51
|
Insights into the Dual Role of Inflammation after Spinal Cord Injury. J Neurosci 2018; 37:4658-4660. [PMID: 28469010 DOI: 10.1523/jneurosci.0498-17.2017] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/26/2017] [Accepted: 03/30/2017] [Indexed: 01/09/2023] Open
|
52
|
Gorter RP, Nutma E, Jahrei M, de Jonge JC, Quinlan RA, van der Valk P, van Noort JM, Baron W, Amor S. Heat shock proteins are differentially expressed in brain and spinal cord: implications for multiple sclerosis. Clin Exp Immunol 2018; 194:137-152. [PMID: 30014472 PMCID: PMC6194336 DOI: 10.1111/cei.13186] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2018] [Indexed: 01/10/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neurodegenerative disease characterized by demyelination, inflammation and neurodegeneration throughout the central nervous system. Although spinal cord pathology is an important factor contributing to disease progression, few studies have examined MS lesions in the spinal cord and how they differ from brain lesions. In this study we have compared brain and spinal cord white (WM) and grey (GM) matter from MS and control tissues, focusing on small heat shock proteins (HSPB) and HSP16.2. Western blotting was used to examine protein levels of HSPB1, HSPB5, HSPB6, HSPB8 and HSP16.2 in brain and spinal cord from MS and age-matched non-neurological controls. Immunohistochemistry was used to examine expression of the HSPs in MS spinal cord lesions and controls. Expression levels were quantified using ImageJ. Western blotting revealed significantly higher levels of HSPB1, HSPB6 and HSPB8 in MS and control spinal cord compared to brain tissues. No differences in HSPB5 and HSP16.2 protein levels were observed, although HSPB5 protein levels were higher in brain WM versus GM. In MS spinal cord lesions, increased HSPB1 and HSPB5 expression was observed in astrocytes, and increased neuronal expression of HSP16.2 was observed in normal-appearing GM and type 1 GM lesions. The high constitutive expression of several HSPBs in spinal cord and increased expression of HSPBs and HSP16.2 in MS illustrate differences between brain and spinal cord in health and upon demyelination. Regional differences in HSP expression may reflect differences in astrocyte cytoskeleton composition and influence inflammation, possibly affecting the effectiveness of pharmacological agents.
Collapse
Affiliation(s)
- R. P. Gorter
- Pathology DepartmentAmsterdam UMC, VUMCGroningenUK
| | - E. Nutma
- Pathology DepartmentAmsterdam UMC, VUMCGroningenUK
| | - M.‐C. Jahrei
- Pathology DepartmentAmsterdam UMC, VUMCGroningenUK
| | - J. C. de Jonge
- Department of Cell BiologyUniversity of Groningen, University Medical Center GroningenGroningenUK
| | - R. A Quinlan
- Department of BiosciencesDurham UniversityDurhamUK
| | | | | | - W. Baron
- Department of Cell BiologyUniversity of Groningen, University Medical Center GroningenGroningenUK
| | - S. Amor
- Pathology DepartmentAmsterdam UMC, VUMCGroningenUK
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| |
Collapse
|
53
|
Compressive mechanical characterization of non-human primate spinal cord white matter. Acta Biomater 2018; 74:260-269. [PMID: 29729417 DOI: 10.1016/j.actbio.2018.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 11/22/2022]
Abstract
The goal of developing computational models of spinal cord injury (SCI) is to better understand the human injury condition. However, finite element models of human SCI have used rodent spinal cord tissue properties due to a lack of experimental data. Central nervous system tissues in non human primates (NHP) closely resemble that of humans and therefore, it is expected that material constitutive models obtained from NHPs will increase the fidelity and the accuracy of human SCI models. Human SCI most often results from compressive loading and spinal cord white matter properties affect FE predicted patterns of injury; therefore, the objectives of this study were to characterize the unconfined compressive response of NHP spinal cord white matter and present an experimentally derived, finite element tractable constitutive model for the tissue. Cervical spinal cords were harvested from nine male adult NHPs (Macaca mulatta). White matter biopsy samples (3 mm in diameter) were taken from both lateral columns of the spinal cord and were divided into four strain rate groups for unconfined dynamic compression and stress relaxation (post-mortem <1-hour). The NHP spinal cord white matter compressive response was sensitive to strain rate and showed substantial stress relaxation confirming the viscoelastic behavior of the material. An Ogden 1st order model best captured the non-linear behavior of NHP white matter in a quasi-linear viscoelastic material model with 4-term Prony series. This study is the first to characterize NHP spinal cord white matter at high (>10/sec) strain rates typical of traumatic injury. The finite element derived material constitutive model of this study will increase the fidelity of SCI computational models and provide important insights for transferring pre-clinical findings to clinical treatments. STATEMENT OF SIGNIFICANCE Spinal cord injury (SCI) finite element (FE) models provide an important tool to bridge the gap between animal studies and human injury, assess injury prevention technologies (e.g. helmets, seatbelts), and provide insight into the mechanisms of injury. Although, FE model outcomes depend on the assumed material constitutive model, there is limited experimental data for fresh spinal cords and all was obtained from rodent, porcine or bovine tissues. Central nervous system tissues in non human primates (NHP) more closely resemble humans. This study characterizes fresh NHP spinal cord material properties at high strains rates and large deformations typical of SCI for the first time. A constitutive model was defined that can be readily implemented in finite strain FE analysis of SCI.
Collapse
|
54
|
History of Glial Cell Line-Derived Neurotrophic Factor (GDNF) and Its Use for Spinal Cord Injury Repair. Brain Sci 2018; 8:brainsci8060109. [PMID: 29899247 PMCID: PMC6025482 DOI: 10.3390/brainsci8060109] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 01/01/2023] Open
Abstract
Following an initial mechanical insult, traumatic spinal cord injury (SCI) induces a secondary wave of injury, resulting in a toxic lesion environment inhibitory to axonal regeneration. This review focuses on the glial cell line-derived neurotrophic factor (GDNF) and its application, in combination with other factors and cell transplantations, for repairing the injured spinal cord. As studies of recent decades strongly suggest that combinational treatment approaches hold the greatest therapeutic potential for the central nervous system (CNS) trauma, future directions of combinational therapies will also be discussed.
Collapse
|
55
|
Noble BT, Brennan FH, Popovich PG. The spleen as a neuroimmune interface after spinal cord injury. J Neuroimmunol 2018; 321:1-11. [PMID: 29957379 DOI: 10.1016/j.jneuroim.2018.05.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 01/17/2023]
Abstract
Traumatic spinal cord injury (SCI) causes widespread damage to neurons, glia and endothelia located throughout the spinal parenchyma. In response to the injury, resident and blood-derived leukocytes orchestrate an intraspinal inflammatory response that propagates secondary neuropathology and also promotes tissue repair. SCI also negatively affects autonomic control over peripheral immune organs, notably the spleen. The spleen is the largest secondary lymphoid organ in mammals, with major roles in blood filtration and host defense. Splenic function is carefully regulated by neuroendocrine mechanisms that ensure that the immune responses to infection or injury are proportionate to the initiating stimulus, and can be terminated when the stimulus is cleared. After SCI, control over the viscera, including endocrine and lymphoid tissues is lost due to damage to spinal autonomic (sympathetic) circuitry. This review begins by examining the normal structure and function of the spleen including patterns of innervation and the role played by the nervous system in regulating spleen function. We then describe how after SCI, loss of proper neural control over splenic function leads to systems-wide neuropathology, immune suppression and autoimmunity. We conclude by discussing opportunities for targeting the spleen to restore immune homeostasis, reduce morbidity and mortality, and improve functional recovery after SCI.
Collapse
Affiliation(s)
- Benjamin T Noble
- Neuroscience Graduate Studies Program, Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University, Columbus 43210, OH, USA
| | - Faith H Brennan
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus 43210, OH, USA
| | - Phillip G Popovich
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus 43210, OH, USA.
| |
Collapse
|
56
|
El Tecle NE, Dahdaleh NS, Bydon M, Ray WZ, Torner JC, Hitchon PW. The natural history of complete spinal cord injury: a pooled analysis of 1162 patients and a meta-analysis of modern data. J Neurosurg Spine 2018; 28:436-443. [DOI: 10.3171/2017.7.spine17107] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVEThe natural history of complete spinal cord injury (SCI) is poorly studied. The classically quoted rate of improvement or conversion for patients with American Spinal Injury Association (ASIA) grade A (ASIA A) injuries is 15%–20%; however, data supporting this rate are very limited. In this paper, the authors conducted a meta-analysis of modern data reporting on ASIA A patients and evaluated factors affecting the natural history of the disease.METHODSThe authors conducted a systematic literature review of all randomized clinical trials (RCTs) and observational studies of patients with traumatic SCI. The Embase, MEDLINE, PubMed, Scopus, CINAHL, and Cochrane databases were reviewed for all studies reporting on SCI and published after 1992. A meta-analysis was conducted using the DerSimonian and Laird (random-effects) model with a summary odds ratio analysis.RESULTSEleven RCTs and 9 observational studies were included in the final analysis. Overall, the 20 included studies reported on 1162 patients with ASIA A injuries. The overall conversion rate was 28.1%, with 327 of 1162 patients improving to at least ASIA B. The overall rate of conversion noted in cervical spine injuries was 33.3%, whereas that in thoracic injuries was 30.6%. Patients undergoing early surgery had a higher rate of conversion (46.1%) than patients undergoing late surgery (25%) (OR 2.31, 95% CI 1.08–4.96, p = 0.03).CONCLUSIONSThe overall rate of conversion of ASIA A SCIs from pooled data of prospective trials and observational series is 28.1%. This rate of conversion is higher than what is reported in the literature. Early surgery is predictive of a higher conversion rate. However, there are not enough data to provide conclusions pertaining to the efficacy of biological and medical therapies.
Collapse
Affiliation(s)
| | - Nader S. Dahdaleh
- 2Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Mohamad Bydon
- 3Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota
| | - Wilson Z. Ray
- 4Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | | | - Patrick W. Hitchon
- 6Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
57
|
Yang JS, Wei HX, Chen PP, Wu G. Roles of Eph/ephrin bidirectional signaling in central nervous system injury and recovery. Exp Ther Med 2018. [PMID: 29456630 DOI: 10.3892/etm.2018.5702.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Multiple cellular components are involved in the complex pathological process following central nervous system (CNS) injury, including neurons, glial cells and endothelial cells. Previous studies and neurotherapeutic clinical trials have assessed the molecular mechanisms that underlie neuronal cell death following CNS injury. However, this approach has largely failed to reduce CNS damage or improve the functional recovery of patients. Erythropoietin-producing human hepatocellular (Eph) receptors and ephrin ligands have attracted considerable attention since their discovery, due to their extensive distribution and unique bidirectional signaling between astrocytes and neurons. Previous studies have investigated the roles of Eph/ephrin bidirectional signaling in the developing central nervous system. It was determined that Eph/ephrin bidirectional signaling is expressed in various CNS regions and cell types, and that it serves diverse roles in the adult CNS. In the present review, the roles of Eph/ephrin bidirectional signaling in CNS injuries are assessed.
Collapse
Affiliation(s)
- Jin-Shan Yang
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Hui-Xing Wei
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Ping-Ping Chen
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Gang Wu
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| |
Collapse
|
58
|
George N, Geller HM. Extracellular matrix and traumatic brain injury. J Neurosci Res 2018; 96:573-588. [PMID: 29344975 DOI: 10.1002/jnr.24151] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/21/2017] [Accepted: 08/14/2017] [Indexed: 12/27/2022]
Abstract
The brain extracellular matrix (ECM) plays a crucial role in both the developing and adult brain by providing structural support and mediating cell-cell interactions. In this review, we focus on the major constituents of the ECM and how they function in both normal and injured brain, and summarize the changes in the composition of the ECM as well as how these changes either promote or inhibit recovery of function following traumatic brain injury (TBI). Modulation of ECM composition to facilitates neuronal survival, regeneration and axonal outgrowth is a potential therapeutic target for TBI treatment.
Collapse
Affiliation(s)
- Naijil George
- Laboratory of Developmental Neurobiology, Cell Biology and Physiology Center, NHLBI, NIH, Bethesda, MD, 20892-1603, USA
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, Cell Biology and Physiology Center, NHLBI, NIH, Bethesda, MD, 20892-1603, USA
| |
Collapse
|
59
|
Yang JS, Wei HX, Chen PP, Wu G. Roles of Eph/ephrin bidirectional signaling in central nervous system injury and recovery. Exp Ther Med 2018; 15:2219-2227. [PMID: 29456630 PMCID: PMC5795627 DOI: 10.3892/etm.2018.5702] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/26/2017] [Indexed: 12/12/2022] Open
Abstract
Multiple cellular components are involved in the complex pathological process following central nervous system (CNS) injury, including neurons, glial cells and endothelial cells. Previous studies and neurotherapeutic clinical trials have assessed the molecular mechanisms that underlie neuronal cell death following CNS injury. However, this approach has largely failed to reduce CNS damage or improve the functional recovery of patients. Erythropoietin-producing human hepatocellular (Eph) receptors and ephrin ligands have attracted considerable attention since their discovery, due to their extensive distribution and unique bidirectional signaling between astrocytes and neurons. Previous studies have investigated the roles of Eph/ephrin bidirectional signaling in the developing central nervous system. It was determined that Eph/ephrin bidirectional signaling is expressed in various CNS regions and cell types, and that it serves diverse roles in the adult CNS. In the present review, the roles of Eph/ephrin bidirectional signaling in CNS injuries are assessed.
Collapse
Affiliation(s)
- Jin-Shan Yang
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Hui-Xing Wei
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Ping-Ping Chen
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Gang Wu
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| |
Collapse
|
60
|
Wan Y, Yang JS, Xu LC, Huang XJ, Wang W, Xie MJ. Roles of Eph/ephrin bidirectional signaling during injury and recovery of the central nervous system. Neural Regen Res 2018; 13:1313-1321. [PMID: 30106032 PMCID: PMC6108204 DOI: 10.4103/1673-5374.235217] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multiple cellular components, including neuronal, glial and endothelial cells, are involved in the sophisticated pathological processes following central nervous system injury. The pathological process cannot reduce damage or improve functional recovery by merely targeting the molecular mechanisms of neuronal cell death after central nerve system injuries. Eph receptors and ephrin ligands have drawn wide attention since the discovery of their extensive distribution and unique bidirectional signaling between astrocytes and neurons. The roles of Eph/ephrin bidirectional signaling in the developmental processes have been reported in previous research. Recent observations suggest that Eph/ephrin bidirectional signaling continues to be expressed in most regions and cell types in the adult central nervous system, playing diverse roles. The Eph/ephrin complex mediates neurogenesis and angiogenesis, promotes glial scar formation, regulates endocrine levels, inhibits myelin formation and aggravates inflammation and nerve pain caused by injury. The interaction between Eph and ephrin is also considered to be the key to angiogenesis. This review focuses on the roles of Eph/ephrin bidirectional signaling in the repair of central nervous system injuries.
Collapse
Affiliation(s)
- Yue Wan
- Department of Neurology, The Third People's Hospital of Hubei Province, Wuhan, Hubei Province, China
| | - Jin-Shan Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province; Department of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Li-Cai Xu
- Department of Neurological Rehabilitation Center, The Third People's Hospital of Hubei Province, Wuhan, Hubei Province, China
| | - Xiao-Jiang Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Min-Jie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
61
|
Sun G, Yang S, Cao G, Wang Q, Hao J, Wen Q, Li Z, So KF, Liu Z, Zhou S, Zhao Y, Yang H, Zhou L, Yin Z. γδ T cells provide the early source of IFN-γ to aggravate lesions in spinal cord injury. J Exp Med 2017; 215:521-535. [PMID: 29282251 PMCID: PMC5789408 DOI: 10.1084/jem.20170686] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/22/2017] [Accepted: 11/28/2017] [Indexed: 02/05/2023] Open
Abstract
Immune responses and neuroinflammation are critically involved in spinal cord injury (SCI). γδ T cells, a small subset of T cells, regulate the inflammation process in many diseases, yet their function in SCI is still poorly understood. In this paper, we demonstrate that mice deficient in γδ T cells (TCRδ-/- ) showed improved functional recovery after SCI. γδ T cells are detected at the lesion sites within 24 hours after injury and are predominantly of the Vγ4 subtype and express the inflammatory cytokine IFN-γ. Inactivating IFN-γ signaling in macrophages results in a significantly reduced production of proinflammatory cytokines in the cerebrospinal fluid (CSF) of mice with SCIs and improves functional recovery. Furthermore, treatment of SCI with anti-Vγ4 antibodies has a beneficial effect, similar to that obtained with anti-TNF-α. In SCI patients, γδ T cells are detected in the CSF, and most of them are IFN-γ positive. In conclusion, manipulation of γδ T cell functions may be a potential approach for future SCI treatment.
Collapse
Affiliation(s)
- Guodong Sun
- The First Affiliated Hospital, Biomedical Translational Research Institute and Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, China
| | - Shuxian Yang
- The First Affiliated Hospital, Biomedical Translational Research Institute and Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, China
| | - Guangchao Cao
- The First Affiliated Hospital, Biomedical Translational Research Institute and Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, China
| | - Qianghua Wang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Jianlei Hao
- The First Affiliated Hospital, Biomedical Translational Research Institute and Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, China
| | - Qiong Wen
- The First Affiliated Hospital, Biomedical Translational Research Institute and Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, China
| | - Zhizhong Li
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Zonghua Liu
- The First Affiliated Hospital, Biomedical Translational Research Institute and Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, China.,State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Sufang Zhou
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
| | - Yongxiang Zhao
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
| | - Hengwen Yang
- The First Affiliated Hospital, Biomedical Translational Research Institute and Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, China.,State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Libing Zhou
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China .,Co-Innovation Center of Neuroregeneration, Nantong University, Jiangsu, China.,Key Laboratory of Neuroscience, School of Basic Medical Sciences, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhinan Yin
- The First Affiliated Hospital, Biomedical Translational Research Institute and Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, China .,State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
62
|
Volz KR, Evans KD, Kanner CD, Buford JA, Freimer M, Sommerich CM, Basso DM. Molecular Ultrasound Imaging for the Detection of Neural Inflammation: A Longitudinal Dosing Pilot Study. JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY 2017. [DOI: 10.1177/8756479317736250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Molecular ultrasound imaging provides the ability to detect physiologic processes noninvasively by targeting a variety of biomarkers in vivo. The current study was performed by exploiting an inflammatory biomarker, P-selectin, known to be present following spinal cord injury. Using a murine model (n = 6), molecular ultrasound imaging was performed using contrast microbubbles modified to target and adhere to P-selectin, prior to spinal cord injury (0D), acute stage postinjury (7D), and chronic stage (42D). Additionally, two imaging sessions were performed on each subject at specific time points, using doses of 30 μL and 100 μL. Upon analysis, targeted contrast analysis parameters were appreciably increased during the 7D scan compared with the 42D scan, without statistical significance. When examining the dose levels, the 30-μL dose demonstrated greater values than the 100-μL dose but lacked statistical significance. These findings provide additional preclinical evidence for the use of molecular ultrasound imaging for the possible detection of inflammation.
Collapse
Affiliation(s)
- Kevin R. Volz
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kevin D. Evans
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - John A. Buford
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Miriam Freimer
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - D. Michele Basso
- College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
63
|
Volz KR, Evans KD, Kanner CD, Buford JA, Freimer M, Sommerich CM. Molecular Ultrasound Imaging of the Spinal Cord for the Detection of Acute Inflammation. JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY 2017. [DOI: 10.1177/8756479317729671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Molecular ultrasound imaging provides the ability to detect physiologic processes non-invasively by targeting a wide variety of biological markers in vivo. The current study investigates the novel application of molecular ultrasound imaging for the detection of neural inflammation. Using a murine model with acutely injured spinal cords (n=31), subjects were divided into four groups, each being administered ultrasound contrast microbubbles bearing antibodies against various known inflammatory molecules (P-selectin, vascular cell adhesion protein 1 [VCAM-1], intercellular adhesion molecule 1 [ICAM-1], and isotype control) during molecular ultrasound imaging. Upon administration of the targeted contrast agent, ultrasound imaging of the injured spinal cord was performed at 40MHz for seven minutes, followed by a bursting pulse. We observed significantly enhanced signals from contrast targeted to P-selectin and VCAM-1, using a variety of outcome measures. These findings provide preclinical evidence that molecular ultrasound imaging could be a useful tool in the detection of neural inflammation.
Collapse
Affiliation(s)
- Kevin R. Volz
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kevin D. Evans
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - John A. Buford
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Miriam Freimer
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
64
|
von Leden RE, Khayrullina G, Moritz KE, Byrnes KR. Age exacerbates microglial activation, oxidative stress, inflammatory and NOX2 gene expression, and delays functional recovery in a middle-aged rodent model of spinal cord injury. J Neuroinflammation 2017; 14:161. [PMID: 28821269 PMCID: PMC5563003 DOI: 10.1186/s12974-017-0933-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/04/2017] [Indexed: 12/17/2022] Open
Abstract
Background Spinal cord injury (SCI) among people over age 40 has been steadily increasing since the 1980s and is associated with worsened outcome than injuries in young people. Age-related increases in reactive oxygen species (ROS) are suggested to lead to chronic inflammation. The NADPH oxidase 2 (NOX2) enzyme is expressed by microglia and is a primary source of ROS. This study aimed to determine the effect of age on inflammation, oxidative damage, NOX2 gene expression, and functional performance with and without SCI in young adult (3 months) and middle-aged (12 months) male rats. Methods Young adult and middle-aged rats were assessed in two groups—naïve and moderate contusion SCI. Functional recovery was determined by weekly assessment with the Basso, Beattie, and Breshnahan general motor score (analyzed two-way ANOVA) and footprint analysis (analyzed by Chi-square analysis). Tissue was analyzed for markers of oxidative damage (8-OHdG, Oxyblot, and 3-NT), microglial-related inflammation (Iba1), NOX2 component (p47PHOX, p22PHOX, and gp91PHOX), and inflammatory (CD86, CD206, TNFα, and NFκB) gene expression (all analyzed by unpaired Student’s t test). Results In both naïve and injured aged rats, compared to young rats, tissue analysis revealed significant increases in 8-OHdG and Iba1, as well as inflammatory and NOX2 component gene expression. Further, injured aged rats showed greater lesion volume rostral and caudal to the injury epicenter. Finally, injured aged rats showed significantly reduced Basso–Beattie–Bresnahan (BBB) scores and stride length after SCI. Conclusions These results show that middle-aged rats demonstrate increased microglial activation, oxidative stress, and inflammatory gene expression, which may be related to elevated NOX2 expression, and contribute to worsened functional outcome following injury. These findings are essential to elucidating the mechanisms of age-related differences in response to SCI and developing age-appropriate therapeutics.
Collapse
Affiliation(s)
- Ramona E von Leden
- Neuroscience Program, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA. .,Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Room C2099, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Guzal Khayrullina
- Neuroscience Program, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.,Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Room C2099, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Kasey E Moritz
- Neuroscience Program, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Kimberly R Byrnes
- Neuroscience Program, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.,Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Room C2099, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| |
Collapse
|
65
|
Gaudet AD, Fonken LK, Watkins LR, Nelson RJ, Popovich PG. MicroRNAs: Roles in Regulating Neuroinflammation. Neuroscientist 2017; 24:221-245. [PMID: 28737113 DOI: 10.1177/1073858417721150] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that broadly affect cellular and physiological function in all multicellular organisms. Here, the role of miRNAs in neuroinflammation is considered. miRNAs are 21- to 23-oligonucleotide RNAs that regulate translation of specific RNAs by binding to complementary regulatory RNA sequences, thereby causing mRNA degradation or sequestration. More than 5000 miRNAs likely exist in humans, and each miRNA binds an average of 200 RNAs. Specific immunomodulatory miRNAs can regulate a set of RNAs in a coordinated manner, suggesting that effective miRNA-based therapeutic manipulations for neuroinflammatory conditions may be revealed. For instance, miRNAs that preferentially inhibit translation of many cellular anti-inflammatory proteins could drive a pro-inflammatory response. Key pro-inflammatory ( miR-155, miR-27b, miR-326), anti-inflammatory ( miR-124, miR-146a, miR-21, miR-223), and mixed immunomodulatory ( let-7 family) miRNAs regulate neuroinflammation in various pathologies, including spinal cord injury, multiple sclerosis, ischemic stroke, and Alzheimer's disease. miRNAs represent a newly revealed layer of physiological complexity, the therapeutic benefits of which remain to be fully explored and exploited. In this review, we discuss the role of miRNAs in neuroinflammatory regulation and discuss how controlling miRNAs could alter cellular machinery to improve neuroinflammatory dynamics.
Collapse
Affiliation(s)
- Andrew D Gaudet
- 1 Center for Neuroscience, University of Colorado Boulder, CO, USA.,2 Department of Psychology and Neuroscience, University of Colorado Boulder, CO, USA
| | - Laura K Fonken
- 1 Center for Neuroscience, University of Colorado Boulder, CO, USA.,2 Department of Psychology and Neuroscience, University of Colorado Boulder, CO, USA
| | - Linda R Watkins
- 1 Center for Neuroscience, University of Colorado Boulder, CO, USA.,2 Department of Psychology and Neuroscience, University of Colorado Boulder, CO, USA
| | - Randy J Nelson
- 3 Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.,4 Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Phillip G Popovich
- 3 Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.,4 Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.,5 Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
66
|
Noristani HN, Boukhaddaoui H, Saint-Martin G, Auzer P, Sidiboulenouar R, Lonjon N, Alibert E, Tricaud N, Goze-Bac C, Coillot C, Perrin FE. A Combination of Ex vivo Diffusion MRI and Multiphoton to Study Microglia/Monocytes Alterations after Spinal Cord Injury. Front Aging Neurosci 2017; 9:230. [PMID: 28769787 PMCID: PMC5515855 DOI: 10.3389/fnagi.2017.00230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022] Open
Abstract
Central nervous system (CNS) injury has been observed to lead to microglia activation and monocytes infiltration at the lesion site. Ex vivo diffusion magnetic resonance imaging (diffusion MRI or DWI) allows detailed examination of CNS tissues, and recent advances in clearing procedures allow detailed imaging of fluorescent-labeled cells at high resolution. No study has yet combined ex vivo diffusion MRI and clearing procedures to establish a possible link between microglia/monocytes response and diffusion coefficient in the context of spinal cord injury (SCI). We carried out ex vivo MRI of the spinal cord at different time-points after spinal cord transection followed by tetrahydrofuran based clearing and examined the density and morphology of microglia/monocytes using two-photon microscopy. Quantitative analysis revealed an early marked increase in microglial/monocytes density that is associated with an increase in the extension of the lesion measured using diffusion MRI. Morphological examination of microglia/monocytes somata at the lesion site revealed a significant increase in their surface area and volume as early as 72 hours post-injury. Time-course analysis showed differential microglial/monocytes response rostral and caudal to the lesion site. Microglia/monocytes showed a decrease in reactivity over time caudal to the lesion site, but an increase was observed rostrally. Direct comparison of microglia/monocytes morphology, obtained through multiphoton, and the longitudinal apparent diffusion coefficient (ADC), measured with diffusion MRI, highlighted that axonal integrity does not correlate with the density of microglia/monocytes or their somata morphology. We emphasize that differential microglial/monocytes reactivity rostral and caudal to the lesion site may thus coincide, at least partially, with reported temporal differences in debris clearance. Our study demonstrates that the combination of ex vivo diffusion MRI and two-photon microscopy may be used to follow structural tissue alteration. Lesion extension coincides with microglia/monocytes density; however, a direct relationship between ADC and microglia/monocytes density and morphology was not observed. We highlighted a differential rostro-caudal microglia/monocytes reactivity that may correspond to a temporal difference in debris clearance and axonal integrity. Thus, potential therapeutic strategies targeting microglia/monocytes after SCI may need to be adjusted not only with the time after injury but also relative to the location to the lesion site.
Collapse
Affiliation(s)
- Harun N Noristani
- Institut National de la Santé et de la Recherche Médicale, U1051Montpellier, France.,University of Montpellier, Montpellier; Institut National de la Santé et de la Recherche Médicale, U1198, Montpellier; École Pratique des Hautes ÉtudesParis, France
| | - Hassan Boukhaddaoui
- Institut National de la Santé et de la Recherche Médicale, U1051Montpellier, France
| | - Guillaume Saint-Martin
- University of Montpellier, Montpellier; Institut National de la Santé et de la Recherche Médicale, U1198, Montpellier; École Pratique des Hautes ÉtudesParis, France.,Charles Coulomb Laboratory, UMR 5221 Centre National de la Recherche ScientifiqueMontpellier, France
| | - Pauline Auzer
- Institut National de la Santé et de la Recherche Médicale, U1051Montpellier, France
| | - Rahima Sidiboulenouar
- Charles Coulomb Laboratory, UMR 5221 Centre National de la Recherche ScientifiqueMontpellier, France
| | - Nicolas Lonjon
- University of Montpellier, Montpellier; Institut National de la Santé et de la Recherche Médicale, U1198, Montpellier; École Pratique des Hautes ÉtudesParis, France.,Centre Hospitalier Universitaire de Montpellier (CHRU), Gui de Chauliac HospitalMontpellier, France
| | - Eric Alibert
- Charles Coulomb Laboratory, UMR 5221 Centre National de la Recherche ScientifiqueMontpellier, France
| | - Nicolas Tricaud
- Institut National de la Santé et de la Recherche Médicale, U1051Montpellier, France
| | - Christophe Goze-Bac
- Charles Coulomb Laboratory, UMR 5221 Centre National de la Recherche ScientifiqueMontpellier, France
| | - Christophe Coillot
- Charles Coulomb Laboratory, UMR 5221 Centre National de la Recherche ScientifiqueMontpellier, France
| | - Florence E Perrin
- Institut National de la Santé et de la Recherche Médicale, U1051Montpellier, France.,University of Montpellier, Montpellier; Institut National de la Santé et de la Recherche Médicale, U1198, Montpellier; École Pratique des Hautes ÉtudesParis, France
| |
Collapse
|
67
|
Orr MB, Simkin J, Bailey WM, Kadambi NS, McVicar AL, Veldhorst AK, Gensel JC. Compression Decreases Anatomical and Functional Recovery and Alters Inflammation after Contusive Spinal Cord Injury. J Neurotrauma 2017; 34:2342-2352. [PMID: 28381129 DOI: 10.1089/neu.2016.4915] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Experimental models of spinal cord injury (SCI) typically utilize contusion or compression injuries. Clinically, however, SCI is heterogeneous and the primary injury mode may affect secondary injury progression and neuroprotective therapeutic efficacy. Specifically, immunomodulatory agents are of therapeutic interest because the activation state of SCI macrophages may facilitate pathology but also improve repair. It is unknown currently how the primary injury biomechanics affect macrophage activation. Therefore, to determine the effects of compression subsequent to spinal contusion, we examined recovery, secondary injury, and macrophage activation in C57/BL6 mice after SCI with or without a 20 sec compression at two contusion impact forces (50 and 75 kdyn). We observed that regardless of the initial impact force, compression increased tissue damage and worsened functional recovery. Interestingly, compression-dependent damage is not evident until one week after SCI. Further, compression limits functional recovery to the first two weeks post-SCI; in the absence of compression, mice receiving contusion SCI recover for four weeks. To determine whether the recovery plateau is indicative of compression-specific inflammatory responses, we examined macrophage activation with immunohistochemical markers of purportedly pathological (CD86 and macrophage receptor with collagenous structure [MARCO]) and reparative macrophages (arginase [Arg1] and CD206). We detected significant increases in macrophages expression of MARCO and decreases in macrophage Arg1 expression with compression, suggesting a biomechanical-dependent shift in SCI macrophage activation. Collectively, compression-induced alterations in tissue and functional recovery and inflammation highlight the need to consider the primary SCI biomechanics in the design and clinical implementation of immunomodulatory therapies.
Collapse
Affiliation(s)
- Michael B Orr
- 1 Spinal Cord and Brain Injury Research Center and the Department of Physiology, the University of Kentucky , Lexington, Kentucky
- 3 Integrated Biomedical Sciences Graduate Program, the University of Kentucky , Lexington, Kentucky
| | - Jennifer Simkin
- 1 Spinal Cord and Brain Injury Research Center and the Department of Physiology, the University of Kentucky , Lexington, Kentucky
- 2 Department of Biology, the University of Kentucky , Lexington, Kentucky
| | - William M Bailey
- 1 Spinal Cord and Brain Injury Research Center and the Department of Physiology, the University of Kentucky , Lexington, Kentucky
| | - Neha S Kadambi
- 4 Math, Science, and Technology Center Program, Dunbar High School , Lexington, Kentucky
| | - Anna Leigh McVicar
- 1 Spinal Cord and Brain Injury Research Center and the Department of Physiology, the University of Kentucky , Lexington, Kentucky
| | - Amy K Veldhorst
- 1 Spinal Cord and Brain Injury Research Center and the Department of Physiology, the University of Kentucky , Lexington, Kentucky
| | - John C Gensel
- 1 Spinal Cord and Brain Injury Research Center and the Department of Physiology, the University of Kentucky , Lexington, Kentucky
| |
Collapse
|
68
|
Villapol S, Loane DJ, Burns MP. Sexual dimorphism in the inflammatory response to traumatic brain injury. Glia 2017; 65:1423-1438. [PMID: 28608978 DOI: 10.1002/glia.23171] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/24/2017] [Accepted: 05/08/2017] [Indexed: 12/19/2022]
Abstract
The activation of resident microglial cells, alongside the infiltration of peripheral macrophages, are key neuroinflammatory responses to traumatic brain injury (TBI) that are directly associated with neuronal death. Sexual disparities in response to TBI have been previously reported; however it is unclear whether a sex difference exists in neuroinflammatory progression after TBI. We exposed male and female mice to moderate-to-severe controlled cortical impact injury and studied glial cell activation in the acute and chronic stages of TBI using immunofluorescence and in situ hybridization analysis. We found that the sex response was completely divergent up to 7 days postinjury. TBI caused a rapid and pronounced cortical microglia/macrophage activation in male mice with a prominent activated phenotype that produced both pro- (IL-1β and TNFα) and anti-inflammatory (Arg1 and TGFβ) cytokines with a single-phase, sustained peak from 1 to 7 days. In contrast, TBI caused a less robust microglia/macrophage phenotype in females with biphasic pro-inflammatory response peaks at 4 h and 7 days, and a delayed anti-inflammatory mRNA peak at 30 days. We further report that female mice were protected against acute cell loss after TBI, with male mice demonstrating enhanced astrogliosis, neuronal death, and increased lesion volume through 7 days post-TBI. Collectively, these findings indicate that TBI leads to a more aggressive neuroinflammatory profile in male compared with female mice during the acute and subacute phases postinjury. Understanding how sex affects the course of neuroinflammation following brain injury is a vital step toward developing personalized and effective treatments for TBI.
Collapse
Affiliation(s)
- Sonia Villapol
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University, Washington, District of Columbia
| | - David J Loane
- Department of Anesthesiology, Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland
| | - Mark P Burns
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University, Washington, District of Columbia
| |
Collapse
|
69
|
Geremia NM, Hryciw T, Bao F, Streijger F, Okon E, Lee JHT, Weaver LC, Dekaban GA, Kwon BK, Brown A. The effectiveness of the anti-CD11d treatment is reduced in rat models of spinal cord injury that produce significant levels of intraspinal hemorrhage. Exp Neurol 2017; 295:125-134. [PMID: 28587875 DOI: 10.1016/j.expneurol.2017.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/11/2017] [Accepted: 06/01/2017] [Indexed: 11/30/2022]
Abstract
We have previously reported that administration of a CD11d monoclonal antibody (mAb) improves recovery in a clip-compression model of SCI. In this model the CD11d mAb reduces the infiltration of activated leukocytes into the injured spinal cord (as indicated by reduced intraspinal MPO). However not all anti-inflammatory strategies have reported beneficial results, suggesting that success of the CD11d mAb treatment may depend on the type or severity of the injury. We therefore tested the CD11d mAb treatment in a rat hemi-contusion model of cervical SCI. In contrast to its effects in the clip-compression model, the CD11d mAb treatment did not improve forelimb function nor did it significantly reduce MPO levels in the hemi-contused cord. To determine if the disparate results using the CD11d mAb were due to the biomechanical nature of the cord injury (compression SCI versus contusion SCI) or to the spinal level of the injury (12th thoracic level versus cervical) we further evaluated the CD11d mAb treatment after a T12 contusion SCI. In contrast to the T12 clip compression SCI, the CD11d mAb treatment did not improve locomotor recovery or significantly reduce MPO levels after T12 contusion SCI. Lesion analyses revealed increased levels of hemorrhage after contusion SCI compared to clip-compression SCI. SCI that is accompanied by increased intraspinal hemorrhage would be predicted to be refractory to the CD11d mAb therapy as this approach targets leukocyte diapedesis through the intact vasculature. These results suggest that the disparate results of the anti-CD11d treatment in contusion and clip-compression models of SCI are due to the different pathophysiological mechanisms that dominate these two types of spinal cord injuries.
Collapse
Affiliation(s)
- N M Geremia
- Molecular Medicine Research Group, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street North, London, Ontario N6A 5B7, Canada
| | - T Hryciw
- Molecular Medicine Research Group, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street North, London, Ontario N6A 5B7, Canada
| | - F Bao
- Molecular Medicine Research Group, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street North, London, Ontario N6A 5B7, Canada
| | - F Streijger
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada
| | - E Okon
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada
| | - J H T Lee
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada
| | - L C Weaver
- Molecular Medicine Research Group, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street North, London, Ontario N6A 5B7, Canada
| | - G A Dekaban
- Molecular Medicine Research Group, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street North, London, Ontario N6A 5B7, Canada
| | - B K Kwon
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada
| | - A Brown
- Molecular Medicine Research Group, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street North, London, Ontario N6A 5B7, Canada.
| |
Collapse
|
70
|
Mosser CA, Baptista S, Arnoux I, Audinat E. Microglia in CNS development: Shaping the brain for the future. Prog Neurobiol 2017; 149-150:1-20. [DOI: 10.1016/j.pneurobio.2017.01.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 12/22/2022]
|
71
|
Li Z, Wei H, Piirainen S, Chen Z, Kalso E, Pertovaara A, Tian L. Spinal versus brain microglial and macrophage activation traits determine the differential neuroinflammatory responses and analgesic effect of minocycline in chronic neuropathic pain. Brain Behav Immun 2016; 58:107-117. [PMID: 27262531 DOI: 10.1016/j.bbi.2016.05.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/25/2016] [Accepted: 05/31/2016] [Indexed: 12/18/2022] Open
Abstract
Substantial evidence indicates involvement of microglia/macrophages in chronic neuropathic pain. However, the temporal-spatial features of microglial/macrophage activation and their pain-bound roles remain elusive. Here, we evaluated microglia/macrophages and the subtypes in the lumbar spinal cord (SC) and prefrontal cortex (PFC), and analgesic-anxiolytic effect of minocycline at different stages following spared nerve injury (SNI) in rats. While SNI enhanced the number of spinal microglia/macrophages since post-operative day (POD)3, pro-inflammatory MHCII+ spinal microglia/macrophages were unexpectedly less abundant in SNI rats than shams on POD21. By contrast, less abundant anti-inflammatory CD172a (SIRPα)+ microglia/macrophages were found in the PFC of SNI rats. Interestingly in naïve rats, microglial/macrophage expression of CD11b/c, MHCII and MHCII+/CD172a+ ratio were higher in the SC than the cortex. Consistently, multiple immune genes involved in anti-inflammation, phagocytosis, complement activation and M2 microglial/macrophage polarization were upregulated in the spinal dorsal horn and dorsal root ganglia but downregulated in the PFC of SNI rats. Furthermore, daily intrathecal minocycline treatment starting from POD0 for two weeks alleviated mechanical allodynia most robustly before POD3 and attenuated anxiety on POD9. Although minocycline dampened spinal MHCII+ microglia/macrophages until POD13, it failed to do so on cortical microglia/macrophages, indicating that dampening only spinal inflammation may not be enough to alleviate centralized pain at the chronic stage. Taken together, our data provide the first evidence that basal microglial/macrophage traits underlie differential region-specific responses to SNI and minocycline treatment, and suggest that drug treatment efficiently targeting not only spinal but also brain inflammation may be more effective in treating chronic neuropathic pain.
Collapse
Affiliation(s)
- Zhilin Li
- Neuroscience Center, University of Helsinki, Helsinki, Finland.
| | - Hong Wei
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Sami Piirainen
- Neuroscience Center, University of Helsinki, Helsinki, Finland.
| | - Zuyue Chen
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Eija Kalso
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Antti Pertovaara
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Li Tian
- Neuroscience Center, University of Helsinki, Helsinki, Finland; Psychiatry Research Center, Beijing Huilongguan Hospital, Peking University, Beijing, China.
| |
Collapse
|
72
|
Yoo JY, Hwang CH, Hong HN. A Model of Glial Scarring Analogous to the Environment of a Traumatically Injured Spinal Cord Using Kainate. Ann Rehabil Med 2016; 40:757-768. [PMID: 27847705 PMCID: PMC5108702 DOI: 10.5535/arm.2016.40.5.757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/14/2016] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To develop an in vitro model analogous to the environment of traumatic spinal cord injury (SCI), the authors evaluated change of astrogliosis following treatments with kainate and/or scratch, and degree of neurite outgrowth after treatment with a kainate inhibitor. METHODS Astrocytes were obtained from the rat spinal cord. Then, 99% of the cells were confirmed to be GFAP-positive astrocytes. For chemical injury, the cells were treated with kainate at different concentrations (10, 50 or 100 µM). For mechanical injury, two kinds of uniform scratches were made using a plastic pipette tip by removing strips of cells. For combined injury (S/K), scratch and kainate were provided. Cord neurons from rat embryos were plated onto culture plates immediately after the three kinds of injuries and some cultures were treated with a kainate inhibitor. RESULTS Astro-gliosis (glial fibrillary acidic protein [GFAP], vimentin, chondroitin sulfate proteoglycan [CSPG], rho-associated protein kinase [ROCK], and ephrin type-A receptor 4 [EphA4]) was most prominent after treatment with 50 µM kainate and extensive scratch injury in terms of single arm (p<0.001) and in the S/K-induced injury model in view of single or combination (p<0.001). Neurite outgrowth in the seeded spinal cord (β-III tubulin) was the least in the S/K-induced injury model (p<0.001) and this inhibition was reversed by the kainate inhibitor (p<0.001). CONCLUSION The current in vitro model combining scratch and kainate induced glial scarring and inhibitory molecules and restricted neurite outgrowth very strongly than either the mechanically or chemically-induced injury model; hence, it may be a useful tool for research on SCI.
Collapse
Affiliation(s)
- Jong Yoon Yoo
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chang Ho Hwang
- Department of Physical Medicine and Rehabilitation, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Hea Nam Hong
- Department of Anatomy, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
73
|
Volz KR, Evans KD, Kanner CD, Basso DM. Exploring Targeted Contrast-Enhanced Ultrasound to Detect Neural Inflammation. JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY 2016. [DOI: 10.1177/8756479316665865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Targeted contrast-enhanced ultrasound (TCEUS) is an innovative method of molecular imaging used for detection of inflammatory biomarkers in vivo. By targeting ultrasound contrast to cell adhesion molecules (CAMs), which are known inflammatory markers within neural tissue, a more direct evaluation of neural inflammation can be made. Due to the novel nature of TCEUS, standardized methods of image analysis do not yet exist. Time intensity curve (TIC) shape analysis is currently used in magnetic resonance contrast imaging to determine temporal behavior of perfusion. Therefore, the presented research attempts to determine TIC shape analysis utility in TCEUS imaging by applying it to TCEUS scans targeted to CAMs present in neural inflammation. This was done in an animal model that underwent a traumatic spinal cord injury to induce inflammation ( n = 31). Subjects were divided into four groups, each receiving a TCEUS targeted to a different CAM seven days after surgery (P-selectin, intracellular adhesion molecule 1 [ICAM-1], vascular cell adhesion molecule 1 [VCAM-1], and control). TICs were generated using average pixel intensity within the injured region of the spinal cord. TIC shape analysis found similar curves were produced while targeting P-selectin and VCAM-1, both demonstrating rapid and sustained enhancement. Control injections demonstrated no enhancement. ICAM-1 injections demonstrated limited enhancement and a shape similar to the control.
Collapse
Affiliation(s)
- Kevin R. Volz
- College of Medicine, School of Health and Rehabilitation Science, The Ohio State University, Columbus, OH, USA
| | - Kevin D. Evans
- College of Medicine, School of Health and Rehabilitation Science, The Ohio State University, Columbus, OH, USA
| | - Christopher D. Kanner
- College of Medicine, School of Health and Rehabilitation Science, The Ohio State University, Columbus, OH, USA
| | - D. Michele Basso
- College of Medicine, School of Health and Rehabilitation Science, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
74
|
Zhang H, Wang Y. Identification of molecular pathway changes after spinal cord injury by microarray analysis. J Orthop Surg Res 2016; 11:101. [PMID: 27628653 PMCID: PMC5024485 DOI: 10.1186/s13018-016-0437-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/05/2016] [Indexed: 12/17/2022] Open
Abstract
Background Spinal cord injury (SCI) is highly related to the devastating sensory and motor dysfunction. Methods The GSE45006 gene expression profile dataset was downloaded from Gene Expression Omnibus, which was collected from 24 rats including 20 animals with injured T7 spinal cords using an aneurysm clip impact-compression injury model and killed after 1 day, 3 days, 1 week, 2 weeks, and 8 weeks and four sham-operated rats. Differentially expressed genes (DEGs) between the injured rats at each time point and the sham-operated rats were screened. DEGs commonly detected throughout different time points were further identified, followed by comparing the expression level of these DEGs at each time point between the injured spinal cord samples and controls. Pathway enrichment analysis of the common DEGs was performed. Results The difference in the expression level of 416 common DEGs was significant between the injured spinal cord samples and the controls at each time point (P < 0.05), with the most significant difference 1 day after SCI. The common DEGs were enriched in three pathways, namely Fcγ R-mediated phagocytosis, mitogen-activated protein kinase (MAPK) signaling pathway, and chemokine signaling pathway. AKT3 and RAC2 were enriched in all the three pathways; RAP1B in both MAPK signaling pathway and chemokine signaling pathway; and VAV1, LYN, and HCK in both Fcγ R-mediated phagocytosis and chemokine signaling pathway. Conclusions This study has confirmed the occurrence of neuronal death, inflammation, and neuronal regeneration after SCI. AKT3, RAC2, VAV1, RAP18, LYN, and HCK may have critical roles in the pathological responses to SCI.
Collapse
Affiliation(s)
- Haocong Zhang
- Department of Orthopaedics, The General Hospital of PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yan Wang
- Department of Orthopaedics, The General Hospital of PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
75
|
Lehmann ML, Cooper HA, Maric D, Herkenham M. Social defeat induces depressive-like states and microglial activation without involvement of peripheral macrophages. J Neuroinflammation 2016; 13:224. [PMID: 27581371 PMCID: PMC5007852 DOI: 10.1186/s12974-016-0672-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/17/2016] [Indexed: 01/27/2023] Open
Abstract
Background We are interested in the causal interactions between psychological stress and activity within different compartments of the immune system. Psychosocial stress has been reported to not only alter microglia morphology but also produce anxiety-like and depressive-like effects by triggering CNS infiltration of macrophages from the periphery. We sought to test these phenomena in a somewhat different but standardized model of chronic social defeat (SD) stress. Methods We used a paradigm of dyadic home pairing of dominant and subordinate mice that has been validated to induce powerful anxiety-like and depressive-like effects manifested by behavior assessed in social tasks. We administered the SD stress for 3 days (acute SD) or 14 days (chronic SD) and looked for monocyte entry into the brain by three independent means, including CD45 activation states assessed by flow cytometry and tracking fluorescently tagged peripheral cells from Ccr2wt/rfp and Ubcgfp/gfp reporter mice. We further characterized the effects of SD stress on microglia using quantitative morphometric analysis, ex vivo phagocytosis assays, flow cytometry, and immunochemistry. Results We saw no evidence of stress-induced macrophage entry after acute or chronic defeat stress. In comparison, brain infiltration of peripheral cells did occur after endotoxin administration. Furthermore, mutant mice lacking infiltrating macrophages due to CCR2 knockout developed the same degree of chronic SD-induced depressive behavior as wildtype mice. We therefore focused more closely on the intrinsic immune cells, the microglia. Using Cx3cr1wt/gpf microglial reporter mice, we saw by quantitative methods that microglial morphology was not altered by stress at either time point. However, chronic SD mice had elevated numbers of CD68hi microglia examined by flow cytometry. CD68 is a marker for phagocytic activity. Indeed, these cells ex vivo showed elevated phagocytosis, confirming the increased activation status of chronic SD microglia. Finally, acute SD but not chronic SD increased microglial proliferation, which occurred selectively in telencephalic stress-related brain areas. Conclusions In the SD paradigm, changes in CNS-resident microglia numbers and activation states might represent the main immunological component of the psychosocial stress-induced depressive state.
Collapse
Affiliation(s)
- Michael L Lehmann
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, NIH, Bldg. 35, Rm. 1C911, Bethesda, MD, 20892-3724, USA.
| | - Hannah A Cooper
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, NIH, Bldg. 35, Rm. 1C911, Bethesda, MD, 20892-3724, USA
| | - Dragan Maric
- NINDS Flow Cytometry Core Facility, NIH, Bethesda, MD, 20892, USA
| | - Miles Herkenham
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, NIH, Bldg. 35, Rm. 1C911, Bethesda, MD, 20892-3724, USA
| |
Collapse
|
76
|
Hu J, Yang Z, Li X, Lu H. C-C motif chemokine ligand 20 regulates neuroinflammation following spinal cord injury via Th17 cell recruitment. J Neuroinflammation 2016; 13:162. [PMID: 27334337 PMCID: PMC4918039 DOI: 10.1186/s12974-016-0630-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 06/16/2016] [Indexed: 12/21/2022] Open
Abstract
Background Spinal cord injury (SCI) is a severe traumatic injury that often leads to paralysis. The neuroinflammation following SCI plays an important role during the secondary injury phase. C-C motif chemokine ligand 20 (CCL20) works like a magnet to attract inflammatory cells and subsequently regulate inflammation. However, the role and mechanisms of CCL20 in neuroinflammation following traumatic injury are poorly understood. Methods A modified Allen’s weight drop method was applied to induce a rat moderate contusion injury model. HE staining was used to assess spinal cord histopathology, and the water content test was used to estimate spinal cord edema. Motor function scores were quantified to evaluate locomotor ability, and leukocyte infiltration was observed by CD45 immunofluorescence and flow cytometry. Additionally, qRT-PCR and ELISA were used to determine inflammatory mediator gene expression. Th17 cell recruitment was identified by flow cytometry. Results Compared with the injury control groups, histological analysis of the lesion area and tissue edema revealed reduced spinal cord edema and decreased lesion volume in the group administrated with CCL20 neutralizing antibody. Locomotor activity, as assessed by Basso, Beattie, and Bresnahan (BBB) score, showed that CCL20 blockade was beneficial for motor function recovery. Results also showed that leukocyte infiltration was reduced by neutralizing CCL20 at 7 days post-injury. More importantly, expression levels of IL-1β, IL-6, and TNF-α at 24 h after SCI demonstrated that a reduced inflammatory reaction in the CCL20 antibody group compared with the injury controls. Although CCL20 altered the expression of IL-1β, IL-6, and TNF-α, it had no effect on anti-inflammatory IL-10 expression at 24 h after damage. Notably, tissue flow cytometry confirmed that Th17 cell recruitment in the CCL20 antibody group was decreased compared with the control groups at 14 days post-injury. Additionally, IL-17A expression, which is mainly secreted by Th17 cell, suggested that CCL20 blockade also reduced IL-17A levels at 14 days after SCI. Conclusions These results suggested that CCL20 aggravates neuroinflammation following SCI via regulation of Th17 cell recruitment and IL-17A level. Thus, CCL20-target therapy could be a promising clinical application for the treatment of SCI. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0630-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jianzhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410000, People's Republic of China
| | - Zhiming Yang
- Department of Spine Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410000, People's Republic of China
| | - Xiaoning Li
- Department of Sports Medicine, Research Center of Sports Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410000, People's Republic of China
| | - Hongbin Lu
- Department of Sports Medicine, Research Center of Sports Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410000, People's Republic of China.
| |
Collapse
|
77
|
Devaux S, Cizkova D, Quanico J, Franck J, Nataf S, Pays L, Hauberg-Lotte L, Maass P, Kobarg JH, Kobeissy F, Mériaux C, Wisztorski M, Slovinska L, Blasko J, Cigankova V, Fournier I, Salzet M. Proteomic Analysis of the Spatio-temporal Based Molecular Kinetics of Acute Spinal Cord Injury Identifies a Time- and Segment-specific Window for Effective Tissue Repair. Mol Cell Proteomics 2016; 15:2641-70. [PMID: 27250205 DOI: 10.1074/mcp.m115.057794] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) represents a major debilitating health issue with a direct socioeconomic burden on the public and private sectors worldwide. Although several studies have been conducted to identify the molecular progression of injury sequel due from the lesion site, still the exact underlying mechanisms and pathways of injury development have not been fully elucidated. In this work, based on OMICs, 3D matrix-assisted laser desorption ionization (MALDI) imaging, cytokines arrays, confocal imaging we established for the first time that molecular and cellular processes occurring after SCI are altered between the lesion proximity, i.e. rostral and caudal segments nearby the lesion (R1-C1) whereas segments distant from R1-C1, i.e. R2-C2 and R3-C3 levels coexpressed factors implicated in neurogenesis. Delay in T regulators recruitment between R1 and C1 favor discrepancies between the two segments. This is also reinforced by presence of neurites outgrowth inhibitors in C1, absent in R1. Moreover, the presence of immunoglobulins (IgGs) in neurons at the lesion site at 3 days, validated by mass spectrometry, may present additional factor that contributes to limited regeneration. Treatment in vivo with anti-CD20 one hour after SCI did not improve locomotor function and decrease IgG expression. These results open the door of a novel view of the SCI treatment by considering the C1 as the therapeutic target.
Collapse
Affiliation(s)
- Stephanie Devaux
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France; §Institute of Neurobiology, Slovak Academy of Sciences, Center of Excellence for Brain Research, Soltesovej 4-6 Kosice, Slovakia; §§Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Dasa Cizkova
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France; §Institute of Neurobiology, Slovak Academy of Sciences, Center of Excellence for Brain Research, Soltesovej 4-6 Kosice, Slovakia; §§Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Jusal Quanico
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Julien Franck
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Serge Nataf
- ¶Inserm U-1060, CarMeN Laboratory, Banque de Tissus et de Cellules des Hospices Civils de Lyon, Université Lyon-1, France
| | - Laurent Pays
- ¶Inserm U-1060, CarMeN Laboratory, Banque de Tissus et de Cellules des Hospices Civils de Lyon, Université Lyon-1, France
| | - Lena Hauberg-Lotte
- ‖Center for industrial mathematics, University of Bremen, Bibliothek straβe 1, MZH, Room 2060, 28359 Bremen, Germany
| | - Peter Maass
- ‖Center for industrial mathematics, University of Bremen, Bibliothek straβe 1, MZH, Room 2060, 28359 Bremen, Germany
| | - Jan H Kobarg
- **Steinbeis Innovation Center SCiLS Research, Fahrenheitstr. 1, 28359 Bremen, Germany
| | - Firas Kobeissy
- ‡‡Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut
| | - Céline Mériaux
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Maxence Wisztorski
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Lucia Slovinska
- §Institute of Neurobiology, Slovak Academy of Sciences, Center of Excellence for Brain Research, Soltesovej 4-6 Kosice, Slovakia
| | - Juraj Blasko
- §Institute of Neurobiology, Slovak Academy of Sciences, Center of Excellence for Brain Research, Soltesovej 4-6 Kosice, Slovakia
| | - Viera Cigankova
- §§Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Isabelle Fournier
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Michel Salzet
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France; **Steinbeis Innovation Center SCiLS Research, Fahrenheitstr. 1, 28359 Bremen, Germany
| |
Collapse
|
78
|
Mao XW, Nishiyama NC, Pecaut MJ, Campbell-Beachler M, Gifford P, Haynes KE, Becronis C, Gridley DS. Simulated Microgravity and Low-Dose/Low-Dose-Rate Radiation Induces Oxidative Damage in the Mouse Brain. Radiat Res 2016; 185:647-57. [DOI: 10.1667/rr14267.1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
79
|
Zhang Y, Zhang ZG, Chopp M, Meng Y, Zhang L, Mahmood A, Xiong Y. Treatment of traumatic brain injury in rats with N-acetyl-seryl-aspartyl-lysyl-proline. J Neurosurg 2016; 126:782-795. [PMID: 28245754 DOI: 10.3171/2016.3.jns152699] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE The authors' previous studies have suggested that thymosin beta 4 (Tβ4), a major actin-sequestering protein, improves functional recovery after neural injury. N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is an active peptide fragment of Tβ4. Its effect as a treatment of traumatic brain injury (TBI) has not been investigated. Thus, this study was designed to determine whether AcSDKP treatment improves functional recovery in rats after TBI. METHODS Young adult male Wistar rats were randomly divided into the following groups: 1) sham group (no injury); 2) TBI + vehicle group (0.01 N acetic acid); and 3) TBI + AcSDKP (0.8 mg/kg/day). TBI was induced by controlled cortical impact over the left parietal cortex. AcSDKP or vehicle was administered subcutaneously starting 1 hour postinjury and continuously for 3 days using an osmotic minipump. Sensorimotor function and spatial learning were assessed using a modified Neurological Severity Score and Morris water maze tests, respectively. Some of the animals were euthanized 1 day after injury, and their brains were processed for measurement of fibrin accumulation and neuroinflammation signaling pathways. The remaining animals were euthanized 35 days after injury, and brain sections were processed for measurement of lesion volume, hippocampal cell loss, angiogenesis, neurogenesis, and dendritic spine remodeling. RESULTS Compared with vehicle treatment, AcSDKP treatment initiated 1 hour postinjury significantly improved sensorimotor functional recovery (Days 7-35, p < 0.05) and spatial learning (Days 33-35, p < 0.05), reduced cortical lesion volume, and hippocampal neuronal cell loss, reduced fibrin accumulation and activation of microglia/macrophages, enhanced angiogenesis and neurogenesis, and increased the number of dendritic spines in the injured brain (p < 0.05). AcSDKP treatment also significantly inhibited the transforming growth factor-β1/nuclear factor-κB signaling pathway. CONCLUSIONS AcSDKP treatment initiated 1 hour postinjury provides neuroprotection and neurorestoration after TBI, indicating that this small tetrapeptide has promising therapeutic potential for treatment of TBI. Further investigation of the optimal dose and therapeutic window of AcSDKP treatment for TBI and the associated underlying mechanisms is therefore warranted.
Collapse
Affiliation(s)
| | | | - Michael Chopp
- Neurology, Henry Ford Hospital, Detroit; and.,Department of Physics, Oakland University, Rochester, Michigan
| | | | - Li Zhang
- Neurology, Henry Ford Hospital, Detroit; and
| | | | - Ye Xiong
- Departments of 1 Neurosurgery and
| |
Collapse
|
80
|
Zegenhagen L, Kurhade C, Koniszewski N, Överby AK, Kröger A. Brain heterogeneity leads to differential innate immune responses and modulates pathogenesis of viral infections. Cytokine Growth Factor Rev 2016; 30:95-101. [PMID: 27009077 DOI: 10.1016/j.cytogfr.2016.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 01/28/2023]
Abstract
The central nervous system (CNS) is a highly complex organ with highly specialized cell subtypes. Viral infections often target specific structures of the brain and replicate in certain regions. Studies in mice deficient in type I Interferon (IFN) receptor or IFN-β have highlighted the importance of the type I IFN system against viral infections and non-viral autoimmune disorders in the CNS. Direct antiviral effects of type I IFNs appear to be crucial in limiting early spread of a number of viruses in CNS tissues. Increased efforts have been made to characterize IFN expression and responses in the brain. In this context, it is important to identify cells that produce IFN, decipher pathways leading to type I IFN expression and to characterize responding cells. In this review we give an overview about region specific aspects that influence local innate immune responses. The route of entry is critical, but also the susceptibility of different cell types, heterogeneity in subpopulations and micro-environmental cues play an important role in antiviral responses. Recent work has outlined the tremendous importance of type I IFNs, particularly in the limitation of viral spread within the CNS. This review will address recent advances in understanding the mechanisms of local type I IFN production and response, in the particular context of the CNS.
Collapse
Affiliation(s)
- Loreen Zegenhagen
- Innate Immunity and Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany; Institute of Medical Microbiology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Chaitanya Kurhade
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| | - Nikolaus Koniszewski
- Institute of Medical Microbiology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Anna K Överby
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| | - Andrea Kröger
- Innate Immunity and Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany; Institute of Medical Microbiology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
| |
Collapse
|
81
|
Grabert K, Michoel T, Karavolos MH, Clohisey S, Baillie JK, Stevens MP, Freeman TC, Summers KM, McColl BW. Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat Neurosci 2016; 19:504-16. [PMID: 26780511 PMCID: PMC4768346 DOI: 10.1038/nn.4222] [Citation(s) in RCA: 859] [Impact Index Per Article: 95.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/07/2015] [Indexed: 12/13/2022]
Abstract
Microglia have critical roles in neural development, homeostasis and neuroinflammation and are increasingly implicated in age-related neurological dysfunction. Neurodegeneration often occurs in disease-specific, spatially restricted patterns, the origins of which are unknown. We performed to our knowledge the first genome-wide analysis of microglia from discrete brain regions across the adult lifespan of the mouse, and found that microglia have distinct region-dependent transcriptional identities and age in a regionally variable manner. In the young adult brain, differences in bioenergetic and immunoregulatory pathways were the major sources of heterogeneity and suggested that cerebellar and hippocampal microglia exist in a more immune-vigilant state. Immune function correlated with regional transcriptional patterns. Augmentation of the distinct cerebellar immunophenotype and a contrasting loss in distinction of the hippocampal phenotype among forebrain regions were key features during aging. Microglial diversity may enable regionally localized homeostatic functions but could also underlie region-specific sensitivities to microglial dysregulation and involvement in age-related neurodegeneration.
Collapse
Affiliation(s)
- Kathleen Grabert
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Tom Michoel
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | | | - Sara Clohisey
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - J Kenneth Baillie
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Mark P Stevens
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Tom C Freeman
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Kim M Summers
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Barry W McColl
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| |
Collapse
|
82
|
Protective features of peripheral monocytes/macrophages in stroke. Biochim Biophys Acta Mol Basis Dis 2015; 1862:329-38. [PMID: 26584587 DOI: 10.1016/j.bbadis.2015.11.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 12/13/2022]
Abstract
Hematogenous recruitment of monocytes and macrophages has traditionally been viewed as a harmful process causing exacerbation of brain injury after stroke. However, emerging findings suggest equally important protective features. Inflammatory monocytes are rapidly recruited to ischemic brain via a CCR2-dependent pathway and undergo secondary differentiation in the target tissue towards non-inflammatory macrophages, mediating neuroprotection and repair of the ischemic neurovascular unit. In contrast, independent recruitment of non-inflammatory monocytes via CX3CR1 does not occur. Thus, protective features of hematogenous macrophages mainly depend on initial CCR2-dependent cell recruitment. Under therapeutic considerations, specific modulation of monocyte-derived macrophages will therefore be more appropriate than non-selectively blocking their hematogenous recruitment. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.
Collapse
|
83
|
Developing Extracellular Matrix Technology to Treat Retinal or Optic Nerve Injury(1,2,3). eNeuro 2015; 2:eN-REV-0077-15. [PMID: 26478910 PMCID: PMC4603254 DOI: 10.1523/eneuro.0077-15.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 09/04/2015] [Accepted: 09/09/2015] [Indexed: 12/30/2022] Open
Abstract
Adult mammalian CNS neurons often degenerate after injury, leading to lost neurologic functions. In the visual system, retinal or optic nerve injury often leads to retinal ganglion cell axon degeneration and irreversible vision loss. CNS axon degeneration is increasingly linked to the innate immune response to injury, which leads to tissue-destructive inflammation and scarring. Extracellular matrix (ECM) technology can reduce inflammation, while increasing functional tissue remodeling, over scarring, in various tissues and organs, including the peripheral nervous system. However, applying ECM technology to CNS injuries has been limited and virtually unstudied in the visual system. Here we discuss advances in deriving fetal CNS-specific ECMs, like fetal porcine brain, retina, and optic nerve, and fetal non-CNS-specific ECMs, like fetal urinary bladder, and the potential for using tissue-specific ECMs to treat retinal or optic nerve injuries in two platforms. The first platform is an ECM hydrogel that can be administered as a retrobulbar, periocular, or even intraocular injection. The second platform is an ECM hydrogel and polymer "biohybrid" sheet that can be readily shaped and wrapped around a nerve. Both platforms can be tuned mechanically and biochemically to deliver factors like neurotrophins, immunotherapeutics, or stem cells. Since clinical CNS therapies often use general anti-inflammatory agents, which can reduce tissue-destructive inflammation but also suppress tissue-reparative immune system functions, tissue-specific, ECM-based devices may fill an important need by providing naturally derived, biocompatible, and highly translatable platforms that can modulate the innate immune response to promote a positive functional outcome.
Collapse
|
84
|
Puga DA, Tovar CA, Guan Z, Gensel JC, Lyman MS, McTigue DM, Popovich PG. Stress exacerbates neuron loss and microglia proliferation in a rat model of excitotoxic lower motor neuron injury. Brain Behav Immun 2015; 49:246-54. [PMID: 26100488 PMCID: PMC4567453 DOI: 10.1016/j.bbi.2015.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/01/2015] [Accepted: 06/08/2015] [Indexed: 11/19/2022] Open
Abstract
All individuals experience stress and hormones (e.g., glucocorticoids/GCs) released during stressful events can affect the structure and function of neurons. These effects of stress are best characterized for brain neurons; however, the mechanisms controlling the expression and binding affinity of glucocorticoid receptors in the spinal cord are different than those in the brain. Accordingly, whether stress exerts unique effects on spinal cord neurons, especially in the context of pathology, is unknown. Using a controlled model of focal excitotoxic lower motor neuron injury in rats, we examined the effects of acute or chronic variable stress on spinal cord motor neuron survival and glial activation. New data indicate that stress exacerbates excitotoxic spinal cord motor neuron loss and associated activation of microglia. In contrast, hypertrophy and hyperplasia of astrocytes and NG2+ glia were unaffected or were modestly suppressed by stress. Although excitotoxic lesions cause significant motor neuron loss and stress exacerbates this pathology, overt functional impairment did not develop in the relevant forelimb up to one week post-lesion. These data indicate that stress is a disease-modifying factor capable of altering neuron and glial responses to pathological challenges in the spinal cord.
Collapse
Affiliation(s)
- Denise A Puga
- Center for Brain and Spinal Cord Repair, Wexner Medical Center at The Ohio State University, Columbus, Ohio 43210, United States; Department of Neuroscience, Wexner Medical Center at The Ohio State University, Columbus, Ohio 43210, United States
| | - C Amy Tovar
- Center for Brain and Spinal Cord Repair, Wexner Medical Center at The Ohio State University, Columbus, Ohio 43210, United States; Department of Neuroscience, Wexner Medical Center at The Ohio State University, Columbus, Ohio 43210, United States
| | - Zhen Guan
- Center for Brain and Spinal Cord Repair, Wexner Medical Center at The Ohio State University, Columbus, Ohio 43210, United States; Department of Neuroscience, Wexner Medical Center at The Ohio State University, Columbus, Ohio 43210, United States
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Matthew S Lyman
- Department of Neuroscience, Wexner Medical Center at The Ohio State University, Columbus, Ohio 43210, United States
| | - Dana M McTigue
- Center for Brain and Spinal Cord Repair, Wexner Medical Center at The Ohio State University, Columbus, Ohio 43210, United States; Department of Neuroscience, Wexner Medical Center at The Ohio State University, Columbus, Ohio 43210, United States
| | - Phillip G Popovich
- Center for Brain and Spinal Cord Repair, Wexner Medical Center at The Ohio State University, Columbus, Ohio 43210, United States; Department of Neuroscience, Wexner Medical Center at The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
85
|
Cheung V, Hoshide R, Bansal V, Kasper E, Chen CC. Methylprednisolone in the management of spinal cord injuries: Lessons from randomized, controlled trials. Surg Neurol Int 2015; 6:142. [PMID: 26392918 PMCID: PMC4553662 DOI: 10.4103/2152-7806.163452] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/02/2015] [Indexed: 11/23/2022] Open
Abstract
The efficacy of glucocorticoid for treatment of acute spinal cord injuries remains a controversial topic. Differing medical societies have issued conflicting recommendations in this regard. Here we review the available randomized, controlled trial (RCT) data on this subject and offer a synthesis of these data sets.
Collapse
Affiliation(s)
- Vincent Cheung
- Division of Neurosurgery, University of California, San Diego, CA, USA
| | - Reid Hoshide
- Division of Neurosurgery, University of California, San Diego, CA, USA
| | - Vishal Bansal
- Department of Surgery, University of California, San Diego, CA, USA
| | - Ekkehard Kasper
- Division of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Clark C Chen
- Division of Neurosurgery, University of California, San Diego, CA, USA
| |
Collapse
|
86
|
Tong J, Ren Y, Wang X, Dimopoulos VG, Kesler HN, Liu W, He X, Nedergaard M, Huang JH. Assessment of Nogo-66 receptor 1 function in vivo after spinal cord injury. Neurosurgery 2015; 75:51-60. [PMID: 24594926 DOI: 10.1227/neu.0000000000000337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Neuronal Nogo-66 receptor 1 (NgR1) has attracted attention as a converging point for mediating the effects of myelin-associate inhibitory ligands in the central nervous system, establishing the growth-restrictive environment, and limiting axon regeneration after traumatic injury. OBJECTIVE To investigate the factors that may be contributing to the discrepancy in the importance of NgR1, which has been undermined by several studies that have shown the lack of substantial axon regeneration after spinal cord injury (SCI) in NgR1-knockout or -knockdown animal models. METHODS We used mice carrying either a homozygous or heterozygous null mutation in the NgR1 gene and subjected them to either a moderate or severe SCI. RESULTS Locomotor function assessments revealed that the level of functional recovery is affected by the degree of injury suffered. NgR1 ablation enhanced local collateral sprouting in the mutant mice. Reactive astrocytes and chondroitin sulfate proteoglycans (CSPGs) are upregulated surrounding the injury site. Matrix metalloproteinase-9, which has been shown to degrade CSPGs, was significantly upregulated in the homozygous mutant mice compared with the heterozygous or wild-type mice. However, CSPG levels remained higher in the homozygous compared with the heterozygous mice, suggesting that CSPG-degrading activity of matrix metalloproteinase-9 may require the presence of NgR1. CONCLUSION Genetic ablation of NgR1 may lead to significant recovery in locomotor function after SCI. The difference in locomotor recovery we observed between the groups that suffered various degrees of injury suggests that injury severity may be a confounding factor in functional recovery after SCI.
Collapse
Affiliation(s)
- Jing Tong
- ‡Department of Neurosurgery and ‖Center for Translational Neuromedicine, University of Rochester, Rochester, New York; §Department of Neurosurgery, Fourth Affiliated Hospital of Hebei Medical University, Hebei, China; ¶Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China; and #Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Velázquez A, Ortega M, Rojas S, González-Oliván FJ, Rodríguez-Baeza A. Widespread microglial activation in patients deceased from traumatic brain injury. Brain Inj 2015; 29:1126-33. [PMID: 26067626 DOI: 10.3109/02699052.2015.1018325] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PRIMARY OBJECTIVE The role of microglial activation in traumatic brain injury (TBI) has been extensively described in established animal models. In contrast, very few studies have analysed this process in human patients, the majority being focused on the local reaction in the contused parenchyma. In this work, the main objective was the analysis of microglial activation in brain regions distant from the primary lesion. RESEARCH DESIGN Morphological changes of microglia were evaluated in the cerebral cortex of patients deceased from TBI in comparison with control subjects. METHODS AND PROCEDURES Cortical samples from five cases with TBI and 10 controls were evaluated using Ricinus communis lectin histochemistry and conventional Hematoxylin-eosin staining. MAIN OUTCOMES AND RESULTS It was observed that microglial cells from patients with TBI presented shorter and thicker cellular projections compared with controls. Moreover, the percentage of histological area reactive to lectin was statistically higher in samples from subjects with TBI. These signs of microglial activation were observed in all of the analysed cortical areas, thus indicating a generalized effect on the whole cerebral cortex. The results are consistent with previous imaging PET studies performed in living patients with the 11C-PK11195 radiotracer. CONCLUSIONS The findings indicate that TBI induces a widespread activation of brain microglia which affects all cortical areas, including those distant from the contusion site.
Collapse
Affiliation(s)
- Antonio Velázquez
- Departamento de Ciencias Morfológicas, Facultad de Medicina, Universitat Autònoma de Barcelona , Barcelona , Spain and
| | | | | | | | | |
Collapse
|
88
|
Taylor DD, Gercel-Taylor C. Exosome platform for diagnosis and monitoring of traumatic brain injury. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0503. [PMID: 25135964 DOI: 10.1098/rstb.2013.0503] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We have previously demonstrated the release of membranous structures by cells into their extracellular environment, which are termed exosomes, microvesicles or extracellular vesicles depending on specific characteristics, including size, composition and biogenesis pathway. With activation, injury, stress, transformation or infection, cells express proteins and RNAs associated with the cellular responses to these events. The exosomes released by these cells can exhibit an array of proteins, lipids and nucleic acids linked to these physiologic events. This review focuses on exosomes associated with traumatic brain injury, which may be both diagnostic and a causative factor in the progression of the injury. Based on current data, exosomes play essential roles as conveyers of intercellular communication and mediators of many of the pathological conditions associated with development, progression and therapeutic failures and cellular stress in a variety of pathologic conditions. These extracellular vesicles express components responsible for angiogenesis promotion, stromal remodelling, signal pathway activation through growth factor/receptor transfer, chemoresistance, immunologic activation and genetic exchange. These circulating exosomes not only represent a central mediator of the pro-inflammatory microenvironment linked with secondary brain injury, but their presence in the peripheral circulation may serve as a surrogate for biopsies, enabling real-time diagnosis and monitoring of neurodegenerative progression.
Collapse
Affiliation(s)
- Douglas D Taylor
- Exosome Sciences, Inc., 11 Deer Park Drive, Suite 103, Monmouth Junction, NJ 08852, USA
| | - Cicek Gercel-Taylor
- Exosome Sciences, Inc., 11 Deer Park Drive, Suite 103, Monmouth Junction, NJ 08852, USA
| |
Collapse
|
89
|
Click-crosslinked injectable hyaluronic acid hydrogel is safe and biocompatible in the intrathecal space for ultimate use in regenerative strategies of the injured spinal cord. Methods 2015; 84:60-9. [PMID: 25846399 DOI: 10.1016/j.ymeth.2015.03.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/26/2015] [Indexed: 12/18/2022] Open
Abstract
Traumatic spinal cord injury (SCI) causes damage and degeneration at and around the lesion site resulting in a loss of function. SCI presents a complex regenerative problem due to the multiple aspects of growth inhibition and the heterogeneity in size, shape and extent of injury. Currently, there is no widely accepted treatment strategy available and delivering biomolecules to the central nervous system remains a challenge. With a view towards achieving local release, we designed a hydrogel that can be injected into the intrathecal space. Here we describe the synthesis and characterization of a click-crosslinked hyaluronic acid hydrogel and demonstrate controlled in vitro release of bioactive brain derived neurotrophic factor. Importantly, we demonstrate that this new hydrogel is both biocompatible in the intrathecal space based on immunohistochemistry of the host tissue response and safe based on behavioral analysis of locomotor function.
Collapse
|
90
|
Ritzel RM, Patel AR, Pan S, Crapser J, Hammond M, Jellison E, McCullough LD. Age- and location-related changes in microglial function. Neurobiol Aging 2015; 36:2153-63. [PMID: 25816747 DOI: 10.1016/j.neurobiolaging.2015.02.016] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 02/08/2015] [Accepted: 02/13/2015] [Indexed: 11/26/2022]
Abstract
Inflammation in the central nervous system (CNS) is primarily regulated by microglia. No longer considered a homogenous population, microglia display a high degree of heterogeneity, immunological diversity and regional variability in function. Given their low rate of self-renewal, the microenvironment in which microglia reside may play an important role in microglial senescence. This study examines age-related changes in microglia in the brain and spinal cord. Using ex-vivo flow cytometry analyses, functional assays were performed to assess changes in microglial morphology, oxidative stress, cytokine production, and phagocytic activity with age in both the brain and spinal cord. The regional CNS environment had a significant effect on microglial activity with age. Blood-CNS barrier permeability was greater in the aging spinal cord compared with aging brain; this was associated with increased tissue cytokine levels. Aged microglia had deficits in phagocytosis at baseline and after stimulus-induced activation. The identification of age-specific, high scatter microglia together with the use of ex-vivo functional analyses provides the first functional characterization of senescent microglia. Age and regional-specificity of CNS disease should be taken into consideration when developing immune-modulatory treatments.
Collapse
Affiliation(s)
- Rodney M Ritzel
- Department of Neurology, University of Connecticut Health Center, Farmington, CT, USA
| | - Anita R Patel
- Department of Neurology, University of Connecticut Health Center, Farmington, CT, USA
| | - Sarah Pan
- Department of Neurology, University of Connecticut Health Center, Farmington, CT, USA
| | - Joshua Crapser
- Department of Neurology, University of Connecticut Health Center, Farmington, CT, USA
| | - Matt Hammond
- Department of Neurology, University of Connecticut Health Center, Farmington, CT, USA
| | - Evan Jellison
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Louise D McCullough
- Department of Neurology, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
91
|
Neuroinflammation and virus replication in the spinal cord of simian immunodeficiency virus-infected macaques. J Neuropathol Exp Neurol 2015; 74:38-47. [PMID: 25470348 DOI: 10.1097/nen.0000000000000148] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Studies of neurologic diseases induced by simian immunodeficiency virus (SIV) in Asian macaques have contributed greatly to the current understanding of human immunodeficiency virus pathogenesis in the brain and peripheral nervous system. Detailed investigations into SIV-induced alterations in the spinal cord, a critical sensorimotor relay point between the brain and the peripheral nervous system, have yet to be reported. In this study, lumbar spinal cords from SIV-infected pigtailed macaques were examined to quantify SIV replication and associated neuroinflammation. In untreated SIV-infected animals, there was a strong correlation between amount of SIV RNA in the spinal cord and expression of the macrophage marker CD68 and the key proinflammatory mediators tumor necrosis factor and CCL2. We also found a significant correlation between SIV-induced alterations in the spinal cord and the degree of distal epidermal nerve fiber loss among untreated animals. Spinal cord changes (including elevated glial fibrillary acidic protein immunostaining and enhanced CCL2 gene expression) also were present in SIV-infected antiretroviral drug-treated animals despite SIV suppression. A fuller understanding of the complex virus and host factor dynamics in the spinal cord during human immunodeficiency virus infection will be critical in the development of new treatments for human immunodeficiency virus-associated sensory neuropathies and studies aimed at eradicating the virus from the central nervous system.
Collapse
|
92
|
Ersen A, Elkabes S, Freedman DS, Sahin M. Chronic tissue response to untethered microelectrode implants in the rat brain and spinal cord. J Neural Eng 2015; 12:016019. [PMID: 25605679 DOI: 10.1088/1741-2560/12/1/016019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Microelectrodes implanted in the central nervous system (CNS) often fail in long term implants due to the immunological tissue response caused by tethering forces of the connecting wires. In addition to the tethering effect, there is a mechanical stress that occurs at the device-tissue interface simply because the microelectrode is a rigid body floating in soft tissue and it cannot reshape itself to comply with changes in the surrounding tissue. In the current study we evaluated the scar tissue formation to tetherless devices with two significantly different geometries in the rat brain and spinal cord in order to investigate the effects of device geometry. APPROACH One of the implant geometries resembled the wireless, floating microstimulators that we are currently developing in our laboratory and the other was a (shank only) Michigan probe for comparison. Both electrodes were implanted into either the cervical spinal cord or the motor cortices, one on each side. MAIN RESULTS The most pronounced astroglial and microglial reactions occurred within 20 μm from the device and decreased sharply at larger distances. Both cell types displayed the morphology of non-activated cells past the 100 μm perimeter. Even though the aspect ratios of the implants were different, the astroglial and microglial responses to both microelectrode types were very mild in the brain, stronger and yet limited in the spinal cord. SIGNIFICANCE These observations confirm previous reports and further suggest that tethering may be responsible for most of the tissue response in chronic implants and that the electrode size has a smaller contribution with floating electrodes. The electrode size may be playing primarily an amplifying role to the tethering forces in the brain whereas the size itself may induce chronic response in the spinal cord where the movement of surrounding tissues is more significant.
Collapse
Affiliation(s)
- Ali Ersen
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | | | | | | |
Collapse
|
93
|
Gensel JC, Zhang B. Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res 2015; 1619:1-11. [PMID: 25578260 DOI: 10.1016/j.brainres.2014.12.045] [Citation(s) in RCA: 546] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 12/08/2014] [Indexed: 12/11/2022]
Abstract
The injured spinal cord does not heal properly. In contrast, tissue repair and functional recovery occur after skin or muscle injuries. The reason for this dichotomy in wound repair is unclear but inflammation, and specifically macrophage activation, likely plays a key role. Macrophages have the ability to promote the repair of injured tissue by regulating transitions through different phase of the healing response. In the current review we compare and contrast the healing and inflammatory responses between spinal cord injuries and tissues that undergo complete wound resolution. Through this comparison, we identify key macrophage phenotypes that are inaptly triggered or absent after spinal cord injury and discuss spinal cord stimuli that contribute to this maladaptive response. Sequential activation of classic, pro-inflammatory, M1 macrophages and alternatively activated, M2a, M2b, and M2c macrophages occurs during normal healing and facilitates transitions through the inflammatory, proliferative, and remodeling phases of repair. In contrast, in the injured spinal cord, pro-inflammatory macrophages potentiate a prolonged inflammatory phase and remodeling is not properly initiated. The desynchronized macrophage activation after spinal cord injury is reminiscent of the inflammation present in chronic, non-healing wounds. By refining the role macrophages play in spinal cord injury repair we bring to light important areas for future neuroinflammation and neurotrauma research. This article is part of a Special Issue entitled SI: Spinal cord injury.
Collapse
Affiliation(s)
- John C Gensel
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY 40536, United States.
| | - Bei Zhang
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY 40536, United States
| |
Collapse
|
94
|
Ljubisavljevic S, Stojanovic I. Neuroinflammation and demyelination from the point of nitrosative stress as a new target for neuroprotection. Rev Neurosci 2015; 26:49-73. [DOI: 10.1515/revneuro-2014-0060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/30/2014] [Indexed: 12/30/2022]
Abstract
AbstractThe role of nitrosative stress in the early pathogenesis of neuroinflammation and demyelination is undoubtedly wide. This review summarizes and integrates the results, found in previously performed studies, which have evaluated nitrosative stress participation in neuroinflammation. The largest number of studies indicates that the supply of nitrosative stress inhibitors has led to the opposite clinical effects in experimental studies. Some results claim that attributing the protective role to nitric oxide, outside the total changes of redox oxidative processes and without following the clinical and paraclinical correlates of neuroinflammation, is an overrated role of this mediator. The fact is that the use of nitrosative stress inhibitors would be justified in the earlier phases of neuroinflammation. The ideal choice would be a specific inducible nitric oxide synthase (iNOS) inhibitor, because its use would preserve the physiological features of nitric oxide produced by the effects of constitutive NOS. This review discusses the antinitrosative therapy as a potential mode of therapy that aims to control neuroinflammation in early phases, delaying its later phases, which are accompanied with irreversible neurological disabilities. Some parameters of nitrosative stress might serve as surrogate biomarkers for neuroinflammation intensity and its radiological and clinical correlates.
Collapse
|
95
|
Ljubisavljevic S. Oxidative Stress and Neurobiology of Demyelination. Mol Neurobiol 2014; 53:744-758. [PMID: 25502298 DOI: 10.1007/s12035-014-9041-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/30/2014] [Indexed: 12/25/2022]
Abstract
Despite a large amount of research which aims at defining the pathophysiology of human demyelination (i.e., multiple sclerosis), etiological bases of disease have been unknown so far. The point of intersection of all assumed etiological factors, which are mainly based upon immunological cascades, is neuroinflammation. The precise definition of the place and role of all pathogenetic factors in the occurrence and development of the disease is of crucial importance for understanding the clinical nature and for finding more effective therapeutic options. There are few studies whose results give more precise data about the role and the importance of other factors in neuroinflammation, besides immunological ones, with regard to clinical and paraclinical correlates of the disease. The review integrates results found in previously performed studies which have evaluated oxidative stress participation in early and late neuroinflammation. The largest number of studies indicates that the use of antioxidants affects the change of neuroinflammation course under experimental conditions, which is reflected in the reduction of the severity and the total reversibility in clinical presentation of the disease, the faster achieving of remission, and the delayed and slow course of neuroinflammation. Therapies based on the knowledge of redox biology targeting free radical generation hold great promise in modulation of the neuroinflammation and its clinical presentations.
Collapse
Affiliation(s)
- Srdjan Ljubisavljevic
- Clinic of Neurology, Clinical Center Nis, Bul. Dr Zorana Djindjica 48, Nis, 18000, Serbia.
- Faculty of Medicine, University of Nis, Bul. Dr Zorana Djindjica 81, Nis, 18000, Serbia.
| |
Collapse
|
96
|
4(α-l-rhamnosyloxy)-benzyl isothiocyanate, a bioactive phytochemical that attenuates secondary damage in an experimental model of spinal cord injury. Bioorg Med Chem 2014; 23:80-8. [PMID: 25497964 DOI: 10.1016/j.bmc.2014.11.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/11/2014] [Accepted: 11/14/2014] [Indexed: 11/23/2022]
Abstract
4(α-l-Rhamnosyloxy)-benzyl isothiocyanate (glucomoringin isothiocyanate; GMG-ITC) is released from the precursor 4(α-l-rhamnosyloxy)-benzyl glucosinolate (glucomoringin; GMG) by myrosinase (β-thioglucoside glucohydrolase; E.C. 3.2.1.147) catalyzed hydrolysis. GMG is an uncommon member of the glucosinolate group as it presents a unique characteristic consisting in a second glycosidic residue within the side chain. It is a typical glucosinolate found in large amounts in the seeds of Moringa oleifera Lam., the most widely distributed plant of the Moringaceae family. GMG was purified from seed-cake of M. oleifera and was hydrolyzed by myrosinase at neutral pH in order to form the corresponding GMG-ITC. This bioactive phytochemical can play a key role in counteracting the inflammatory response connected to the oxidative-related mechanisms as well as in the control of the neuronal cell death process, preserving spinal cord tissues after injury in mice. Spinal cord trauma was induced in mice by the application of vascular clips (force of 24g) for 1 min., via four-level T5-T8 after laminectomy. In particular, the purpose of this study was to investigate the dynamic changes occurring in the spinal cord after ip treatment with bioactive GMG-ITC produced 15 min before use from myrosinase-catalyzed hydrolysis of GMG (10mg/kg body weight+5 μl Myr mouse/day). The following parameters, such as histological damage, distribution of reticular fibers in connective tissue, nuclear factor (NF)-κB translocation and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκB-α) degradation, expression of inducible Nitric Oxide Synthases (iNOS), as well as apoptosis, were evaluated. In conclusion, our results show a protective effect of bioactive GMG-ITC on the secondary damage, following spinal cord injury, through an antioxidant mechanism of neuroprotection. Therefore, the bioactive phytochemical GMG-ITC freshly produced before use by myrosinase-catalyzed hydrolysis of pure GMG, could prove to be useful in the treatment of spinal cord trauma.
Collapse
|
97
|
Rank MM, Flynn JR, Battistuzzo CR, Galea MP, Callister R, Callister RJ. Functional changes in deep dorsal horn interneurons following spinal cord injury are enhanced with different durations of exercise training. J Physiol 2014; 593:331-45. [PMID: 25556804 DOI: 10.1113/jphysiol.2014.282640] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 09/23/2014] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS Exercise training after spinal cord injury (SCI) enhances collateral sprouting from axons near the injury and is thought to promote intraspinal circuit reorganisation that effectively bridges the SCI. The effects of exercise training, and its duration, on interneurons in these de novo intraspinal circuits are poorly understood. In an adult mouse hemisection model of SCI, we used whole-cell patch-clamp electrophysiology to examine changes in the intrinsic and synaptic properties of deep dorsal horn interneurons in the vicinity of a SCI in response to the injury, and after 3 and 6 weeks of treadmill exercise training. SCI alone exerted powerful effects on the intrinsic and synaptic properties of interneurons near the lesion. Importantly, synaptic activity, both local and descending, was preferentially enhanced by exercise training, suggesting that exercise promotes synaptic plasticity in spinal cord interneurons that are ideally placed to form new intraspinal circuits after SCI. Following incomplete spinal cord injury (SCI), collaterals sprout from intact and injured axons in the vicinity of the lesion. These sprouts are thought to form new synaptic contacts that effectively bypass the lesion epicentre and contribute to improved functional recovery. Such anatomical changes are known to be enhanced by exercise training; however, the mechanisms underlying exercise-mediated plasticity are poorly understood. Specifically, we do not know how SCI alone or SCI combined with exercise alters the intrinsic and synaptic properties of interneurons in the vicinity of a SCI. Here we use a hemisection model of incomplete SCI in adult mice and whole-cell patch-clamp recording in a horizontal spinal cord slice preparation to examine the functional properties of deep dorsal horn (DDH) interneurons located in the vicinity of a SCI following 3 or 6 weeks of treadmill exercise training. We examined the functional properties of local and descending excitatory synaptic connections by recording spontaneous excitatory postsynaptic currents (sEPSCs) and responses to dorsal column stimulation, respectively. We find that SCI in untrained animals exerts powerful effects on intrinsic, and especially, synaptic properties of DDH interneurons. Plasticity in intrinsic properties was most prominent at 3 weeks post SCI, whereas synaptic plasticity was greatest at 6 weeks post injury. Exercise training did not markedly affect intrinsic membrane properties; however, local and descending excitatory synaptic drive were enhanced by 3 and 6 weeks of training. These results suggest exercise promotes synaptic plasticity in spinal cord interneurons that are ideally placed to form new intraspinal circuits after SCI.
Collapse
Affiliation(s)
- M M Rank
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan 2308, NSW, Australia
| | | | | | | | | | | |
Collapse
|
98
|
Bowes AL, Yip PK. Modulating inflammatory cell responses to spinal cord injury: all in good time. J Neurotrauma 2014; 31:1753-66. [PMID: 24934600 DOI: 10.1089/neu.2014.3429] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury can have a range of debilitating effects, permanently impacting a patient's quality of life. Initially thought to be an immune privileged site, the spinal cord is able to mount a timely and well organized inflammatory response to injury. Intricate immune cell interactions are triggered, typically consisting of a staggered multiphasic immune cell response, which can become deregulated if left unchecked. Although several immunomodulatory compounds have yielded success in experimental rodent spinal cord injury models, their translation to human clinical studies needs further consideration. Because temporal differences between rodent and human inflammatory responses to spinal cord injury do exist, drug delivery timing will be a crucial component in recovery from spinal cord injury. Given too early, immunomodulatory therapies may impede beneficial inflammatory reactions to the injured spinal cord or even miss the opportunity to dampen delayed harmful autoimmune processes. Therefore, this review aims to summarize the temporal inflammatory response to spinal cord injury, as well as detailing specific immune cell functions. By clearly defining the chronological order of inflammatory events after trauma, immunomodulatory drug delivery timing can be better optimized. Further, we compare spinal cord injury-induced inflammatory responses in rodent and human studies, enabling clinicians to consider these differences when initiating clinical trials. Improved understanding of the cellular immune response after spinal cord injury would enhance the efficacy of immunomodulatory agents, enabling combined therapies to be considered.
Collapse
Affiliation(s)
- Amy L Bowes
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London , London, United Kingdom
| | | |
Collapse
|
99
|
Gaudet AD, Popovich PG. Extracellular matrix regulation of inflammation in the healthy and injured spinal cord. Exp Neurol 2014; 258:24-34. [PMID: 25017885 DOI: 10.1016/j.expneurol.2013.11.020] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 02/06/2023]
Abstract
Throughout the body, the extracellular matrix (ECM) provides structure and organization to tissues and also helps regulate cell migration and intercellular communication. In the injured spinal cord (or brain), changes in the composition and structure of the ECM undoubtedly contribute to regeneration failure. Less appreciated is how the native and injured ECM influences intraspinal inflammation and, conversely, how neuroinflammation affects the synthesis and deposition of ECM after CNS injury. In all tissues, inflammation can be initiated and propagated by ECM disruption. Molecules of ECM newly liberated by injury or inflammation include hyaluronan fragments, tenascins, and sulfated proteoglycans. These act as "damage-associated molecular patterns" or "alarmins", i.e., endogenous proteins that trigger and subsequently amplify inflammation. Activated inflammatory cells, in turn, further damage the ECM by releasing degradative enzymes including matrix metalloproteinases (MMPs). After spinal cord injury (SCI), destabilization or alteration of the structural and chemical compositions of the ECM affects migration, communication, and survival of all cells - neural and non-neural - that are critical for spinal cord repair. By stabilizing ECM structure or modifying their ability to trigger the degradative effects of inflammation, it may be possible to create an environment that is more conducive to tissue repair and axon plasticity after SCI.
Collapse
Affiliation(s)
- Andrew D Gaudet
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, College of Medicine, The Ohio State University, 670 Biomedical Research Tower, 460 West 12th Ave., Columbus, OH 43210, USA.
| | - Phillip G Popovich
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, College of Medicine, The Ohio State University, 670 Biomedical Research Tower, 460 West 12th Ave., Columbus, OH 43210, USA.
| |
Collapse
|
100
|
Anthony DC, Couch Y. The systemic response to CNS injury. Exp Neurol 2014; 258:105-11. [PMID: 25017891 DOI: 10.1016/j.expneurol.2014.03.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/11/2014] [Accepted: 03/21/2014] [Indexed: 12/29/2022]
Abstract
Inflammation within the brain or spinal cord has the capacity to damage neurons and is known to contribute to long-term disability in a spectrum of central nervous system (CNS) pathologies. However, there is a more profound increase in the recruitment of potentially damaging populations of leukocytes to the spinal cord than to the brain after equivalent injuries. Increased levels of inflammatory cytokines and chemokines in the spinal cord underpin this dissimilarity after injury, which also appears to be very sensitive to processes that operate within organs distant from the primary injury site such as the liver, lung and spleen. Indeed, CNS injury per se can generate profound changes in gene expression and the cellularity of these organs, which, as a consequence, gives rise to secondary organ damage. Our understanding of the local inflammatory processes that can damage neurons is becoming clearer, but our understanding of how the peripheral immune system coordinates the response to CNS injury and how any concomitant infections or injury might impact on the outcome of CNS injury is not so well developed. It is clear that the orientation of the response to peripheral challenges, be it a pro- or anti-inflammatory effect, appears to be dependent on the nature and timing of events. Here, the importance of the inter-relationship between inflammation in the CNS and the consequent inflammatory response in peripheral tissues is highlighted.
Collapse
Affiliation(s)
| | - Yvonne Couch
- Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|