of Psychiatry, McGill University, Montréal, Québec, Canada.
| | | | | |
Collapse
|
78
|
Verret L, Fort P, Gervasoni D, Léger L, Luppi PH. Localization of the neurons active during paradoxical (REM) sleep and projecting to the locus coeruleus noradrenergic neurons in the rat. J Comp Neurol 2006; 495:573-86. [PMID: 16498678 DOI: 10.1002/cne.20891] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Locus coeruleus (LC) noradrenergic neurons are active during wakefulness, slow their discharge rate during slow wave sleep, and stop firing during paradoxical sleep (PS). A large body of data indicates that their inactivation during PS is due to a tonic GABAergic inhibition. To localize the neurons responsible for such inhibition, we first examined the distribution of retrogradely and Fos double-immunostained neurons following cholera toxin b subunit (CTb) injection in the LC of control rats, rats selectively deprived of PS for 3 days, and rats allowed to recover for 3 hours from such deprivation. We found a significant number of CTb/Fos double-labeled cells only in the recovery group. The largest number of CTb/Fos double-labeled cells was found in the dorsal paragigantocellular reticular nucleus (DPGi). It indeed contained 19% of the CTb/Fos double-labeled neurons, whereas the ventrolateral periaqueductal gray (vlPAG) contained 18.3% of these neurons, the lateral paragigantocellular reticular nucleus (LPGi) 15%, the lateral hypothalamic area 9%, the lateral PAG 6.7%, and the rostral PAG 6%. In addition, CTb/Fos double-labeled cells constituted 43% of all the singly CTb-labeled cells counted in the DPGi compared with 29% for the LPGi, 18% for the rostral PAG, and 10% or less for the other structures. Although all these populations of CTb/Fos double-labeled neurons could be GABAergic and tonically inhibit LC neurons during PS, our results indicate that neurons from the DPGi constitute the best candidate for this role.
Collapse
Affiliation(s)
- Laure Verret
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5167, Institut Fédératif des Neurosciences de Lyon (IFR19), Lyon F-69372, France
| | | | | | | | | |
Collapse
|
79
|
Tamakawa Y, Karashima A, Koyama Y, Katayama N, Nakao M. A quartet neural system model orchestrating sleep and wakefulness mechanisms. J Neurophysiol 2005; 95:2055-69. [PMID: 16282204 DOI: 10.1152/jn.00575.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Physiological knowledge of the neural mechanisms regulating sleep and wakefulness has been advanced by the recent findings concerning sleep/wakefulness-related preoptic/anterior hypothalamic and perifornical (orexin-containing)/posterior hypothalamic neurons. In this paper, we propose a mathematical model of the mechanisms orchestrating a quartet neural system of sleep and wakefulness composed of the following: 1) sleep-active preoptic/anterior hypothalamic neurons (N-R group); 2) wake-active hypothalamic and brain stem neurons exhibiting the highest rate of discharge during wakefulness and the lowest rate of discharge during paradoxical or rapid eye movement (REM) sleep (WA group); 3) brain stem neurons exhibiting the highest rate of discharge during REM sleep (REM group); and 4) basal forebrain, hypothalamic, and brain stem neurons exhibiting a higher rate of discharge during both wakefulness and REM sleep than during nonrapid eye movement (NREM) sleep (W-R group). The WA neurons have mutual inhibitory couplings with the REM and N-R neurons. The W-R neurons have mutual excitatory couplings with the WA and REM neurons. The REM neurons receive unidirectional inhibition from the N-R neurons. In addition, the N-R neurons are activated by two types of sleep-promoting substances (SPS), which play different roles in the homeostatic regulation of sleep and wakefulness. The model well reproduces the actual sleep and wakefulness patterns of rats in addition to the sleep-related neuronal activities across state transitions. In addition, human sleep-wakefulness rhythms can be simulated by manipulating only a few model parameters: inhibitions from the N-R neurons to the REM and WA neurons are enhanced, and circadian regulation of the N-R and WA neurons is exaggerated. Our model could provide a novel framework for the quantitative understanding of the mechanisms regulating sleep and wakefulness.
Collapse
Affiliation(s)
- Yuichi Tamakawa
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | | | | | | | | |
Collapse
|
80
|
Restuccia D, Rubino M, Valeriani M, Della Marca G. Increase of brain-stem high-frequency SEP subcomponents during light sleep in seizure-free epileptic patients. Clin Neurophysiol 2005; 116:1774-8. [PMID: 16006185 DOI: 10.1016/j.clinph.2005.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Revised: 03/23/2005] [Accepted: 03/24/2005] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Three hertz spike-and-wave (SW) occurrence is caused by the abnormal functioning of the same thalamo-cortical loop generating sleep spindles. In fact, SW preferably occurs during light sleep and transitional phases of the vigilance status. Since high-frequency somatosensory evoked potentials (HF-SEPs) are powerfully modulated by sleep and arousal, we verified whether they can reveal abnormalities of arousal-related structures in two patients having showed sporadic SW discharges during light sleep. METHODS We recorded right median nerve SEPs in two adult patients who suffered since the infancy from childhood absence epilepsy (CAE). Sleep stage-related changes of HF-SEPs were compared to those observed in five healthy volunteers. RESULTS HF-SEPs decreased during sleep in controls. By contrast, the amplitude of the subcortical component dramatically increased in CAE patients during phase II NREM sleep. Simultaneous EEG showed normally represented sleep spindles, but not SW discharges. CONCLUSIONS HF-SEP increase probably reflects the hyperactivation of brain-stem arousal-related structures. During such a hyperactivation no EEG abnormalities were observed. SIGNIFICANCE We hypothesize that HF-SEP increase might reflect a protective mechanism against seizure occurrence during light sleep.
Collapse
Affiliation(s)
- Domenico Restuccia
- Department of Neurosciences, Catholic University, Policlinico A. Gemelli, Largo A. Gemelli 8, 00168 Rome, Italy.
| | | | | | | |
Collapse
|
81
|
Goutagny R, Luppi PH, Salvert D, Gervasoni D, Fort P. GABAergic control of hypothalamic melanin-concentrating hormone-containing neurons across the sleep???waking cycle. Neuroreport 2005; 16:1069-73. [PMID: 15973150 DOI: 10.1097/00001756-200507130-00008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The perifornical-lateral hypothalamic area is implicated in regulating waking and paradoxical sleep. The blockade of GABAA receptors by iontophoretic applications of bicuculline (or gabazine) into the perifornical-lateral hypothalamic area induced a continuous quiet waking state associated to a robust muscle tone in head-restrained rats. During the effects, sleep was totally suppressed. In rats killed at the end of a 90 min ejection of bicuculline, Fos expression was induced in approximately 28% of the neurons immunoreactive for hypocretin and in approximately 3% of the neurons immunostained for melanin-concentrating hormone within the ejection site. These results suggest that neurons containing melanin-concentrating hormone are not active during waking and that the lack of a potent GABAergic influence during waking is consistent with their role in sleep regulation.
Collapse
Affiliation(s)
- Romain Goutagny
- CNRS, UMR 5167, Faculté de Medecine, RTH Laennec, 7 rue G. Paradin, 69372 Lyon cedex 08, France
| | | | | | | | | |
Collapse
|
82
|
Murakami M, Kashiwadani H, Kirino Y, Mori K. State-dependent sensory gating in olfactory cortex. Neuron 2005; 46:285-96. [PMID: 15848806 DOI: 10.1016/j.neuron.2005.02.025] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 02/08/2005] [Accepted: 02/15/2005] [Indexed: 12/28/2022]
Abstract
Sensory systems show behavioral state-dependent gating of information flow that largely depends on the thalamus. Here we examined whether the state-dependent gating occurs in the central olfactory pathway that lacks a thalamic relay. In urethane-anesthetized rats, neocortical EEG showed a periodical alternation between two states: a slow-wave state (SWS) characterized by large and slow waves and a fast-wave state (FWS) characterized by faster waves. Single-unit recordings from olfactory cortex neurons showed robust spike responses to adequate odorants during FWS, whereas they showed only weak responses during SWS. The state-dependent change in odorant-evoked responses was observed in a majority of olfactory cortex neurons, but in only a small percentage of olfactory bulb neurons. These findings demonstrate a powerful state-dependent gating of odor information in the olfactory cortex that works in synchrony with the gating of other sensory systems. They suggest a state-dependent switchover of signal processing modes in the olfactory cortex.
Collapse
Affiliation(s)
- Masayoshi Murakami
- Department of Physiology, Graduate School of Medicine, School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
83
|
Verret L, Léger L, Fort P, Luppi PH. Cholinergic and noncholinergic brainstem neurons expressing Fos after paradoxical (REM) sleep deprivation and recovery. Eur J Neurosci 2005; 21:2488-504. [PMID: 15932606 DOI: 10.1111/j.1460-9568.2005.04060.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is well accepted that populations of neurons responsible for the onset and maintenance of paradoxical sleep (PS) are restricted to the brainstem. To localize the structures involved and to reexamine the role of mesopontine cholinergic neurons, we compared the distribution of Fos- and choline acetyltransferase-labelled neurons in the brainstem of control rats, rats selectively deprived of PS for approximately 72 h and rats allowed to recover from such deprivation. Only a few cholinergic neurons from the laterodorsal (LDTg) and pedunculopontine tegmental nuclei were Fos-labelled after PS recovery. In contrast, a large number of noncholinergic Fos-labelled cells positively correlated with the percentage of time spent in PS was observed in the LDTg, sublaterodorsal, alpha and ventral gigantocellular reticular nuclei, structures known to contain neurons specifically active during PS. In addition, a large number of Fos-labelled cells were seen after PS rebound in the lateral, ventrolateral and dorsal periaqueductal grey, dorsal and lateral paragigantocellular reticular nuclei and the nucleus raphe obscurus. Interestingly, half of the cells in the latter nucleus were immunoreactive to choline acetyltransferase. In contrast to the well-accepted hypothesis, our results strongly suggest that neurons active during PS, recorded in the mesopontine cholinergic nuclei, are in the great majority noncholinergic. Our findings further demonstrate that many brainstem structures not previously identified as containing neurons active during PS contain cholinergic or noncholinergic neurons active during PS, and these structures may therefore play a key role during this state. Altogether, our results open a new avenue of research to identify the specific role of the populations of neurons revealed, their interrelations and their neurochemical identity.
Collapse
Affiliation(s)
- Laure Verret
- CNRS UMR 5167, Institut Fédératif des Neurosciences de Lyon (IFR 19), Faculté de médecine RTH Laennec, 7, rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | | | | | | |
Collapse
|
84
|
Stiller JW, Postolache TT. Sleep-wake and Other Biological Rhythms: Functional Neuroanatomy. Clin Sports Med 2005; 24:205-35, vii. [DOI: 10.1016/j.csm.2004.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
85
|
Lee HS, Kim MA, Waterhouse BD. Retrograde double-labeling study of common afferent projections to the dorsal raphe and the nuclear core of the locus coeruleus in the rat. J Comp Neurol 2005; 481:179-93. [PMID: 15562508 DOI: 10.1002/cne.20365] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Common afferent projections to the dorsal raphe (DR) and locus coeruleus (LC) nuclei were analyzed in the rat by making paired injections of retrograde tracers, gold-conjugated and inactivated wheatgerm agglutinin-horseradish peroxidase (WGA-apo-HRP-gold) and Fluorogold (FG), into the DR and the nuclear core of the LC. Our results demonstrate that the largest number of double-labeled neurons was located at various preoptic regions including medial preoptic area, lateral preoptic nucleus, and ventrolateral preoptic nucleus. The majority of labeled cells were also observed at the lateral hypothalamus, where the number of labeled cells was comparable to that of neurons at the medial preoptic area or lateral preoptic nucleus. A few double-labeled cells were observed at various hypothalamic regions including anterior, medial tuberal, posterior, and arcuate nuclei, as well as mesencephalic areas including substantia nigra compacta and ventrolateral/lateral periaqueductal gray matter. Cells were also observed at prelimbic/infralimbic prefrontal cortices, diagonal band of Broca, bed nucleus of stria terminalis, and pontine/medullary regions including various raphe nuclei, Barrington's nucleus, gigantocellularis, paragigantocellularis, prepositus hypoglossi, subcoeruleus, and dorsomedial tegmental area. Although electrophysiological studies need to be performed, a large number of double-labeled neurons located at preoptic regions as well as lateral hypothalamus might have their major role in simultaneous control over these monoaminergic nuclei as a means of influencing various sleep and arousal states of the animal. Double-labeled cells at the other locations might be positioned to influence a variety of other functions such as analgesia, cognition, and stress responses.
Collapse
Affiliation(s)
- Hyun S Lee
- Department of Premedical Science, College of Medicine, Konkuk University, Chungju, Chungbuk 380-701, South Korea.
| | | | | |
Collapse
|
86
|
Mallick BN, Singh S, Pal D. Role of alpha and beta adrenoceptors in locus coeruleus stimulation-induced reduction in rapid eye movement sleep in freely moving rats. Behav Brain Res 2005; 158:9-21. [PMID: 15680190 DOI: 10.1016/j.bbr.2004.08.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 07/28/2004] [Accepted: 08/05/2004] [Indexed: 11/21/2022]
Abstract
Based on the results of independent studies the involvement of norepinephrine in REM sleep regulation was known. Isolated studies showed that the effect could be mediated through either one or more subtypes of adrenoceptors. Earlier we have reported that REM-OFF neurons continue firing during REM sleep deprivation and mild but continuous stimulation of locus coeruleus (LC) or picrotoxin injection into the LC, that did not allow the REM-OFF neurons in the LC to stop firing, reduced REM sleep. However, the mechanism of action and type of adrenoreceptors involved in REM sleep regulation were unknown. The possible mechanism of action has been investigated in this study. It was proposed that if LC stimulation-induced decrease in REM sleep was due to norepinephrine, adrenergic antagonist must prevent the effect. Therefore, in this study, the effects of alpha1, alpha2 and beta-antagonists, viz. prazosin, yohimbine and propranolol, respectively, and alpha2 agonist, clonidine, on LC stimulation-induced reduction in REM sleep were investigated. The results showed that stimulation of LC inhibited REM sleep by reducing the frequency of generation of REM sleep, although the duration per episode remained unaffected. This decrease in the frequency of REM sleep was blocked by beta-antagonist propranolol while the duration of REM sleep per episode was blocked by alpha1-antagonist, prazosin. Also, a critical level of norepinephrine in the system was required for the generation of REM sleep, however, a higher level may be inhibitory. Based on the results of this study and our earlier studies, an interaction between neurons, containing different neurotransmitters and their subtypes of receptors for LC-mediated regulation of REM sleep has been proposed.
Collapse
Affiliation(s)
- Birendra N Mallick
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India.
| | | | | |
Collapse
|
87
|
|
88
|
Abstract
A variety of medications representing several major drug classes improve cataplexy in patients with narcolepsy. These include aminergic reuptake inhibitors such as venlafaxine and clomipramine as well as sodium oxybate. This review is intended to familiarize readers with the safety and efficacy of these medications, thus enabling clinicians to optimize their management of cataplexy.
Collapse
Affiliation(s)
- William C Houghton
- Orphan Medical, Inc., Medical Affairs, 13911 Ridgedale Drive, Suite 250, Minnetonka, MN 55305, USA.
| | | | | |
Collapse
|
89
|
|
90
|
Salbaum JM, Cirelli C, Walcott E, Krushel LA, Edelman GM, Tononi G. Chlorotoxin-mediated disinhibition of noradrenergic locus coeruleus neurons using a conditional transgenic approach. Brain Res 2004; 1016:20-32. [PMID: 15234248 DOI: 10.1016/j.brainres.2004.03.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2004] [Indexed: 10/26/2022]
Abstract
The noradrenergic locus coeruleus (LC) has been implicated in the promotion of arousal, in focused attention and learning, and in the regulation of the sleep/waking cycle. The complex biological functions of the central noradrenergic system have been investigated largely through electrophysiological recordings and neurotoxic lesions of LC neurons. Activation of LC neurons through electrical or chemical stimulation has also led to important insights, although these techniques have limited cellular specificity and short-term effects. Here, we describe a novel method aimed at stimulating the central noradrenergic system in a highly selective manner for prolonged periods of time. This was achieved through the conditional expression of a transgene for chlorotoxin (Cltx) in the LC of adult mice. Chlorotoxin is a component of scorpion venom that partially blocks small conductance chloride channels. In this manner, the influence of GABAergic and glycinergic inhibitory inputs on LC cells is greatly reduced, while their ability to respond to excitatory inputs is unaffected. We demonstrate that the unilateral induction of Cltx expression in the LC is associated with a concomitant ipsilateral increase in the expression of markers of noradrenergic activity in LC neurons. Moreover, LC disinhibition is associated with the ipsilateral induction of the immediate early gene NGFI-A in cortical and subcortical target areas. Unlike previous gain of function approaches, transgenic disinhibition of LC cells is highly selective and persists for at least several weeks. This method represents a powerful new tool to assess the long-term effects of LC activation and is potentially applicable to other neuronal systems.
Collapse
Affiliation(s)
- J Michael Salbaum
- The Neurosciences Institute, 10640 John J. Hopkins Drive, San Diego, CA 92121, USA.
| | | | | | | | | | | |
Collapse
|
91
|
Gottesmann C. Brain inhibitory mechanisms involved in basic and higher integrated sleep processes. ACTA ACUST UNITED AC 2004; 45:230-49. [PMID: 15210306 DOI: 10.1016/j.brainresrev.2004.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2004] [Indexed: 11/21/2022]
Abstract
Brain function is supported by central activating processes that are significant during waking, decrease during slow wave sleep following waking and increase again during paradoxical sleep during which brain activation is as high as, or higher than, during waking in nearly all structures. However, inhibitory mechanisms are crucial for sleep onset. They were first identified by behavioral, neuroanatomical and electrophysiological criteria, then by pharmacological and neurochemical ones. During slow wave sleep, they are supported by GABAergic mechanisms located at midbrain, mesopontine and pontine levels but are induced and sustained by forebrain and hindbrain influences. GABAergic processes are also responsible for paradoxical sleep occurrence, particularly by suppression of noradrenaline and serotonin (5-HT) inhibition of paradoxical sleep-generating structures. Hindbrain and forebrain modulate these structures situated at the mesopontine level. For sleep mentation, the noradrenergic and serotonergic silence is thought, today, to be directly, or indirectly, responsible for dopamine predominance and glutamate decrease in the nucleus accumbens, which could be the background of the well-known psychotic-like mental activity of dreaming.
Collapse
Affiliation(s)
- Claude Gottesmann
- Laboratoire de Neurobiologie Comportementale, Faculté des Sciences, Université de Nice-Sophia Antipolis, 06108 Nice cedex 2, France.
| |
Collapse
|
92
|
Urbain N, Vautrelle N, Dahan L, Savasta M, Chouvet G. Glutamatergic-receptors blockade does not regularize the slow wave sleep bursty pattern of subthalamic neurons. Eur J Neurosci 2004; 20:392-402. [PMID: 15233749 DOI: 10.1111/j.1460-9568.2004.03488.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The subthalamic nucleus (STN) has been implicated in movement disorders observed in Parkinson's disease because of its pathological mixed burst firing mode and hyperactivity. In physiological conditions, STN bursty pattern has been shown to be dependent on slow wave cortical activity. Indeed, cortical ablation abolished STN bursting activity in urethane-anaesthetized intact or dopamine depleted rats. Thus, glutamate afferents might be involved in STN bursting activity during slow wave sleep (SWS) when thalamic and cortical cells oscillate in a low-frequency range. The present work was aimed to test, on non-anaesthetized rats, if it was possible to regularize the SWS STN bursty pattern by microiontophoresis of kynurenate, a broad-spectrum glutamate ionotropic receptors antagonist. As glutamatergic effects might be masked by GABAergic inputs arriving tonically and during the entire sleep-wake cycle on STN neurons, kynurenate was also co-iontophoresed with bicuculline, a GABA(A) receptors antagonist. Kynurenate iontophoretic applications had a weak inhibitory effect on the discharge rate of STN neurons whatever the vigilance state, and did not regularize the SWS STN bursty pattern. But, the robust bursty bicuculline-induced pattern was impaired by kynurenate, which elicited the emergence of single spikes between remaining bursts. These data indicate that the bursty pattern exhibited by STN neurons specifically in SWS, does not seem to exclusively depend on glutamatergic inputs to STN cells. Furthermore, GABA(A) receptors may play a critical role in regulating the influence of excitatory inputs on STN cells.
Collapse
Affiliation(s)
- Nadia Urbain
- Neurobiological Psychiatry Unit, McGill University, 1033 avenue des Pins Ouest, Montreal, Quebec, H3A 1A1, Canada.
| | | | | | | | | |
Collapse
|
93
|
Vazquez J, Baghdoyan HA. GABAA receptors inhibit acetylcholine release in cat pontine reticular formation: implications for REM sleep regulation. J Neurophysiol 2004; 92:2198-206. [PMID: 15212422 DOI: 10.1152/jn.00099.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study used in vivo microdialysis in cat (n=12) to test the hypothesis that gamma aminobutyric acid A (GABAA) receptors in the pontine reticular formation (PRF) inhibit acetylcholine (ACh) release. Animals were anesthetized with halothane to hold arousal state constant. Six concentrations of the GABAA receptor antagonist bicuculline (0.03, 0.1, 0.3, 1, 3, and 10 mM) were delivered to a dialysis probe in the PRF, and endogenously released ACh was collected simultaneously. Bicuculline caused a concentration dependent increase in ACh release (maximal increase=345%; EC50=1.3 mM; r2=0.997). Co-administration of the GABAA receptor agonist muscimol prevented the bicuculline-induced increase in ACh release. In a second series of experiments, the effects of bicuculline (0.1, 0.3, 1, and 3 mM) on ACh release were examined without the use of general anesthesia. States of wakefulness, rapid-eye-movement (REM) sleep, and non-REM sleep were identified polygraphically before and during dialysis delivery of bicuculline. Higher concentrations of bicuculline (1 and 3 mM) significantly increased ACh release during wakefulness (36%), completely suppressed non-REM sleep, and increased ACh release during REM sleep (143%). The finding that ACh release in the PRF is modulated by GABAA receptors is consistent with the interpretation that inhibition of GABAergic transmission in the PRF contributes to the generation of REM sleep, in part, by increasing pontine ACh release.
Collapse
Affiliation(s)
- Jacqueline Vazquez
- Dept. of Anesthesiology, The University of Michigan, 7433 Medical Sciences Bldg. I, 1150 W. Medical Center Dr., Ann Arbor, MI 48109-0615, USA
| | | |
Collapse
|
94
|
Restuccia D, Della Marca G, Valeriani M, Rubino M, Scarano E, Tonali P. Brain-stem components of high-frequency somatosensory evoked potentials are modulated by arousal changes: nasopharyngeal recordings in healthy humans. Clin Neurophysiol 2004; 115:1392-8. [PMID: 15134707 DOI: 10.1016/j.clinph.2004.01.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2004] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Until now, the demonstration that early components of high-frequency oscillations (HFOs) evoked by electrical upper limb stimulation are generated in the brain-stem has been based on the results of scalp recordings. To better define the contribution of brain-stem components to HFOs building, we recorded high-frequency somatosensory evoked potentials (SEPs) in 6 healthy volunteers by means of a nasopharyngeal (NP) electrode. Moreover, since HFOs are highly susceptible to arousal fluctuations, we investigated whether eyes opening can influence HFOs at this level. METHODS We recorded right median nerve SEPs from the ventral surface of the medulla by means of a NP electrode as well as from the scalp, in 6 healthy volunteers under two different arousal states (eyes opened versus eyes closed). SEPs have been further analyzed after digital narrow bandpass filtering (400-800 Hz). RESULTS NP recordings demonstrated in all subjects a well-defined burst, occurring in the same latency window of the low-frequency P13-P14 complex. Eyes opening induced a significant amplitude increase of the NP-recorded HFOs, whereas scalp-recorded HFOs as well as low-frequency SEPs remained unchanged. CONCLUSIONS Our findings demonstrate that slight arousal variations induce significant changes in brain-stem components of HFOs. According to the hypothesis that HFOs reflect the activation of central mechanisms, which modulate sensory inputs depending on variations of arousal state, our data suggest that this modulation is already effective at brain-stem level.
Collapse
Affiliation(s)
- Domenico Restuccia
- Department of Neurosciences, Catholic University, Policlinico A. Gemellki, Largo A. Gemelli 8, 00168 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
95
|
Wu MF, John J, Boehmer LN, Yau D, Nguyen GB, Siegel JM. Activity of dorsal raphe cells across the sleep-waking cycle and during cataplexy in narcoleptic dogs. J Physiol 2004; 554:202-15. [PMID: 14678502 PMCID: PMC1664742 DOI: 10.1113/jphysiol.2003.052134] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cataplexy, a symptom associated with narcolepsy, represents a unique dissociation of behavioural states. During cataplectic attacks, awareness of the environment is maintained, as in waking, but muscle tone is lost, as in REM sleep. We have previously reported that, in the narcoleptic dog, noradrenergic cells of the locus coeruleus cease discharge during cataplexy. In the current study, we report on the activity of serotonergic cells of the dorsal raphe nucleus. The discharge patterns of serotonergic dorsal raphe cells across sleep-waking states did not differ from those of dorsal raphe and locus coeruleus cells recorded in normal rats, cats and monkeys, with tonic discharge in waking, reduced activity in non-REM sleep and cessation of activity in REM sleep. However, in contrast with locus coeruleus cells, dorsal raphe REM sleep-off neurones did not cease discharge during cataplexy. Instead, discharge continued at a level significantly higher than that seen in REM sleep and comparable to that seen in non-REM sleep. We also identified several cells in the dorsal raphe whose pattern of activity was the opposite of that of the presumed serotonergic cells. These cells were maximally active in REM sleep and minimally active in waking and increased activity during cataplexy. The difference between noradrenergic and serotonergic cell discharge profiles in cataplexy suggests different roles for these cell groups in the normal regulation of environmental awareness and muscle tone and in the pathophysiology of narcolepsy.
Collapse
Affiliation(s)
- M-F Wu
- Department Psychiatry, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | | | | | |
Collapse
|
96
|
Boissard R, Fort P, Gervasoni D, Barbagli B, Luppi PH. Localization of the GABAergic and non-GABAergic neurons projecting to the sublaterodorsal nucleus and potentially gating paradoxical sleep onset. Eur J Neurosci 2003; 18:1627-39. [PMID: 14511341 DOI: 10.1046/j.1460-9568.2003.02861.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We recently determined in rats that iontophoretic application of bicuculline or gabazine [two GABAa antagonists] and kainic acid (a glutamate agonist) in the sublaterodorsal nucleus (SLD) induces with a very short latency a paradoxical sleep-like state. From these results, we proposed that GABAergic and glutamatergic inputs to the SLD paradoxical sleep (PS)-executive neurons gate the onset of PS [R. Boissard et al. (2002) Eur. J. Neurosci., 16, 1959-1973]. We therefore decided to determine the origin of the GABAergic and non-GABAergic inputs to the SLD combining ejection of a retrograde tracer [cholera-toxin B subunit (CTb)] with glutamate decarboxylase (GAD) immunohistochemistry. The presence of GAD-immunoreactive neurons in the SLD was confirmed. Then, following CTb ejections centred on the SLD, combined with GAD and CTb immunohistochemistry, double-labelled cells were observed in the mesencephalic and pontine reticular nuclei and to a lesser extent the parvicellular reticular nucleus. A large number of GAD-negative retrogradely labelled cells was also seen in these structures as well as in the primary motor area of the frontal cortex, the central nucleus of the amygdala, the ventral and lateral bed nucleus of the stria terminalis, the lateral hypothalamic area, the lateral and ventrolateral periaqueductal grey and the lateral paragigantocellular reticular nucleus. From these results, we propose that the activation of PS-executive neurons from the SLD is due to the removal of a tonic inhibition from GABAergic neurons localized in the SLD, and the mesencephalic and pontine reticular nuclei. Strong non-GABAergic inputs to the SLD could be excitatory and responsible for the tonic glutamatergic input on the PS-on neurons we have previously described. They could also terminate on SLD GABAergic interneurons and be indirectly responsible for the inhibition of the PS-on neurons during waking and slow-wave sleep.
Collapse
Affiliation(s)
- Romuald Boissard
- CNRS UMR5167, Institut Fédératif des Neurosciences de Lyon (IFR 19), Université Claude Bernard Lyon I, 7, Rue Guillaume Paradin, 69372 Lyon, Cedex 08, France
| | | | | | | | | |
Collapse
|
97
|
Verret L, Goutagny R, Fort P, Cagnon L, Salvert D, Léger L, Boissard R, Salin P, Peyron C, Luppi PH. A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neurosci 2003; 4:19. [PMID: 12964948 PMCID: PMC201018 DOI: 10.1186/1471-2202-4-19] [Citation(s) in RCA: 290] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2003] [Accepted: 09/09/2003] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Peptidergic neurons containing the melanin-concentrating hormone (MCH) and the hypocretins (or orexins) are intermingled in the zona incerta, perifornical nucleus and lateral hypothalamic area. Both types of neurons have been implicated in the integrated regulation of energy homeostasis and body weight. Hypocretin neurons have also been involved in sleep-wake regulation and narcolepsy. We therefore sought to determine whether hypocretin and MCH neurons express Fos in association with enhanced paradoxical sleep (PS or REM sleep) during the rebound following PS deprivation. Next, we compared the effect of MCH and NaCl intracerebroventricular (ICV) administrations on sleep stage quantities to further determine whether MCH neurons play an active role in PS regulation. RESULTS Here we show that the MCH but not the hypocretin neurons are strongly active during PS, evidenced through combined hypocretin, MCH, and Fos immunostainings in three groups of rats (PS Control, PS Deprived and PS Recovery rats). Further, we show that ICV administration of MCH induces a dose-dependent increase in PS (up to 200%) and slow wave sleep (up to 70%) quantities. CONCLUSION These results indicate that MCH is a powerful hypnogenic factor. MCH neurons might play a key role in the state of PS via their widespread projections in the central nervous system.
Collapse
Affiliation(s)
- Laure Verret
- CNRS UMR5167, Institut Fédératif des Neurosciences de Lyon (IFR 19), Université Claude Bernard Lyon I, 7 Rue Guillaume Paradin, 69372 LYON Cedex 08, FRANCE
| | - Romain Goutagny
- CNRS UMR5167, Institut Fédératif des Neurosciences de Lyon (IFR 19), Université Claude Bernard Lyon I, 7 Rue Guillaume Paradin, 69372 LYON Cedex 08, FRANCE
| | - Patrice Fort
- CNRS UMR5167, Institut Fédératif des Neurosciences de Lyon (IFR 19), Université Claude Bernard Lyon I, 7 Rue Guillaume Paradin, 69372 LYON Cedex 08, FRANCE
| | - Laurène Cagnon
- CNRS UMR5167, Institut Fédératif des Neurosciences de Lyon (IFR 19), Université Claude Bernard Lyon I, 7 Rue Guillaume Paradin, 69372 LYON Cedex 08, FRANCE
| | - Denise Salvert
- CNRS UMR5167, Institut Fédératif des Neurosciences de Lyon (IFR 19), Université Claude Bernard Lyon I, 7 Rue Guillaume Paradin, 69372 LYON Cedex 08, FRANCE
| | - Lucienne Léger
- CNRS UMR5167, Institut Fédératif des Neurosciences de Lyon (IFR 19), Université Claude Bernard Lyon I, 7 Rue Guillaume Paradin, 69372 LYON Cedex 08, FRANCE
| | - Romuald Boissard
- CNRS UMR5167, Institut Fédératif des Neurosciences de Lyon (IFR 19), Université Claude Bernard Lyon I, 7 Rue Guillaume Paradin, 69372 LYON Cedex 08, FRANCE
| | - Paul Salin
- CNRS UMR5167, Institut Fédératif des Neurosciences de Lyon (IFR 19), Université Claude Bernard Lyon I, 7 Rue Guillaume Paradin, 69372 LYON Cedex 08, FRANCE
| | - Christelle Peyron
- CNRS UMR5167, Institut Fédératif des Neurosciences de Lyon (IFR 19), Université Claude Bernard Lyon I, 7 Rue Guillaume Paradin, 69372 LYON Cedex 08, FRANCE
| | - Pierre-Hervé Luppi
- CNRS UMR5167, Institut Fédératif des Neurosciences de Lyon (IFR 19), Université Claude Bernard Lyon I, 7 Rue Guillaume Paradin, 69372 LYON Cedex 08, FRANCE
| |
Collapse
|
98
|
Boissard R, Gervasoni D, Schmidt MH, Barbagli B, Fort P, Luppi PH. The rat ponto-medullary network responsible for paradoxical sleep onset and maintenance: a combined microinjection and functional neuroanatomical study. Eur J Neurosci 2002; 16:1959-73. [PMID: 12453060 DOI: 10.1046/j.1460-9568.2002.02257.x] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The neuronal network responsible for paradoxical sleep (PS) onset and maintenance has not previously been identified in the rat, unlike the cat. To fill this gap, this study has developed a new technique involving the recording of sleep-wake states in unanaesthetized head-restrained rats whilst locally administering pharmacological agents by microiontophoresis from glass multibarrel micropipettes, into the dorsal pontine tegmentum and combining this with functional neuroanatomy. Pharmacological agents used for iontophoretic administration included carbachol, kainic acid, bicuculline and gabazine. The injection sites and their efferents were then identified by injections of anterograde (phaseolus vulgaris leucoagglutinin) or retrograde (cholera toxin B subunit) tracers through an adjacent barrel of the micropipette assembly and by C-Fos immunostaining. Bicuculline, gabazine and kainic acid ejections specifically into the pontine sublaterodorsal nucleus (SLD) induced within a few minutes a PS-like state characterized by a continuous muscle atonia, low voltage EEG and a lack of reaction to stimuli. In contrast, carbachol ejections into the SLD induced wakefulness. In PHA-L, glycine and C-Fos multiple double-labelling experiments, anterogradely labelled fibres originating from the SLD were seen apposed on glycine and C-Fos positive neurons (labelled after 90 min of pharmacologically induced PS-like state) from the ventral gigantocellular and parvicellular reticular nuclei. Altogether, these data indicate that the SLD nuclei contain a population of neurons playing a crucial role in PS onset and maintenance. Furthermore, they suggest that GABAergic disinhibition and glutamate excitation of these neurons might also play a crucial role in the onset of PS.
Collapse
Affiliation(s)
- Romuald Boissard
- CNRS FRE 2469, Institut Fédératif des Neurosciences de Lyon (IFR 19), Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373 LYON Cedex 08, France
| | | | | | | | | | | |
Collapse
|
99
|
The switch of subthalamic neurons from an irregular to a bursting pattern does not solely depend on their GABAergic inputs in the anesthetic-free rat. J Neurosci 2002. [PMID: 12351741 DOI: 10.1523/jneurosci.22-19-08665.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The subthalamic nucleus (STN) powerfully controls basal ganglia outputs and has been implicated in movement disorders observed in Parkinson's disease because of its pathological mixed burst firing mode and hyperactivity. A recent study suggested that reciprocally connected glutamatergic STN and GABAergic globus pallidus (GP) neurons act in vitro as a generator of bursting activity in basal ganglia. In vivo, we reported that GP neurons increased their firing rate in wakefulness (W) compared with slow-wave sleep (SWS) without any change in their random pattern. In contrast, STN neurons exhibited similar firing rates in W and SWS, with an irregular pattern in W and a bursty one in SWS. Thus, the pallidal GABAergic tone might control the STN pattern. This hypothesis was tested by mimicking such variations with microiontophoresis of GABA receptor ligands. GABA agonists specifically decreased the STN firing rate but did not affect its firing pattern. GABA(A) (but not GABA(B)) antagonists strongly enhanced the STN mean discharge rate during all vigilance states up to three to five times its basal activity. However, such applications did not change the typical W random pattern. When applied during SWS, GABA(A) antagonists strongly reinforced the spontaneous bursty pattern into a particularly marked one with instantaneous frequencies reaching 500-600 Hz. SWS-W transitions occurring during ongoing antagonist iontophoresis invariably disrupted the bursty pattern into a random one. Thus GABA(A) receptors play a critical, but not exclusive, role in regulating the excitatory STN influence on basal ganglia outputs.
Collapse
|
100
|
Suntsova N, Szymusiak R, Alam MN, Guzman-Marin R, McGinty D. Sleep-waking discharge patterns of median preoptic nucleus neurons in rats. J Physiol 2002; 543:665-77. [PMID: 12205198 PMCID: PMC2290500 DOI: 10.1113/jphysiol.2002.023085] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Several lines of evidence show that the preoptic area (POA) of the hypothalamus is critically implicated in the regulation of sleep. Functionally heterogeneous cell groups with sleep-related discharge patterns are located both in the medial and lateral POA. Recently a cluster of neurons showing sleep-related c-Fos immunoreactivity was found in the median preoptic nucleus (MnPN). To determine the specificity of the state-related behaviour of MnPN neurons we have undertaken the first study of their discharge patterns across the sleep-waking cycle. Nearly 76 % of recorded cells exhibited elevated discharge rates during sleep. Sleep-related units showed several distinct types of activity changes across sleep stages. Two populations included cells displaying selective activation during either non-rapid eye movement (NREM) sleep (10 %) or REM sleep (8 %). Neurons belonging to the predominant population (58 %) exhibited activation during both phases of sleep compared to wakefulness. Most of these cells showed a gradual increase in their firing rates prior to sleep onset, elevated discharge during NREM sleep and a further increase during REM sleep. This specific sleep-waking discharge profile is opposite to that demonstrated by wake-promoting monoaminergic cell groups and was previously found in cells localized in the ventrolateral preoptic area (vlPOA). We hypothesize that these vlPOA and MnPN neuronal populations act as parts of a GABAergic/galaninergic sleep-promoting ('anti-waking') network which exercises inhibitory control over waking-promoting systems. MnPN neurons that progressively increase activity during sustained waking and decrease activity during sustained sleep states may be involved in homeostatic regulation of sleep.
Collapse
Affiliation(s)
- Natalia Suntsova
- Research Service, V.A. Greater Los Angeles Healthcare System, North Hills, CA 91343, USA
| | | | | | | | | |
Collapse
|